Improve documentation for Template Haskell
[ghc-hetmet.git] / docs / users_guide / glasgow_exts.xml
index 27d38ee..da6a125 100644 (file)
@@ -42,23 +42,16 @@ documentation</ulink> describes all the libraries that come with GHC.
     permitted.  Leaving out all of them gives you standard Haskell
     98.</para>
 
-    <para>Generally speaking, all the language options are introduced by "<option>-X</option>" or "<option>-X=</option>"; 
-    e.g. <option>-X=TemplateHaskell</option>.  Before anything else is done, the string following
-     "<option>-X</option>" is normalised by removing hyphens and converting
-    to lower case.  So <option>-X=TemplateHaskell</option>, <option>-XTemplateHaskell</option>, and
-         <option>-Xtemplate-haskell</option> are all equivalent.
+    <para>Generally speaking, all the language options are introduced by "<option>-X</option>", 
+    e.g. <option>-XTemplateHaskell</option>.
     </para>
 
    <para> All the language options can be turned off by using the prefix "<option>No</option>"; 
-      e.g. "<option>-X=NoTemplateHaskell</option>".</para>
+      e.g. "<option>-XNoTemplateHaskell</option>".</para>
 
    <para> Language options recognised by Cabal can also be enabled using the <literal>LANGUAGE</literal> pragma,
    thus <literal>{-# LANGUAGE TemplateHaskell #-}</literal> (see <xref linkend="language-pragma"/>>). </para>
 
-   <para> All the language options can be introduced with "<option>-f</option>" as well as "<option>-X</option>",
-      but this is a deprecated feature for backward compatibility.  Use the "<option>-X</option>" 
-      or LANGUAGE-pragma form.</para>
-
     <para>Turning on an option that enables special syntax
     <emphasis>might</emphasis> cause working Haskell 98 code to fail
     to compile, perhaps because it uses a variable name which has
@@ -115,18 +108,18 @@ documentation</ulink> describes all the libraries that come with GHC.
              <literal>|)</literal>, <literal>{|</literal>.</para>
 
          <para>Implies these specific language options: 
-           <option>-X=ForeignFunctionInterface</option>,
-           <option>-X=ImplicitParams</option>,
-           <option>-X=ScopedTypeVariables</option>,
-           <option>-X=GADTs</option>, 
-           <option>-X=TypeFamilies</option>. </para>
+           <option>-XForeignFunctionInterface</option>,
+           <option>-XImplicitParams</option>,
+           <option>-XScopedTypeVariables</option>,
+           <option>-XGADTs</option>, 
+           <option>-XTypeFamilies</option>. </para>
        </listitem>
       </varlistentry>
 
       <varlistentry>
        <term>
-          <option>-X=ffi</option> and <option>-X=ForeignFunctionInterface</option>:
-          <indexterm><primary><option>-X=FFI</option></primary></indexterm>
+          <option>-XForeignFunctionInterface</option>:
+          <indexterm><primary><option>-XForeignFunctionInterface</option></primary></indexterm>
         </term>
        <listitem>
          <para>This option enables the language extension defined in the
@@ -138,7 +131,7 @@ documentation</ulink> describes all the libraries that come with GHC.
 
       <varlistentry>
        <term>
-          <option>-X=MonomorphismRestriction</option>,<option>-X=MonoPatBinds</option>:
+          <option>-XMonomorphismRestriction</option>,<option>-XMonoPatBinds</option>:
         </term>
        <listitem>
          <para> These two flags control how generalisation is done.
@@ -149,8 +142,8 @@ documentation</ulink> describes all the libraries that come with GHC.
 
       <varlistentry>
        <term>
-          <option>-X=ExtendedDefaultRules</option>:
-          <indexterm><primary><option>-X=ExtendedDefaultRules</option></primary></indexterm>
+          <option>-XExtendedDefaultRules</option>:
+          <indexterm><primary><option>-XExtendedDefaultRules</option></primary></indexterm>
         </term>
        <listitem>
          <para> Use GHCi's extended default rules in a regular module (<xref linkend="extended-default-rules"/>).
@@ -161,16 +154,16 @@ documentation</ulink> describes all the libraries that come with GHC.
 
       <varlistentry>
        <term>
-          <option>-X=AllowOverlappingInstances</option>
-          <indexterm><primary><option>-X=AllowOverlappingInstances</option></primary></indexterm>
+          <option>-XOverlappingInstances</option>
+          <indexterm><primary><option>-XOverlappingInstances</option></primary></indexterm>
         </term>
        <term>
-          <option>-X=AllowUndecidableInstances</option>
-          <indexterm><primary><option>-X=AllowUndecidableInstances</option></primary></indexterm>
+          <option>-XUndecidableInstances</option>
+          <indexterm><primary><option>-XUndecidableInstances</option></primary></indexterm>
         </term>
        <term>
-          <option>-X=AllowIncoherentInstances</option>
-          <indexterm><primary><option>-X=AllowIncoherentInstances</option></primary></indexterm>
+          <option>-XIncoherentInstances</option>
+          <indexterm><primary><option>-XIncoherentInstances</option></primary></indexterm>
         </term>
        <term>
           <option>-fcontext-stack=N</option>
@@ -195,8 +188,8 @@ documentation</ulink> describes all the libraries that come with GHC.
 
       <varlistentry>
        <term>
-          <option>-X=Arrows</option>
-          <indexterm><primary><option>-X=Arrows</option></primary></indexterm>
+          <option>-XArrows</option>
+          <indexterm><primary><option>-XArrows</option></primary></indexterm>
         </term>
        <listitem>
          <para>See <xref linkend="arrow-notation"/>.  Independent of
@@ -214,8 +207,8 @@ documentation</ulink> describes all the libraries that come with GHC.
 
       <varlistentry>
        <term>
-          <option>-X=Generics</option>
-          <indexterm><primary><option>-X=Generics</option></primary></indexterm>
+          <option>-XGenerics</option>
+          <indexterm><primary><option>-XGenerics</option></primary></indexterm>
         </term>
        <listitem>
          <para>See <xref linkend="generic-classes"/>.  Independent of
@@ -224,13 +217,13 @@ documentation</ulink> describes all the libraries that come with GHC.
       </varlistentry>
 
       <varlistentry>
-       <term><option>-X=NoImplicitIrelude</option></term>
+       <term><option>-XNoImplicitPrelude</option></term>
        <listitem>
-         <para><indexterm><primary>-XnoImplicitPrelude
+         <para><indexterm><primary>-XNoImplicitPrelude
           option</primary></indexterm> GHC normally imports
           <filename>Prelude.hi</filename> files for you.  If you'd
           rather it didn't, then give it a
-          <option>-XnoImplicitPrelude</option> option.  The idea is
+          <option>-XNoImplicitPrelude</option> option.  The idea is
           that you can then import a Prelude of your own.  (But don't
           call it <literal>Prelude</literal>; the Haskell module
           namespace is flat, and you must not conflict with any
@@ -245,14 +238,14 @@ documentation</ulink> describes all the libraries that come with GHC.
           translation for list comprehensions continues to use
           <literal>Prelude.map</literal> etc.</para>
 
-         <para>However, <option>-X=NoImplicitPrelude</option> does
+         <para>However, <option>-XNoImplicitPrelude</option> does
          change the handling of certain built-in syntax: see <xref
          linkend="rebindable-syntax"/>.</para>
        </listitem>
       </varlistentry>
 
       <varlistentry>
-       <term><option>-X=ImplicitParams</option></term>
+       <term><option>-XImplicitParams</option></term>
        <listitem>
          <para>Enables implicit parameters (see <xref
          linkend="implicit-parameters"/>).  Currently also implied by 
@@ -265,7 +258,7 @@ documentation</ulink> describes all the libraries that come with GHC.
       </varlistentry>
 
       <varlistentry>
-       <term><option>-X=OverloadedStrings</option></term>
+       <term><option>-XOverloadedStrings</option></term>
        <listitem>
          <para>Enables overloaded string literals (see <xref
          linkend="overloaded-strings"/>).</para>
@@ -273,7 +266,7 @@ documentation</ulink> describes all the libraries that come with GHC.
       </varlistentry>
 
       <varlistentry>
-       <term><option>-X=ScopedTypeVariables</option></term>
+       <term><option>-XScopedTypeVariables</option></term>
        <listitem>
          <para>Enables lexically-scoped type variables (see <xref
          linkend="scoped-type-variables"/>).  Implied by
@@ -282,7 +275,7 @@ documentation</ulink> describes all the libraries that come with GHC.
       </varlistentry>
 
       <varlistentry>
-       <term><option>-X=TH</option>, <option>-X=TemplateHaskell</option></term>
+       <term><option>-XTemplateHaskell</option></term>
        <listitem>
          <para>Enables Template Haskell (see <xref
          linkend="template-haskell"/>).  This flag must
@@ -724,9 +717,11 @@ qualifier list has just one element, a boolean expression.
 </title>
 
 <para> The recursive do-notation (also known as mdo-notation) is implemented as described in
-"A recursive do for Haskell",
-Levent Erkok, John Launchbury",
+<ulink url="http://citeseer.ist.psu.edu/erk02recursive.html">A recursive do for Haskell</ulink>,
+by Levent Erkok, John Launchbury,
 Haskell Workshop 2002, pages: 29-37. Pittsburgh, Pennsylvania. 
+This paper is essential reading for anyone making non-trivial use of mdo-notation,
+and we do not repeat it here.
 </para>
 <para>
 The do-notation of Haskell does not allow <emphasis>recursive bindings</emphasis>,
@@ -757,17 +752,24 @@ class Monad m => MonadFix m where
 </programlisting>
 <para>
 The function <literal>mfix</literal>
-dictates how the required recursion operation should be performed. If recursive bindings are required for a monad,
-then that monad must be declared an instance of the <literal>MonadFix</literal> class.
-For details, see the above mentioned reference.
+dictates how the required recursion operation should be performed.  For example, 
+<literal>justOnes</literal> desugars as follows:
+<programlisting>
+justOnes = mfix (\xs' -&gt; do { xs &lt;- Just (1:xs'); return xs }
+</programlisting>
+For full details of the way in which mdo is typechecked and desugared, see 
+the paper <ulink url="http://citeseer.ist.psu.edu/erk02recursive.html">A recursive do for Haskell</ulink>.
+In particular, GHC implements the segmentation technique described in Section 3.2 of the paper.
 </para>
 <para>
+If recursive bindings are required for a monad,
+then that monad must be declared an instance of the <literal>MonadFix</literal> class.
 The following instances of <literal>MonadFix</literal> are automatically provided: List, Maybe, IO. 
 Furthermore, the Control.Monad.ST and Control.Monad.ST.Lazy modules provide the instances of the MonadFix class 
 for Haskell's internal state monad (strict and lazy, respectively).
 </para>
 <para>
-There are three important points in using the recursive-do notation:
+Here are some important points in using the recursive-do notation:
 <itemizedlist>
 <listitem><para>
 The recursive version of the do-notation uses the keyword <literal>mdo</literal> (rather
@@ -775,7 +777,21 @@ than <literal>do</literal>).
 </para></listitem>
 
 <listitem><para>
-As with other extensions, ghc should be given the flag <literal>-fglasgow-exts</literal>
+It is enabled with the flag <literal>-XRecursiveDo</literal>, which is in turn implied by
+<literal>-fglasgow-exts</literal>.
+</para></listitem>
+
+<listitem><para>
+Unlike ordinary do-notation, but like <literal>let</literal> and <literal>where</literal> bindings,
+name shadowing is not allowed; that is, all the names bound in a single <literal>mdo</literal> must
+be distinct (Section 3.3 of the paper).
+</para></listitem>
+
+<listitem><para>
+Variables bound by a <literal>let</literal> statement in an <literal>mdo</literal>
+are monomorphic in the <literal>mdo</literal> (Section 3.1 of the paper).  However
+GHC breaks the <literal>mdo</literal> into segments to enhance polymorphism,
+and improve termination (Section 3.2 of the paper).
 </para></listitem>
 </itemizedlist>
 </para>
@@ -859,7 +875,7 @@ This name is not supported by GHC.
             hierarchy.  It completely defeats that purpose if the
             literal "1" means "<literal>Prelude.fromInteger
             1</literal>", which is what the Haskell Report specifies.
-            So the <option>-X=NoImplicitPrelude</option> flag causes
+            So the <option>-XNoImplicitPrelude</option> flag causes
             the following pieces of built-in syntax to refer to
             <emphasis>whatever is in scope</emphasis>, not the Prelude
             versions:
@@ -1847,7 +1863,7 @@ may use different notation to that implemented in GHC.
 </para>
 <para>
 The rest of this section outlines the extensions to GHC that support GADTs.   The extension is enabled with 
-<option>-X=GADTs</option>.
+<option>-XGADTs</option>.
 <itemizedlist>
 <listitem><para>
 A GADT can only be declared using GADT-style syntax (<xref linkend="gadt-style"/>); 
@@ -1900,9 +1916,77 @@ their selector functions actually have different types:
 </para>
 
 </sect2>
+</sect1>
 
 <!-- ====================== End of Generalised algebraic data types =======================  -->
 
+<sect1 id="deriving">
+<title>Extensions to the "deriving" mechanism</title>
+
+<sect2 id="deriving-inferred">
+<title>Inferred context for deriving clauses</title>
+
+<para>
+The Haskell Report is vague about exactly when a <literal>deriving</literal> clause is
+legal.  For example:
+<programlisting>
+  data T0 f a = MkT0 a         deriving( Eq )
+  data T1 f a = MkT1 (f a)     deriving( Eq )
+  data T2 f a = MkT2 (f (f a)) deriving( Eq )
+</programlisting>
+The natural generated <literal>Eq</literal> code would result in these instance declarations:
+<programlisting>
+  instance Eq a         => Eq (T0 f a) where ...
+  instance Eq (f a)     => Eq (T1 f a) where ...
+  instance Eq (f (f a)) => Eq (T2 f a) where ...
+</programlisting>
+The first of these is obviously fine. The second is still fine, although less obviously. 
+The third is not Haskell 98, and risks losing termination of instances.
+</para>
+<para>
+GHC takes a conservative position: it accepts the first two, but not the third.  The  rule is this:
+each constraint in the inferred instance context must consist only of type variables, 
+with no repititions.
+</para>
+<para>
+This rule is applied regardless of flags.  If you want a more exotic context, you can write
+it yourself, using the <link linkend="stand-alone-deriving">standalone deriving mechanism</link>.
+</para>
+</sect2>
+
+<sect2 id="stand-alone-deriving">
+<title>Stand-alone deriving declarations</title>
+
+<para>
+GHC now allows stand-alone <literal>deriving</literal> declarations, enabled by <literal>-XStandaloneDeriving</literal>:
+<programlisting>
+  data Foo a = Bar a | Baz String
+
+  deriving instance Eq a => Eq (Foo a)
+</programlisting>
+The syntax is identical to that of an ordinary instance declaration apart from (a) the keyword
+<literal>deriving</literal>, and (b) the absence of the <literal>where</literal> part.
+You must supply a context (in the example the context is <literal>(Eq a)</literal>), 
+exactly as you would in an ordinary instance declaration.
+(In contrast the context is inferred in a <literal>deriving</literal> clause 
+attached to a data type declaration.) These <literal>deriving instance</literal>
+rules obey the same rules concerning form and termination as ordinary instance declarations,
+controlled by the same flags; see <xref linkend="instance-decls"/>. </para>
+
+<para>The stand-alone syntax is generalised for newtypes in exactly the same
+way that ordinary <literal>deriving</literal> clauses are generalised (<xref linkend="newtype-deriving"/>).
+For example:
+<programlisting>
+  newtype Foo a = MkFoo (State Int a)
+
+  deriving instance MonadState Int Foo
+</programlisting>
+GHC always treats the <emphasis>last</emphasis> parameter of the instance
+(<literal>Foo</literal> in this exmample) as the type whose instance is being derived.
+</para>
+
+</sect2>
+
 
 <sect2 id="deriving-typeable">
 <title>Deriving clause for classes <literal>Typeable</literal> and <literal>Data</literal></title>
@@ -1916,7 +2000,7 @@ classes <literal>Eq</literal>, <literal>Ord</literal>,
 </para>
 <para>
 GHC extends this list with two more classes that may be automatically derived 
-(provided the <option>-fglasgow-exts</option> flag is specified):
+(provided the <option>-XDeriveDataTypeable</option> flag is specified):
 <literal>Typeable</literal>, and <literal>Data</literal>.  These classes are defined in the library
 modules <literal>Data.Typeable</literal> and <literal>Data.Generics</literal> respectively, and the
 appropriate class must be in scope before it can be mentioned in the <literal>deriving</literal> clause.
@@ -1970,7 +2054,9 @@ dictionary, only slower!
 
 <sect3> <title> Generalising the deriving clause </title>
 <para>
-GHC now permits such instances to be derived instead, so one can write 
+GHC now permits such instances to be derived instead, 
+using the flag <option>-XGeneralizedNewtypeDeriving</option>,
+so one can write 
 <programlisting> 
   newtype Dollars = Dollars Int deriving (Eq,Show,Num)
 </programlisting> 
@@ -2016,7 +2102,7 @@ In this case the derived instance declaration is of the form
 Notice that, since <literal>Monad</literal> is a constructor class, the
 instance is a <emphasis>partial application</emphasis> of the new type, not the
 entire left hand side. We can imagine that the type declaration is
-``eta-converted'' to generate the context of the instance
+"eta-converted" to generate the context of the instance
 declaration.
 </para>
 <para>
@@ -2132,41 +2218,13 @@ and <literal>Data</literal>, for which the built-in derivation applies (section
 the standard method is used or the one described here.)
 </para>
 </sect3>
-
-</sect2>
-
-<sect2 id="stand-alone-deriving">
-<title>Stand-alone deriving declarations</title>
-
-<para>
-GHC now allows stand-alone <literal>deriving</literal> declarations, enabled by <literal>-fglasgow-exts</literal>:
-<programlisting>
-  data Foo a = Bar a | Baz String
-
-  derive instance Eq (Foo a)
-</programlisting>
-The token "<literal>derive</literal>" is a keyword only when followed by "<literal>instance</literal>";
-you can use it as a variable name elsewhere.</para>
-<para>The stand-alone syntax is generalised for newtypes in exactly the same
-way that ordinary <literal>deriving</literal> clauses are generalised (<xref linkend="newtype-deriving"/>).
-For example:
-<programlisting>
-  newtype Foo a = MkFoo (State Int a)
-
-  derive instance MonadState Int Foo
-</programlisting>
-GHC always treats the <emphasis>last</emphasis> parameter of the instance
-(<literal>Foo</literal> in this exmample) as the type whose instance is being derived.
-</para>
-
 </sect2>
-
 </sect1>
 
 
 <!-- TYPE SYSTEM EXTENSIONS -->
-<sect1 id="other-type-extensions">
-<title>Other type system extensions</title>
+<sect1 id="type-class-extensions">
+<title>Class and instances declarations</title>
 
 <sect2 id="multi-param-type-classes">
 <title>Class declarations</title>
@@ -2750,8 +2808,8 @@ makes instance inference go into a loop, because it requires the constraint
 </para>
 <para>
 Nevertheless, GHC allows you to experiment with more liberal rules.  If you use
-the experimental flag <option>-X=AllowUndecidableInstances</option>
-<indexterm><primary>-X=AllowUndecidableInstances</primary></indexterm>, 
+the experimental flag <option>-XUndecidableInstances</option>
+<indexterm><primary>-XUndecidableInstances</primary></indexterm>, 
 both the Paterson Conditions and the Coverage Condition
 (described in <xref linkend="instance-rules"/>) are lifted.  Termination is ensured by having a
 fixed-depth recursion stack.  If you exceed the stack depth you get a
@@ -2768,11 +2826,11 @@ with <option>-fcontext-stack=</option><emphasis>N</emphasis>.
 In general, <emphasis>GHC requires that that it be unambiguous which instance
 declaration
 should be used to resolve a type-class constraint</emphasis>. This behaviour
-can be modified by two flags: <option>-X=AllowOverlappingInstances</option>
-<indexterm><primary>-X=AllowOverlappingInstances
+can be modified by two flags: <option>-XOverlappingInstances</option>
+<indexterm><primary>-XOverlappingInstances
 </primary></indexterm> 
-and <option>-X=AllowIncoherentInstances</option>
-<indexterm><primary>-X=AllowIncoherentInstances
+and <option>-XIncoherentInstances</option>
+<indexterm><primary>-XIncoherentInstances
 </primary></indexterm>, as this section discusses.  Both these
 flags are dynamic flags, and can be set on a per-module basis, using 
 an <literal>OPTIONS_GHC</literal> pragma if desired (<xref linkend="source-file-options"/>).</para>
@@ -2800,7 +2858,7 @@ particular constraint matches more than one.
 </para>
 
 <para>
-The <option>-X=AllowOverlappingInstances</option> flag instructs GHC to allow
+The <option>-XOverlappingInstances</option> flag instructs GHC to allow
 more than one instance to match, provided there is a most specific one.  For
 example, the constraint <literal>C Int [Int]</literal> matches instances (A),
 (C) and (D), but the last is more specific, and hence is chosen.  If there is no
@@ -2817,22 +2875,37 @@ Suppose that from the RHS of <literal>f</literal> we get the constraint
 GHC does not commit to instance (C), because in a particular
 call of <literal>f</literal>, <literal>b</literal> might be instantiate 
 to <literal>Int</literal>, in which case instance (D) would be more specific still.
-So GHC rejects the program.  If you add the flag <option>-X=AllowIncoherentInstances</option>,
+So GHC rejects the program.  
+(If you add the flag <option>-XIncoherentInstances</option>,
 GHC will instead pick (C), without complaining about 
-the problem of subsequent instantiations.
+the problem of subsequent instantiations.)
+</para>
+<para>
+Notice that we gave a type signature to <literal>f</literal>, so GHC had to
+<emphasis>check</emphasis> that <literal>f</literal> has the specified type.  
+Suppose instead we do not give a type signature, asking GHC to <emphasis>infer</emphasis>
+it instead.  In this case, GHC will refrain from
+simplifying the constraint <literal>C Int [Int]</literal> (for the same reason
+as before) but, rather than rejecting the program, it will infer the type
+<programlisting>
+  f :: C Int b => [b] -> [b]
+</programlisting>
+That postpones the question of which instance to pick to the 
+call site for <literal>f</literal>
+by which time more is known about the type <literal>b</literal>.
 </para>
 <para>
 The willingness to be overlapped or incoherent is a property of 
 the <emphasis>instance declaration</emphasis> itself, controlled by the
-presence or otherwise of the <option>-X=AllowOverlappingInstances</option> 
-and <option>-X=AllowIncoherentInstances</option> flags when that mdodule is
+presence or otherwise of the <option>-XOverlappingInstances</option> 
+and <option>-XIncoherentInstances</option> flags when that mdodule is
 being defined.  Neither flag is required in a module that imports and uses the
 instance declaration.  Specifically, during the lookup process:
 <itemizedlist>
 <listitem><para>
 An instance declaration is ignored during the lookup process if (a) a more specific
 match is found, and (b) the instance declaration was compiled with 
-<option>-X=AllowOverlappingInstances</option>.  The flag setting for the
+<option>-XOverlappingInstances</option>.  The flag setting for the
 more-specific instance does not matter.
 </para></listitem>
 <listitem><para>
@@ -2840,7 +2913,7 @@ Suppose an instance declaration does not match the constraint being looked up, b
 does unify with it, so that it might match when the constraint is further 
 instantiated.  Usually GHC will regard this as a reason for not committing to
 some other constraint.  But if the instance declaration was compiled with
-<option>-X=AllowIncoherentInstances</option>, GHC will skip the "does-it-unify?" 
+<option>-XIncoherentInstances</option>, GHC will skip the "does-it-unify?" 
 check for that declaration.
 </para></listitem>
 </itemizedlist>
@@ -2849,18 +2922,18 @@ overlapping instances without the library client having to know.
 </para>
 <para>
 If an instance declaration is compiled without
-<option>-X=AllowOverlappingInstances</option>,
+<option>-XOverlappingInstances</option>,
 then that instance can never be overlapped.  This could perhaps be
 inconvenient.  Perhaps the rule should instead say that the
 <emphasis>overlapping</emphasis> instance declaration should be compiled in
 this way, rather than the <emphasis>overlapped</emphasis> one.  Perhaps overlap
 at a usage site should be permitted regardless of how the instance declarations
-are compiled, if the <option>-X=AllowOverlappingInstances</option> flag is
+are compiled, if the <option>-XOverlappingInstances</option> flag is
 used at the usage site.  (Mind you, the exact usage site can occasionally be
 hard to pin down.)  We are interested to receive feedback on these points.
 </para>
-<para>The <option>-X=AllowIncoherentInstances</option> flag implies the
-<option>-X=AllowOverlappingInstances</option> flag, but not vice versa.
+<para>The <option>-XIncoherentInstances</option> flag implies the
+<option>-XOverlappingInstances</option> flag, but not vice versa.
 </para>
 </sect3>
 
@@ -2909,6 +2982,86 @@ reversed, but it makes sense to me.
 
 </sect2>
 
+<sect2 id="overloaded-strings">
+<title>Overloaded string literals
+</title>
+
+<para>
+GHC supports <emphasis>overloaded string literals</emphasis>.  Normally a
+string literal has type <literal>String</literal>, but with overloaded string
+literals enabled (with <literal>-XOverloadedStrings</literal>)
+ a string literal has type <literal>(IsString a) => a</literal>.
+</para>
+<para>
+This means that the usual string syntax can be used, e.g., for packed strings
+and other variations of string like types.  String literals behave very much
+like integer literals, i.e., they can be used in both expressions and patterns.
+If used in a pattern the literal with be replaced by an equality test, in the same
+way as an integer literal is.
+</para>
+<para>
+The class <literal>IsString</literal> is defined as:
+<programlisting>
+class IsString a where
+    fromString :: String -> a
+</programlisting>
+The only predefined instance is the obvious one to make strings work as usual:
+<programlisting>
+instance IsString [Char] where
+    fromString cs = cs
+</programlisting>
+The class <literal>IsString</literal> is not in scope by default.  If you want to mention
+it explicitly (for exmaple, to give an instance declaration for it), you can import it
+from module <literal>GHC.Exts</literal>.
+</para>
+<para>
+Haskell's defaulting mechanism is extended to cover string literals, when <option>-XOverloadedStrings</option> is specified.
+Specifically:
+<itemizedlist>
+<listitem><para>
+Each type in a default declaration must be an 
+instance of <literal>Num</literal> <emphasis>or</emphasis> of <literal>IsString</literal>.
+</para></listitem>
+
+<listitem><para>
+The standard defaulting rule (<ulink url="http://haskell.org/onlinereport/decls.html#sect4.3.4">Haskell Report, Section 4.3.4</ulink>)
+is extended thus: defaulting applies when all the unresolved constraints involve standard classes
+<emphasis>or</emphasis> <literal>IsString</literal>; and at least one is a numeric class
+<emphasis>or</emphasis> <literal>IsString</literal>.
+</para></listitem>
+</itemizedlist>
+</para>
+<para>
+A small example:
+<programlisting>
+module Main where
+
+import GHC.Exts( IsString(..) )
+
+newtype MyString = MyString String deriving (Eq, Show)
+instance IsString MyString where
+    fromString = MyString
+
+greet :: MyString -> MyString
+greet "hello" = "world"
+greet other = other
+
+main = do
+    print $ greet "hello"
+    print $ greet "fool"
+</programlisting>
+</para>
+<para>
+Note that deriving <literal>Eq</literal> is necessary for the pattern matching
+to work since it gets translated into an equality comparison.
+</para>
+</sect2>
+
+</sect1>
+
+<sect1 id="other-type-extensions">
+<title>Other type system extensions</title>
+
 <sect2 id="type-restrictions">
 <title>Type signatures</title>
 
@@ -3043,7 +3196,7 @@ Boston, Jan 2000.
 due to Jeff Lewis.)</para>
 
 <para>Implicit parameter support is enabled with the option
-<option>-X=ImplicitParams</option>.</para>
+<option>-XImplicitParams</option>.</para>
 
 <para>
 A variable is called <emphasis>dynamically bound</emphasis> when it is bound by the calling
@@ -4081,7 +4234,7 @@ and all others are monomorphic until the group is generalised
 <para>Following a suggestion of Mark Jones, in his paper
 <ulink url="http://www.cse.ogi.edu/~mpj/thih/">Typing Haskell in
 Haskell</ulink>,
-GHC implements a more general scheme.  If <option>-X=RelaxedPolyRec</option> is
+GHC implements a more general scheme.  If <option>-XRelaxedPolyRec</option> is
 specified:
 <emphasis>the dependency analysis ignores references to variables that have an explicit
 type signature</emphasis>.
@@ -4110,7 +4263,7 @@ Now, the defintion for <literal>f</literal> is typechecked, with this type for
 The same refined dependency analysis also allows the type signatures of 
 mutually-recursive functions to have different contexts, something that is illegal in
 Haskell 98 (Section 4.5.2, last sentence).  With
-<option>-X=RelaxedPolyRec</option>
+<option>-XRelaxedPolyRec</option>
 GHC only insists that the type signatures of a <emphasis>refined</emphasis> group have identical
 type signatures; in practice this means that only variables bound by the same
 pattern binding must have the same context.  For example, this is fine:
@@ -4124,81 +4277,6 @@ pattern binding must have the same context.  For example, this is fine:
 </para>
 </sect2>
 
-<sect2 id="overloaded-strings">
-<title>Overloaded string literals
-</title>
-
-<para>
-GHC supports <emphasis>overloaded string literals</emphasis>.  Normally a
-string literal has type <literal>String</literal>, but with overloaded string
-literals enabled (with <literal>-X=OverloadedStrings</literal>)
- a string literal has type <literal>(IsString a) => a</literal>.
-</para>
-<para>
-This means that the usual string syntax can be used, e.g., for packed strings
-and other variations of string like types.  String literals behave very much
-like integer literals, i.e., they can be used in both expressions and patterns.
-If used in a pattern the literal with be replaced by an equality test, in the same
-way as an integer literal is.
-</para>
-<para>
-The class <literal>IsString</literal> is defined as:
-<programlisting>
-class IsString a where
-    fromString :: String -> a
-</programlisting>
-The only predefined instance is the obvious one to make strings work as usual:
-<programlisting>
-instance IsString [Char] where
-    fromString cs = cs
-</programlisting>
-The class <literal>IsString</literal> is not in scope by default.  If you want to mention
-it explicitly (for exmaple, to give an instance declaration for it), you can import it
-from module <literal>GHC.Exts</literal>.
-</para>
-<para>
-Haskell's defaulting mechanism is extended to cover string literals, when <option>-X-OverloadedStrings</option> is specified.
-Specifically:
-<itemizedlist>
-<listitem><para>
-Each type in a default declaration must be an 
-instance of <literal>Num</literal> <emphasis>or</emphasis> of <literal>IsString</literal>.
-</para></listitem>
-
-<listitem><para>
-The standard defaulting rule (<ulink url="http://haskell.org/onlinereport/decls.html#sect4.3.4">Haskell Report, Section 4.3.4</ulink>)
-is extended thus: defaulting applies when all the unresolved constraints involve standard classes
-<emphasis>or</emphasis> <literal>IsString</literal>; and at least one is a numeric class
-<emphasis>or</emphasis> <literal>IsString</literal>.
-</para></listitem>
-</itemizedlist>
-</para>
-<para>
-A small example:
-<programlisting>
-module Main where
-
-import GHC.Exts( IsString(..) )
-
-newtype MyString = MyString String deriving (Eq, Show)
-instance IsString MyString where
-    fromString = MyString
-
-greet :: MyString -> MyString
-greet "hello" = "world"
-greet other = other
-
-main = do
-    print $ greet "hello"
-    print $ greet "fool"
-</programlisting>
-</para>
-<para>
-Note that deriving <literal>Eq</literal> is necessary for the pattern matching
-to work since it gets translated into an equality comparison.
-</para>
-</sect2>
-
 <sect2 id="type-families">
 <title>Type families
 </title>
@@ -4220,7 +4298,7 @@ wiki page on type families</ulink>.  The material will be moved to this user's
 guide when it has stabilised.
 </para>
 <para>
-Type families are enabled by the flag <option>-X=TypeFamilies</option>.
+Type families are enabled by the flag <option>-XTypeFamilies</option>.
 </para>
 
 
@@ -4244,24 +4322,27 @@ Template Meta-programming for Haskell</ulink>" (Proc Haskell Workshop 2002).
 <para>
 There is a Wiki page about
 Template Haskell at <ulink url="http://haskell.org/haskellwiki/Template_Haskell">
-http://www.haskell.org/th/</ulink>, and that is the best place to look for
+http://www.haskell.org/haskellwiki/Template_Haskell</ulink>, and that is the best place to look for
 further details.
 You may also 
 consult the <ulink
 url="http://www.haskell.org/ghc/docs/latest/html/libraries/index.html">online
 Haskell library reference material</ulink> 
-(search for the type ExpQ).
-[Temporary: many changes to the original design are described in 
-      <ulink url="http://research.microsoft.com/~simonpj/tmp/notes2.ps">"http://research.microsoft.com/~simonpj/tmp/notes2.ps"</ulink>.
-Not all of these changes are in GHC 6.6.]
+(look for module <literal>Language.Haskell.TH</literal>).
+Many changes to the original design are described in 
+      <ulink url="http://research.microsoft.com/~simonpj/papers/meta-haskell/notes2.ps">
+Notes on Template Haskell version 2</ulink>.
+Not all of these changes are in GHC, however.
 </para>
 
-<para> The first example from that paper is set out below as a worked example to help get you started. 
+<para> The first example from that paper is set out below (<xref linkend="th-example"/>) 
+as a worked example to help get you started. 
 </para>
 
 <para>
-The documentation here describes the realisation in GHC.  (It's rather sketchy just now;
-Tim Sheard is going to expand it.)
+The documentation here describes the realisation of Template Haskell in GHC.  It is not detailed enough to 
+understand Template Haskell; see the <ulink url="http://haskell.org/haskellwiki/Template_Haskell">
+Wiki page</ulink>.
 </para>
 
     <sect2>
@@ -4269,10 +4350,10 @@ Tim Sheard is going to expand it.)
 
       <para> Template Haskell has the following new syntactic
       constructions.  You need to use the flag
-      <option>-X=TemplateHaskell</option> or <option>-X=TH</option>
-       <indexterm><primary><option>-X=TemplateHaskell</option></primary>
+      <option>-XTemplateHaskell</option>
+       <indexterm><primary><option>-XTemplateHaskell</option></primary>
       </indexterm>to switch these syntactic extensions on
-      (<option>-X=TemplateHaskell</option> is no longer implied by
+      (<option>-XTemplateHaskell</option> is no longer implied by
       <option>-fglasgow-exts</option>).</para>
 
        <itemizedlist>
@@ -4287,41 +4368,47 @@ Tim Sheard is going to expand it.)
                  <itemizedlist>
                    <listitem><para> an expression; the spliced expression must
                    have type <literal>Q Exp</literal></para></listitem>
-                   <listitem><para> a list of top-level declarations; ; the spliced expression must have type <literal>Q [Dec]</literal></para></listitem>
-                   <listitem><para> [Planned, but not implemented yet.] a
-                   type; the spliced expression must have type <literal>Q Typ</literal>.</para></listitem>
+                   <listitem><para> a list of top-level declarations; the spliced expression must have type <literal>Q [Dec]</literal></para></listitem>
                    </itemizedlist>
-          (Note that the syntax for a declaration splice uses "<literal>$</literal>" not "<literal>splice</literal>" as in
-       the paper. Also the type of the enclosed expression must be  <literal>Q [Dec]</literal>, not  <literal>[Q Dec]</literal>
-       as in the paper.)
-               </para></listitem>
+               </para>
+           Inside a splice you can can only call functions defined in imported modules,
+       not functions defined elsewhere in the same module.</listitem>
 
 
              <listitem><para>
                  A expression quotation is written in Oxford brackets, thus:
                  <itemizedlist>
                    <listitem><para> <literal>[| ... |]</literal>, where the "..." is an expression; 
-                             the quotation has type <literal>Expr</literal>.</para></listitem>
+                             the quotation has type <literal>Q Exp</literal>.</para></listitem>
                    <listitem><para> <literal>[d| ... |]</literal>, where the "..." is a list of top-level declarations;
                              the quotation has type <literal>Q [Dec]</literal>.</para></listitem>
                    <listitem><para> <literal>[t| ... |]</literal>, where the "..." is a type;
-                             the quotation has type <literal>Type</literal>.</para></listitem>
+                             the quotation has type <literal>Q Typ</literal>.</para></listitem>
                  </itemizedlist></para></listitem>
 
              <listitem><para>
-                 Reification is written thus:
+                 A name can be quoted with either one or two prefix single quotes:
                  <itemizedlist>
-                   <listitem><para> <literal>reifyDecl T</literal>, where <literal>T</literal> is a type constructor; this expression
-                     has type <literal>Dec</literal>. </para></listitem>
-                   <listitem><para> <literal>reifyDecl C</literal>, where <literal>C</literal> is a class; has type <literal>Dec</literal>.</para></listitem>
-                   <listitem><para> <literal>reifyType f</literal>, where <literal>f</literal> is an identifier; has type <literal>Typ</literal>.</para></listitem>
-                   <listitem><para> Still to come: fixities </para></listitem>
-                   
-                 </itemizedlist></para>
+                   <listitem><para> <literal>'f</literal> has type <literal>Name</literal>, and names the function <literal>f</literal>.
+                 Similarly <literal>'C</literal> has type <literal>Name</literal> and names the data constructor <literal>C</literal>.
+                 In general <literal>'</literal><replaceable>thing</replaceable> interprets <replaceable>thing</replaceable> in an expression context.
+                    </para></listitem> 
+                   <listitem><para> <literal>''T</literal> has type <literal>Name</literal>, and names the type constructor  <literal>T</literal>.
+                 That is, <literal>''</literal><replaceable>thing</replaceable> interprets <replaceable>thing</replaceable> in a type context.
+                    </para></listitem> 
+                 </itemizedlist>
+                 These <literal>Names</literal> can be used to construct Template Haskell expressions, patterns, delarations etc.  They
+                 may also be given as an argument to the <literal>reify</literal> function.
+                </para>
                </listitem>
 
                  
        </itemizedlist>
+(Compared to the original paper, there are many differnces of detail.
+The syntax for a declaration splice uses "<literal>$</literal>" not "<literal>splice</literal>".
+The type of the enclosed expression must be  <literal>Q [Dec]</literal>, not  <literal>[Q Dec]</literal>.
+Type splices are not implemented, and neither are pattern splices or quotations.
+
 </sect2>
 
 <sect2>  <title> Using Template Haskell </title>
@@ -4364,7 +4451,7 @@ Tim Sheard is going to expand it.)
 </para>
 </sect2>
  
-<sect2>  <title> A Template Haskell Worked Example </title>
+<sect2 id="th-example">  <title> A Template Haskell Worked Example </title>
 <para>To help you get over the confidence barrier, try out this skeletal worked example.
   First cut and paste the two modules below into "Main.hs" and "Printf.hs":</para>
 
@@ -4404,21 +4491,21 @@ parse s   = [ L s ]
 -- Generate Haskell source code from a parsed representation
 -- of the format string.  This code will be spliced into
 -- the module which calls "pr", at compile time.
-gen :: [Format] -> ExpQ
+gen :: [Format] -> Q Exp
 gen [D]   = [| \n -> show n |]
 gen [S]   = [| \s -> s |]
 gen [L s] = stringE s
 
 -- Here we generate the Haskell code for the splice
 -- from an input format string.
-pr :: String -> ExpQ
-pr s      = gen (parse s)
+pr :: String -> Q Exp
+pr s = gen (parse s)
 </programlisting>
 
 <para>Now run the compiler (here we are a Cygwin prompt on Windows):
 </para>
 <programlisting>
-$ ghc --make -X=TemplateHaskell main.hs -o main.exe
+$ ghc --make -XTemplateHaskell main.hs -o main.exe
 </programlisting>
 
 <para>Run "main.exe" and here is your output:</para>
@@ -4507,7 +4594,7 @@ Palgrave, 2003.
 </itemizedlist>
 and the arrows web page at
 <ulink url="http://www.haskell.org/arrows/"><literal>http://www.haskell.org/arrows/</literal></ulink>.
-With the <option>-X=Arrows</option> flag, GHC supports the arrow
+With the <option>-XArrows</option> flag, GHC supports the arrow
 notation described in the second of these papers.
 What follows is a brief introduction to the notation;
 it won't make much sense unless you've read Hughes's paper.
@@ -4977,7 +5064,7 @@ prime feature description</ulink> contains more discussion and examples
 than the material below.
 </para>
 <para>
-Bang patterns are enabled by the flag <option>-X=BangPatterns</option>.
+Bang patterns are enabled by the flag <option>-XBangPatterns</option>.
 </para>
 
 <sect2 id="bang-patterns-informal">
@@ -6363,112 +6450,10 @@ r) ->
 
 <sect1 id="special-ids">
 <title>Special built-in functions</title>
-<para>GHC has a few built-in funcions with special behaviour, 
-described in this section.  All are exported by
-<literal>GHC.Exts</literal>.</para>
-
-<sect2> <title>The <literal>seq</literal> function </title>
-<para>
-The function <literal>seq</literal> is as described in the Haskell98 Report.
-<programlisting>
-  seq :: a -> b -> b
-</programlisting>
-It evaluates its first argument to head normal form, and then returns its
-second argument as the result.  The reason that it is documented here is 
-that, despite <literal>seq</literal>'s polymorphism, its 
-second argument can have an unboxed type, or
-can be an unboxed tuple; for example <literal>(seq x 4#)</literal>
-or <literal>(seq x (# p,q #))</literal>.  This requires <literal>b</literal>
-to be instantiated to an unboxed type, which is not usually allowed.
-</para>
-</sect2>
-
-<sect2> <title>The <literal>inline</literal> function </title>
-<para>
-The <literal>inline</literal> function is somewhat experimental.
-<programlisting>
-  inline :: a -> a
-</programlisting>
-The call <literal>(inline f)</literal> arranges that <literal>f</literal> 
-is inlined, regardless of its size.  More precisely, the call
-<literal>(inline f)</literal> rewrites to the right-hand side of <literal>f</literal>'s 
-definition.  
-This allows the programmer to control inlining from 
-a particular <emphasis>call site</emphasis>
-rather than the <emphasis>definition site</emphasis> of the function 
-(c.f. <literal>INLINE</literal> pragmas <xref linkend="inline-noinline-pragma"/>).
-</para>
-<para>
-This inlining occurs regardless of the argument to the call
-or the size of <literal>f</literal>'s definition; it is unconditional.
-The main caveat is that <literal>f</literal>'s definition must be
-visible to the compiler.  That is, <literal>f</literal> must be
-let-bound in the current scope.
-If no inlining takes place, the <literal>inline</literal> function
-expands to the identity function in Phase zero; so its use imposes
-no overhead.</para>
-
-<para> If the function is defined in another
-module, GHC only exposes its inlining in the interface file if the
-function is sufficiently small that it <emphasis>might</emphasis> be
-inlined by the automatic mechanism.  There is currently no way to tell
-GHC to expose arbitrarily-large functions in the interface file.  (This
-shortcoming is something that could be fixed, with some kind of pragma.)
-</para>
-</sect2>
-
-<sect2> <title>The <literal>lazy</literal> function </title>
-<para>
-The <literal>lazy</literal> function restrains strictness analysis a little:
-<programlisting>
-  lazy :: a -> a
-</programlisting>
-The call <literal>(lazy e)</literal> means the same as <literal>e</literal>, 
-but <literal>lazy</literal> has a magical property so far as strictness
-analysis is concerned: it is lazy in its first argument,
-even though its semantics is strict.  After strictness analysis has run,
-calls to <literal>lazy</literal> are inlined to be the identity function.
-</para>
-<para>
-This behaviour is occasionally useful when controlling evaluation order.
-Notably, <literal>lazy</literal> is used in the library definition of
-<literal>Control.Parallel.par</literal>:
-<programlisting>
-  par :: a -> b -> b
-  par x y = case (par# x) of { _ -> lazy y }
-</programlisting>
-If <literal>lazy</literal> were not lazy, <literal>par</literal> would
-look strict in <literal>y</literal> which would defeat the whole 
-purpose of <literal>par</literal>.
-</para>
-<para>
-Like <literal>seq</literal>, the argument of <literal>lazy</literal> can have
-an unboxed type.
-</para>
-
-</sect2>
-
-<sect2> <title>The <literal>unsafeCoerce#</literal> function </title>
-<para>
-The function <literal>unsafeCoerce#</literal> allows you to side-step the
-typechecker entirely.  It has type
-<programlisting>
-  unsafeCoerce# :: a -> b
-</programlisting>
-That is, it allows you to coerce any type into any other type.  If you use this
-function, you had better get it right, otherwise segmentation faults await. 
-It is generally used when you want to write a program that you know is
-well-typed, but where Haskell's type system is not expressive enough to prove
-that it is well typed.
-</para>
-<para>
-The argument to <literal>unsafeCoerce#</literal> can have unboxed types,
-although extremely bad things will happen if you coerce a boxed type 
-to an unboxed type.
-</para>
-
-</sect2>
-
+<para>GHC has a few built-in funcions with special behaviour.  These
+are now described in the module <ulink
+url="../libraries/base/GHC-Prim.html"><literal>GHC.Prim</literal></ulink>
+in the library documentation.</para>
 </sect1>
 
 
@@ -6525,7 +6510,7 @@ where clause and over-ride whichever methods you please.
       <itemizedlist>
        <listitem>
          <para>Use the flags <option>-fglasgow-exts</option> (to enable the extra syntax), 
-                <option>-X=Generics</option> (to generate extra per-data-type code),
+                <option>-XGenerics</option> (to generate extra per-data-type code),
                 and <option>-package lang</option> (to make the <literal>Generics</literal> library
                 available.  </para>
        </listitem>
@@ -6734,21 +6719,21 @@ carried out at let and where bindings.
 
 <sect2>
 <title>Switching off the dreaded Monomorphism Restriction</title>
-          <indexterm><primary><option>-X=NoMonomorphismRestriction</option></primary></indexterm>
+          <indexterm><primary><option>-XNoMonomorphismRestriction</option></primary></indexterm>
 
 <para>Haskell's monomorphism restriction (see 
 <ulink url="http://haskell.org/onlinereport/decls.html#sect4.5.5">Section
 4.5.5</ulink>
 of the Haskell Report)
 can be completely switched off by
-<option>-X=NoMonomorphismRestriction</option>.
+<option>-XNoMonomorphismRestriction</option>.
 </para>
 </sect2>
 
 <sect2>
 <title>Monomorphic pattern bindings</title>
-          <indexterm><primary><option>-X=NoMonoPatBinds</option></primary></indexterm>
-          <indexterm><primary><option>-X=MonoPatBinds</option></primary></indexterm>
+          <indexterm><primary><option>-XNoMonoPatBinds</option></primary></indexterm>
+          <indexterm><primary><option>-XMonoPatBinds</option></primary></indexterm>
 
          <para> As an experimental change, we are exploring the possibility of
          making pattern bindings monomorphic; that is, not generalised at all.  
@@ -6764,7 +6749,7 @@ can be completely switched off by
   [x] = e                    -- A pattern binding
 </programlisting>
 Experimentally, GHC now makes pattern bindings monomorphic <emphasis>by
-default</emphasis>.  Use <option>-X=MonoPatBinds</option> to recover the
+default</emphasis>.  Use <option>-XMonoPatBinds</option> to recover the
 standard behaviour.
 </para>
 </sect2>