Improve documentation for Template Haskell
[ghc-hetmet.git] / docs / users_guide / glasgow_exts.xml
index d60e8e9..da6a125 100644 (file)
@@ -38,11 +38,21 @@ documentation</ulink> describes all the libraries that come with GHC.
     <indexterm><primary>extensions</primary><secondary>options controlling</secondary>
     </indexterm>
 
-    <para>These flags control what variation of the language are
+    <para>The language option flag control what variation of the language are
     permitted.  Leaving out all of them gives you standard Haskell
     98.</para>
 
-    <para>NB. turning on an option that enables special syntax
+    <para>Generally speaking, all the language options are introduced by "<option>-X</option>", 
+    e.g. <option>-XTemplateHaskell</option>.
+    </para>
+
+   <para> All the language options can be turned off by using the prefix "<option>No</option>"; 
+      e.g. "<option>-XNoTemplateHaskell</option>".</para>
+
+   <para> Language options recognised by Cabal can also be enabled using the <literal>LANGUAGE</literal> pragma,
+   thus <literal>{-# LANGUAGE TemplateHaskell #-}</literal> (see <xref linkend="language-pragma"/>>). </para>
+
+    <para>Turning on an option that enables special syntax
     <emphasis>might</emphasis> cause working Haskell 98 code to fail
     to compile, perhaps because it uses a variable name which has
     become a reserved word.  So, together with each option below, we
@@ -81,7 +91,8 @@ documentation</ulink> describes all the libraries that come with GHC.
          <para>This simultaneously enables all of the extensions to
           Haskell 98 described in <xref
           linkend="ghc-language-features"/>, except where otherwise
-          noted. </para>
+          noted. We are trying to move away from this portmanteau flag, 
+         and towards enabling features individaully.</para>
 
          <para>New reserved words: <literal>forall</literal> (only in
          types), <literal>mdo</literal>.</para>
@@ -95,20 +106,24 @@ documentation</ulink> describes all the libraries that come with GHC.
              <replaceable>float</replaceable><literal>&num;&num;</literal>,    
              <literal>(&num;</literal>, <literal>&num;)</literal>,         
              <literal>|)</literal>, <literal>{|</literal>.</para>
+
+         <para>Implies these specific language options: 
+           <option>-XForeignFunctionInterface</option>,
+           <option>-XImplicitParams</option>,
+           <option>-XScopedTypeVariables</option>,
+           <option>-XGADTs</option>, 
+           <option>-XTypeFamilies</option>. </para>
        </listitem>
       </varlistentry>
 
       <varlistentry>
        <term>
-          <option>-ffi</option> and <option>-fffi</option>:
-          <indexterm><primary><option>-ffi</option></primary></indexterm>
-          <indexterm><primary><option>-fffi</option></primary></indexterm>
+          <option>-XForeignFunctionInterface</option>:
+          <indexterm><primary><option>-XForeignFunctionInterface</option></primary></indexterm>
         </term>
        <listitem>
          <para>This option enables the language extension defined in the
-         Haskell 98 Foreign Function Interface Addendum plus deprecated
-         syntax of previous versions of the FFI for backwards
-         compatibility.</para> 
+         Haskell 98 Foreign Function Interface Addendum.</para>
 
          <para>New reserved words: <literal>foreign</literal>.</para>
        </listitem>
@@ -116,7 +131,7 @@ documentation</ulink> describes all the libraries that come with GHC.
 
       <varlistentry>
        <term>
-          <option>-fno-monomorphism-restriction</option>,<option>-fno-monomorphism-restriction</option>:
+          <option>-XMonomorphismRestriction</option>,<option>-XMonoPatBinds</option>:
         </term>
        <listitem>
          <para> These two flags control how generalisation is done.
@@ -127,8 +142,8 @@ documentation</ulink> describes all the libraries that come with GHC.
 
       <varlistentry>
        <term>
-          <option>-fextended-default-rules</option>:
-          <indexterm><primary><option>-fextended-default-rules</option></primary></indexterm>
+          <option>-XExtendedDefaultRules</option>:
+          <indexterm><primary><option>-XExtendedDefaultRules</option></primary></indexterm>
         </term>
        <listitem>
          <para> Use GHCi's extended default rules in a regular module (<xref linkend="extended-default-rules"/>).
@@ -139,16 +154,16 @@ documentation</ulink> describes all the libraries that come with GHC.
 
       <varlistentry>
        <term>
-          <option>-fallow-overlapping-instances</option>
-          <indexterm><primary><option>-fallow-overlapping-instances</option></primary></indexterm>
+          <option>-XOverlappingInstances</option>
+          <indexterm><primary><option>-XOverlappingInstances</option></primary></indexterm>
         </term>
        <term>
-          <option>-fallow-undecidable-instances</option>
-          <indexterm><primary><option>-fallow-undecidable-instances</option></primary></indexterm>
+          <option>-XUndecidableInstances</option>
+          <indexterm><primary><option>-XUndecidableInstances</option></primary></indexterm>
         </term>
        <term>
-          <option>-fallow-incoherent-instances</option>
-          <indexterm><primary><option>-fallow-incoherent-instances</option></primary></indexterm>
+          <option>-XIncoherentInstances</option>
+          <indexterm><primary><option>-XIncoherentInstances</option></primary></indexterm>
         </term>
        <term>
           <option>-fcontext-stack=N</option>
@@ -173,8 +188,8 @@ documentation</ulink> describes all the libraries that come with GHC.
 
       <varlistentry>
        <term>
-          <option>-farrows</option>
-          <indexterm><primary><option>-farrows</option></primary></indexterm>
+          <option>-XArrows</option>
+          <indexterm><primary><option>-XArrows</option></primary></indexterm>
         </term>
        <listitem>
          <para>See <xref linkend="arrow-notation"/>.  Independent of
@@ -192,8 +207,8 @@ documentation</ulink> describes all the libraries that come with GHC.
 
       <varlistentry>
        <term>
-          <option>-fgenerics</option>
-          <indexterm><primary><option>-fgenerics</option></primary></indexterm>
+          <option>-XGenerics</option>
+          <indexterm><primary><option>-XGenerics</option></primary></indexterm>
         </term>
        <listitem>
          <para>See <xref linkend="generic-classes"/>.  Independent of
@@ -202,13 +217,13 @@ documentation</ulink> describes all the libraries that come with GHC.
       </varlistentry>
 
       <varlistentry>
-       <term><option>-fno-implicit-prelude</option></term>
+       <term><option>-XNoImplicitPrelude</option></term>
        <listitem>
-         <para><indexterm><primary>-fno-implicit-prelude
+         <para><indexterm><primary>-XNoImplicitPrelude
           option</primary></indexterm> GHC normally imports
           <filename>Prelude.hi</filename> files for you.  If you'd
           rather it didn't, then give it a
-          <option>-fno-implicit-prelude</option> option.  The idea is
+          <option>-XNoImplicitPrelude</option> option.  The idea is
           that you can then import a Prelude of your own.  (But don't
           call it <literal>Prelude</literal>; the Haskell module
           namespace is flat, and you must not conflict with any
@@ -223,14 +238,14 @@ documentation</ulink> describes all the libraries that come with GHC.
           translation for list comprehensions continues to use
           <literal>Prelude.map</literal> etc.</para>
 
-         <para>However, <option>-fno-implicit-prelude</option> does
+         <para>However, <option>-XNoImplicitPrelude</option> does
          change the handling of certain built-in syntax: see <xref
          linkend="rebindable-syntax"/>.</para>
        </listitem>
       </varlistentry>
 
       <varlistentry>
-       <term><option>-fimplicit-params</option></term>
+       <term><option>-XImplicitParams</option></term>
        <listitem>
          <para>Enables implicit parameters (see <xref
          linkend="implicit-parameters"/>).  Currently also implied by 
@@ -243,7 +258,15 @@ documentation</ulink> describes all the libraries that come with GHC.
       </varlistentry>
 
       <varlistentry>
-       <term><option>-fscoped-type-variables</option></term>
+       <term><option>-XOverloadedStrings</option></term>
+       <listitem>
+         <para>Enables overloaded string literals (see <xref
+         linkend="overloaded-strings"/>).</para>
+       </listitem>
+      </varlistentry>
+
+      <varlistentry>
+       <term><option>-XScopedTypeVariables</option></term>
        <listitem>
          <para>Enables lexically-scoped type variables (see <xref
          linkend="scoped-type-variables"/>).  Implied by
@@ -252,7 +275,7 @@ documentation</ulink> describes all the libraries that come with GHC.
       </varlistentry>
 
       <varlistentry>
-       <term><option>-fth</option></term>
+       <term><option>-XTemplateHaskell</option></term>
        <listitem>
          <para>Enables Template Haskell (see <xref
          linkend="template-haskell"/>).  This flag must
@@ -271,8 +294,6 @@ documentation</ulink> describes all the libraries that come with GHC.
   </sect1>
 
 <!-- UNBOXED TYPES AND PRIMITIVE OPERATIONS -->
-<!--    included from primitives.sgml  -->
-<!-- &primitives; -->
 <sect1 id="primitives">
   <title>Unboxed types and primitive operations</title>
 
@@ -377,6 +398,13 @@ worse, the unboxed value might be larger than a pointer
 (<literal>Double&num;</literal> for instance).
 </para>
 </listitem>
+<listitem><para> You cannot define a newtype whose representation type
+(the argument type of the data constructor) is an unboxed type.  Thus,
+this is illegal:
+<programlisting>
+  newtype A = MkA Int#
+</programlisting>
+</para></listitem>
 <listitem><para> You cannot bind a variable with an unboxed type
 in a <emphasis>top-level</emphasis> binding.
 </para></listitem>
@@ -546,14 +574,11 @@ import qualified Control.Monad.ST.Strict as ST
       linkend="search-path"/>.</para>
 
       <para>GHC comes with a large collection of libraries arranged
-      hierarchically; see the accompanying library documentation.
-      There is an ongoing project to create and maintain a stable set
-      of <quote>core</quote> libraries used by several Haskell
-      compilers, and the libraries that GHC comes with represent the
-      current status of that project.  For more details, see <ulink
-      url="http://www.haskell.org/~simonmar/libraries/libraries.html">Haskell
-      Libraries</ulink>.</para>
-
+      hierarchically; see the accompanying <ulink
+      url="../libraries/index.html">library
+      documentation</ulink>.  More libraries to install are available
+      from <ulink
+      url="http://hackage.haskell.org/packages/hackage.html">HackageDB</ulink>.</para>
     </sect2>
 
     <!-- ====================== PATTERN GUARDS =======================  -->
@@ -622,7 +647,7 @@ to write clunky would be to use case expressions:
 </para>
 
 <programlisting>
-clunky env var1 var1 = case lookup env var1 of
+clunky env var1 var2 = case lookup env var1 of
   Nothing -&gt; fail
   Just val1 -&gt; case lookup env var2 of
     Nothing -&gt; fail
@@ -647,7 +672,7 @@ Here is how I would write clunky:
 </para>
 
 <programlisting>
-clunky env var1 var1
+clunky env var1 var2
   | Just val1 &lt;- lookup env var1
   , Just val2 &lt;- lookup env var2
   = val1 + val2
@@ -692,9 +717,11 @@ qualifier list has just one element, a boolean expression.
 </title>
 
 <para> The recursive do-notation (also known as mdo-notation) is implemented as described in
-"A recursive do for Haskell",
-Levent Erkok, John Launchbury",
+<ulink url="http://citeseer.ist.psu.edu/erk02recursive.html">A recursive do for Haskell</ulink>,
+by Levent Erkok, John Launchbury,
 Haskell Workshop 2002, pages: 29-37. Pittsburgh, Pennsylvania. 
+This paper is essential reading for anyone making non-trivial use of mdo-notation,
+and we do not repeat it here.
 </para>
 <para>
 The do-notation of Haskell does not allow <emphasis>recursive bindings</emphasis>,
@@ -725,17 +752,24 @@ class Monad m => MonadFix m where
 </programlisting>
 <para>
 The function <literal>mfix</literal>
-dictates how the required recursion operation should be performed. If recursive bindings are required for a monad,
-then that monad must be declared an instance of the <literal>MonadFix</literal> class.
-For details, see the above mentioned reference.
+dictates how the required recursion operation should be performed.  For example, 
+<literal>justOnes</literal> desugars as follows:
+<programlisting>
+justOnes = mfix (\xs' -&gt; do { xs &lt;- Just (1:xs'); return xs }
+</programlisting>
+For full details of the way in which mdo is typechecked and desugared, see 
+the paper <ulink url="http://citeseer.ist.psu.edu/erk02recursive.html">A recursive do for Haskell</ulink>.
+In particular, GHC implements the segmentation technique described in Section 3.2 of the paper.
 </para>
 <para>
+If recursive bindings are required for a monad,
+then that monad must be declared an instance of the <literal>MonadFix</literal> class.
 The following instances of <literal>MonadFix</literal> are automatically provided: List, Maybe, IO. 
 Furthermore, the Control.Monad.ST and Control.Monad.ST.Lazy modules provide the instances of the MonadFix class 
 for Haskell's internal state monad (strict and lazy, respectively).
 </para>
 <para>
-There are three important points in using the recursive-do notation:
+Here are some important points in using the recursive-do notation:
 <itemizedlist>
 <listitem><para>
 The recursive version of the do-notation uses the keyword <literal>mdo</literal> (rather
@@ -743,14 +777,21 @@ than <literal>do</literal>).
 </para></listitem>
 
 <listitem><para>
-You should <literal>import Control.Monad.Fix</literal>.
-(Note: Strictly speaking, this import is required only when you need to refer to the name
-<literal>MonadFix</literal> in your program, but the import is always safe, and the programmers
-are encouraged to always import this module when using the mdo-notation.)
+It is enabled with the flag <literal>-XRecursiveDo</literal>, which is in turn implied by
+<literal>-fglasgow-exts</literal>.
+</para></listitem>
+
+<listitem><para>
+Unlike ordinary do-notation, but like <literal>let</literal> and <literal>where</literal> bindings,
+name shadowing is not allowed; that is, all the names bound in a single <literal>mdo</literal> must
+be distinct (Section 3.3 of the paper).
 </para></listitem>
 
 <listitem><para>
-As with other extensions, ghc should be given the flag <literal>-fglasgow-exts</literal>
+Variables bound by a <literal>let</literal> statement in an <literal>mdo</literal>
+are monomorphic in the <literal>mdo</literal> (Section 3.1 of the paper).  However
+GHC breaks the <literal>mdo</literal> into segments to enhance polymorphism,
+and improve termination (Section 3.2 of the paper).
 </para></listitem>
 </itemizedlist>
 </para>
@@ -834,7 +875,7 @@ This name is not supported by GHC.
             hierarchy.  It completely defeats that purpose if the
             literal "1" means "<literal>Prelude.fromInteger
             1</literal>", which is what the Haskell Report specifies.
-            So the <option>-fno-implicit-prelude</option> flag causes
+            So the <option>-XNoImplicitPrelude</option> flag causes
             the following pieces of built-in syntax to refer to
             <emphasis>whatever is in scope</emphasis>, not the Prelude
             versions:
@@ -905,18 +946,88 @@ fromInteger :: Integer -> Bool -> Bool
             you should be all right.</para>
 
 </sect2>
-</sect1>
 
+<sect2 id="postfix-operators">
+<title>Postfix operators</title>
 
-<!-- TYPE SYSTEM EXTENSIONS -->
-<sect1 id="type-extensions">
-<title>Type system extensions</title>
+<para>
+GHC allows a small extension to the syntax of left operator sections, which
+allows you to define postfix operators.  The extension is this:  the left section
+<programlisting>
+  (e !)
+</programlisting> 
+is equivalent (from the point of view of both type checking and execution) to the expression
+<programlisting>
+  ((!) e)
+</programlisting> 
+(for any expression <literal>e</literal> and operator <literal>(!)</literal>.
+The strict Haskell 98 interpretation is that the section is equivalent to
+<programlisting>
+  (\y -> (!) e y)
+</programlisting> 
+That is, the operator must be a function of two arguments.  GHC allows it to
+take only one argument, and that in turn allows you to write the function
+postfix.
+</para>
+<para>Since this extension goes beyond Haskell 98, it should really be enabled
+by a flag; but in fact it is enabled all the time.  (No Haskell 98 programs
+change their behaviour, of course.)
+</para>
+<para>The extension does not extend to the left-hand side of function
+definitions; you must define such a function in prefix form.</para>
+
+</sect2>
 
+<sect2 id="disambiguate-fields">
+<title>Record field disambiguation</title>
+<para>
+In record construction and record pattern matching
+it is entirely unambiguous which field is referred to, even if there are two different
+data types in scope with a common field name.  For example:
+<programlisting>
+module M where
+  data S = MkS { x :: Int, y :: Bool }
 
-<sect2>
-<title>Data types and type synonyms</title>
+module Foo where
+  import M
+
+  data T = MkT { x :: Int }
+  
+  ok1 (MkS { x = n }) = n+1   -- Unambiguous
+
+  ok2 n = MkT { x = n+1 }     -- Unambiguous
+
+  bad1 k = k { x = 3 }  -- Ambiguous
+  bad2 k = x k          -- Ambiguous
+</programlisting>
+Even though there are two <literal>x</literal>'s in scope,
+it is clear that the <literal>x</literal> in the pattern in the
+definition of <literal>ok1</literal> can only mean the field
+<literal>x</literal> from type <literal>S</literal>. Similarly for
+the function <literal>ok2</literal>.  However, in the record update
+in <literal>bad1</literal> and the record selection in <literal>bad2</literal>
+it is not clear which of the two types is intended.
+</para>
+<para>
+Haskell 98 regards all four as ambiguous, but with the
+<option>-fdisambiguate-record-fields</option> flag, GHC will accept
+the former two.  The rules are precisely the same as those for instance
+declarations in Haskell 98, where the method names on the left-hand side 
+of the method bindings in an instance declaration refer unambiguously
+to the method of that class (provided they are in scope at all), even
+if there are other variables in scope with the same name.
+This reduces the clutter of qualified names when you import two
+records from different modules that use the same field name.
+</para>
+</sect2>
+</sect1>
+
+
+<!-- TYPE SYSTEM EXTENSIONS -->
+<sect1 id="data-type-extensions">
+<title>Extensions to data types and type synonyms</title>
 
-<sect3 id="nullary-types">
+<sect2 id="nullary-types">
 <title>Data types with no constructors</title>
 
 <para>With the <option>-fglasgow-exts</option> flag, GHC lets you declare
@@ -930,13 +1041,13 @@ a data type with no constructors.  For example:</para>
 <para>Syntactically, the declaration lacks the "= constrs" part.  The 
 type can be parameterised over types of any kind, but if the kind is
 not <literal>*</literal> then an explicit kind annotation must be used
-(see <xref linkend="sec-kinding"/>).</para>
+(see <xref linkend="kinding"/>).</para>
 
 <para>Such data types have only one value, namely bottom.
 Nevertheless, they can be useful when defining "phantom types".</para>
-</sect3>
+</sect2>
 
-<sect3 id="infix-tycons">
+<sect2 id="infix-tycons">
 <title>Infix type constructors, classes, and type variables</title>
 
 <para>
@@ -1003,9 +1114,9 @@ to be written infix, very much like expressions.  More specifically:
 
 </itemizedlist>
 </para>
-</sect3>
+</sect2>
 
-<sect3 id="type-synonyms">
+<sect2 id="type-synonyms">
 <title>Liberalised type synonyms</title>
 
 <para>
@@ -1095,10 +1206,10 @@ this will be rejected:
 </programlisting>
 because GHC does not allow  unboxed tuples on the left of a function arrow.
 </para>
-</sect3>
+</sect2>
 
 
-<sect3 id="existential-quantification">
+<sect2 id="existential-quantification">
 <title>Existentially quantified data constructors
 </title>
 
@@ -1192,7 +1303,7 @@ that collection of packages in a uniform manner.  You can express
 quite a bit of object-oriented-like programming this way.
 </para>
 
-<sect4 id="existential">
+<sect3 id="existential">
 <title>Why existential?
 </title>
 
@@ -1215,9 +1326,9 @@ But Haskell programmers can safely think of the ordinary
 adding a new existential quantification construct.
 </para>
 
-</sect4>
+</sect3>
 
-<sect4>
+<sect3>
 <title>Type classes</title>
 
 <para>
@@ -1277,9 +1388,9 @@ Notice the way that the syntax fits smoothly with that used for
 universal quantification earlier.
 </para>
 
-</sect4>
+</sect3>
 
-<sect4>
+<sect3 id="existential-records">
 <title>Record Constructors</title>
 
 <para>
@@ -1296,7 +1407,7 @@ data Counter a = forall self. NewCounter
 Here <literal>tag</literal> is a public field, with a well-typed selector
 function <literal>tag :: Counter a -> a</literal>.  The <literal>self</literal>
 type is hidden from the outside; any attempt to apply <literal>_this</literal>,
-<literal>_inc</literal> or <literal>_output</literal> as functions will raise a
+<literal>_inc</literal> or <literal>_display</literal> as functions will raise a
 compile-time error.  In other words, <emphasis>GHC defines a record selector function
 only for fields whose type does not mention the existentially-quantified variables</emphasis>.
 (This example used an underscore in the fields for which record selectors
@@ -1331,20 +1442,6 @@ main = do
     display (inc (inc counterB))   -- prints "##"
 </programlisting>
 
-In GADT declarations (see <xref linkend="gadt"/>), the explicit
-<literal>forall</literal> may be omitted.  For example, we can express
-the same <literal>Counter a</literal> using GADT:
-
-<programlisting>
-data Counter a where
-    NewCounter { _this    :: self
-               , _inc     :: self -> self
-               , _display :: self -> IO ()
-               , tag      :: a
-               }
-        :: Counter a
-</programlisting>
-
 At the moment, record update syntax is only supported for Haskell 98 data types,
 so the following function does <emphasis>not</emphasis> work:
 
@@ -1356,10 +1453,10 @@ setTag obj t = obj{ tag = t }
 
 </para>
 
-</sect4>
+</sect3>
 
 
-<sect4>
+<sect3>
 <title>Restrictions</title>
 
 <para>
@@ -1485,7 +1582,7 @@ are convincing reasons to change it.
  You can't use <literal>deriving</literal> to define instances of a
 data type with existentially quantified data constructors.
 
-Reason: in most cases it would not make sense. For example:&num;
+Reason: in most cases it would not make sense. For example:;
 
 <programlisting>
 data T = forall a. MkT [a] deriving( Eq )
@@ -1510,185 +1607,797 @@ declarations.  Define your own instances!
 
 </para>
 
-</sect4>
 </sect3>
-
 </sect2>
 
+<!-- ====================== Generalised algebraic data types =======================  -->
 
+<sect2 id="gadt-style">
+<title>Declaring data types with explicit constructor signatures</title>
 
-<sect2 id="multi-param-type-classes">
-<title>Class declarations</title>
-
-<para>
-This section, and the next one, documents GHC's type-class extensions.
-There's lots of background in the paper <ulink
-url="http://research.microsoft.com/~simonpj/Papers/type-class-design-space" >Type
-classes: exploring the design space</ulink > (Simon Peyton Jones, Mark
-Jones, Erik Meijer).
-</para>
-<para>
-All the extensions are enabled by the <option>-fglasgow-exts</option> flag.
-</para>
-
-<sect3>
-<title>Multi-parameter type classes</title>
-<para>
-Multi-parameter type classes are permitted. For example:
-
-
+<para>GHC allows you to declare an algebraic data type by 
+giving the type signatures of constructors explicitly.  For example:
 <programlisting>
-  class Collection c a where
-    union :: c a -> c a -> c a
-    ...etc.
+  data Maybe a where
+      Nothing :: Maybe a
+      Just    :: a -> Maybe a
 </programlisting>
-
-</para>
-</sect3>
-
-<sect3>
-<title>The superclasses of a class declaration</title>
-
-<para>
-There are no restrictions on the context in a class declaration
-(which introduces superclasses), except that the class hierarchy must
-be acyclic.  So these class declarations are OK:
-
-
+The form is called a "GADT-style declaration"
+because Generalised Algebraic Data Types, described in <xref linkend="gadt"/>, 
+can only be declared using this form.</para>
+<para>Notice that GADT-style syntax generalises existential types (<xref linkend="existential-quantification"/>).  
+For example, these two declarations are equivalent:
 <programlisting>
-  class Functor (m k) => FiniteMap m k where
-    ...
-
-  class (Monad m, Monad (t m)) => Transform t m where
-    lift :: m a -> (t m) a
+  data Foo = forall a. MkFoo a (a -> Bool)
+  data Foo' where { MKFoo :: a -> (a->Bool) -> Foo' }
 </programlisting>
-
-
 </para>
-<para>
-As in Haskell 98, The class hierarchy must be acyclic.  However, the definition
-of "acyclic" involves only the superclass relationships.  For example,
-this is OK:
-
-
+<para>Any data type that can be declared in standard Haskell-98 syntax 
+can also be declared using GADT-style syntax.
+The choice is largely stylistic, but GADT-style declarations differ in one important respect:
+they treat class constraints on the data constructors differently.
+Specifically, if the constructor is given a type-class context, that
+context is made available by pattern matching.  For example:
 <programlisting>
-  class C a where {
-    op :: D b => a -> b -> b
-  }
-
-  class C a => D a where { ... }
-</programlisting>
+  data Set a where
+    MkSet :: Eq a => [a] -> Set a
 
+  makeSet :: Eq a => [a] -> Set a
+  makeSet xs = MkSet (nub xs)
 
-Here, <literal>C</literal> is a superclass of <literal>D</literal>, but it's OK for a
-class operation <literal>op</literal> of <literal>C</literal> to mention <literal>D</literal>.  (It
-would not be OK for <literal>D</literal> to be a superclass of <literal>C</literal>.)
+  insert :: a -> Set a -> Set a
+  insert a (MkSet as) | a `elem` as = MkSet as
+                      | otherwise   = MkSet (a:as)
+</programlisting>
+A use of <literal>MkSet</literal> as a constructor (e.g. in the definition of <literal>makeSet</literal>) 
+gives rise to a <literal>(Eq a)</literal>
+constraint, as you would expect.  The new feature is that pattern-matching on <literal>MkSet</literal>
+(as in the definition of <literal>insert</literal>) makes <emphasis>available</emphasis> an <literal>(Eq a)</literal>
+context.  In implementation terms, the <literal>MkSet</literal> constructor has a hidden field that stores
+the <literal>(Eq a)</literal> dictionary that is passed to <literal>MkSet</literal>; so
+when pattern-matching that dictionary becomes available for the right-hand side of the match.
+In the example, the equality dictionary is used to satisfy the equality constraint 
+generated by the call to <literal>elem</literal>, so that the type of
+<literal>insert</literal> itself has no <literal>Eq</literal> constraint.
 </para>
-</sect3>
-
-
-
-
-<sect3 id="class-method-types">
-<title>Class method types</title>
-
-<para>
-Haskell 98 prohibits class method types to mention constraints on the
-class type variable, thus:
+<para>This behaviour contrasts with Haskell 98's peculiar treament of 
+contexts on a data type declaration (Section 4.2.1 of the Haskell 98 Report).
+In Haskell 98 the defintion
 <programlisting>
-  class Seq s a where
-    fromList :: [a] -> s a
-    elem     :: Eq a => a -> s a -> Bool
+  data Eq a => Set' a = MkSet' [a]
 </programlisting>
-The type of <literal>elem</literal> is illegal in Haskell 98, because it
-contains the constraint <literal>Eq a</literal>, constrains only the 
-class type variable (in this case <literal>a</literal>).
-GHC lifts this restriction.
-</para>
-
-
-</sect3>
-</sect2>
-
-<sect2 id="functional-dependencies">
-<title>Functional dependencies
-</title>
-
-<para> Functional dependencies are implemented as described by Mark Jones
-in &ldquo;<ulink url="http://www.cse.ogi.edu/~mpj/pubs/fundeps.html">Type Classes with Functional Dependencies</ulink>&rdquo;, Mark P. Jones, 
-In Proceedings of the 9th European Symposium on Programming, 
-ESOP 2000, Berlin, Germany, March 2000, Springer-Verlag LNCS 1782,
-.
-</para>
+gives <literal>MkSet'</literal> the same type as <literal>MkSet</literal> above.  But instead of 
+<emphasis>making available</emphasis> an <literal>(Eq a)</literal> constraint, pattern-matching
+on <literal>MkSet'</literal> <emphasis>requires</emphasis> an <literal>(Eq a)</literal> constraint!
+GHC faithfully implements this behaviour, odd though it is.  But for GADT-style declarations,
+GHC's behaviour is much more useful, as well as much more intuitive.</para>
 <para>
-Functional dependencies are introduced by a vertical bar in the syntax of a 
-class declaration;  e.g. 
+For example, a possible application of GHC's behaviour is to reify dictionaries:
 <programlisting>
-  class (Monad m) => MonadState s m | m -> s where ...
+   data NumInst a where
+     MkNumInst :: Num a => NumInst a
 
-  class Foo a b c | a b -> c where ...
+   intInst :: NumInst Int
+   intInst = MkNumInst
+
+   plus :: NumInst a -> a -> a -> a
+   plus MkNumInst p q = p + q
 </programlisting>
-There should be more documentation, but there isn't (yet).  Yell if you need it.
+Here, a value of type <literal>NumInst a</literal> is equivalent 
+to an explicit <literal>(Num a)</literal> dictionary.
 </para>
 
-<sect3><title>Rules for functional dependencies </title>
 <para>
-In a class declaration, all of the class type variables must be reachable (in the sense 
-mentioned in <xref linkend="type-restrictions"/>)
-from the free variables of each method type.
-For example:
+The rest of this section gives further details about GADT-style data
+type declarations.
+
+<itemizedlist>
+<listitem><para>
+The result type of each data constructor must begin with the type constructor being defined.
+If the result type of all constructors 
+has the form <literal>T a1 ... an</literal>, where <literal>a1 ... an</literal>
+are distinct type variables, then the data type is <emphasis>ordinary</emphasis>;
+otherwise is a <emphasis>generalised</emphasis> data type (<xref linkend="gadt"/>).
+</para></listitem>
 
+<listitem><para>
+The type signature of
+each constructor is independent, and is implicitly universally quantified as usual. 
+Different constructors may have different universally-quantified type variables
+and different type-class constraints.  
+For example, this is fine:
 <programlisting>
-  class Coll s a where
-    empty  :: s
-    insert :: s -> a -> s
+  data T a where
+    T1 :: Eq b => b -> T b
+    T2 :: (Show c, Ix c) => c -> [c] -> T c
 </programlisting>
+</para></listitem>
 
-is not OK, because the type of <literal>empty</literal> doesn't mention
-<literal>a</literal>.  Functional dependencies can make the type variable
-reachable:
+<listitem><para>
+Unlike a Haskell-98-style 
+data type declaration, the type variable(s) in the "<literal>data Set a where</literal>" header 
+have no scope.  Indeed, one can write a kind signature instead:
 <programlisting>
-  class Coll s a | s -> a where
-    empty  :: s
-    insert :: s -> a -> s
+  data Set :: * -> * where ...
+</programlisting>
+or even a mixture of the two:
+<programlisting>
+  data Foo a :: (* -> *) -> * where ...
+</programlisting>
+The type variables (if given) may be explicitly kinded, so we could also write the header for <literal>Foo</literal>
+like this:
+<programlisting>
+  data Foo a (b :: * -> *) where ...
 </programlisting>
+</para></listitem>
 
-Alternatively <literal>Coll</literal> might be rewritten
 
+<listitem><para>
+You can use strictness annotations, in the obvious places
+in the constructor type:
 <programlisting>
-  class Coll s a where
-    empty  :: s a
-    insert :: s a -> a -> s a
+  data Term a where
+      Lit    :: !Int -> Term Int
+      If     :: Term Bool -> !(Term a) -> !(Term a) -> Term a
+      Pair   :: Term a -> Term b -> Term (a,b)
 </programlisting>
+</para></listitem>
 
+<listitem><para>
+You can use a <literal>deriving</literal> clause on a GADT-style data type
+declaration.   For example, these two declarations are equivalent
+<programlisting>
+  data Maybe1 a where {
+      Nothing1 :: Maybe1 a ;
+      Just1    :: a -> Maybe1 a
+    } deriving( Eq, Ord )
 
-which makes the connection between the type of a collection of
-<literal>a</literal>'s (namely <literal>(s a)</literal>) and the element type <literal>a</literal>.
-Occasionally this really doesn't work, in which case you can split the
-class like this:
+  data Maybe2 a = Nothing2 | Just2 a 
+       deriving( Eq, Ord )
+</programlisting>
+</para></listitem>
 
+<listitem><para>
+You can use record syntax on a GADT-style data type declaration:
 
 <programlisting>
-  class CollE s where
-    empty  :: s
-
-  class CollE s => Coll s a where
-    insert :: s -> a -> s
+  data Person where
+      Adult { name :: String, children :: [Person] } :: Person
+      Child { name :: String } :: Person
 </programlisting>
+As usual, for every constructor that has a field <literal>f</literal>, the type of
+field <literal>f</literal> must be the same (modulo alpha conversion).
 </para>
-</sect3>
-
+<para>
+At the moment, record updates are not yet possible with GADT-style declarations, 
+so support is limited to record construction, selection and pattern matching.
+For exmaple
+<programlisting>
+  aPerson = Adult { name = "Fred", children = [] }
 
-<sect3>
-<title>Background on functional dependencies</title>
+  shortName :: Person -> Bool
+  hasChildren (Adult { children = kids }) = not (null kids)
+  hasChildren (Child {})                  = False
+</programlisting>
+</para></listitem>
 
-<para>The following description of the motivation and use of functional dependencies is taken
-from the Hugs user manual, reproduced here (with minor changes) by kind
-permission of Mark Jones.
-</para>
-<para> 
-Consider the following class, intended as part of a
-library for collection types:
+<listitem><para> 
+As in the case of existentials declared using the Haskell-98-like record syntax 
+(<xref linkend="existential-records"/>),
+record-selector functions are generated only for those fields that have well-typed
+selectors.  
+Here is the example of that section, in GADT-style syntax:
+<programlisting>
+data Counter a where
+    NewCounter { _this    :: self
+               , _inc     :: self -> self
+               , _display :: self -> IO ()
+               , tag      :: a
+               }
+        :: Counter a
+</programlisting>
+As before, only one selector function is generated here, that for <literal>tag</literal>.
+Nevertheless, you can still use all the field names in pattern matching and record construction.
+</para></listitem>
+</itemizedlist></para>
+</sect2>
+
+<sect2 id="gadt">
+<title>Generalised Algebraic Data Types (GADTs)</title>
+
+<para>Generalised Algebraic Data Types generalise ordinary algebraic data types 
+by allowing constructors to have richer return types.  Here is an example:
+<programlisting>
+  data Term a where
+      Lit    :: Int -> Term Int
+      Succ   :: Term Int -> Term Int
+      IsZero :: Term Int -> Term Bool  
+      If     :: Term Bool -> Term a -> Term a -> Term a
+      Pair   :: Term a -> Term b -> Term (a,b)
+</programlisting>
+Notice that the return type of the constructors is not always <literal>Term a</literal>, as is the
+case with ordinary data types.  This generality allows us to 
+write a well-typed <literal>eval</literal> function
+for these <literal>Terms</literal>:
+<programlisting>
+  eval :: Term a -> a
+  eval (Lit i)             = i
+  eval (Succ t)     = 1 + eval t
+  eval (IsZero t)   = eval t == 0
+  eval (If b e1 e2) = if eval b then eval e1 else eval e2
+  eval (Pair e1 e2) = (eval e1, eval e2)
+</programlisting>
+The key point about GADTs is that <emphasis>pattern matching causes type refinement</emphasis>.  
+For example, in the right hand side of the equation
+<programlisting>
+  eval :: Term a -> a
+  eval (Lit i) =  ...
+</programlisting>
+the type <literal>a</literal> is refined to <literal>Int</literal>.  That's the whole point!
+A precise specification of the type rules is beyond what this user manual aspires to, 
+but the design closely follows that described in
+the paper <ulink
+url="http://research.microsoft.com/%7Esimonpj/papers/gadt/index.htm">Simple
+unification-based type inference for GADTs</ulink>,
+(ICFP 2006).
+The general principle is this: <emphasis>type refinement is only carried out 
+based on user-supplied type annotations</emphasis>.
+So if no type signature is supplied for <literal>eval</literal>, no type refinement happens, 
+and lots of obscure error messages will
+occur.  However, the refinement is quite general.  For example, if we had:
+<programlisting>
+  eval :: Term a -> a -> a
+  eval (Lit i) j =  i+j
+</programlisting>
+the pattern match causes the type <literal>a</literal> to be refined to <literal>Int</literal> (because of the type
+of the constructor <literal>Lit</literal>), and that refinement also applies to the type of <literal>j</literal>, and
+the result type of the <literal>case</literal> expression.  Hence the addition <literal>i+j</literal> is legal.
+</para>
+<para>
+These and many other examples are given in papers by Hongwei Xi, and
+Tim Sheard. There is a longer introduction
+<ulink url="http://haskell.org/haskellwiki/GADT">on the wiki</ulink>,
+and Ralf Hinze's
+<ulink url="http://www.informatik.uni-bonn.de/~ralf/publications/With.pdf">Fun with phantom types</ulink> also has a number of examples. Note that papers
+may use different notation to that implemented in GHC.
+</para>
+<para>
+The rest of this section outlines the extensions to GHC that support GADTs.   The extension is enabled with 
+<option>-XGADTs</option>.
+<itemizedlist>
+<listitem><para>
+A GADT can only be declared using GADT-style syntax (<xref linkend="gadt-style"/>); 
+the old Haskell-98 syntax for data declarations always declares an ordinary data type.
+The result type of each constructor must begin with the type constructor being defined,
+but for a GADT the arguments to the type constructor can be arbitrary monotypes.  
+For example, in the <literal>Term</literal> data
+type above, the type of each constructor must end with <literal>Term ty</literal>, but
+the <literal>ty</literal> may not be a type variable (e.g. the <literal>Lit</literal>
+constructor).
+</para></listitem>
+
+<listitem><para>
+You cannot use a <literal>deriving</literal> clause for a GADT; only for
+an ordianary data type.
+</para></listitem>
+
+<listitem><para>
+As mentioned in <xref linkend="gadt-style"/>, record syntax is supported.
+For example:
+<programlisting>
+  data Term a where
+      Lit    { val  :: Int }      :: Term Int
+      Succ   { num  :: Term Int } :: Term Int
+      Pred   { num  :: Term Int } :: Term Int
+      IsZero { arg  :: Term Int } :: Term Bool 
+      Pair   { arg1 :: Term a
+             , arg2 :: Term b
+             }                    :: Term (a,b)
+      If     { cnd  :: Term Bool
+             , tru  :: Term a
+             , fls  :: Term a
+             }                    :: Term a
+</programlisting>
+However, for GADTs there is the following additional constraint: 
+every constructor that has a field <literal>f</literal> must have
+the same result type (modulo alpha conversion)
+Hence, in the above example, we cannot merge the <literal>num</literal> 
+and <literal>arg</literal> fields above into a 
+single name.  Although their field types are both <literal>Term Int</literal>,
+their selector functions actually have different types:
+
+<programlisting>
+  num :: Term Int -> Term Int
+  arg :: Term Bool -> Term Int
+</programlisting>
+</para></listitem>
+
+</itemizedlist>
+</para>
+
+</sect2>
+</sect1>
+
+<!-- ====================== End of Generalised algebraic data types =======================  -->
+
+<sect1 id="deriving">
+<title>Extensions to the "deriving" mechanism</title>
+
+<sect2 id="deriving-inferred">
+<title>Inferred context for deriving clauses</title>
+
+<para>
+The Haskell Report is vague about exactly when a <literal>deriving</literal> clause is
+legal.  For example:
+<programlisting>
+  data T0 f a = MkT0 a         deriving( Eq )
+  data T1 f a = MkT1 (f a)     deriving( Eq )
+  data T2 f a = MkT2 (f (f a)) deriving( Eq )
+</programlisting>
+The natural generated <literal>Eq</literal> code would result in these instance declarations:
+<programlisting>
+  instance Eq a         => Eq (T0 f a) where ...
+  instance Eq (f a)     => Eq (T1 f a) where ...
+  instance Eq (f (f a)) => Eq (T2 f a) where ...
+</programlisting>
+The first of these is obviously fine. The second is still fine, although less obviously. 
+The third is not Haskell 98, and risks losing termination of instances.
+</para>
+<para>
+GHC takes a conservative position: it accepts the first two, but not the third.  The  rule is this:
+each constraint in the inferred instance context must consist only of type variables, 
+with no repititions.
+</para>
+<para>
+This rule is applied regardless of flags.  If you want a more exotic context, you can write
+it yourself, using the <link linkend="stand-alone-deriving">standalone deriving mechanism</link>.
+</para>
+</sect2>
+
+<sect2 id="stand-alone-deriving">
+<title>Stand-alone deriving declarations</title>
+
+<para>
+GHC now allows stand-alone <literal>deriving</literal> declarations, enabled by <literal>-XStandaloneDeriving</literal>:
+<programlisting>
+  data Foo a = Bar a | Baz String
+
+  deriving instance Eq a => Eq (Foo a)
+</programlisting>
+The syntax is identical to that of an ordinary instance declaration apart from (a) the keyword
+<literal>deriving</literal>, and (b) the absence of the <literal>where</literal> part.
+You must supply a context (in the example the context is <literal>(Eq a)</literal>), 
+exactly as you would in an ordinary instance declaration.
+(In contrast the context is inferred in a <literal>deriving</literal> clause 
+attached to a data type declaration.) These <literal>deriving instance</literal>
+rules obey the same rules concerning form and termination as ordinary instance declarations,
+controlled by the same flags; see <xref linkend="instance-decls"/>. </para>
+
+<para>The stand-alone syntax is generalised for newtypes in exactly the same
+way that ordinary <literal>deriving</literal> clauses are generalised (<xref linkend="newtype-deriving"/>).
+For example:
+<programlisting>
+  newtype Foo a = MkFoo (State Int a)
+
+  deriving instance MonadState Int Foo
+</programlisting>
+GHC always treats the <emphasis>last</emphasis> parameter of the instance
+(<literal>Foo</literal> in this exmample) as the type whose instance is being derived.
+</para>
+
+</sect2>
+
+
+<sect2 id="deriving-typeable">
+<title>Deriving clause for classes <literal>Typeable</literal> and <literal>Data</literal></title>
+
+<para>
+Haskell 98 allows the programmer to add "<literal>deriving( Eq, Ord )</literal>" to a data type 
+declaration, to generate a standard instance declaration for classes specified in the <literal>deriving</literal> clause.  
+In Haskell 98, the only classes that may appear in the <literal>deriving</literal> clause are the standard
+classes <literal>Eq</literal>, <literal>Ord</literal>, 
+<literal>Enum</literal>, <literal>Ix</literal>, <literal>Bounded</literal>, <literal>Read</literal>, and <literal>Show</literal>.
+</para>
+<para>
+GHC extends this list with two more classes that may be automatically derived 
+(provided the <option>-XDeriveDataTypeable</option> flag is specified):
+<literal>Typeable</literal>, and <literal>Data</literal>.  These classes are defined in the library
+modules <literal>Data.Typeable</literal> and <literal>Data.Generics</literal> respectively, and the
+appropriate class must be in scope before it can be mentioned in the <literal>deriving</literal> clause.
+</para>
+<para>An instance of <literal>Typeable</literal> can only be derived if the
+data type has seven or fewer type parameters, all of kind <literal>*</literal>.
+The reason for this is that the <literal>Typeable</literal> class is derived using the scheme
+described in
+<ulink url="http://research.microsoft.com/%7Esimonpj/papers/hmap/gmap2.ps">
+Scrap More Boilerplate: Reflection, Zips, and Generalised Casts
+</ulink>.
+(Section 7.4 of the paper describes the multiple <literal>Typeable</literal> classes that
+are used, and only <literal>Typeable1</literal> up to
+<literal>Typeable7</literal> are provided in the library.)
+In other cases, there is nothing to stop the programmer writing a <literal>TypableX</literal>
+class, whose kind suits that of the data type constructor, and
+then writing the data type instance by hand.
+</para>
+</sect2>
+
+<sect2 id="newtype-deriving">
+<title>Generalised derived instances for newtypes</title>
+
+<para>
+When you define an abstract type using <literal>newtype</literal>, you may want
+the new type to inherit some instances from its representation. In
+Haskell 98, you can inherit instances of <literal>Eq</literal>, <literal>Ord</literal>,
+<literal>Enum</literal> and <literal>Bounded</literal> by deriving them, but for any
+other classes you have to write an explicit instance declaration. For
+example, if you define
+
+<programlisting> 
+  newtype Dollars = Dollars Int 
+</programlisting> 
+
+and you want to use arithmetic on <literal>Dollars</literal>, you have to
+explicitly define an instance of <literal>Num</literal>:
+
+<programlisting> 
+  instance Num Dollars where
+    Dollars a + Dollars b = Dollars (a+b)
+    ...
+</programlisting>
+All the instance does is apply and remove the <literal>newtype</literal>
+constructor. It is particularly galling that, since the constructor
+doesn't appear at run-time, this instance declaration defines a
+dictionary which is <emphasis>wholly equivalent</emphasis> to the <literal>Int</literal>
+dictionary, only slower!
+</para>
+
+
+<sect3> <title> Generalising the deriving clause </title>
+<para>
+GHC now permits such instances to be derived instead, 
+using the flag <option>-XGeneralizedNewtypeDeriving</option>,
+so one can write 
+<programlisting> 
+  newtype Dollars = Dollars Int deriving (Eq,Show,Num)
+</programlisting> 
+
+and the implementation uses the <emphasis>same</emphasis> <literal>Num</literal> dictionary
+for <literal>Dollars</literal> as for <literal>Int</literal>. Notionally, the compiler
+derives an instance declaration of the form
+
+<programlisting> 
+  instance Num Int => Num Dollars
+</programlisting> 
+
+which just adds or removes the <literal>newtype</literal> constructor according to the type.
+</para>
+<para>
+
+We can also derive instances of constructor classes in a similar
+way. For example, suppose we have implemented state and failure monad
+transformers, such that
+
+<programlisting> 
+  instance Monad m => Monad (State s m) 
+  instance Monad m => Monad (Failure m)
+</programlisting> 
+In Haskell 98, we can define a parsing monad by 
+<programlisting> 
+  type Parser tok m a = State [tok] (Failure m) a
+</programlisting> 
+
+which is automatically a monad thanks to the instance declarations
+above. With the extension, we can make the parser type abstract,
+without needing to write an instance of class <literal>Monad</literal>, via
+
+<programlisting> 
+  newtype Parser tok m a = Parser (State [tok] (Failure m) a)
+                         deriving Monad
+</programlisting>
+In this case the derived instance declaration is of the form 
+<programlisting> 
+  instance Monad (State [tok] (Failure m)) => Monad (Parser tok m) 
+</programlisting> 
+
+Notice that, since <literal>Monad</literal> is a constructor class, the
+instance is a <emphasis>partial application</emphasis> of the new type, not the
+entire left hand side. We can imagine that the type declaration is
+"eta-converted" to generate the context of the instance
+declaration.
+</para>
+<para>
+
+We can even derive instances of multi-parameter classes, provided the
+newtype is the last class parameter. In this case, a ``partial
+application'' of the class appears in the <literal>deriving</literal>
+clause. For example, given the class
+
+<programlisting> 
+  class StateMonad s m | m -> s where ... 
+  instance Monad m => StateMonad s (State s m) where ... 
+</programlisting> 
+then we can derive an instance of <literal>StateMonad</literal> for <literal>Parser</literal>s by 
+<programlisting> 
+  newtype Parser tok m a = Parser (State [tok] (Failure m) a)
+                         deriving (Monad, StateMonad [tok])
+</programlisting>
+
+The derived instance is obtained by completing the application of the
+class to the new type:
+
+<programlisting> 
+  instance StateMonad [tok] (State [tok] (Failure m)) =>
+           StateMonad [tok] (Parser tok m)
+</programlisting>
+</para>
+<para>
+
+As a result of this extension, all derived instances in newtype
+ declarations are treated uniformly (and implemented just by reusing
+the dictionary for the representation type), <emphasis>except</emphasis>
+<literal>Show</literal> and <literal>Read</literal>, which really behave differently for
+the newtype and its representation.
+</para>
+</sect3>
+
+<sect3> <title> A more precise specification </title>
+<para>
+Derived instance declarations are constructed as follows. Consider the
+declaration (after expansion of any type synonyms)
+
+<programlisting> 
+  newtype T v1...vn = T' (t vk+1...vn) deriving (c1...cm) 
+</programlisting> 
+
+where 
+ <itemizedlist>
+<listitem><para>
+  The <literal>ci</literal> are partial applications of
+  classes of the form <literal>C t1'...tj'</literal>, where the arity of <literal>C</literal>
+  is exactly <literal>j+1</literal>.  That is, <literal>C</literal> lacks exactly one type argument.
+</para></listitem>
+<listitem><para>
+  The <literal>k</literal> is chosen so that <literal>ci (T v1...vk)</literal> is well-kinded.
+</para></listitem>
+<listitem><para>
+  The type <literal>t</literal> is an arbitrary type.
+</para></listitem>
+<listitem><para>
+  The type variables <literal>vk+1...vn</literal> do not occur in <literal>t</literal>, 
+  nor in the <literal>ci</literal>, and
+</para></listitem>
+<listitem><para>
+  None of the <literal>ci</literal> is <literal>Read</literal>, <literal>Show</literal>, 
+               <literal>Typeable</literal>, or <literal>Data</literal>.  These classes
+               should not "look through" the type or its constructor.  You can still
+               derive these classes for a newtype, but it happens in the usual way, not 
+               via this new mechanism.  
+</para></listitem>
+</itemizedlist>
+Then, for each <literal>ci</literal>, the derived instance
+declaration is:
+<programlisting> 
+  instance ci t => ci (T v1...vk)
+</programlisting>
+As an example which does <emphasis>not</emphasis> work, consider 
+<programlisting> 
+  newtype NonMonad m s = NonMonad (State s m s) deriving Monad 
+</programlisting> 
+Here we cannot derive the instance 
+<programlisting> 
+  instance Monad (State s m) => Monad (NonMonad m) 
+</programlisting> 
+
+because the type variable <literal>s</literal> occurs in <literal>State s m</literal>,
+and so cannot be "eta-converted" away. It is a good thing that this
+<literal>deriving</literal> clause is rejected, because <literal>NonMonad m</literal> is
+not, in fact, a monad --- for the same reason. Try defining
+<literal>>>=</literal> with the correct type: you won't be able to.
+</para>
+<para>
+
+Notice also that the <emphasis>order</emphasis> of class parameters becomes
+important, since we can only derive instances for the last one. If the
+<literal>StateMonad</literal> class above were instead defined as
+
+<programlisting> 
+  class StateMonad m s | m -> s where ... 
+</programlisting>
+
+then we would not have been able to derive an instance for the
+<literal>Parser</literal> type above. We hypothesise that multi-parameter
+classes usually have one "main" parameter for which deriving new
+instances is most interesting.
+</para>
+<para>Lastly, all of this applies only for classes other than
+<literal>Read</literal>, <literal>Show</literal>, <literal>Typeable</literal>, 
+and <literal>Data</literal>, for which the built-in derivation applies (section
+4.3.3. of the Haskell Report).
+(For the standard classes <literal>Eq</literal>, <literal>Ord</literal>,
+<literal>Ix</literal>, and <literal>Bounded</literal> it is immaterial whether
+the standard method is used or the one described here.)
+</para>
+</sect3>
+</sect2>
+</sect1>
+
+
+<!-- TYPE SYSTEM EXTENSIONS -->
+<sect1 id="type-class-extensions">
+<title>Class and instances declarations</title>
+
+<sect2 id="multi-param-type-classes">
+<title>Class declarations</title>
+
+<para>
+This section, and the next one, documents GHC's type-class extensions.
+There's lots of background in the paper <ulink
+url="http://research.microsoft.com/~simonpj/Papers/type-class-design-space" >Type
+classes: exploring the design space</ulink > (Simon Peyton Jones, Mark
+Jones, Erik Meijer).
+</para>
+<para>
+All the extensions are enabled by the <option>-fglasgow-exts</option> flag.
+</para>
+
+<sect3>
+<title>Multi-parameter type classes</title>
+<para>
+Multi-parameter type classes are permitted. For example:
+
+
+<programlisting>
+  class Collection c a where
+    union :: c a -> c a -> c a
+    ...etc.
+</programlisting>
+
+</para>
+</sect3>
+
+<sect3>
+<title>The superclasses of a class declaration</title>
+
+<para>
+There are no restrictions on the context in a class declaration
+(which introduces superclasses), except that the class hierarchy must
+be acyclic.  So these class declarations are OK:
+
+
+<programlisting>
+  class Functor (m k) => FiniteMap m k where
+    ...
+
+  class (Monad m, Monad (t m)) => Transform t m where
+    lift :: m a -> (t m) a
+</programlisting>
+
+
+</para>
+<para>
+As in Haskell 98, The class hierarchy must be acyclic.  However, the definition
+of "acyclic" involves only the superclass relationships.  For example,
+this is OK:
+
+
+<programlisting>
+  class C a where {
+    op :: D b => a -> b -> b
+  }
+
+  class C a => D a where { ... }
+</programlisting>
+
+
+Here, <literal>C</literal> is a superclass of <literal>D</literal>, but it's OK for a
+class operation <literal>op</literal> of <literal>C</literal> to mention <literal>D</literal>.  (It
+would not be OK for <literal>D</literal> to be a superclass of <literal>C</literal>.)
+</para>
+</sect3>
+
+
+
+
+<sect3 id="class-method-types">
+<title>Class method types</title>
+
+<para>
+Haskell 98 prohibits class method types to mention constraints on the
+class type variable, thus:
+<programlisting>
+  class Seq s a where
+    fromList :: [a] -> s a
+    elem     :: Eq a => a -> s a -> Bool
+</programlisting>
+The type of <literal>elem</literal> is illegal in Haskell 98, because it
+contains the constraint <literal>Eq a</literal>, constrains only the 
+class type variable (in this case <literal>a</literal>).
+GHC lifts this restriction.
+</para>
+
+
+</sect3>
+</sect2>
+
+<sect2 id="functional-dependencies">
+<title>Functional dependencies
+</title>
+
+<para> Functional dependencies are implemented as described by Mark Jones
+in &ldquo;<ulink url="http://www.cse.ogi.edu/~mpj/pubs/fundeps.html">Type Classes with Functional Dependencies</ulink>&rdquo;, Mark P. Jones, 
+In Proceedings of the 9th European Symposium on Programming, 
+ESOP 2000, Berlin, Germany, March 2000, Springer-Verlag LNCS 1782,
+.
+</para>
+<para>
+Functional dependencies are introduced by a vertical bar in the syntax of a 
+class declaration;  e.g. 
+<programlisting>
+  class (Monad m) => MonadState s m | m -> s where ...
+
+  class Foo a b c | a b -> c where ...
+</programlisting>
+There should be more documentation, but there isn't (yet).  Yell if you need it.
+</para>
+
+<sect3><title>Rules for functional dependencies </title>
+<para>
+In a class declaration, all of the class type variables must be reachable (in the sense 
+mentioned in <xref linkend="type-restrictions"/>)
+from the free variables of each method type.
+For example:
+
+<programlisting>
+  class Coll s a where
+    empty  :: s
+    insert :: s -> a -> s
+</programlisting>
+
+is not OK, because the type of <literal>empty</literal> doesn't mention
+<literal>a</literal>.  Functional dependencies can make the type variable
+reachable:
+<programlisting>
+  class Coll s a | s -> a where
+    empty  :: s
+    insert :: s -> a -> s
+</programlisting>
+
+Alternatively <literal>Coll</literal> might be rewritten
+
+<programlisting>
+  class Coll s a where
+    empty  :: s a
+    insert :: s a -> a -> s a
+</programlisting>
+
+
+which makes the connection between the type of a collection of
+<literal>a</literal>'s (namely <literal>(s a)</literal>) and the element type <literal>a</literal>.
+Occasionally this really doesn't work, in which case you can split the
+class like this:
+
+
+<programlisting>
+  class CollE s where
+    empty  :: s
+
+  class CollE s => Coll s a where
+    insert :: s -> a -> s
+</programlisting>
+</para>
+</sect3>
+
+
+<sect3>
+<title>Background on functional dependencies</title>
+
+<para>The following description of the motivation and use of functional dependencies is taken
+from the Hugs user manual, reproduced here (with minor changes) by kind
+permission of Mark Jones.
+</para>
+<para> 
+Consider the following class, intended as part of a
+library for collection types:
 <programlisting>
    class Collects e ce where
        empty  :: ce
@@ -1957,7 +2666,7 @@ the context and head of the instance declaration can each consist of arbitrary
 following rules:
 <orderedlist>
 <listitem><para>
-For each assertion in the context:
+The Paterson Conditions: for each assertion in the context
 <orderedlist>
 <listitem><para>No type variable has more occurrences in the assertion than in the head</para></listitem>
 <listitem><para>The assertion has fewer constructors and variables (taken together
@@ -1965,7 +2674,7 @@ For each assertion in the context:
 </orderedlist>
 </para></listitem>
 
-<listitem><para>The coverage condition.  For each functional dependency,
+<listitem><para>The Coverage Condition.  For each functional dependency,
 <replaceable>tvs</replaceable><subscript>left</subscript> <literal>-&gt;</literal>
 <replaceable>tvs</replaceable><subscript>right</subscript>,  of the class,
 every type variable in
@@ -1977,11 +2686,15 @@ corresponding type in the instance declaration.
 </orderedlist>
 These restrictions ensure that context reduction terminates: each reduction
 step makes the problem smaller by at least one
-constructor.  For example, the following would make the type checker
-loop if it wasn't excluded:
-<programlisting>
-  instance C a => C a where ...
-</programlisting>
+constructor.  Both the Paterson Conditions and the Coverage Condition are lifted 
+if you give the <option>-fallow-undecidable-instances</option> 
+flag (<xref linkend="undecidable-instances"/>).
+You can find lots of background material about the reason for these
+restrictions in the paper <ulink
+url="http://research.microsoft.com/%7Esimonpj/papers/fd%2Dchr/">
+Understanding functional dependencies via Constraint Handling Rules</ulink>.
+</para>
+<para>
 For example, these are OK:
 <programlisting>
   instance C Int [a]          -- Multiple parameters
@@ -2033,11 +2746,6 @@ something more specific does not:
     op = ... -- Default
 </programlisting>
 </para>
-<para>You can find lots of background material about the reason for these
-restrictions in the paper <ulink
-url="http://research.microsoft.com/%7Esimonpj/papers/fd%2Dchr/">
-Understanding functional dependencies via Constraint Handling Rules</ulink>.
-</para>
 </sect3>
 
 <sect3 id="undecidable-instances">
@@ -2100,10 +2808,10 @@ makes instance inference go into a loop, because it requires the constraint
 </para>
 <para>
 Nevertheless, GHC allows you to experiment with more liberal rules.  If you use
-the experimental flag <option>-fallow-undecidable-instances</option>
-<indexterm><primary>-fallow-undecidable-instances
-option</primary></indexterm>, you can use arbitrary
-types in both an instance context and instance head.  Termination is ensured by having a
+the experimental flag <option>-XUndecidableInstances</option>
+<indexterm><primary>-XUndecidableInstances</primary></indexterm>, 
+both the Paterson Conditions and the Coverage Condition
+(described in <xref linkend="instance-rules"/>) are lifted.  Termination is ensured by having a
 fixed-depth recursion stack.  If you exceed the stack depth you get a
 sort of backtrace, and the opportunity to increase the stack depth
 with <option>-fcontext-stack=</option><emphasis>N</emphasis>.
@@ -2118,11 +2826,11 @@ with <option>-fcontext-stack=</option><emphasis>N</emphasis>.
 In general, <emphasis>GHC requires that that it be unambiguous which instance
 declaration
 should be used to resolve a type-class constraint</emphasis>. This behaviour
-can be modified by two flags: <option>-fallow-overlapping-instances</option>
-<indexterm><primary>-fallow-overlapping-instances
+can be modified by two flags: <option>-XOverlappingInstances</option>
+<indexterm><primary>-XOverlappingInstances
 </primary></indexterm> 
-and <option>-fallow-incoherent-instances</option>
-<indexterm><primary>-fallow-incoherent-instances
+and <option>-XIncoherentInstances</option>
+<indexterm><primary>-XIncoherentInstances
 </primary></indexterm>, as this section discusses.  Both these
 flags are dynamic flags, and can be set on a per-module basis, using 
 an <literal>OPTIONS_GHC</literal> pragma if desired (<xref linkend="source-file-options"/>).</para>
@@ -2150,7 +2858,7 @@ particular constraint matches more than one.
 </para>
 
 <para>
-The <option>-fallow-overlapping-instances</option> flag instructs GHC to allow
+The <option>-XOverlappingInstances</option> flag instructs GHC to allow
 more than one instance to match, provided there is a most specific one.  For
 example, the constraint <literal>C Int [Int]</literal> matches instances (A),
 (C) and (D), but the last is more specific, and hence is chosen.  If there is no
@@ -2167,30 +2875,45 @@ Suppose that from the RHS of <literal>f</literal> we get the constraint
 GHC does not commit to instance (C), because in a particular
 call of <literal>f</literal>, <literal>b</literal> might be instantiate 
 to <literal>Int</literal>, in which case instance (D) would be more specific still.
-So GHC rejects the program.  If you add the flag <option>-fallow-incoherent-instances</option>,
+So GHC rejects the program.  
+(If you add the flag <option>-XIncoherentInstances</option>,
 GHC will instead pick (C), without complaining about 
-the problem of subsequent instantiations.
+the problem of subsequent instantiations.)
+</para>
+<para>
+Notice that we gave a type signature to <literal>f</literal>, so GHC had to
+<emphasis>check</emphasis> that <literal>f</literal> has the specified type.  
+Suppose instead we do not give a type signature, asking GHC to <emphasis>infer</emphasis>
+it instead.  In this case, GHC will refrain from
+simplifying the constraint <literal>C Int [Int]</literal> (for the same reason
+as before) but, rather than rejecting the program, it will infer the type
+<programlisting>
+  f :: C Int b => [b] -> [b]
+</programlisting>
+That postpones the question of which instance to pick to the 
+call site for <literal>f</literal>
+by which time more is known about the type <literal>b</literal>.
 </para>
 <para>
 The willingness to be overlapped or incoherent is a property of 
 the <emphasis>instance declaration</emphasis> itself, controlled by the
-presence or otherwise of the <option>-fallow-overlapping-instances</option> 
-and <option>-fallow-incoherent-instances</option> flags when that mdodule is
+presence or otherwise of the <option>-XOverlappingInstances</option> 
+and <option>-XIncoherentInstances</option> flags when that mdodule is
 being defined.  Neither flag is required in a module that imports and uses the
 instance declaration.  Specifically, during the lookup process:
 <itemizedlist>
 <listitem><para>
 An instance declaration is ignored during the lookup process if (a) a more specific
 match is found, and (b) the instance declaration was compiled with 
-<option>-fallow-overlapping-instances</option>.  The flag setting for the
+<option>-XOverlappingInstances</option>.  The flag setting for the
 more-specific instance does not matter.
 </para></listitem>
 <listitem><para>
-Suppose an instance declaration does not matche the constraint being looked up, but
+Suppose an instance declaration does not match the constraint being looked up, but
 does unify with it, so that it might match when the constraint is further 
 instantiated.  Usually GHC will regard this as a reason for not committing to
 some other constraint.  But if the instance declaration was compiled with
-<option>-fallow-incoherent-instances</option>, GHC will skip the "does-it-unify?" 
+<option>-XIncoherentInstances</option>, GHC will skip the "does-it-unify?" 
 check for that declaration.
 </para></listitem>
 </itemizedlist>
@@ -2199,18 +2922,18 @@ overlapping instances without the library client having to know.
 </para>
 <para>
 If an instance declaration is compiled without
-<option>-fallow-overlapping-instances</option>,
+<option>-XOverlappingInstances</option>,
 then that instance can never be overlapped.  This could perhaps be
 inconvenient.  Perhaps the rule should instead say that the
 <emphasis>overlapping</emphasis> instance declaration should be compiled in
 this way, rather than the <emphasis>overlapped</emphasis> one.  Perhaps overlap
 at a usage site should be permitted regardless of how the instance declarations
-are compiled, if the <option>-fallow-overlapping-instances</option> flag is
+are compiled, if the <option>-XOverlappingInstances</option> flag is
 used at the usage site.  (Mind you, the exact usage site can occasionally be
 hard to pin down.)  We are interested to receive feedback on these points.
 </para>
-<para>The <option>-fallow-incoherent-instances</option> flag implies the
-<option>-fallow-overlapping-instances</option> flag, but not vice versa.
+<para>The <option>-XIncoherentInstances</option> flag implies the
+<option>-XOverlappingInstances</option> flag, but not vice versa.
 </para>
 </sect3>
 
@@ -2259,6 +2982,86 @@ reversed, but it makes sense to me.
 
 </sect2>
 
+<sect2 id="overloaded-strings">
+<title>Overloaded string literals
+</title>
+
+<para>
+GHC supports <emphasis>overloaded string literals</emphasis>.  Normally a
+string literal has type <literal>String</literal>, but with overloaded string
+literals enabled (with <literal>-XOverloadedStrings</literal>)
+ a string literal has type <literal>(IsString a) => a</literal>.
+</para>
+<para>
+This means that the usual string syntax can be used, e.g., for packed strings
+and other variations of string like types.  String literals behave very much
+like integer literals, i.e., they can be used in both expressions and patterns.
+If used in a pattern the literal with be replaced by an equality test, in the same
+way as an integer literal is.
+</para>
+<para>
+The class <literal>IsString</literal> is defined as:
+<programlisting>
+class IsString a where
+    fromString :: String -> a
+</programlisting>
+The only predefined instance is the obvious one to make strings work as usual:
+<programlisting>
+instance IsString [Char] where
+    fromString cs = cs
+</programlisting>
+The class <literal>IsString</literal> is not in scope by default.  If you want to mention
+it explicitly (for exmaple, to give an instance declaration for it), you can import it
+from module <literal>GHC.Exts</literal>.
+</para>
+<para>
+Haskell's defaulting mechanism is extended to cover string literals, when <option>-XOverloadedStrings</option> is specified.
+Specifically:
+<itemizedlist>
+<listitem><para>
+Each type in a default declaration must be an 
+instance of <literal>Num</literal> <emphasis>or</emphasis> of <literal>IsString</literal>.
+</para></listitem>
+
+<listitem><para>
+The standard defaulting rule (<ulink url="http://haskell.org/onlinereport/decls.html#sect4.3.4">Haskell Report, Section 4.3.4</ulink>)
+is extended thus: defaulting applies when all the unresolved constraints involve standard classes
+<emphasis>or</emphasis> <literal>IsString</literal>; and at least one is a numeric class
+<emphasis>or</emphasis> <literal>IsString</literal>.
+</para></listitem>
+</itemizedlist>
+</para>
+<para>
+A small example:
+<programlisting>
+module Main where
+
+import GHC.Exts( IsString(..) )
+
+newtype MyString = MyString String deriving (Eq, Show)
+instance IsString MyString where
+    fromString = MyString
+
+greet :: MyString -> MyString
+greet "hello" = "world"
+greet other = other
+
+main = do
+    print $ greet "hello"
+    print $ greet "fool"
+</programlisting>
+</para>
+<para>
+Note that deriving <literal>Eq</literal> is necessary for the pattern matching
+to work since it gets translated into an equality comparison.
+</para>
+</sect2>
+
+</sect1>
+
+<sect1 id="other-type-extensions">
+<title>Other type system extensions</title>
+
 <sect2 id="type-restrictions">
 <title>Type signatures</title>
 
@@ -2375,54 +3178,6 @@ territory free in case we need it later.
 </para>
 </sect3>
 
-<sect3 id="hoist">
-<title>For-all hoisting</title>
-<para>
-It is often convenient to use generalised type synonyms (see <xref linkend="type-synonyms"/>) at the right hand
-end of an arrow, thus:
-<programlisting>
-  type Discard a = forall b. a -> b -> a
-
-  g :: Int -> Discard Int
-  g x y z = x+y
-</programlisting>
-Simply expanding the type synonym would give
-<programlisting>
-  g :: Int -> (forall b. Int -> b -> Int)
-</programlisting>
-but GHC "hoists" the <literal>forall</literal> to give the isomorphic type
-<programlisting>
-  g :: forall b. Int -> Int -> b -> Int
-</programlisting>
-In general, the rule is this: <emphasis>to determine the type specified by any explicit
-user-written type (e.g. in a type signature), GHC expands type synonyms and then repeatedly
-performs the transformation:</emphasis>
-<programlisting>
-  <emphasis>type1</emphasis> -> forall a1..an. <emphasis>context2</emphasis> => <emphasis>type2</emphasis>
-==>
-  forall a1..an. <emphasis>context2</emphasis> => <emphasis>type1</emphasis> -> <emphasis>type2</emphasis>
-</programlisting>
-(In fact, GHC tries to retain as much synonym information as possible for use in
-error messages, but that is a usability issue.)  This rule applies, of course, whether
-or not the <literal>forall</literal> comes from a synonym. For example, here is another
-valid way to write <literal>g</literal>'s type signature:
-<programlisting>
-  g :: Int -> Int -> forall b. b -> Int
-</programlisting>
-</para>
-<para>
-When doing this hoisting operation, GHC eliminates duplicate constraints.  For
-example:
-<programlisting>
-  type Foo a = (?x::Int) => Bool -> a
-  g :: Foo (Foo Int)
-</programlisting>
-means
-<programlisting>
-  g :: (?x::Int) => Bool -> Bool -> Int
-</programlisting>
-</para>
-</sect3>
 
 
 </sect2>
@@ -2441,7 +3196,7 @@ Boston, Jan 2000.
 due to Jeff Lewis.)</para>
 
 <para>Implicit parameter support is enabled with the option
-<option>-fimplicit-params</option>.</para>
+<option>-XImplicitParams</option>.</para>
 
 <para>
 A variable is called <emphasis>dynamically bound</emphasis> when it is bound by the calling
@@ -2831,7 +3586,7 @@ and you'd be right.  That is why they are an experimental feature.
 
 ================ END OF Linear Implicit Parameters commented out -->
 
-<sect2 id="sec-kinding">
+<sect2 id="kinding">
 <title>Explicitly-kinded quantification</title>
 
 <para>
@@ -2925,6 +3680,8 @@ For example, all the following types are legal:
     g2 :: (forall a. Eq a => [a] -> a -> Bool) -> Int -> Int
 
     f3 :: ((forall a. a->a) -> Int) -> Bool -> Bool
+
+    f4 :: Int -> (forall a. a -> a)
 </programlisting>
 Here, <literal>f1</literal> and <literal>g1</literal> are rank-1 types, and
 can be written in standard Haskell (e.g. <literal>f1 :: a->b->a</literal>).
@@ -2947,22 +3704,14 @@ that restriction has now been lifted.)
 In particular, a forall-type (also called a "type scheme"),
 including an operational type class context, is legal:
 <itemizedlist>
-<listitem> <para> On the left of a function arrow </para> </listitem>
-<listitem> <para> On the right of a function arrow (see <xref linkend="hoist"/>) </para> </listitem>
+<listitem> <para> On the left or right (see <literal>f4</literal>, for example)
+of a function arrow </para> </listitem>
 <listitem> <para> As the argument of a constructor, or type of a field, in a data type declaration. For
 example, any of the <literal>f1,f2,f3,g1,g2</literal> above would be valid
 field type signatures.</para> </listitem>
 <listitem> <para> As the type of an implicit parameter </para> </listitem>
 <listitem> <para> In a pattern type signature (see <xref linkend="scoped-type-variables"/>) </para> </listitem>
 </itemizedlist>
-There is one place you cannot put a <literal>forall</literal>:
-you cannot instantiate a type variable with a forall-type.  So you cannot 
-make a forall-type the argument of a type constructor.  So these types are illegal:
-<programlisting>
-    x1 :: [forall a. a->a]
-    x2 :: (forall a. a->a, Int)
-    x3 :: Maybe (forall a. a->a)
-</programlisting>
 Of course <literal>forall</literal> becomes a keyword; you can't use <literal>forall</literal> as
 a type variable any more!
 </para>
@@ -3269,6 +4018,7 @@ changing the program.</para></listitem>
 A <emphasis>lexically scoped type variable</emphasis> can be bound by:
 <itemizedlist>
 <listitem><para>A declaration type signature (<xref linkend="decl-type-sigs"/>)</para></listitem>
+<listitem><para>An expression type signature (<xref linkend="exp-type-sigs"/>)</para></listitem>
 <listitem><para>A pattern type signature (<xref linkend="pattern-type-sigs"/>)</para></listitem>
 <listitem><para>Class and instance declarations (<xref linkend="cls-inst-scoped-tyvars"/>)</para></listitem>
 </itemizedlist>
@@ -3320,6 +4070,23 @@ quantification rules.
 </para>
 </sect3>
 
+<sect3 id="exp-type-sigs">
+<title>Expression type signatures</title>
+
+<para>An expression type signature that has <emphasis>explicit</emphasis>
+quantification (using <literal>forall</literal>) brings into scope the
+explicitly-quantified
+type variables, in the annotated expression.  For example:
+<programlisting>
+  f = runST ( (op >>= \(x :: STRef s Int) -> g x) :: forall s. ST s Bool )
+</programlisting>
+Here, the type signature <literal>forall a. ST s Bool</literal> brings the 
+type variable <literal>s</literal> into scope, in the annotated expression 
+<literal>(op >>= \(x :: STRef s Int) -> g x)</literal>.
+</para>
+
+</sect3>
+
 <sect3 id="pattern-type-sigs">
 <title>Pattern type signatures</title>
 <para>
@@ -3328,7 +4095,7 @@ signature</emphasis>.
 For example:
 <programlisting>
   -- f and g assume that 'a' is already in scope
-  f = \(x::Int, y) -> x
+  f = \(x::Int, y::a) -> x
   g (x::a) = x
   h ((x,y) :: (Int,Bool)) = (y,x)
 </programlisting>
@@ -3404,281 +4171,49 @@ examples would parse quite differently with parentheses:
 
   g = \ (x :: [Int]) -> [3,4]
 
-  h :: forall a. [a] -> a
-  h xs = case xs of
-           ((y:ys) :: a) -> y
-</programlisting>
-Now the signature is on the <emphasis>pattern</emphasis>; and
-<literal>h</literal> would certainly be ill-typed (since the pattern
-<literal>(y:ys)</literal> cannot have the type <literal>a</literal>.
-
-Second, to avoid ambiguity, the type after the &ldquo;<literal>::</literal>&rdquo; in a result
-pattern signature on a lambda or <literal>case</literal> must be atomic (i.e. a single
-token or a parenthesised type of some sort).  To see why,
-consider how one would parse this:
-<programlisting>
-  \ x :: a -> b -> x
-</programlisting>
-</para>
-</sect3>
-
- -->
-
-<sect3 id="cls-inst-scoped-tyvars">
-<title>Class and instance declarations</title>
-<para>
-
-The type variables in the head of a <literal>class</literal> or <literal>instance</literal> declaration
-scope over the methods defined in the <literal>where</literal> part.  For example:
-
-
-<programlisting>
-  class C a where
-    op :: [a] -> a
-
-    op xs = let ys::[a]
-                ys = reverse xs
-            in
-            head ys
-</programlisting>
-</para>
-</sect3>
-
-</sect2>
-
-<sect2 id="deriving-typeable">
-<title>Deriving clause for classes <literal>Typeable</literal> and <literal>Data</literal></title>
-
-<para>
-Haskell 98 allows the programmer to add "<literal>deriving( Eq, Ord )</literal>" to a data type 
-declaration, to generate a standard instance declaration for classes specified in the <literal>deriving</literal> clause.  
-In Haskell 98, the only classes that may appear in the <literal>deriving</literal> clause are the standard
-classes <literal>Eq</literal>, <literal>Ord</literal>, 
-<literal>Enum</literal>, <literal>Ix</literal>, <literal>Bounded</literal>, <literal>Read</literal>, and <literal>Show</literal>.
-</para>
-<para>
-GHC extends this list with two more classes that may be automatically derived 
-(provided the <option>-fglasgow-exts</option> flag is specified):
-<literal>Typeable</literal>, and <literal>Data</literal>.  These classes are defined in the library
-modules <literal>Data.Typeable</literal> and <literal>Data.Generics</literal> respectively, and the
-appropriate class must be in scope before it can be mentioned in the <literal>deriving</literal> clause.
-</para>
-<para>An instance of <literal>Typeable</literal> can only be derived if the
-data type has seven or fewer type parameters, all of kind <literal>*</literal>.
-The reason for this is that the <literal>Typeable</literal> class is derived using the scheme
-described in
-<ulink url="http://research.microsoft.com/%7Esimonpj/papers/hmap/gmap2.ps">
-Scrap More Boilerplate: Reflection, Zips, and Generalised Casts
-</ulink>.
-(Section 7.4 of the paper describes the multiple <literal>Typeable</literal> classes that
-are used, and only <literal>Typeable1</literal> up to
-<literal>Typeable7</literal> are provided in the library.)
-In other cases, there is nothing to stop the programmer writing a <literal>TypableX</literal>
-class, whose kind suits that of the data type constructor, and
-then writing the data type instance by hand.
-</para>
-</sect2>
-
-<sect2 id="newtype-deriving">
-<title>Generalised derived instances for newtypes</title>
-
-<para>
-When you define an abstract type using <literal>newtype</literal>, you may want
-the new type to inherit some instances from its representation. In
-Haskell 98, you can inherit instances of <literal>Eq</literal>, <literal>Ord</literal>,
-<literal>Enum</literal> and <literal>Bounded</literal> by deriving them, but for any
-other classes you have to write an explicit instance declaration. For
-example, if you define
-
-<programlisting> 
-  newtype Dollars = Dollars Int 
-</programlisting> 
-
-and you want to use arithmetic on <literal>Dollars</literal>, you have to
-explicitly define an instance of <literal>Num</literal>:
-
-<programlisting> 
-  instance Num Dollars where
-    Dollars a + Dollars b = Dollars (a+b)
-    ...
-</programlisting>
-All the instance does is apply and remove the <literal>newtype</literal>
-constructor. It is particularly galling that, since the constructor
-doesn't appear at run-time, this instance declaration defines a
-dictionary which is <emphasis>wholly equivalent</emphasis> to the <literal>Int</literal>
-dictionary, only slower!
-</para>
-
-
-<sect3> <title> Generalising the deriving clause </title>
-<para>
-GHC now permits such instances to be derived instead, so one can write 
-<programlisting> 
-  newtype Dollars = Dollars Int deriving (Eq,Show,Num)
-</programlisting> 
-
-and the implementation uses the <emphasis>same</emphasis> <literal>Num</literal> dictionary
-for <literal>Dollars</literal> as for <literal>Int</literal>. Notionally, the compiler
-derives an instance declaration of the form
-
-<programlisting> 
-  instance Num Int => Num Dollars
-</programlisting> 
-
-which just adds or removes the <literal>newtype</literal> constructor according to the type.
-</para>
-<para>
-
-We can also derive instances of constructor classes in a similar
-way. For example, suppose we have implemented state and failure monad
-transformers, such that
-
-<programlisting> 
-  instance Monad m => Monad (State s m) 
-  instance Monad m => Monad (Failure m)
-</programlisting> 
-In Haskell 98, we can define a parsing monad by 
-<programlisting> 
-  type Parser tok m a = State [tok] (Failure m) a
-</programlisting> 
-
-which is automatically a monad thanks to the instance declarations
-above. With the extension, we can make the parser type abstract,
-without needing to write an instance of class <literal>Monad</literal>, via
-
-<programlisting> 
-  newtype Parser tok m a = Parser (State [tok] (Failure m) a)
-                         deriving Monad
-</programlisting>
-In this case the derived instance declaration is of the form 
-<programlisting> 
-  instance Monad (State [tok] (Failure m)) => Monad (Parser tok m) 
-</programlisting> 
-
-Notice that, since <literal>Monad</literal> is a constructor class, the
-instance is a <emphasis>partial application</emphasis> of the new type, not the
-entire left hand side. We can imagine that the type declaration is
-``eta-converted'' to generate the context of the instance
-declaration.
-</para>
-<para>
-
-We can even derive instances of multi-parameter classes, provided the
-newtype is the last class parameter. In this case, a ``partial
-application'' of the class appears in the <literal>deriving</literal>
-clause. For example, given the class
-
-<programlisting> 
-  class StateMonad s m | m -> s where ... 
-  instance Monad m => StateMonad s (State s m) where ... 
-</programlisting> 
-then we can derive an instance of <literal>StateMonad</literal> for <literal>Parser</literal>s by 
-<programlisting> 
-  newtype Parser tok m a = Parser (State [tok] (Failure m) a)
-                         deriving (Monad, StateMonad [tok])
-</programlisting>
-
-The derived instance is obtained by completing the application of the
-class to the new type:
-
-<programlisting> 
-  instance StateMonad [tok] (State [tok] (Failure m)) =>
-           StateMonad [tok] (Parser tok m)
+  h :: forall a. [a] -> a
+  h xs = case xs of
+           ((y:ys) :: a) -> y
 </programlisting>
-</para>
-<para>
+Now the signature is on the <emphasis>pattern</emphasis>; and
+<literal>h</literal> would certainly be ill-typed (since the pattern
+<literal>(y:ys)</literal> cannot have the type <literal>a</literal>.
 
-As a result of this extension, all derived instances in newtype
- declarations are treated uniformly (and implemented just by reusing
-the dictionary for the representation type), <emphasis>except</emphasis>
-<literal>Show</literal> and <literal>Read</literal>, which really behave differently for
-the newtype and its representation.
+Second, to avoid ambiguity, the type after the &ldquo;<literal>::</literal>&rdquo; in a result
+pattern signature on a lambda or <literal>case</literal> must be atomic (i.e. a single
+token or a parenthesised type of some sort).  To see why,
+consider how one would parse this:
+<programlisting>
+  \ x :: a -> b -> x
+</programlisting>
 </para>
 </sect3>
 
-<sect3> <title> A more precise specification </title>
-<para>
-Derived instance declarations are constructed as follows. Consider the
-declaration (after expansion of any type synonyms)
-
-<programlisting> 
-  newtype T v1...vn = T' (t vk+1...vn) deriving (c1...cm) 
-</programlisting> 
+ -->
 
-where 
- <itemizedlist>
-<listitem><para>
-  The type <literal>t</literal> is an arbitrary type
-</para></listitem>
-<listitem><para>
-  The <literal>vk+1...vn</literal> are type variables which do not occur in 
-  <literal>t</literal>, and
-</para></listitem>
-<listitem><para>
-  The <literal>ci</literal> are partial applications of
-  classes of the form <literal>C t1'...tj'</literal>, where the arity of <literal>C</literal>
-  is exactly <literal>j+1</literal>.  That is, <literal>C</literal> lacks exactly one type argument.
-</para></listitem>
-<listitem><para>
-  None of the <literal>ci</literal> is <literal>Read</literal>, <literal>Show</literal>, 
-               <literal>Typeable</literal>, or <literal>Data</literal>.  These classes
-               should not "look through" the type or its constructor.  You can still
-               derive these classes for a newtype, but it happens in the usual way, not 
-               via this new mechanism.  
-</para></listitem>
-</itemizedlist>
-Then, for each <literal>ci</literal>, the derived instance
-declaration is:
-<programlisting> 
-  instance ci (t vk+1...v) => ci (T v1...vp)
-</programlisting>
-where <literal>p</literal> is chosen so that <literal>T v1...vp</literal> is of the 
-right <emphasis>kind</emphasis> for the last parameter of class <literal>Ci</literal>.
-</para>
+<sect3 id="cls-inst-scoped-tyvars">
+<title>Class and instance declarations</title>
 <para>
 
-As an example which does <emphasis>not</emphasis> work, consider 
-<programlisting> 
-  newtype NonMonad m s = NonMonad (State s m s) deriving Monad 
-</programlisting> 
-Here we cannot derive the instance 
-<programlisting> 
-  instance Monad (State s m) => Monad (NonMonad m) 
-</programlisting> 
+The type variables in the head of a <literal>class</literal> or <literal>instance</literal> declaration
+scope over the methods defined in the <literal>where</literal> part.  For example:
 
-because the type variable <literal>s</literal> occurs in <literal>State s m</literal>,
-and so cannot be "eta-converted" away. It is a good thing that this
-<literal>deriving</literal> clause is rejected, because <literal>NonMonad m</literal> is
-not, in fact, a monad --- for the same reason. Try defining
-<literal>>>=</literal> with the correct type: you won't be able to.
-</para>
-<para>
 
-Notice also that the <emphasis>order</emphasis> of class parameters becomes
-important, since we can only derive instances for the last one. If the
-<literal>StateMonad</literal> class above were instead defined as
+<programlisting>
+  class C a where
+    op :: [a] -> a
 
-<programlisting> 
-  class StateMonad m s | m -> s where ... 
+    op xs = let ys::[a]
+                ys = reverse xs
+            in
+            head ys
 </programlisting>
-
-then we would not have been able to derive an instance for the
-<literal>Parser</literal> type above. We hypothesise that multi-parameter
-classes usually have one "main" parameter for which deriving new
-instances is most interesting.
-</para>
-<para>Lastly, all of this applies only for classes other than
-<literal>Read</literal>, <literal>Show</literal>, <literal>Typeable</literal>, 
-and <literal>Data</literal>, for which the built-in derivation applies (section
-4.3.3. of the Haskell Report).
-(For the standard classes <literal>Eq</literal>, <literal>Ord</literal>,
-<literal>Ix</literal>, and <literal>Bounded</literal> it is immaterial whether
-the standard method is used or the one described here.)
 </para>
 </sect3>
 
 </sect2>
 
+
 <sect2 id="typing-binds">
 <title>Generalised typing of mutually recursive bindings</title>
 
@@ -3699,7 +4234,7 @@ and all others are monomorphic until the group is generalised
 <para>Following a suggestion of Mark Jones, in his paper
 <ulink url="http://www.cse.ogi.edu/~mpj/thih/">Typing Haskell in
 Haskell</ulink>,
-GHC implements a more general scheme.  If <option>-fglasgow-exts</option> is
+GHC implements a more general scheme.  If <option>-XRelaxedPolyRec</option> is
 specified:
 <emphasis>the dependency analysis ignores references to variables that have an explicit
 type signature</emphasis>.
@@ -3728,7 +4263,7 @@ Now, the defintion for <literal>f</literal> is typechecked, with this type for
 The same refined dependency analysis also allows the type signatures of 
 mutually-recursive functions to have different contexts, something that is illegal in
 Haskell 98 (Section 4.5.2, last sentence).  With
-<option>-fglasgow-exts</option>
+<option>-XRelaxedPolyRec</option>
 GHC only insists that the type signatures of a <emphasis>refined</emphasis> group have identical
 type signatures; in practice this means that only variables bound by the same
 pattern binding must have the same context.  For example, this is fine:
@@ -3742,181 +4277,36 @@ pattern binding must have the same context.  For example, this is fine:
 </para>
 </sect2>
 
-</sect1>
-<!-- ==================== End of type system extensions =================  -->
-  
-<!-- ====================== Generalised algebraic data types =======================  -->
-
-<sect1 id="gadt">
-<title>Generalised Algebraic Data Types</title>
+<sect2 id="type-families">
+<title>Type families
+</title>
 
-<para>Generalised Algebraic Data Types (GADTs) generalise ordinary algebraic data types by allowing you
-to give the type signatures of constructors explicitly.  For example:
-<programlisting>
-  data Term a where
-      Lit    :: Int -> Term Int
-      Succ   :: Term Int -> Term Int
-      IsZero :: Term Int -> Term Bool  
-      If     :: Term Bool -> Term a -> Term a -> Term a
-      Pair   :: Term a -> Term b -> Term (a,b)
-</programlisting>
-Notice that the return type of the constructors is not always <literal>Term a</literal>, as is the
-case with ordinary vanilla data types.  Now we can write a well-typed <literal>eval</literal> function
-for these <literal>Terms</literal>:
-<programlisting>
-  eval :: Term a -> a
-  eval (Lit i)             = i
-  eval (Succ t)     = 1 + eval t
-  eval (IsZero t)   = eval t == 0
-  eval (If b e1 e2) = if eval b then eval e1 else eval e2
-  eval (Pair e1 e2) = (eval e1, eval e2)
-</programlisting>
-These and many other examples are given in papers by Hongwei Xi, and Tim Sheard.
+<para>
+GHC supports the definition of type families indexed by types.  They may be
+seen as an extension of Haskell 98's class-based overloading of values to
+types.  When type families are declared in classes, they are also known as
+associated types.
 </para>
 <para>
-The rest of this section outlines the extensions to GHC that support GADTs. 
-It is far from comprehensive, but the design closely follows that described in
-the paper <ulink
-url="http://research.microsoft.com/%7Esimonpj/papers/gadt/index.htm">Simple
-unification-based type inference for GADTs</ulink>,
-which appeared in ICFP 2006.
-<itemizedlist>
-<listitem><para>
-  Data type declarations have a 'where' form, as exemplified above.  The type signature of
-each constructor is independent, and is implicitly universally quantified as usual. Unlike a normal
-Haskell data type declaration, the type variable(s) in the "<literal>data Term a where</literal>" header 
-have no scope.  Indeed, one can write a kind signature instead:
-<programlisting>
-  data Term :: * -> * where ...
-</programlisting>
-or even a mixture of the two:
-<programlisting>
-  data Foo a :: (* -> *) -> * where ...
-</programlisting>
-The type variables (if given) may be explicitly kinded, so we could also write the header for <literal>Foo</literal>
-like this:
-<programlisting>
-  data Foo a (b :: * -> *) where ...
-</programlisting>
-</para></listitem>
-
-<listitem><para>
-There are no restrictions on the type of the data constructor, except that the result
-type must begin with the type constructor being defined.  For example, in the <literal>Term</literal> data
-type above, the type of each constructor must end with <literal> ... -> Term ...</literal>.
-</para></listitem>
-
-<listitem><para>
-You can use record syntax on a GADT-style data type declaration:
-
-<programlisting>
-  data Term a where
-      Lit    { val  :: Int }      :: Term Int
-      Succ   { num  :: Term Int } :: Term Int
-      Pred   { num  :: Term Int } :: Term Int
-      IsZero { arg  :: Term Int } :: Term Bool 
-      Pair   { arg1 :: Term a
-             , arg2 :: Term b
-             }                    :: Term (a,b)
-      If     { cnd  :: Term Bool
-             , tru  :: Term a
-             , fls  :: Term a
-             }                    :: Term a
-</programlisting>
-For every constructor that has a field <literal>f</literal>, (a) the type of
-field <literal>f</literal> must be the same; and (b) the
-result type of the constructor must be the same; both modulo alpha conversion.
-Hence, in our example, we cannot merge the <literal>num</literal> and <literal>arg</literal>
-fields above into a 
-single name.  Although their field types are both <literal>Term Int</literal>,
-their selector functions actually have different types:
-
-<programlisting>
-  num :: Term Int -> Term Int
-  arg :: Term Bool -> Term Int
-</programlisting>
-
-At the moment, record updates are not yet possible with GADT, so support is 
-limited to record construction, selection and pattern matching:
-
-<programlisting>
-  someTerm :: Term Bool
-  someTerm = IsZero { arg = Succ { num = Lit { val = 0 } } }
-
-  eval :: Term a -> a
-  eval Lit    { val = i } = i
-  eval Succ   { num = t } = eval t + 1
-  eval Pred   { num = t } = eval t - 1
-  eval IsZero { arg = t } = eval t == 0
-  eval Pair   { arg1 = t1, arg2 = t2 } = (eval t1, eval t2)
-  eval t@If{} = if eval (cnd t) then eval (tru t) else eval (fls t)
-</programlisting>
-
-</para></listitem>
-
-<listitem><para>
-You can use strictness annotations, in the obvious places
-in the constructor type:
-<programlisting>
-  data Term a where
-      Lit    :: !Int -> Term Int
-      If     :: Term Bool -> !(Term a) -> !(Term a) -> Term a
-      Pair   :: Term a -> Term b -> Term (a,b)
-</programlisting>
-</para></listitem>
-
-<listitem><para>
-You can use a <literal>deriving</literal> clause on a GADT-style data type
-declaration, but only if the data type could also have been declared in
-Haskell-98 syntax.   For example, these two declarations are equivalent
-<programlisting>
-  data Maybe1 a where {
-      Nothing1 :: Maybe a ;
-      Just1    :: a -> Maybe a
-    } deriving( Eq, Ord )
-
-  data Maybe2 a = Nothing2 | Just2 a 
-       deriving( Eq, Ord )
-</programlisting>
-This simply allows you to declare a vanilla Haskell-98 data type using the
-<literal>where</literal> form without losing the <literal>deriving</literal> clause.
-</para></listitem>
-
-<listitem><para>
-Pattern matching causes type refinement.  For example, in the right hand side of the equation
-<programlisting>
-  eval :: Term a -> a
-  eval (Lit i) =  ...
-</programlisting>
-the type <literal>a</literal> is refined to <literal>Int</literal>.  (That's the whole point!)
-A precise specification of the type rules is beyond what this user manual aspires to, but there is a paper
-about the ideas: "Wobbly types: practical type inference for generalised algebraic data types", on Simon PJ's home page.</para>
-
-<para> The general principle is this: <emphasis>type refinement is only carried out based on user-supplied type annotations</emphasis>.
-So if no type signature is supplied for <literal>eval</literal>, no type refinement happens, and lots of obscure error messages will
-occur.  However, the refinement is quite general.  For example, if we had:
-<programlisting>
-  eval :: Term a -> a -> a
-  eval (Lit i) j =  i+j
-</programlisting>
-the pattern match causes the type <literal>a</literal> to be refined to <literal>Int</literal> (because of the type
-of the constructor <literal>Lit</literal>, and that refinement also applies to the type of <literal>j</literal>, and
-the result type of the <literal>case</literal> expression.  Hence the addition <literal>i+j</literal> is legal.
+There are two forms of type families: data families and type synonym families.
+Currently, only the former are fully implemented, while we are still working
+on the latter.  As a result, the specification of the language extension is
+also still to some degree in flux.  Hence, a more detailed description of
+the language extension and its use is currently available
+from <ulink url="http://haskell.org/haskellwiki/GHC/Indexed_types">the Haskell
+wiki page on type families</ulink>.  The material will be moved to this user's
+guide when it has stabilised.
 </para>
-</listitem>
-</itemizedlist>
+<para>
+Type families are enabled by the flag <option>-XTypeFamilies</option>.
 </para>
 
-<para>Notice that GADTs generalise existential types.  For example, these two declarations are equivalent:
-<programlisting>
-  data T a = forall b. MkT b (b->a)
-  data T' a where { MKT :: b -> (b->a) -> T' a }
-</programlisting>
-</para>
-</sect1>
 
-<!-- ====================== End of Generalised algebraic data types =======================  -->
+</sect2>
 
+</sect1>
+<!-- ==================== End of type system extensions =================  -->
+  
 <!-- ====================== TEMPLATE HASKELL =======================  -->
 
 <sect1 id="template-haskell">
@@ -3932,24 +4322,27 @@ Template Meta-programming for Haskell</ulink>" (Proc Haskell Workshop 2002).
 <para>
 There is a Wiki page about
 Template Haskell at <ulink url="http://haskell.org/haskellwiki/Template_Haskell">
-http://www.haskell.org/th/</ulink>, and that is the best place to look for
+http://www.haskell.org/haskellwiki/Template_Haskell</ulink>, and that is the best place to look for
 further details.
 You may also 
 consult the <ulink
 url="http://www.haskell.org/ghc/docs/latest/html/libraries/index.html">online
 Haskell library reference material</ulink> 
-(search for the type ExpQ).
-[Temporary: many changes to the original design are described in 
-      <ulink url="http://research.microsoft.com/~simonpj/tmp/notes2.ps">"http://research.microsoft.com/~simonpj/tmp/notes2.ps"</ulink>.
-Not all of these changes are in GHC 6.6.]
+(look for module <literal>Language.Haskell.TH</literal>).
+Many changes to the original design are described in 
+      <ulink url="http://research.microsoft.com/~simonpj/papers/meta-haskell/notes2.ps">
+Notes on Template Haskell version 2</ulink>.
+Not all of these changes are in GHC, however.
 </para>
 
-<para> The first example from that paper is set out below as a worked example to help get you started. 
+<para> The first example from that paper is set out below (<xref linkend="th-example"/>) 
+as a worked example to help get you started. 
 </para>
 
 <para>
-The documentation here describes the realisation in GHC.  (It's rather sketchy just now;
-Tim Sheard is going to expand it.)
+The documentation here describes the realisation of Template Haskell in GHC.  It is not detailed enough to 
+understand Template Haskell; see the <ulink url="http://haskell.org/haskellwiki/Template_Haskell">
+Wiki page</ulink>.
 </para>
 
     <sect2>
@@ -3957,9 +4350,10 @@ Tim Sheard is going to expand it.)
 
       <para> Template Haskell has the following new syntactic
       constructions.  You need to use the flag
-      <option>-fth</option><indexterm><primary><option>-fth</option></primary>
+      <option>-XTemplateHaskell</option>
+       <indexterm><primary><option>-XTemplateHaskell</option></primary>
       </indexterm>to switch these syntactic extensions on
-      (<option>-fth</option> is no longer implied by
+      (<option>-XTemplateHaskell</option> is no longer implied by
       <option>-fglasgow-exts</option>).</para>
 
        <itemizedlist>
@@ -3974,41 +4368,47 @@ Tim Sheard is going to expand it.)
                  <itemizedlist>
                    <listitem><para> an expression; the spliced expression must
                    have type <literal>Q Exp</literal></para></listitem>
-                   <listitem><para> a list of top-level declarations; ; the spliced expression must have type <literal>Q [Dec]</literal></para></listitem>
-                   <listitem><para> [Planned, but not implemented yet.] a
-                   type; the spliced expression must have type <literal>Q Typ</literal>.</para></listitem>
+                   <listitem><para> a list of top-level declarations; the spliced expression must have type <literal>Q [Dec]</literal></para></listitem>
                    </itemizedlist>
-          (Note that the syntax for a declaration splice uses "<literal>$</literal>" not "<literal>splice</literal>" as in
-       the paper. Also the type of the enclosed expression must be  <literal>Q [Dec]</literal>, not  <literal>[Q Dec]</literal>
-       as in the paper.)
-               </para></listitem>
+               </para>
+           Inside a splice you can can only call functions defined in imported modules,
+       not functions defined elsewhere in the same module.</listitem>
 
 
              <listitem><para>
                  A expression quotation is written in Oxford brackets, thus:
                  <itemizedlist>
                    <listitem><para> <literal>[| ... |]</literal>, where the "..." is an expression; 
-                             the quotation has type <literal>Expr</literal>.</para></listitem>
+                             the quotation has type <literal>Q Exp</literal>.</para></listitem>
                    <listitem><para> <literal>[d| ... |]</literal>, where the "..." is a list of top-level declarations;
                              the quotation has type <literal>Q [Dec]</literal>.</para></listitem>
-                   <listitem><para>  [Planned, but not implemented yet.]  <literal>[t| ... |]</literal>, where the "..." is a type; 
-                             the quotation has type <literal>Type</literal>.</para></listitem>
+                   <listitem><para> <literal>[t| ... |]</literal>, where the "..." is a type;
+                             the quotation has type <literal>Q Typ</literal>.</para></listitem>
                  </itemizedlist></para></listitem>
 
              <listitem><para>
-                 Reification is written thus:
+                 A name can be quoted with either one or two prefix single quotes:
                  <itemizedlist>
-                   <listitem><para> <literal>reifyDecl T</literal>, where <literal>T</literal> is a type constructor; this expression
-                     has type <literal>Dec</literal>. </para></listitem>
-                   <listitem><para> <literal>reifyDecl C</literal>, where <literal>C</literal> is a class; has type <literal>Dec</literal>.</para></listitem>
-                   <listitem><para> <literal>reifyType f</literal>, where <literal>f</literal> is an identifier; has type <literal>Typ</literal>.</para></listitem>
-                   <listitem><para> Still to come: fixities </para></listitem>
-                   
-                 </itemizedlist></para>
+                   <listitem><para> <literal>'f</literal> has type <literal>Name</literal>, and names the function <literal>f</literal>.
+                 Similarly <literal>'C</literal> has type <literal>Name</literal> and names the data constructor <literal>C</literal>.
+                 In general <literal>'</literal><replaceable>thing</replaceable> interprets <replaceable>thing</replaceable> in an expression context.
+                    </para></listitem> 
+                   <listitem><para> <literal>''T</literal> has type <literal>Name</literal>, and names the type constructor  <literal>T</literal>.
+                 That is, <literal>''</literal><replaceable>thing</replaceable> interprets <replaceable>thing</replaceable> in a type context.
+                    </para></listitem> 
+                 </itemizedlist>
+                 These <literal>Names</literal> can be used to construct Template Haskell expressions, patterns, delarations etc.  They
+                 may also be given as an argument to the <literal>reify</literal> function.
+                </para>
                </listitem>
 
                  
        </itemizedlist>
+(Compared to the original paper, there are many differnces of detail.
+The syntax for a declaration splice uses "<literal>$</literal>" not "<literal>splice</literal>".
+The type of the enclosed expression must be  <literal>Q [Dec]</literal>, not  <literal>[Q Dec]</literal>.
+Type splices are not implemented, and neither are pattern splices or quotations.
+
 </sect2>
 
 <sect2>  <title> Using Template Haskell </title>
@@ -4025,6 +4425,14 @@ Tim Sheard is going to expand it.)
            (It would make sense to do so, but it's hard to implement.)
    </para></listitem>
 
+   <listitem><para>
+   Furthermore, you can only run a function at compile time if it is imported
+   from another module <emphasis>that is not part of a mutually-recursive group of modules
+   that includes the module currently being compiled</emphasis>.  For example, when compiling module A,
+   you can only run Template Haskell functions imported from B if B does not import A (directly or indirectly).
+   The reason should be clear: to run B we must compile and run A, but we are currently type-checking A.
+   </para></listitem>
+
     <listitem><para>
            The flag <literal>-ddump-splices</literal> shows the expansion of all top-level splices as they happen.
    </para></listitem>
@@ -4043,7 +4451,7 @@ Tim Sheard is going to expand it.)
 </para>
 </sect2>
  
-<sect2>  <title> A Template Haskell Worked Example </title>
+<sect2 id="th-example">  <title> A Template Haskell Worked Example </title>
 <para>To help you get over the confidence barrier, try out this skeletal worked example.
   First cut and paste the two modules below into "Main.hs" and "Printf.hs":</para>
 
@@ -4083,21 +4491,21 @@ parse s   = [ L s ]
 -- Generate Haskell source code from a parsed representation
 -- of the format string.  This code will be spliced into
 -- the module which calls "pr", at compile time.
-gen :: [Format] -> ExpQ
+gen :: [Format] -> Q Exp
 gen [D]   = [| \n -> show n |]
 gen [S]   = [| \s -> s |]
 gen [L s] = stringE s
 
 -- Here we generate the Haskell code for the splice
 -- from an input format string.
-pr :: String -> ExpQ
-pr s      = gen (parse s)
+pr :: String -> Q Exp
+pr s = gen (parse s)
 </programlisting>
 
 <para>Now run the compiler (here we are a Cygwin prompt on Windows):
 </para>
 <programlisting>
-$ ghc --make -fth main.hs -o main.exe
+$ ghc --make -XTemplateHaskell main.hs -o main.exe
 </programlisting>
 
 <para>Run "main.exe" and here is your output:</para>
@@ -4186,7 +4594,7 @@ Palgrave, 2003.
 </itemizedlist>
 and the arrows web page at
 <ulink url="http://www.haskell.org/arrows/"><literal>http://www.haskell.org/arrows/</literal></ulink>.
-With the <option>-farrows</option> flag, GHC supports the arrow
+With the <option>-XArrows</option> flag, GHC supports the arrow
 notation described in the second of these papers.
 What follows is a brief introduction to the notation;
 it won't make much sense unless you've read Hughes's paper.
@@ -4644,7 +5052,7 @@ Because the preprocessor targets Haskell (rather than Core),
 
 <!-- ==================== BANG PATTERNS =================  -->
 
-<sect1 id="sec-bang-patterns">
+<sect1 id="bang-patterns">
 <title>Bang patterns
 <indexterm><primary>Bang patterns</primary></indexterm>
 </title>
@@ -4656,10 +5064,10 @@ prime feature description</ulink> contains more discussion and examples
 than the material below.
 </para>
 <para>
-Bang patterns are enabled by the flag <option>-fbang-patterns</option>.
+Bang patterns are enabled by the flag <option>-XBangPatterns</option>.
 </para>
 
-<sect2 id="sec-bang-patterns-informal">
+<sect2 id="bang-patterns-informal">
 <title>Informal description of bang patterns
 </title>
 <para>
@@ -4714,7 +5122,7 @@ is part of the syntax of <literal>let</literal> bindings.
 </sect2>
 
 
-<sect2 id="sec-bang-patterns-sem">
+<sect2 id="bang-patterns-sem">
 <title>Syntax and semantics
 </title>
 <para>
@@ -4729,7 +5137,7 @@ f !x = 3
 </programlisting>
 Is this a definition of the infix function "<literal>(!)</literal>",
 or of the "<literal>f</literal>" with a bang pattern? GHC resolves this
-ambiguity inf favour of the latter.  If you want to define
+ambiguity in favour of the latter.  If you want to define
 <literal>(!)</literal> with bang-patterns enabled, you have to do so using
 prefix notation:
 <programlisting>
@@ -4788,7 +5196,7 @@ a module.
 
 <!-- ==================== ASSERTIONS =================  -->
 
-<sect1 id="sec-assertions">
+<sect1 id="assertions">
 <title>Assertions
 <indexterm><primary>Assertions</primary></indexterm>
 </title>
@@ -5757,12 +6165,6 @@ The following are good consumers:
 <listitem>
 
 <para>
- <function>length</function>
-</para>
-</listitem>
-<listitem>
-
-<para>
  <function>++</function> (on its first argument)
 </para>
 </listitem>
@@ -6030,7 +6432,7 @@ r)
                    GHCziBase.ZMZN GHCziBase.Char -> GHCziBase.ZMZN GHCziBase.Cha
 r) ->
               tpl2})
-        (%note "foo"
+        (%note "bar"
          eta);
 </programlisting>
 
@@ -6048,93 +6450,16 @@ r) ->
 
 <sect1 id="special-ids">
 <title>Special built-in functions</title>
-<para>GHC has a few built-in funcions with special behaviour, 
-described in this section.  All are exported by
-<literal>GHC.Exts</literal>.</para>
-
-<sect2> <title>The <literal>inline</literal> function </title>
-<para>
-The <literal>inline</literal> function is somewhat experimental.
-<programlisting>
-  inline :: a -> a
-</programlisting>
-The call <literal>(inline f)</literal> arranges that <literal>f</literal> 
-is inlined, regardless of its size.  More precisely, the call
-<literal>(inline f)</literal> rewrites to the right-hand side of <literal>f</literal>'s 
-definition.  
-This allows the programmer to control inlining from 
-a particular <emphasis>call site</emphasis>
-rather than the <emphasis>definition site</emphasis> of the function 
-(c.f. <literal>INLINE</literal> pragmas <xref linkend="inline-noinline-pragma"/>).
-</para>
-<para>
-This inlining occurs regardless of the argument to the call
-or the size of <literal>f</literal>'s definition; it is unconditional.
-The main caveat is that <literal>f</literal>'s definition must be
-visible to the compiler.  That is, <literal>f</literal> must be
-let-bound in the current scope.
-If no inlining takes place, the <literal>inline</literal> function
-expands to the identity function in Phase zero; so its use imposes
-no overhead.</para>
-
-<para> If the function is defined in another
-module, GHC only exposes its inlining in the interface file if the
-function is sufficiently small that it <emphasis>might</emphasis> be
-inlined by the automatic mechanism.  There is currently no way to tell
-GHC to expose arbitrarily-large functions in the interface file.  (This
-shortcoming is something that could be fixed, with some kind of pragma.)
-</para>
-</sect2>
-
-<sect2> <title>The <literal>lazy</literal> function </title>
-<para>
-The <literal>lazy</literal> function restrains strictness analysis a little:
-<programlisting>
-  lazy :: a -> a
-</programlisting>
-The call <literal>(lazy e)</literal> means the same as <literal>e</literal>, 
-but <literal>lazy</literal> has a magical property so far as strictness
-analysis is concerned: it is lazy in its first argument,
-even though its semantics is strict.  After strictness analysis has run,
-calls to <literal>lazy</literal> are inlined to be the identity function.
-</para>
-<para>
-This behaviour is occasionally useful when controlling evaluation order.
-Notably, <literal>lazy</literal> is used in the library definition of
-<literal>Control.Parallel.par</literal>:
-<programlisting>
-  par :: a -> b -> b
-  par x y = case (par# x) of { _ -> lazy y }
-</programlisting>
-If <literal>lazy</literal> were not lazy, <literal>par</literal> would
-look strict in <literal>y</literal> which would defeat the whole 
-purpose of <literal>par</literal>.
-</para>
-</sect2>
-
-<sect2> <title>The <literal>unsafeCoerce#</literal> function </title>
-<para>
-The function <literal>unsafeCoerce#</literal> allows you to side-step the
-typechecker entirely.  It has type
-<programlisting>
-  unsafeCoerce# :: a -> b
-</programlisting>
-That is, it allows you to coerce any type into any other type.  If you use this
-function, you had better get it right, otherwise segmentation faults await. 
-It is generally used when you want to write a program that you know is
-well-typed, but where Haskell's type system is not expressive enough to prove
-that it is well typed.
-</para>
-</sect2>
+<para>GHC has a few built-in funcions with special behaviour.  These
+are now described in the module <ulink
+url="../libraries/base/GHC-Prim.html"><literal>GHC.Prim</literal></ulink>
+in the library documentation.</para>
 </sect1>
 
 
 <sect1 id="generic-classes">
 <title>Generic classes</title>
 
-    <para>(Note: support for generic classes is currently broken in
-    GHC 5.02).</para>
-
 <para>
 The ideas behind this extension are described in detail in "Derivable type classes",
 Ralf Hinze and Simon Peyton Jones, Haskell Workshop, Montreal Sept 2000, pp94-105.
@@ -6185,7 +6510,7 @@ where clause and over-ride whichever methods you please.
       <itemizedlist>
        <listitem>
          <para>Use the flags <option>-fglasgow-exts</option> (to enable the extra syntax), 
-                <option>-fgenerics</option> (to generate extra per-data-type code),
+                <option>-XGenerics</option> (to generate extra per-data-type code),
                 and <option>-package lang</option> (to make the <literal>Generics</literal> library
                 available.  </para>
        </listitem>
@@ -6394,21 +6719,21 @@ carried out at let and where bindings.
 
 <sect2>
 <title>Switching off the dreaded Monomorphism Restriction</title>
-          <indexterm><primary><option>-fno-monomorphism-restriction</option></primary></indexterm>
+          <indexterm><primary><option>-XNoMonomorphismRestriction</option></primary></indexterm>
 
 <para>Haskell's monomorphism restriction (see 
 <ulink url="http://haskell.org/onlinereport/decls.html#sect4.5.5">Section
 4.5.5</ulink>
 of the Haskell Report)
 can be completely switched off by
-<option>-fno-monomorphism-restriction</option>.
+<option>-XNoMonomorphismRestriction</option>.
 </para>
 </sect2>
 
 <sect2>
 <title>Monomorphic pattern bindings</title>
-          <indexterm><primary><option>-fno-mono-pat-binds</option></primary></indexterm>
-          <indexterm><primary><option>-fmono-pat-binds</option></primary></indexterm>
+          <indexterm><primary><option>-XNoMonoPatBinds</option></primary></indexterm>
+          <indexterm><primary><option>-XMonoPatBinds</option></primary></indexterm>
 
          <para> As an experimental change, we are exploring the possibility of
          making pattern bindings monomorphic; that is, not generalised at all.  
@@ -6424,7 +6749,7 @@ can be completely switched off by
   [x] = e                    -- A pattern binding
 </programlisting>
 Experimentally, GHC now makes pattern bindings monomorphic <emphasis>by
-default</emphasis>.  Use <option>-fno-mono-pat-binds</option> to recover the
+default</emphasis>.  Use <option>-XMonoPatBinds</option> to recover the
 standard behaviour.
 </para>
 </sect2>