Implement generalised list comprehensions
[ghc-hetmet.git] / docs / users_guide / glasgow_exts.xml
index 6b41b39..de69b60 100644 (file)
@@ -38,11 +38,21 @@ documentation</ulink> describes all the libraries that come with GHC.
     <indexterm><primary>extensions</primary><secondary>options controlling</secondary>
     </indexterm>
 
-    <para>These flags control what variation of the language are
+    <para>The language option flag control what variation of the language are
     permitted.  Leaving out all of them gives you standard Haskell
     98.</para>
 
-    <para>NB. turning on an option that enables special syntax
+    <para>Generally speaking, all the language options are introduced by "<option>-X</option>", 
+    e.g. <option>-XTemplateHaskell</option>.
+    </para>
+
+   <para> All the language options can be turned off by using the prefix "<option>No</option>"; 
+      e.g. "<option>-XNoTemplateHaskell</option>".</para>
+
+   <para> Language options recognised by Cabal can also be enabled using the <literal>LANGUAGE</literal> pragma,
+   thus <literal>{-# LANGUAGE TemplateHaskell #-}</literal> (see <xref linkend="language-pragma"/>>). </para>
+
+    <para>Turning on an option that enables special syntax
     <emphasis>might</emphasis> cause working Haskell 98 code to fail
     to compile, perhaps because it uses a variable name which has
     become a reserved word.  So, together with each option below, we
@@ -81,7 +91,8 @@ documentation</ulink> describes all the libraries that come with GHC.
          <para>This simultaneously enables all of the extensions to
           Haskell 98 described in <xref
           linkend="ghc-language-features"/>, except where otherwise
-          noted. </para>
+          noted. We are trying to move away from this portmanteau flag, 
+         and towards enabling features individaully.</para>
 
          <para>New reserved words: <literal>forall</literal> (only in
          types), <literal>mdo</literal>.</para>
@@ -95,20 +106,24 @@ documentation</ulink> describes all the libraries that come with GHC.
              <replaceable>float</replaceable><literal>&num;&num;</literal>,    
              <literal>(&num;</literal>, <literal>&num;)</literal>,         
              <literal>|)</literal>, <literal>{|</literal>.</para>
+
+         <para>Implies these specific language options: 
+           <option>-XForeignFunctionInterface</option>,
+           <option>-XImplicitParams</option>,
+           <option>-XScopedTypeVariables</option>,
+           <option>-XGADTs</option>, 
+           <option>-XTypeFamilies</option>. </para>
        </listitem>
       </varlistentry>
 
       <varlistentry>
        <term>
-          <option>-ffi</option> and <option>-fffi</option>:
-          <indexterm><primary><option>-ffi</option></primary></indexterm>
-          <indexterm><primary><option>-fffi</option></primary></indexterm>
+          <option>-XForeignFunctionInterface</option>:
+          <indexterm><primary><option>-XForeignFunctionInterface</option></primary></indexterm>
         </term>
        <listitem>
          <para>This option enables the language extension defined in the
-         Haskell 98 Foreign Function Interface Addendum plus deprecated
-         syntax of previous versions of the FFI for backwards
-         compatibility.</para> 
+         Haskell 98 Foreign Function Interface Addendum.</para>
 
          <para>New reserved words: <literal>foreign</literal>.</para>
        </listitem>
@@ -116,11 +131,22 @@ documentation</ulink> describes all the libraries that come with GHC.
 
       <varlistentry>
        <term>
-          <option>-fno-monomorphism-restriction</option>:
-          <indexterm><primary><option>-fno-monomorphism-restriction</option></primary></indexterm>
+          <option>-XMonomorphismRestriction</option>,<option>-XMonoPatBinds</option>:
+        </term>
+       <listitem>
+         <para> These two flags control how generalisation is done.
+           See <xref linkend="monomorphism"/>.
+          </para>
+       </listitem>
+      </varlistentry>
+
+      <varlistentry>
+       <term>
+          <option>-XExtendedDefaultRules</option>:
+          <indexterm><primary><option>-XExtendedDefaultRules</option></primary></indexterm>
         </term>
        <listitem>
-         <para> Switch off the Haskell 98 monomorphism restriction.
+         <para> Use GHCi's extended default rules in a regular module (<xref linkend="extended-default-rules"/>).
           Independent of the <option>-fglasgow-exts</option>
           flag. </para>
        </listitem>
@@ -128,19 +154,19 @@ documentation</ulink> describes all the libraries that come with GHC.
 
       <varlistentry>
        <term>
-          <option>-fallow-overlapping-instances</option>
-          <indexterm><primary><option>-fallow-overlapping-instances</option></primary></indexterm>
+          <option>-XOverlappingInstances</option>
+          <indexterm><primary><option>-XOverlappingInstances</option></primary></indexterm>
         </term>
        <term>
-          <option>-fallow-undecidable-instances</option>
-          <indexterm><primary><option>-fallow-undecidable-instances</option></primary></indexterm>
+          <option>-XUndecidableInstances</option>
+          <indexterm><primary><option>-XUndecidableInstances</option></primary></indexterm>
         </term>
        <term>
-          <option>-fallow-incoherent-instances</option>
-          <indexterm><primary><option>-fallow-incoherent-instances</option></primary></indexterm>
+          <option>-XIncoherentInstances</option>
+          <indexterm><primary><option>-XIncoherentInstances</option></primary></indexterm>
         </term>
        <term>
-          <option>-fcontext-stack</option>
+          <option>-fcontext-stack=N</option>
           <indexterm><primary><option>-fcontext-stack</option></primary></indexterm>
         </term>
        <listitem>
@@ -162,8 +188,8 @@ documentation</ulink> describes all the libraries that come with GHC.
 
       <varlistentry>
        <term>
-          <option>-farrows</option>
-          <indexterm><primary><option>-farrows</option></primary></indexterm>
+          <option>-XArrows</option>
+          <indexterm><primary><option>-XArrows</option></primary></indexterm>
         </term>
        <listitem>
          <para>See <xref linkend="arrow-notation"/>.  Independent of
@@ -181,8 +207,8 @@ documentation</ulink> describes all the libraries that come with GHC.
 
       <varlistentry>
        <term>
-          <option>-fgenerics</option>
-          <indexterm><primary><option>-fgenerics</option></primary></indexterm>
+          <option>-XGenerics</option>
+          <indexterm><primary><option>-XGenerics</option></primary></indexterm>
         </term>
        <listitem>
          <para>See <xref linkend="generic-classes"/>.  Independent of
@@ -191,13 +217,13 @@ documentation</ulink> describes all the libraries that come with GHC.
       </varlistentry>
 
       <varlistentry>
-       <term><option>-fno-implicit-prelude</option></term>
+       <term><option>-XNoImplicitPrelude</option></term>
        <listitem>
-         <para><indexterm><primary>-fno-implicit-prelude
+         <para><indexterm><primary>-XNoImplicitPrelude
           option</primary></indexterm> GHC normally imports
           <filename>Prelude.hi</filename> files for you.  If you'd
           rather it didn't, then give it a
-          <option>-fno-implicit-prelude</option> option.  The idea is
+          <option>-XNoImplicitPrelude</option> option.  The idea is
           that you can then import a Prelude of your own.  (But don't
           call it <literal>Prelude</literal>; the Haskell module
           namespace is flat, and you must not conflict with any
@@ -212,14 +238,14 @@ documentation</ulink> describes all the libraries that come with GHC.
           translation for list comprehensions continues to use
           <literal>Prelude.map</literal> etc.</para>
 
-         <para>However, <option>-fno-implicit-prelude</option> does
+         <para>However, <option>-XNoImplicitPrelude</option> does
          change the handling of certain built-in syntax: see <xref
          linkend="rebindable-syntax"/>.</para>
        </listitem>
       </varlistentry>
 
       <varlistentry>
-       <term><option>-fimplicit-params</option></term>
+       <term><option>-XImplicitParams</option></term>
        <listitem>
          <para>Enables implicit parameters (see <xref
          linkend="implicit-parameters"/>).  Currently also implied by 
@@ -232,7 +258,15 @@ documentation</ulink> describes all the libraries that come with GHC.
       </varlistentry>
 
       <varlistentry>
-       <term><option>-fscoped-type-variables</option></term>
+       <term><option>-XOverloadedStrings</option></term>
+       <listitem>
+         <para>Enables overloaded string literals (see <xref
+         linkend="overloaded-strings"/>).</para>
+       </listitem>
+      </varlistentry>
+
+      <varlistentry>
+       <term><option>-XScopedTypeVariables</option></term>
        <listitem>
          <para>Enables lexically-scoped type variables (see <xref
          linkend="scoped-type-variables"/>).  Implied by
@@ -241,7 +275,7 @@ documentation</ulink> describes all the libraries that come with GHC.
       </varlistentry>
 
       <varlistentry>
-       <term><option>-fth</option></term>
+       <term><option>-XTemplateHaskell</option></term>
        <listitem>
          <para>Enables Template Haskell (see <xref
          linkend="template-haskell"/>).  This flag must
@@ -260,8 +294,6 @@ documentation</ulink> describes all the libraries that come with GHC.
   </sect1>
 
 <!-- UNBOXED TYPES AND PRIMITIVE OPERATIONS -->
-<!--    included from primitives.sgml  -->
-<!-- &primitives; -->
 <sect1 id="primitives">
   <title>Unboxed types and primitive operations</title>
 
@@ -287,7 +319,7 @@ it is always correct!  It is also intended for processing into text.</para>
 <para> Indeed,
 the result of such processing is part of the description of the 
  <ulink
-      url="http://haskell.cs.yale.edu/ghc/docs/papers/core.ps.gz">External
+      url="http://www.haskell.org/ghc/docs/papers/core.ps.gz">External
         Core language</ulink>.
 So that document is a good place to look for a type-set version.
 We would be very happy if someone wanted to volunteer to produce an SGML
@@ -366,6 +398,13 @@ worse, the unboxed value might be larger than a pointer
 (<literal>Double&num;</literal> for instance).
 </para>
 </listitem>
+<listitem><para> You cannot define a newtype whose representation type
+(the argument type of the data constructor) is an unboxed type.  Thus,
+this is illegal:
+<programlisting>
+  newtype A = MkA Int#
+</programlisting>
+</para></listitem>
 <listitem><para> You cannot bind a variable with an unboxed type
 in a <emphasis>top-level</emphasis> binding.
 </para></listitem>
@@ -535,14 +574,11 @@ import qualified Control.Monad.ST.Strict as ST
       linkend="search-path"/>.</para>
 
       <para>GHC comes with a large collection of libraries arranged
-      hierarchically; see the accompanying library documentation.
-      There is an ongoing project to create and maintain a stable set
-      of <quote>core</quote> libraries used by several Haskell
-      compilers, and the libraries that GHC comes with represent the
-      current status of that project.  For more details, see <ulink
-      url="http://www.haskell.org/~simonmar/libraries/libraries.html">Haskell
-      Libraries</ulink>.</para>
-
+      hierarchically; see the accompanying <ulink
+      url="../libraries/index.html">library
+      documentation</ulink>.  More libraries to install are available
+      from <ulink
+      url="http://hackage.haskell.org/packages/hackage.html">HackageDB</ulink>.</para>
     </sect2>
 
     <!-- ====================== PATTERN GUARDS =======================  -->
@@ -611,13 +647,13 @@ to write clunky would be to use case expressions:
 </para>
 
 <programlisting>
-clunky env var1 var1 = case lookup env var1 of
+clunky env var1 var2 = case lookup env var1 of
   Nothing -&gt; fail
   Just val1 -&gt; case lookup env var2 of
     Nothing -&gt; fail
     Just val2 -&gt; val1 + val2
 where
-  fail = val1 + val2
+  fail = var1 + var2
 </programlisting>
 
 <para>
@@ -636,7 +672,7 @@ Here is how I would write clunky:
 </para>
 
 <programlisting>
-clunky env var1 var1
+clunky env var1 var2
   | Just val1 &lt;- lookup env var1
   , Just val2 &lt;- lookup env var2
   = val1 + val2
@@ -674,6 +710,202 @@ qualifier list has just one element, a boolean expression.
 </para>
 </sect2>
 
+    <!-- ===================== View patterns ===================  -->
+
+<sect2 id="view-patterns">
+<title>View patterns
+</title>
+
+<para>
+View patterns are enabled by the flag <literal>-XViewPatterns</literal>.
+More information and examples of view patterns can be found on the
+<ulink url="http://hackage.haskell.org/trac/ghc/wiki/ViewPatterns">Wiki
+page</ulink>.
+</para>
+
+<para>
+View patterns are somewhat like pattern guards that can be nested inside
+of other patterns.  They are a convenient way of pattern-matching
+against values of abstract types. For example, in a programming language
+implementation, we might represent the syntax of the types of the
+language as follows:
+
+<programlisting>
+type Typ
+data TypView = Unit
+             | Arrow Typ Typ
+
+view :: Type -> TypeView
+
+-- additional operations for constructing Typ's ...
+</programlisting>
+
+The representation of Typ is held abstract, permitting implementations
+to use a fancy representation (e.g., hash-consing to managage sharing).
+
+Without view patterns, using this signature a little inconvenient: 
+<programlisting>
+size :: Typ -> Integer
+size t = case view t of
+  Unit -> 1
+  Arrow t1 t2 -> size t1 + size t2
+</programlisting>
+
+It is necessary to iterate the case, rather than using an equational
+function definition. And the situation is even worse when the matching
+against <literal>t</literal> is buried deep inside another pattern.
+</para>
+
+<para>
+View patterns permit calling the view function inside the pattern and
+matching against the result: 
+<programlisting>
+size (view -> Unit) = 1
+size (view -> Arrow t1 t2) = size t1 + size t2
+</programlisting>
+
+That is, we add a new form of pattern, written
+<replaceable>expression</replaceable> <literal>-></literal>
+<replaceable>pattern</replaceable> that means "apply the expression to
+whatever we're trying to match against, and then match the result of
+that application against the pattern". The expression can be any Haskell
+expression of function type, and view patterns can be used wherever
+patterns are used.
+</para>
+
+<para>
+The semantics of a pattern <literal>(</literal>
+<replaceable>exp</replaceable> <literal>-></literal>
+<replaceable>pat</replaceable> <literal>)</literal> are as follows:
+
+<itemizedlist>
+
+<listitem> Scoping:
+
+<para>The variables bound by the view pattern are the variables bound by
+<replaceable>pat</replaceable>.
+</para>
+
+<para>
+Any variables in <replaceable>exp</replaceable> are bound occurrences,
+but variables bound "to the left" in a pattern are in scope.  This
+feature permits, for example, one argument to a function to be used in
+the view of another argument.  For example, the function
+<literal>clunky</literal> from <xref linkend="pattern-guards" /> can be
+written using view patterns as follows:
+
+<programlisting>
+clunky env (lookup env -> Just val1) (lookup env -> Just val2) = val1 + val2
+...other equations for clunky...
+</programlisting>
+</para>
+
+<para>
+More precisely, the scoping rules are: 
+<itemizedlist>
+<listitem>
+<para>
+In a single pattern, variables bound by patterns to the left of a view
+pattern expression are in scope. For example:
+<programlisting>
+example :: Maybe ((String -> Integer,Integer), String) -> Bool
+example Just ((f,_), f -> 4) = True
+</programlisting>
+
+Additionally, in function definitions, variables bound by matching earlier curried
+arguments may be used in view pattern expressions in later arguments:
+<programlisting>
+example :: (String -> Integer) -> String -> Bool
+example f (f -> 4) = True
+</programlisting>
+That is, the scoping is the same as it would be if the curried arguments
+were collected into a tuple.  
+</para>
+</listitem>
+
+<listitem>
+<para>
+In mutually recursive bindings, such as <literal>let</literal>,
+<literal>where</literal>, or the top level, view patterns in one
+declaration may not mention variables bound by other declarations.  That
+is, each declaration must be self-contained.  For example, the following
+program is not allowed:
+<programlisting>
+let {(x -> y) = e1 ;
+     (y -> x) = e2 } in x
+</programlisting>
+
+(We may lift this
+restriction in the future; the only cost is that type checking patterns
+would get a little more complicated.)  
+
+
+</para>
+</listitem>
+</itemizedlist>
+
+</para>
+</listitem>
+
+<listitem><para> Typing: If <replaceable>exp</replaceable> has type
+<replaceable>T1</replaceable> <literal>-></literal>
+<replaceable>T2</replaceable> and <replaceable>pat</replaceable> matches
+a <replaceable>T2</replaceable>, then the whole view pattern matches a
+<replaceable>T1</replaceable>.
+</para></listitem>
+
+<listitem><para> Matching: To the equations in Section 3.17.3 of the
+<ulink url="http://www.haskell.org/onlinereport/">Haskell 98
+Report</ulink>, add the following:
+<programlisting>
+case v of { (e -> p) -> e1 ; _ -> e2 } 
+ = 
+case (e v) of { p -> e1 ; _ -> e2 }
+</programlisting>
+That is, to match a variable <replaceable>v</replaceable> against a pattern
+<literal>(</literal> <replaceable>exp</replaceable>
+<literal>-></literal> <replaceable>pat</replaceable>
+<literal>)</literal>, evaluate <literal>(</literal>
+<replaceable>exp</replaceable> <replaceable> v</replaceable>
+<literal>)</literal> and match the result against
+<replaceable>pat</replaceable>.  
+</para></listitem>
+
+<listitem><para> Efficiency: When the same view function is applied in
+multiple branches of a function definition or a case expression (e.g.,
+in <literal>size</literal> above), GHC makes an attempt to collect these
+applications into a single nested case expression, so that the view
+function is only applied once.  Pattern compilation in GHC follows the
+matrix algorithm described in Chapter 4 of <ulink
+url="http://research.microsoft.com/~simonpj/Papers/slpj-book-1987/">The
+Implementation of Functional Programming Languages</ulink>.  When the
+top rows of the first column of a matrix are all view patterns with the
+"same" expression, these patterns are transformed into a single nested
+case.  This includes, for example, adjacent view patterns that line up
+in a tuple, as in
+<programlisting>
+f ((view -> A, p1), p2) = e1
+f ((view -> B, p3), p4) = e2
+</programlisting>
+</para>
+
+<para> The current notion of when two view pattern expressions are "the
+same" is very restricted: it is not even full syntactic equality.
+However, it does include variables, literals, applications, and tuples;
+e.g., two instances of <literal>view ("hi", "there")</literal> will be
+collected.  However, the current implementation does not compare up to
+alpha-equivalence, so two instances of <literal>(x, view x ->
+y)</literal> will not be coalesced.
+</para>
+
+</listitem>
+
+</itemizedlist>
+</para>
+
+</sect2>
+
     <!-- ===================== Recursive do-notation ===================  -->
 
 <sect2 id="mdo-notation">
@@ -681,9 +913,11 @@ qualifier list has just one element, a boolean expression.
 </title>
 
 <para> The recursive do-notation (also known as mdo-notation) is implemented as described in
-"A recursive do for Haskell",
-Levent Erkok, John Launchbury",
+<ulink url="http://citeseer.ist.psu.edu/erk02recursive.html">A recursive do for Haskell</ulink>,
+by Levent Erkok, John Launchbury,
 Haskell Workshop 2002, pages: 29-37. Pittsburgh, Pennsylvania. 
+This paper is essential reading for anyone making non-trivial use of mdo-notation,
+and we do not repeat it here.
 </para>
 <para>
 The do-notation of Haskell does not allow <emphasis>recursive bindings</emphasis>,
@@ -714,17 +948,24 @@ class Monad m => MonadFix m where
 </programlisting>
 <para>
 The function <literal>mfix</literal>
-dictates how the required recursion operation should be performed. If recursive bindings are required for a monad,
-then that monad must be declared an instance of the <literal>MonadFix</literal> class.
-For details, see the above mentioned reference.
+dictates how the required recursion operation should be performed.  For example, 
+<literal>justOnes</literal> desugars as follows:
+<programlisting>
+justOnes = mfix (\xs' -&gt; do { xs &lt;- Just (1:xs'); return xs }
+</programlisting>
+For full details of the way in which mdo is typechecked and desugared, see 
+the paper <ulink url="http://citeseer.ist.psu.edu/erk02recursive.html">A recursive do for Haskell</ulink>.
+In particular, GHC implements the segmentation technique described in Section 3.2 of the paper.
 </para>
 <para>
+If recursive bindings are required for a monad,
+then that monad must be declared an instance of the <literal>MonadFix</literal> class.
 The following instances of <literal>MonadFix</literal> are automatically provided: List, Maybe, IO. 
 Furthermore, the Control.Monad.ST and Control.Monad.ST.Lazy modules provide the instances of the MonadFix class 
 for Haskell's internal state monad (strict and lazy, respectively).
 </para>
 <para>
-There are three important points in using the recursive-do notation:
+Here are some important points in using the recursive-do notation:
 <itemizedlist>
 <listitem><para>
 The recursive version of the do-notation uses the keyword <literal>mdo</literal> (rather
@@ -732,20 +973,27 @@ than <literal>do</literal>).
 </para></listitem>
 
 <listitem><para>
-You should <literal>import Control.Monad.Fix</literal>.
-(Note: Strictly speaking, this import is required only when you need to refer to the name
-<literal>MonadFix</literal> in your program, but the import is always safe, and the programmers
-are encouraged to always import this module when using the mdo-notation.)
+It is enabled with the flag <literal>-XRecursiveDo</literal>, which is in turn implied by
+<literal>-fglasgow-exts</literal>.
+</para></listitem>
+
+<listitem><para>
+Unlike ordinary do-notation, but like <literal>let</literal> and <literal>where</literal> bindings,
+name shadowing is not allowed; that is, all the names bound in a single <literal>mdo</literal> must
+be distinct (Section 3.3 of the paper).
 </para></listitem>
 
 <listitem><para>
-As with other extensions, ghc should be given the flag <literal>-fglasgow-exts</literal>
+Variables bound by a <literal>let</literal> statement in an <literal>mdo</literal>
+are monomorphic in the <literal>mdo</literal> (Section 3.1 of the paper).  However
+GHC breaks the <literal>mdo</literal> into segments to enhance polymorphism,
+and improve termination (Section 3.2 of the paper).
 </para></listitem>
 </itemizedlist>
 </para>
 
 <para>
-The web page: <ulink url="http://www.cse.ogi.edu/PacSoft/projects/rmb">http://www.cse.ogi.edu/PacSoft/projects/rmb</ulink>
+The web page: <ulink url="http://www.cse.ogi.edu/PacSoft/projects/rmb/">http://www.cse.ogi.edu/PacSoft/projects/rmb/</ulink>
 contains up to date information on recursive monadic bindings.
 </para>
 
@@ -810,11 +1058,172 @@ This name is not supported by GHC.
     branches.</para>
 
   </sect2>
+  
+  <!-- ===================== TRANSFORM LIST COMPREHENSIONS ===================  -->
+
+  <sect2 id="generalised-list-comprehensions">
+    <title>Generalised (SQL-Like) List Comprehensions</title>
+    <indexterm><primary>list comprehensions</primary><secondary>generalised</secondary>
+    </indexterm>
+    <indexterm><primary>extended list comprehensions</primary>
+    </indexterm>
+    <indexterm><primary>group</primary></indexterm>
+    <indexterm><primary>sql</primary></indexterm>
+
+
+    <para>Generalised list comprehensions are a further enhancement to the
+    list comprehension syntatic sugar to allow operations such as sorting
+    and grouping which are familiar from SQL.   They are fully described in the
+       paper <ulink url="http://research.microsoft.com/~simonpj/papers/list-comp">
+         Comprehensive comprehensions: comprehensions with "order by" and "group by"</ulink>,
+    except that the syntax we use differs slightly from the paper.</para>
+<para>Here is an example: 
+<programlisting>
+employees = [ ("Simon", "MS", 80)
+, ("Erik", "MS", 100)
+, ("Phil", "Ed", 40)
+, ("Gordon", "Ed", 45)
+, ("Paul", "Yale", 60)]
+
+output = [ (the dept, sum salary)
+| (name, dept, salary) &lt;- employees
+, then group by dept
+, then sortWith by (sum salary)
+, then take 5 ]
+</programlisting>
+In this example, the list <literal>output</literal> would take on 
+    the value:
+    
+<programlisting>
+[("Yale", 60), ("Ed", 85), ("MS", 180)]
+</programlisting>
+</para>
+<para>There are three new keywords: <literal>group</literal>, <literal>by</literal>, and <literal>using</literal>.
+(The function <literal>sortWith</literal> is not a keyword; it is an ordinary
+function that is exported by <literal>GHC.Exts</literal>.)</para>
+
+<para>There are five new forms of compehension qualifier,
+all introduced by the (existing) keyword <literal>then</literal>:
+    <itemizedlist>
+    <listitem>
+    
+<programlisting>
+then f
+</programlisting>
+
+    This statement requires that <literal>f</literal> have the type <literal>
+    forall a. [a] -> [a]</literal>. You can see an example of it's use in the
+    motivating example, as this form is used to apply <literal>take 5</literal>.
+    
+    </listitem>
+    
+    
+    <listitem>
+<para>
+<programlisting>
+then f by e
+</programlisting>
+
+    This form is similar to the previous one, but allows you to create a function
+    which will be passed as the first argument to f. As a consequence f must have 
+    the type <literal>forall a. (a -> t) -> [a] -> [a]</literal>. As you can see
+    from the type, this function lets f &quot;project out&quot; some information 
+    from the elements of the list it is transforming.</para>
+
+    <para>An example is shown in the opening example, where <literal>sortWith</literal> 
+    is supplied with a function that lets it find out the <literal>sum salary</literal> 
+    for any item in the list comprehension it transforms.</para>
+
+    </listitem>
+
+
+    <listitem>
+
+<programlisting>
+then group by e using f
+</programlisting>
+
+    <para>This is the most general of the grouping-type statements. In this form,
+    f is required to have type <literal>forall a. (a -> t) -> [a] -> [[a]]</literal>.
+    As with the <literal>then f by e</literal> case above, the first argument
+    is a function supplied to f by the compiler which lets it compute e on every
+    element of the list being transformed. However, unlike the non-grouping case,
+    f additionally partitions the list into a number of sublists: this means that
+    at every point after this statement, binders occuring before it in the comprehension
+    refer to <emphasis>lists</emphasis> of possible values, not single values. To help understand
+    this, let's look at an example:</para>
+    
+<programlisting>
+-- This works similarly to groupWith in GHC.Exts, but doesn't sort its input first
+groupRuns :: Eq b => (a -> b) -> [a] -> [[a]]
+groupRuns f = groupBy (\x y -> f x == f y)
+
+output = [ (the x, y)
+| x &lt;- ([1..3] ++ [1..2])
+, y &lt;- [4..6]
+, then group by x using groupRuns ]
+</programlisting>
+
+    <para>This results in the variable <literal>output</literal> taking on the value below:</para>
+
+<programlisting>
+[(1, [4, 5, 6]), (2, [4, 5, 6]), (3, [4, 5, 6]), (1, [4, 5, 6]), (2, [4, 5, 6])]
+</programlisting>
+
+    <para>Note that we have used the <literal>the</literal> function to change the type 
+    of x from a list to its original numeric type. The variable y, in contrast, is left 
+    unchanged from the list form introduced by the grouping.</para>
+
+    </listitem>
+
+    <listitem>
+
+<programlisting>
+then group by e
+</programlisting>
+
+    <para>This form of grouping is essentially the same as the one described above. However,
+    since no function to use for the grouping has been supplied it will fall back on the
+    <literal>groupWith</literal> function defined in 
+    <ulink url="../libraries/base/GHC-Exts.html"><literal>GHC.Exts</literal></ulink>. This
+    is the form of the group statement that we made use of in the opening example.</para>
+
+    </listitem>
+    
+    
+    <listitem>
+
+<programlisting>
+then group using f
+</programlisting>
+
+    <para>With this form of the group statement, f is required to simply have the type
+    <literal>forall a. [a] -> [[a]]</literal>, which will be used to group up the
+    comprehension so far directly. An example of this form is as follows:</para>
+    
+<programlisting>
+output = [ x
+| y &lt;- [1..5]
+, x &lt;- "hello"
+, then group using inits]
+</programlisting>
+
+    <para>This will yield a list containing every prefix of the word "hello" written out 5 times:</para>
+
+<programlisting>
+["","h","he","hel","hell","hello","helloh","hellohe","hellohel","hellohell","hellohello","hellohelloh",...]
+</programlisting>
+
+    </listitem>
+</itemizedlist>
+</para>
+  </sect2>
+
+   <!-- ===================== REBINDABLE SYNTAX ===================  -->
 
 <sect2 id="rebindable-syntax">
 <title>Rebindable syntax</title>
 
-
       <para>GHC allows most kinds of built-in syntax to be rebound by
       the user, to facilitate replacing the <literal>Prelude</literal>
       with a home-grown version, for example.</para>
@@ -823,7 +1232,7 @@ This name is not supported by GHC.
             hierarchy.  It completely defeats that purpose if the
             literal "1" means "<literal>Prelude.fromInteger
             1</literal>", which is what the Haskell Report specifies.
-            So the <option>-fno-implicit-prelude</option> flag causes
+            So the <option>-XNoImplicitPrelude</option> flag causes
             the following pieces of built-in syntax to refer to
             <emphasis>whatever is in scope</emphasis>, not the Prelude
             versions:
@@ -894,89 +1303,323 @@ fromInteger :: Integer -> Bool -> Bool
             you should be all right.</para>
 
 </sect2>
-</sect1>
 
+<sect2 id="postfix-operators">
+<title>Postfix operators</title>
 
-<!-- TYPE SYSTEM EXTENSIONS -->
-<sect1 id="type-extensions">
-<title>Type system extensions</title>
+<para>
+GHC allows a small extension to the syntax of left operator sections, which
+allows you to define postfix operators.  The extension is this:  the left section
+<programlisting>
+  (e !)
+</programlisting>
+is equivalent (from the point of view of both type checking and execution) to the expression
+<programlisting>
+  ((!) e)
+</programlisting>
+(for any expression <literal>e</literal> and operator <literal>(!)</literal>.
+The strict Haskell 98 interpretation is that the section is equivalent to
+<programlisting>
+  (\y -> (!) e y)
+</programlisting>
+That is, the operator must be a function of two arguments.  GHC allows it to
+take only one argument, and that in turn allows you to write the function
+postfix.
+</para>
+<para>Since this extension goes beyond Haskell 98, it should really be enabled
+by a flag; but in fact it is enabled all the time.  (No Haskell 98 programs
+change their behaviour, of course.)
+</para>
+<para>The extension does not extend to the left-hand side of function
+definitions; you must define such a function in prefix form.</para>
 
+</sect2>
 
-<sect2>
-<title>Data types and type synonyms</title>
+<sect2 id="disambiguate-fields">
+<title>Record field disambiguation</title>
+<para>
+In record construction and record pattern matching
+it is entirely unambiguous which field is referred to, even if there are two different
+data types in scope with a common field name.  For example:
+<programlisting>
+module M where
+  data S = MkS { x :: Int, y :: Bool }
 
-<sect3 id="nullary-types">
-<title>Data types with no constructors</title>
+module Foo where
+  import M
 
-<para>With the <option>-fglasgow-exts</option> flag, GHC lets you declare
-a data type with no constructors.  For example:</para>
+  data T = MkT { x :: Int }
+  
+  ok1 (MkS { x = n }) = n+1   -- Unambiguous
 
-<programlisting>
-  data S      -- S :: *
-  data T a    -- T :: * -> *
+  ok2 n = MkT { x = n+1 }     -- Unambiguous
+
+  bad1 k = k { x = 3 }  -- Ambiguous
+  bad2 k = x k          -- Ambiguous
 </programlisting>
+Even though there are two <literal>x</literal>'s in scope,
+it is clear that the <literal>x</literal> in the pattern in the
+definition of <literal>ok1</literal> can only mean the field
+<literal>x</literal> from type <literal>S</literal>. Similarly for
+the function <literal>ok2</literal>.  However, in the record update
+in <literal>bad1</literal> and the record selection in <literal>bad2</literal>
+it is not clear which of the two types is intended.
+</para>
+<para>
+Haskell 98 regards all four as ambiguous, but with the
+<option>-fdisambiguate-record-fields</option> flag, GHC will accept
+the former two.  The rules are precisely the same as those for instance
+declarations in Haskell 98, where the method names on the left-hand side 
+of the method bindings in an instance declaration refer unambiguously
+to the method of that class (provided they are in scope at all), even
+if there are other variables in scope with the same name.
+This reduces the clutter of qualified names when you import two
+records from different modules that use the same field name.
+</para>
+</sect2>
 
-<para>Syntactically, the declaration lacks the "= constrs" part.  The 
-type can be parameterised over types of any kind, but if the kind is
-not <literal>*</literal> then an explicit kind annotation must be used
-(see <xref linkend="sec-kinding"/>).</para>
+    <!-- ===================== Record puns ===================  -->
 
-<para>Such data types have only one value, namely bottom.
-Nevertheless, they can be useful when defining "phantom types".</para>
-</sect3>
+<sect2 id="record-puns">
+<title>Record puns
+</title>
 
-<sect3 id="infix-tycons">
-<title>Infix type constructors, classes, and type variables</title>
+<para>
+Record puns are enabled by the flag <literal>-XRecordPuns</literal>.
+</para>
 
 <para>
-GHC allows type constructors, classes, and type variables to be operators, and
-to be written infix, very much like expressions.  More specifically:
-<itemizedlist>
-<listitem><para>
-  A type constructor or class can be an operator, beginning with a colon; e.g. <literal>:*:</literal>.
-  The lexical syntax is the same as that for data constructors.
-  </para></listitem>
-<listitem><para>
-  Data type and type-synonym declarations can be written infix, parenthesised
-  if you want further arguments.  E.g.
-<screen>
-  data a :*: b = Foo a b
-  type a :+: b = Either a b
-  class a :=: b where ...
+When using records, it is common to write a pattern that binds a
+variable with the same name as a record field, such as:
 
-  data (a :**: b) x = Baz a b x
-  type (a :++: b) y = Either (a,b) y
-</screen>
-  </para></listitem>
-<listitem><para>
-  Types, and class constraints, can be written infix.  For example
-  <screen>
-       x :: Int :*: Bool
-        f :: (a :=: b) => a -> b
-  </screen>
-  </para></listitem>
-<listitem><para>
-  A type variable can be an (unqualified) operator e.g. <literal>+</literal>.
-  The lexical syntax is the same as that for variable operators, excluding "(.)",
-  "(!)", and "(*)".  In a binding position, the operator must be
-  parenthesised.  For example:
 <programlisting>
-   type T (+) = Int + Int
-   f :: T Either
-   f = Left 3
-   liftA2 :: Arrow (~>)
-         => (a -> b -> c) -> (e ~> a) -> (e ~> b) -> (e ~> c)
-   liftA2 = ...
+data C = C {a :: Int}
+f (C {a = a}) = a
 </programlisting>
-  </para></listitem>
-<listitem><para>
-  Back-quotes work
-  as for expressions, both for type constructors and type variables;  e.g. <literal>Int `Either` Bool</literal>, or
-  <literal>Int `a` Bool</literal>.  Similarly, parentheses work the same; e.g.  <literal>(:*:) Int Bool</literal>.
-  </para></listitem>
-<listitem><para>
-  Fixities may be declared for type constructors, or classes, just as for data constructors.  However,
+</para>
+
+<para>
+Record punning permits the variable name to be elided, so one can simply
+write
+
+<programlisting>
+f (C {a}) = a
+</programlisting>
+
+to mean the same pattern as above.  That is, in a record pattern, the
+pattern <literal>a</literal> expands into the pattern <literal>a =
+a</literal> for the same name <literal>a</literal>.  
+</para>
+
+<para>
+Note that puns and other patterns can be mixed in the same record:
+<programlisting>
+data C = C {a :: Int, b :: Int}
+f (C {a, b = 4}) = a
+</programlisting>
+and that puns can be used wherever record patterns occur (e.g. in
+<literal>let</literal> bindings or at the top-level).  
+</para>
+
+<para>
+Record punning can also be used in an expression, writing, for example,
+<programlisting>
+let a = 1 in C {a}
+</programlisting>
+instead of 
+<programlisting>
+let a = 1 in C {a = a}
+</programlisting>
+
+Note that this expansion is purely syntactic, so the record pun
+expression refers to the nearest enclosing variable that is spelled the
+same as the field name.
+</para>
+
+</sect2>
+
+    <!-- ===================== Record wildcards ===================  -->
+
+<sect2 id="record-wildcards">
+<title>Record wildcards
+</title>
+
+<para>
+Record wildcards are enabled by the flag <literal>-XRecordWildCards</literal>.
+</para>
+
+<para>
+For records with many fields, it can be tiresome to write out each field
+individually in a record pattern, as in
+<programlisting>
+data C = C {a :: Int, b :: Int, c :: Int, d :: Int}
+f (C {a = 1, b = b, c = c, d = d}) = b + c + d
+</programlisting>
+</para>
+
+<para>
+Record wildcard syntax permits a (<literal>..</literal>) in a record
+pattern, where each elided field <literal>f</literal> is replaced by the
+pattern <literal>f = f</literal>.  For example, the above pattern can be
+written as
+<programlisting>
+f (C {a = 1, ..}) = b + c + d
+</programlisting>
+</para>
+
+<para>
+Note that wildcards can be mixed with other patterns, including puns
+(<xref linkend="record-puns"/>); for example, in a pattern <literal>C {a
+= 1, b, ..})</literal>.  Additionally, record wildcards can be used
+wherever record patterns occur, including in <literal>let</literal>
+bindings and at the top-level.  For example, the top-level binding
+<programlisting>
+C {a = 1, ..} = e
+</programlisting>
+defines <literal>b</literal>, <literal>c</literal>, and
+<literal>d</literal>.
+</para>
+
+<para>
+Record wildcards can also be used in expressions, writing, for example,
+
+<programlisting>
+let {a = 1; b = 2; c = 3; d = 4} in C {..}
+</programlisting>
+
+in place of
+
+<programlisting>
+let {a = 1; b = 2; c = 3; d = 4} in C {a=a, b=b, c=c, d=d}
+</programlisting>
+
+Note that this expansion is purely syntactic, so the record wildcard
+expression refers to the nearest enclosing variables that are spelled
+the same as the omitted field names.
+</para>
+
+</sect2>
+
+    <!-- ===================== Local fixity declarations ===================  -->
+
+<sect2 id="local-fixity-declarations">
+<title>Local Fixity Declarations
+</title>
+
+<para>A careful reading of the Haskell 98 Report reveals that fixity
+declarations (<literal>infix</literal>, <literal>infixl</literal>, and
+<literal>infixr</literal>) are permitted to appear inside local bindings
+such those introduced by <literal>let</literal> and
+<literal>where</literal>.  However, the Haskell Report does not specify
+the semantics of such bindings very precisely.
+</para>
+
+<para>In GHC, a fixity declaration may accompany a local binding:
+<programlisting>
+let f = ...
+    infixr 3 `f`
+in 
+    ...
+</programlisting>
+and the fixity declaration applies wherever the binding is in scope.
+For example, in a <literal>let</literal>, it applies in the right-hand
+sides of other <literal>let</literal>-bindings and the body of the
+<literal>let</literal>C. Or, in recursive <literal>do</literal>
+expressions (<xref linkend="mdo-notation"/>), the local fixity
+declarations of aA <literal>let</literal> statement scope over other
+statements in the group, just as the bound name does.
+</para>
+
+Moreover, a local fixity declatation *must* accompany a local binding of
+that name: it is not possible to revise the fixity of name bound
+elsewhere, as in
+<programlisting>
+let infixr 9 $ in ...
+</programlisting>
+
+Because local fixity declarations are technically Haskell 98, no flag is
+necessary to enable them.
+</sect2>
+
+</sect1>
+
+
+<!-- TYPE SYSTEM EXTENSIONS -->
+<sect1 id="data-type-extensions">
+<title>Extensions to data types and type synonyms</title>
+
+<sect2 id="nullary-types">
+<title>Data types with no constructors</title>
+
+<para>With the <option>-fglasgow-exts</option> flag, GHC lets you declare
+a data type with no constructors.  For example:</para>
+
+<programlisting>
+  data S      -- S :: *
+  data T a    -- T :: * -> *
+</programlisting>
+
+<para>Syntactically, the declaration lacks the "= constrs" part.  The 
+type can be parameterised over types of any kind, but if the kind is
+not <literal>*</literal> then an explicit kind annotation must be used
+(see <xref linkend="kinding"/>).</para>
+
+<para>Such data types have only one value, namely bottom.
+Nevertheless, they can be useful when defining "phantom types".</para>
+</sect2>
+
+<sect2 id="infix-tycons">
+<title>Infix type constructors, classes, and type variables</title>
+
+<para>
+GHC allows type constructors, classes, and type variables to be operators, and
+to be written infix, very much like expressions.  More specifically:
+<itemizedlist>
+<listitem><para>
+  A type constructor or class can be an operator, beginning with a colon; e.g. <literal>:*:</literal>.
+  The lexical syntax is the same as that for data constructors.
+  </para></listitem>
+<listitem><para>
+  Data type and type-synonym declarations can be written infix, parenthesised
+  if you want further arguments.  E.g.
+<screen>
+  data a :*: b = Foo a b
+  type a :+: b = Either a b
+  class a :=: b where ...
+
+  data (a :**: b) x = Baz a b x
+  type (a :++: b) y = Either (a,b) y
+</screen>
+  </para></listitem>
+<listitem><para>
+  Types, and class constraints, can be written infix.  For example
+  <screen>
+       x :: Int :*: Bool
+        f :: (a :=: b) => a -> b
+  </screen>
+  </para></listitem>
+<listitem><para>
+  A type variable can be an (unqualified) operator e.g. <literal>+</literal>.
+  The lexical syntax is the same as that for variable operators, excluding "(.)",
+  "(!)", and "(*)".  In a binding position, the operator must be
+  parenthesised.  For example:
+<programlisting>
+   type T (+) = Int + Int
+   f :: T Either
+   f = Left 3
+   liftA2 :: Arrow (~>)
+         => (a -> b -> c) -> (e ~> a) -> (e ~> b) -> (e ~> c)
+   liftA2 = ...
+</programlisting>
+  </para></listitem>
+<listitem><para>
+  Back-quotes work
+  as for expressions, both for type constructors and type variables;  e.g. <literal>Int `Either` Bool</literal>, or
+  <literal>Int `a` Bool</literal>.  Similarly, parentheses work the same; e.g.  <literal>(:*:) Int Bool</literal>.
+  </para></listitem>
+<listitem><para>
+  Fixities may be declared for type constructors, or classes, just as for data constructors.  However,
   one cannot distinguish between the two in a fixity declaration; a fixity declaration
   sets the fixity for a data constructor and the corresponding type constructor.  For example:
 <screen>
@@ -992,9 +1635,9 @@ to be written infix, very much like expressions.  More specifically:
 
 </itemizedlist>
 </para>
-</sect3>
+</sect2>
 
-<sect3 id="type-synonyms">
+<sect2 id="type-synonyms">
 <title>Liberalised type synonyms</title>
 
 <para>
@@ -1084,10 +1727,10 @@ this will be rejected:
 </programlisting>
 because GHC does not allow  unboxed tuples on the left of a function arrow.
 </para>
-</sect3>
+</sect2>
 
 
-<sect3 id="existential-quantification">
+<sect2 id="existential-quantification">
 <title>Existentially quantified data constructors
 </title>
 
@@ -1181,7 +1824,7 @@ that collection of packages in a uniform manner.  You can express
 quite a bit of object-oriented-like programming this way.
 </para>
 
-<sect4 id="existential">
+<sect3 id="existential">
 <title>Why existential?
 </title>
 
@@ -1204,10 +1847,10 @@ But Haskell programmers can safely think of the ordinary
 adding a new existential quantification construct.
 </para>
 
-</sect4>
+</sect3>
 
-<sect4>
-<title>Type classes</title>
+<sect3 id="existential-with-context">
+<title>Existentials and type classes</title>
 
 <para>
 An easy extension is to allow
@@ -1261,14 +1904,9 @@ dictionaries for <literal>Eq</literal> and <literal>Show</literal> respectively,
 extract it on pattern matching.
 </para>
 
-<para>
-Notice the way that the syntax fits smoothly with that used for
-universal quantification earlier.
-</para>
-
-</sect4>
+</sect3>
 
-<sect4>
+<sect3 id="existential-records">
 <title>Record Constructors</title>
 
 <para>
@@ -1285,7 +1923,7 @@ data Counter a = forall self. NewCounter
 Here <literal>tag</literal> is a public field, with a well-typed selector
 function <literal>tag :: Counter a -> a</literal>.  The <literal>self</literal>
 type is hidden from the outside; any attempt to apply <literal>_this</literal>,
-<literal>_inc</literal> or <literal>_output</literal> as functions will raise a
+<literal>_inc</literal> or <literal>_display</literal> as functions will raise a
 compile-time error.  In other words, <emphasis>GHC defines a record selector function
 only for fields whose type does not mention the existentially-quantified variables</emphasis>.
 (This example used an underscore in the fields for which record selectors
@@ -1320,20 +1958,6 @@ main = do
     display (inc (inc counterB))   -- prints "##"
 </programlisting>
 
-In GADT declarations (see <xref linkend="gadt"/>), the explicit
-<literal>forall</literal> may be omitted.  For example, we can express
-the same <literal>Counter a</literal> using GADT:
-
-<programlisting>
-data Counter a where
-    NewCounter { _this    :: self
-               , _inc     :: self -> self
-               , _display :: self -> IO ()
-               , tag      :: a
-               }
-        :: Counter a
-</programlisting>
-
 At the moment, record update syntax is only supported for Haskell 98 data types,
 so the following function does <emphasis>not</emphasis> work:
 
@@ -1345,10 +1969,10 @@ setTag obj t = obj{ tag = t }
 
 </para>
 
-</sect4>
+</sect3>
 
 
-<sect4>
+<sect3>
 <title>Restrictions</title>
 
 <para>
@@ -1474,7 +2098,7 @@ are convincing reasons to change it.
  You can't use <literal>deriving</literal> to define instances of a
 data type with existentially quantified data constructors.
 
-Reason: in most cases it would not make sense. For example:&num;
+Reason: in most cases it would not make sense. For example:;
 
 <programlisting>
 data T = forall a. MkT [a] deriving( Eq )
@@ -1499,112 +2123,745 @@ declarations.  Define your own instances!
 
 </para>
 
-</sect4>
 </sect3>
-
 </sect2>
 
+<!-- ====================== Generalised algebraic data types =======================  -->
 
+<sect2 id="gadt-style">
+<title>Declaring data types with explicit constructor signatures</title>
 
-<sect2 id="multi-param-type-classes">
-<title>Class declarations</title>
-
-<para>
-This section, and the next one, documents GHC's type-class extensions.
-There's lots of background in the paper <ulink
-url="http://research.microsoft.com/~simonpj/Papers/type-class-design-space" >Type
-classes: exploring the design space</ulink > (Simon Peyton Jones, Mark
-Jones, Erik Meijer).
-</para>
-<para>
-All the extensions are enabled by the <option>-fglasgow-exts</option> flag.
-</para>
-
-<sect3>
-<title>Multi-parameter type classes</title>
-<para>
-Multi-parameter type classes are permitted. For example:
-
-
+<para>GHC allows you to declare an algebraic data type by 
+giving the type signatures of constructors explicitly.  For example:
 <programlisting>
-  class Collection c a where
-    union :: c a -> c a -> c a
-    ...etc.
+  data Maybe a where
+      Nothing :: Maybe a
+      Just    :: a -> Maybe a
+</programlisting>
+The form is called a "GADT-style declaration"
+because Generalised Algebraic Data Types, described in <xref linkend="gadt"/>, 
+can only be declared using this form.</para>
+<para>Notice that GADT-style syntax generalises existential types (<xref linkend="existential-quantification"/>).  
+For example, these two declarations are equivalent:
+<programlisting>
+  data Foo = forall a. MkFoo a (a -> Bool)
+  data Foo' where { MKFoo :: a -> (a->Bool) -> Foo' }
 </programlisting>
-
 </para>
-</sect3>
+<para>Any data type that can be declared in standard Haskell-98 syntax 
+can also be declared using GADT-style syntax.
+The choice is largely stylistic, but GADT-style declarations differ in one important respect:
+they treat class constraints on the data constructors differently.
+Specifically, if the constructor is given a type-class context, that
+context is made available by pattern matching.  For example:
+<programlisting>
+  data Set a where
+    MkSet :: Eq a => [a] -> Set a
 
-<sect3>
-<title>The superclasses of a class declaration</title>
+  makeSet :: Eq a => [a] -> Set a
+  makeSet xs = MkSet (nub xs)
 
+  insert :: a -> Set a -> Set a
+  insert a (MkSet as) | a `elem` as = MkSet as
+                      | otherwise   = MkSet (a:as)
+</programlisting>
+A use of <literal>MkSet</literal> as a constructor (e.g. in the definition of <literal>makeSet</literal>) 
+gives rise to a <literal>(Eq a)</literal>
+constraint, as you would expect.  The new feature is that pattern-matching on <literal>MkSet</literal>
+(as in the definition of <literal>insert</literal>) makes <emphasis>available</emphasis> an <literal>(Eq a)</literal>
+context.  In implementation terms, the <literal>MkSet</literal> constructor has a hidden field that stores
+the <literal>(Eq a)</literal> dictionary that is passed to <literal>MkSet</literal>; so
+when pattern-matching that dictionary becomes available for the right-hand side of the match.
+In the example, the equality dictionary is used to satisfy the equality constraint 
+generated by the call to <literal>elem</literal>, so that the type of
+<literal>insert</literal> itself has no <literal>Eq</literal> constraint.
+</para>
 <para>
-There are no restrictions on the context in a class declaration
-(which introduces superclasses), except that the class hierarchy must
-be acyclic.  So these class declarations are OK:
-
-
+For example, one possible application is to reify dictionaries:
 <programlisting>
-  class Functor (m k) => FiniteMap m k where
-    ...
-
-  class (Monad m, Monad (t m)) => Transform t m where
-    lift :: m a -> (t m) a
-</programlisting>
+   data NumInst a where
+     MkNumInst :: Num a => NumInst a
 
+   intInst :: NumInst Int
+   intInst = MkNumInst
 
+   plus :: NumInst a -> a -> a -> a
+   plus MkNumInst p q = p + q
+</programlisting>
+Here, a value of type <literal>NumInst a</literal> is equivalent 
+to an explicit <literal>(Num a)</literal> dictionary.
 </para>
 <para>
-As in Haskell 98, The class hierarchy must be acyclic.  However, the definition
-of "acyclic" involves only the superclass relationships.  For example,
-this is OK:
-
-
+All this applies to constructors declared using the syntax of <xref linkend="existential-with-context"/>.
+For example, the <literal>NumInst</literal> data type above could equivalently be declared 
+like this:
 <programlisting>
-  class C a where {
-    op :: D b => a -> b -> b
-  }
-
-  class C a => D a where { ... }
+   data NumInst a 
+      = Num a => MkNumInst (NumInst a)
+</programlisting>
+Notice that, unlike the situation when declaring an existental, there is 
+no <literal>forall</literal>, because the <literal>Num</literal> constrains the
+data type's univerally quantified type variable <literal>a</literal>.  
+A constructor may have both universal and existential type variables: for example,
+the following two declarations are equivalent:
+<programlisting>
+   data T1 a 
+       = forall b. (Num a, Eq b) => MkT1 a b
+   data T2 a where
+       MkT2 :: (Num a, Eq b) => a -> b -> T2 a
 </programlisting>
-
-
-Here, <literal>C</literal> is a superclass of <literal>D</literal>, but it's OK for a
-class operation <literal>op</literal> of <literal>C</literal> to mention <literal>D</literal>.  (It
-would not be OK for <literal>D</literal> to be a superclass of <literal>C</literal>.)
 </para>
-</sect3>
-
-
-
-
-<sect3 id="class-method-types">
-<title>Class method types</title>
-
-<para>
-Haskell 98 prohibits class method types to mention constraints on the
-class type variable, thus:
+<para>All this behaviour contrasts with Haskell 98's peculiar treatment of 
+contexts on a data type declaration (Section 4.2.1 of the Haskell 98 Report).
+In Haskell 98 the definition
 <programlisting>
-  class Seq s a where
-    fromList :: [a] -> s a
-    elem     :: Eq a => a -> s a -> Bool
+  data Eq a => Set' a = MkSet' [a]
 </programlisting>
-The type of <literal>elem</literal> is illegal in Haskell 98, because it
-contains the constraint <literal>Eq a</literal>, constrains only the 
-class type variable (in this case <literal>a</literal>).
-GHC lifts this restriction.
+gives <literal>MkSet'</literal> the same type as <literal>MkSet</literal> above.  But instead of 
+<emphasis>making available</emphasis> an <literal>(Eq a)</literal> constraint, pattern-matching
+on <literal>MkSet'</literal> <emphasis>requires</emphasis> an <literal>(Eq a)</literal> constraint!
+GHC faithfully implements this behaviour, odd though it is.  But for GADT-style declarations,
+GHC's behaviour is much more useful, as well as much more intuitive.
 </para>
 
+<para>
+The rest of this section gives further details about GADT-style data
+type declarations.
+
+<itemizedlist>
+<listitem><para>
+The result type of each data constructor must begin with the type constructor being defined.
+If the result type of all constructors 
+has the form <literal>T a1 ... an</literal>, where <literal>a1 ... an</literal>
+are distinct type variables, then the data type is <emphasis>ordinary</emphasis>;
+otherwise is a <emphasis>generalised</emphasis> data type (<xref linkend="gadt"/>).
+</para></listitem>
+
+<listitem><para>
+The type signature of
+each constructor is independent, and is implicitly universally quantified as usual. 
+Different constructors may have different universally-quantified type variables
+and different type-class constraints.  
+For example, this is fine:
+<programlisting>
+  data T a where
+    T1 :: Eq b => b -> T b
+    T2 :: (Show c, Ix c) => c -> [c] -> T c
+</programlisting>
+</para></listitem>
+
+<listitem><para>
+Unlike a Haskell-98-style 
+data type declaration, the type variable(s) in the "<literal>data Set a where</literal>" header 
+have no scope.  Indeed, one can write a kind signature instead:
+<programlisting>
+  data Set :: * -> * where ...
+</programlisting>
+or even a mixture of the two:
+<programlisting>
+  data Foo a :: (* -> *) -> * where ...
+</programlisting>
+The type variables (if given) may be explicitly kinded, so we could also write the header for <literal>Foo</literal>
+like this:
+<programlisting>
+  data Foo a (b :: * -> *) where ...
+</programlisting>
+</para></listitem>
+
+
+<listitem><para>
+You can use strictness annotations, in the obvious places
+in the constructor type:
+<programlisting>
+  data Term a where
+      Lit    :: !Int -> Term Int
+      If     :: Term Bool -> !(Term a) -> !(Term a) -> Term a
+      Pair   :: Term a -> Term b -> Term (a,b)
+</programlisting>
+</para></listitem>
+
+<listitem><para>
+You can use a <literal>deriving</literal> clause on a GADT-style data type
+declaration.   For example, these two declarations are equivalent
+<programlisting>
+  data Maybe1 a where {
+      Nothing1 :: Maybe1 a ;
+      Just1    :: a -> Maybe1 a
+    } deriving( Eq, Ord )
+
+  data Maybe2 a = Nothing2 | Just2 a 
+       deriving( Eq, Ord )
+</programlisting>
+</para></listitem>
+
+<listitem><para>
+You can use record syntax on a GADT-style data type declaration:
+
+<programlisting>
+  data Person where
+      Adult { name :: String, children :: [Person] } :: Person
+      Child { name :: String } :: Person
+</programlisting>
+As usual, for every constructor that has a field <literal>f</literal>, the type of
+field <literal>f</literal> must be the same (modulo alpha conversion).
+</para>
+<para>
+At the moment, record updates are not yet possible with GADT-style declarations, 
+so support is limited to record construction, selection and pattern matching.
+For example
+<programlisting>
+  aPerson = Adult { name = "Fred", children = [] }
+
+  shortName :: Person -> Bool
+  hasChildren (Adult { children = kids }) = not (null kids)
+  hasChildren (Child {})                  = False
+</programlisting>
+</para></listitem>
+
+<listitem><para> 
+As in the case of existentials declared using the Haskell-98-like record syntax 
+(<xref linkend="existential-records"/>),
+record-selector functions are generated only for those fields that have well-typed
+selectors.  
+Here is the example of that section, in GADT-style syntax:
+<programlisting>
+data Counter a where
+    NewCounter { _this    :: self
+               , _inc     :: self -> self
+               , _display :: self -> IO ()
+               , tag      :: a
+               }
+        :: Counter a
+</programlisting>
+As before, only one selector function is generated here, that for <literal>tag</literal>.
+Nevertheless, you can still use all the field names in pattern matching and record construction.
+</para></listitem>
+</itemizedlist></para>
+</sect2>
+
+<sect2 id="gadt">
+<title>Generalised Algebraic Data Types (GADTs)</title>
+
+<para>Generalised Algebraic Data Types generalise ordinary algebraic data types 
+by allowing constructors to have richer return types.  Here is an example:
+<programlisting>
+  data Term a where
+      Lit    :: Int -> Term Int
+      Succ   :: Term Int -> Term Int
+      IsZero :: Term Int -> Term Bool  
+      If     :: Term Bool -> Term a -> Term a -> Term a
+      Pair   :: Term a -> Term b -> Term (a,b)
+</programlisting>
+Notice that the return type of the constructors is not always <literal>Term a</literal>, as is the
+case with ordinary data types.  This generality allows us to 
+write a well-typed <literal>eval</literal> function
+for these <literal>Terms</literal>:
+<programlisting>
+  eval :: Term a -> a
+  eval (Lit i)             = i
+  eval (Succ t)     = 1 + eval t
+  eval (IsZero t)   = eval t == 0
+  eval (If b e1 e2) = if eval b then eval e1 else eval e2
+  eval (Pair e1 e2) = (eval e1, eval e2)
+</programlisting>
+The key point about GADTs is that <emphasis>pattern matching causes type refinement</emphasis>.  
+For example, in the right hand side of the equation
+<programlisting>
+  eval :: Term a -> a
+  eval (Lit i) =  ...
+</programlisting>
+the type <literal>a</literal> is refined to <literal>Int</literal>.  That's the whole point!
+A precise specification of the type rules is beyond what this user manual aspires to, 
+but the design closely follows that described in
+the paper <ulink
+url="http://research.microsoft.com/%7Esimonpj/papers/gadt/">Simple
+unification-based type inference for GADTs</ulink>,
+(ICFP 2006).
+The general principle is this: <emphasis>type refinement is only carried out 
+based on user-supplied type annotations</emphasis>.
+So if no type signature is supplied for <literal>eval</literal>, no type refinement happens, 
+and lots of obscure error messages will
+occur.  However, the refinement is quite general.  For example, if we had:
+<programlisting>
+  eval :: Term a -> a -> a
+  eval (Lit i) j =  i+j
+</programlisting>
+the pattern match causes the type <literal>a</literal> to be refined to <literal>Int</literal> (because of the type
+of the constructor <literal>Lit</literal>), and that refinement also applies to the type of <literal>j</literal>, and
+the result type of the <literal>case</literal> expression.  Hence the addition <literal>i+j</literal> is legal.
+</para>
+<para>
+These and many other examples are given in papers by Hongwei Xi, and
+Tim Sheard. There is a longer introduction
+<ulink url="http://www.haskell.org/haskellwiki/GADT">on the wiki</ulink>,
+and Ralf Hinze's
+<ulink url="http://www.informatik.uni-bonn.de/~ralf/publications/With.pdf">Fun with phantom types</ulink> also has a number of examples. Note that papers
+may use different notation to that implemented in GHC.
+</para>
+<para>
+The rest of this section outlines the extensions to GHC that support GADTs.   The extension is enabled with 
+<option>-XGADTs</option>.
+<itemizedlist>
+<listitem><para>
+A GADT can only be declared using GADT-style syntax (<xref linkend="gadt-style"/>); 
+the old Haskell-98 syntax for data declarations always declares an ordinary data type.
+The result type of each constructor must begin with the type constructor being defined,
+but for a GADT the arguments to the type constructor can be arbitrary monotypes.  
+For example, in the <literal>Term</literal> data
+type above, the type of each constructor must end with <literal>Term ty</literal>, but
+the <literal>ty</literal> may not be a type variable (e.g. the <literal>Lit</literal>
+constructor).
+</para></listitem>
+
+<listitem><para>
+You cannot use a <literal>deriving</literal> clause for a GADT; only for
+an ordinary data type.
+</para></listitem>
+
+<listitem><para>
+As mentioned in <xref linkend="gadt-style"/>, record syntax is supported.
+For example:
+<programlisting>
+  data Term a where
+      Lit    { val  :: Int }      :: Term Int
+      Succ   { num  :: Term Int } :: Term Int
+      Pred   { num  :: Term Int } :: Term Int
+      IsZero { arg  :: Term Int } :: Term Bool 
+      Pair   { arg1 :: Term a
+             , arg2 :: Term b
+             }                    :: Term (a,b)
+      If     { cnd  :: Term Bool
+             , tru  :: Term a
+             , fls  :: Term a
+             }                    :: Term a
+</programlisting>
+However, for GADTs there is the following additional constraint: 
+every constructor that has a field <literal>f</literal> must have
+the same result type (modulo alpha conversion)
+Hence, in the above example, we cannot merge the <literal>num</literal> 
+and <literal>arg</literal> fields above into a 
+single name.  Although their field types are both <literal>Term Int</literal>,
+their selector functions actually have different types:
+
+<programlisting>
+  num :: Term Int -> Term Int
+  arg :: Term Bool -> Term Int
+</programlisting>
+</para></listitem>
+
+</itemizedlist>
+</para>
+
+</sect2>
+</sect1>
+
+<!-- ====================== End of Generalised algebraic data types =======================  -->
+
+<sect1 id="deriving">
+<title>Extensions to the "deriving" mechanism</title>
+
+<sect2 id="deriving-inferred">
+<title>Inferred context for deriving clauses</title>
+
+<para>
+The Haskell Report is vague about exactly when a <literal>deriving</literal> clause is
+legal.  For example:
+<programlisting>
+  data T0 f a = MkT0 a         deriving( Eq )
+  data T1 f a = MkT1 (f a)     deriving( Eq )
+  data T2 f a = MkT2 (f (f a)) deriving( Eq )
+</programlisting>
+The natural generated <literal>Eq</literal> code would result in these instance declarations:
+<programlisting>
+  instance Eq a         => Eq (T0 f a) where ...
+  instance Eq (f a)     => Eq (T1 f a) where ...
+  instance Eq (f (f a)) => Eq (T2 f a) where ...
+</programlisting>
+The first of these is obviously fine. The second is still fine, although less obviously. 
+The third is not Haskell 98, and risks losing termination of instances.
+</para>
+<para>
+GHC takes a conservative position: it accepts the first two, but not the third.  The  rule is this:
+each constraint in the inferred instance context must consist only of type variables, 
+with no repetitions.
+</para>
+<para>
+This rule is applied regardless of flags.  If you want a more exotic context, you can write
+it yourself, using the <link linkend="stand-alone-deriving">standalone deriving mechanism</link>.
+</para>
+</sect2>
+
+<sect2 id="stand-alone-deriving">
+<title>Stand-alone deriving declarations</title>
+
+<para>
+GHC now allows stand-alone <literal>deriving</literal> declarations, enabled by <literal>-XStandaloneDeriving</literal>:
+<programlisting>
+  data Foo a = Bar a | Baz String
+
+  deriving instance Eq a => Eq (Foo a)
+</programlisting>
+The syntax is identical to that of an ordinary instance declaration apart from (a) the keyword
+<literal>deriving</literal>, and (b) the absence of the <literal>where</literal> part.
+You must supply a context (in the example the context is <literal>(Eq a)</literal>), 
+exactly as you would in an ordinary instance declaration.
+(In contrast the context is inferred in a <literal>deriving</literal> clause 
+attached to a data type declaration.) These <literal>deriving instance</literal>
+rules obey the same rules concerning form and termination as ordinary instance declarations,
+controlled by the same flags; see <xref linkend="instance-decls"/>. </para>
+
+<para>The stand-alone syntax is generalised for newtypes in exactly the same
+way that ordinary <literal>deriving</literal> clauses are generalised (<xref linkend="newtype-deriving"/>).
+For example:
+<programlisting>
+  newtype Foo a = MkFoo (State Int a)
+
+  deriving instance MonadState Int Foo
+</programlisting>
+GHC always treats the <emphasis>last</emphasis> parameter of the instance
+(<literal>Foo</literal> in this example) as the type whose instance is being derived.
+</para>
+
+</sect2>
+
+
+<sect2 id="deriving-typeable">
+<title>Deriving clause for classes <literal>Typeable</literal> and <literal>Data</literal></title>
+
+<para>
+Haskell 98 allows the programmer to add "<literal>deriving( Eq, Ord )</literal>" to a data type 
+declaration, to generate a standard instance declaration for classes specified in the <literal>deriving</literal> clause.  
+In Haskell 98, the only classes that may appear in the <literal>deriving</literal> clause are the standard
+classes <literal>Eq</literal>, <literal>Ord</literal>, 
+<literal>Enum</literal>, <literal>Ix</literal>, <literal>Bounded</literal>, <literal>Read</literal>, and <literal>Show</literal>.
+</para>
+<para>
+GHC extends this list with two more classes that may be automatically derived 
+(provided the <option>-XDeriveDataTypeable</option> flag is specified):
+<literal>Typeable</literal>, and <literal>Data</literal>.  These classes are defined in the library
+modules <literal>Data.Typeable</literal> and <literal>Data.Generics</literal> respectively, and the
+appropriate class must be in scope before it can be mentioned in the <literal>deriving</literal> clause.
+</para>
+<para>An instance of <literal>Typeable</literal> can only be derived if the
+data type has seven or fewer type parameters, all of kind <literal>*</literal>.
+The reason for this is that the <literal>Typeable</literal> class is derived using the scheme
+described in
+<ulink url="http://research.microsoft.com/%7Esimonpj/papers/hmap/gmap2.ps">
+Scrap More Boilerplate: Reflection, Zips, and Generalised Casts
+</ulink>.
+(Section 7.4 of the paper describes the multiple <literal>Typeable</literal> classes that
+are used, and only <literal>Typeable1</literal> up to
+<literal>Typeable7</literal> are provided in the library.)
+In other cases, there is nothing to stop the programmer writing a <literal>TypableX</literal>
+class, whose kind suits that of the data type constructor, and
+then writing the data type instance by hand.
+</para>
+</sect2>
+
+<sect2 id="newtype-deriving">
+<title>Generalised derived instances for newtypes</title>
+
+<para>
+When you define an abstract type using <literal>newtype</literal>, you may want
+the new type to inherit some instances from its representation. In
+Haskell 98, you can inherit instances of <literal>Eq</literal>, <literal>Ord</literal>,
+<literal>Enum</literal> and <literal>Bounded</literal> by deriving them, but for any
+other classes you have to write an explicit instance declaration. For
+example, if you define
+
+<programlisting>
+  newtype Dollars = Dollars Int 
+</programlisting>
+
+and you want to use arithmetic on <literal>Dollars</literal>, you have to
+explicitly define an instance of <literal>Num</literal>:
+
+<programlisting>
+  instance Num Dollars where
+    Dollars a + Dollars b = Dollars (a+b)
+    ...
+</programlisting>
+All the instance does is apply and remove the <literal>newtype</literal>
+constructor. It is particularly galling that, since the constructor
+doesn't appear at run-time, this instance declaration defines a
+dictionary which is <emphasis>wholly equivalent</emphasis> to the <literal>Int</literal>
+dictionary, only slower!
+</para>
+
+
+<sect3> <title> Generalising the deriving clause </title>
+<para>
+GHC now permits such instances to be derived instead, 
+using the flag <option>-XGeneralizedNewtypeDeriving</option>,
+so one can write 
+<programlisting>
+  newtype Dollars = Dollars Int deriving (Eq,Show,Num)
+</programlisting>
+
+and the implementation uses the <emphasis>same</emphasis> <literal>Num</literal> dictionary
+for <literal>Dollars</literal> as for <literal>Int</literal>. Notionally, the compiler
+derives an instance declaration of the form
+
+<programlisting>
+  instance Num Int => Num Dollars
+</programlisting>
+
+which just adds or removes the <literal>newtype</literal> constructor according to the type.
+</para>
+<para>
+
+We can also derive instances of constructor classes in a similar
+way. For example, suppose we have implemented state and failure monad
+transformers, such that
+
+<programlisting>
+  instance Monad m => Monad (State s m) 
+  instance Monad m => Monad (Failure m)
+</programlisting>
+In Haskell 98, we can define a parsing monad by 
+<programlisting>
+  type Parser tok m a = State [tok] (Failure m) a
+</programlisting>
+
+which is automatically a monad thanks to the instance declarations
+above. With the extension, we can make the parser type abstract,
+without needing to write an instance of class <literal>Monad</literal>, via
+
+<programlisting>
+  newtype Parser tok m a = Parser (State [tok] (Failure m) a)
+                         deriving Monad
+</programlisting>
+In this case the derived instance declaration is of the form 
+<programlisting>
+  instance Monad (State [tok] (Failure m)) => Monad (Parser tok m) 
+</programlisting>
+
+Notice that, since <literal>Monad</literal> is a constructor class, the
+instance is a <emphasis>partial application</emphasis> of the new type, not the
+entire left hand side. We can imagine that the type declaration is
+"eta-converted" to generate the context of the instance
+declaration.
+</para>
+<para>
+
+We can even derive instances of multi-parameter classes, provided the
+newtype is the last class parameter. In this case, a ``partial
+application'' of the class appears in the <literal>deriving</literal>
+clause. For example, given the class
+
+<programlisting>
+  class StateMonad s m | m -> s where ... 
+  instance Monad m => StateMonad s (State s m) where ... 
+</programlisting>
+then we can derive an instance of <literal>StateMonad</literal> for <literal>Parser</literal>s by 
+<programlisting>
+  newtype Parser tok m a = Parser (State [tok] (Failure m) a)
+                         deriving (Monad, StateMonad [tok])
+</programlisting>
+
+The derived instance is obtained by completing the application of the
+class to the new type:
+
+<programlisting>
+  instance StateMonad [tok] (State [tok] (Failure m)) =>
+           StateMonad [tok] (Parser tok m)
+</programlisting>
+</para>
+<para>
+
+As a result of this extension, all derived instances in newtype
+ declarations are treated uniformly (and implemented just by reusing
+the dictionary for the representation type), <emphasis>except</emphasis>
+<literal>Show</literal> and <literal>Read</literal>, which really behave differently for
+the newtype and its representation.
+</para>
+</sect3>
+
+<sect3> <title> A more precise specification </title>
+<para>
+Derived instance declarations are constructed as follows. Consider the
+declaration (after expansion of any type synonyms)
+
+<programlisting>
+  newtype T v1...vn = T' (t vk+1...vn) deriving (c1...cm) 
+</programlisting>
+
+where 
+ <itemizedlist>
+<listitem><para>
+  The <literal>ci</literal> are partial applications of
+  classes of the form <literal>C t1'...tj'</literal>, where the arity of <literal>C</literal>
+  is exactly <literal>j+1</literal>.  That is, <literal>C</literal> lacks exactly one type argument.
+</para></listitem>
+<listitem><para>
+  The <literal>k</literal> is chosen so that <literal>ci (T v1...vk)</literal> is well-kinded.
+</para></listitem>
+<listitem><para>
+  The type <literal>t</literal> is an arbitrary type.
+</para></listitem>
+<listitem><para>
+  The type variables <literal>vk+1...vn</literal> do not occur in <literal>t</literal>, 
+  nor in the <literal>ci</literal>, and
+</para></listitem>
+<listitem><para>
+  None of the <literal>ci</literal> is <literal>Read</literal>, <literal>Show</literal>, 
+               <literal>Typeable</literal>, or <literal>Data</literal>.  These classes
+               should not "look through" the type or its constructor.  You can still
+               derive these classes for a newtype, but it happens in the usual way, not 
+               via this new mechanism.  
+</para></listitem>
+</itemizedlist>
+Then, for each <literal>ci</literal>, the derived instance
+declaration is:
+<programlisting>
+  instance ci t => ci (T v1...vk)
+</programlisting>
+As an example which does <emphasis>not</emphasis> work, consider 
+<programlisting>
+  newtype NonMonad m s = NonMonad (State s m s) deriving Monad 
+</programlisting>
+Here we cannot derive the instance 
+<programlisting>
+  instance Monad (State s m) => Monad (NonMonad m) 
+</programlisting>
+
+because the type variable <literal>s</literal> occurs in <literal>State s m</literal>,
+and so cannot be "eta-converted" away. It is a good thing that this
+<literal>deriving</literal> clause is rejected, because <literal>NonMonad m</literal> is
+not, in fact, a monad --- for the same reason. Try defining
+<literal>>>=</literal> with the correct type: you won't be able to.
+</para>
+<para>
+
+Notice also that the <emphasis>order</emphasis> of class parameters becomes
+important, since we can only derive instances for the last one. If the
+<literal>StateMonad</literal> class above were instead defined as
+
+<programlisting>
+  class StateMonad m s | m -> s where ... 
+</programlisting>
+
+then we would not have been able to derive an instance for the
+<literal>Parser</literal> type above. We hypothesise that multi-parameter
+classes usually have one "main" parameter for which deriving new
+instances is most interesting.
+</para>
+<para>Lastly, all of this applies only for classes other than
+<literal>Read</literal>, <literal>Show</literal>, <literal>Typeable</literal>, 
+and <literal>Data</literal>, for which the built-in derivation applies (section
+4.3.3. of the Haskell Report).
+(For the standard classes <literal>Eq</literal>, <literal>Ord</literal>,
+<literal>Ix</literal>, and <literal>Bounded</literal> it is immaterial whether
+the standard method is used or the one described here.)
+</para>
+</sect3>
+</sect2>
+</sect1>
+
+
+<!-- TYPE SYSTEM EXTENSIONS -->
+<sect1 id="type-class-extensions">
+<title>Class and instances declarations</title>
+
+<sect2 id="multi-param-type-classes">
+<title>Class declarations</title>
+
+<para>
+This section, and the next one, documents GHC's type-class extensions.
+There's lots of background in the paper <ulink
+url="http://research.microsoft.com/~simonpj/Papers/type-class-design-space/">Type
+classes: exploring the design space</ulink> (Simon Peyton Jones, Mark
+Jones, Erik Meijer).
+</para>
+<para>
+All the extensions are enabled by the <option>-fglasgow-exts</option> flag.
+</para>
+
+<sect3>
+<title>Multi-parameter type classes</title>
+<para>
+Multi-parameter type classes are permitted. For example:
+
+
+<programlisting>
+  class Collection c a where
+    union :: c a -> c a -> c a
+    ...etc.
+</programlisting>
+
+</para>
+</sect3>
+
+<sect3>
+<title>The superclasses of a class declaration</title>
+
+<para>
+There are no restrictions on the context in a class declaration
+(which introduces superclasses), except that the class hierarchy must
+be acyclic.  So these class declarations are OK:
+
+
+<programlisting>
+  class Functor (m k) => FiniteMap m k where
+    ...
+
+  class (Monad m, Monad (t m)) => Transform t m where
+    lift :: m a -> (t m) a
+</programlisting>
+
+
+</para>
+<para>
+As in Haskell 98, The class hierarchy must be acyclic.  However, the definition
+of "acyclic" involves only the superclass relationships.  For example,
+this is OK:
+
+
+<programlisting>
+  class C a where {
+    op :: D b => a -> b -> b
+  }
+
+  class C a => D a where { ... }
+</programlisting>
+
+
+Here, <literal>C</literal> is a superclass of <literal>D</literal>, but it's OK for a
+class operation <literal>op</literal> of <literal>C</literal> to mention <literal>D</literal>.  (It
+would not be OK for <literal>D</literal> to be a superclass of <literal>C</literal>.)
+</para>
+</sect3>
+
+
+
+
+<sect3 id="class-method-types">
+<title>Class method types</title>
+
+<para>
+Haskell 98 prohibits class method types to mention constraints on the
+class type variable, thus:
+<programlisting>
+  class Seq s a where
+    fromList :: [a] -> s a
+    elem     :: Eq a => a -> s a -> Bool
+</programlisting>
+The type of <literal>elem</literal> is illegal in Haskell 98, because it
+contains the constraint <literal>Eq a</literal>, constrains only the 
+class type variable (in this case <literal>a</literal>).
+GHC lifts this restriction (flag <option>-XConstrainedClassMethods</option>).
+</para>
 
-</sect3>
-</sect2>
+
+</sect3>
+</sect2>
 
 <sect2 id="functional-dependencies">
 <title>Functional dependencies
 </title>
 
 <para> Functional dependencies are implemented as described by Mark Jones
-in &ldquo;<ulink url="http://www.cse.ogi.edu/~mpj/pubs/fundeps.html">Type Classes with Functional Dependencies</ulink>&rdquo;, Mark P. Jones, 
+in &ldquo;<ulink url="http://citeseer.ist.psu.edu/jones00type.html">Type Classes with Functional Dependencies</ulink>&rdquo;, Mark P. Jones, 
 In Proceedings of the 9th European Symposium on Programming, 
 ESOP 2000, Berlin, Germany, March 2000, Springer-Verlag LNCS 1782,
 .
@@ -1939,14 +3196,14 @@ must be of the form <literal>C a</literal> where <literal>a</literal>
 is a type variable that occurs in the head.
 </para>
 <para>
-The <option>-fglasgow-exts</option> flag loosens these restrictions
+The <option>-XFlexibleInstances</option> flag loosens these restrictions
 considerably.  Firstly, multi-parameter type classes are permitted.  Secondly,
 the context and head of the instance declaration can each consist of arbitrary
 (well-kinded) assertions <literal>(C t1 ... tn)</literal> subject only to the
 following rules:
 <orderedlist>
 <listitem><para>
-For each assertion in the context:
+The Paterson Conditions: for each assertion in the context
 <orderedlist>
 <listitem><para>No type variable has more occurrences in the assertion than in the head</para></listitem>
 <listitem><para>The assertion has fewer constructors and variables (taken together
@@ -1954,7 +3211,7 @@ For each assertion in the context:
 </orderedlist>
 </para></listitem>
 
-<listitem><para>The coverage condition.  For each functional dependency,
+<listitem><para>The Coverage Condition.  For each functional dependency,
 <replaceable>tvs</replaceable><subscript>left</subscript> <literal>-&gt;</literal>
 <replaceable>tvs</replaceable><subscript>right</subscript>,  of the class,
 every type variable in
@@ -1966,11 +3223,15 @@ corresponding type in the instance declaration.
 </orderedlist>
 These restrictions ensure that context reduction terminates: each reduction
 step makes the problem smaller by at least one
-constructor.  For example, the following would make the type checker
-loop if it wasn't excluded:
-<programlisting>
-  instance C a => C a where ...
-</programlisting>
+constructor.  Both the Paterson Conditions and the Coverage Condition are lifted 
+if you give the <option>-fallow-undecidable-instances</option> 
+flag (<xref linkend="undecidable-instances"/>).
+You can find lots of background material about the reason for these
+restrictions in the paper <ulink
+url="http://research.microsoft.com/%7Esimonpj/papers/fd%2Dchr/">
+Understanding functional dependencies via Constraint Handling Rules</ulink>.
+</para>
+<para>
 For example, these are OK:
 <programlisting>
   instance C Int [a]          -- Multiple parameters
@@ -2064,7 +3325,7 @@ typechecker loop:
   class F a b | a->b
   instance F [a] [[a]]
   instance (D c, F a c) => D [a]   -- 'c' is not mentioned in the head
-</programlisting>  
+</programlisting>
 Similarly, it can be tempting to lift the coverage condition:
 <programlisting>
   class Mul a b c | a b -> c where
@@ -2084,13 +3345,13 @@ makes instance inference go into a loop, because it requires the constraint
 </para>
 <para>
 Nevertheless, GHC allows you to experiment with more liberal rules.  If you use
-the experimental flag <option>-fallow-undecidable-instances</option>
-<indexterm><primary>-fallow-undecidable-instances
-option</primary></indexterm>, you can use arbitrary
-types in both an instance context and instance head.  Termination is ensured by having a
+the experimental flag <option>-XUndecidableInstances</option>
+<indexterm><primary>-XUndecidableInstances</primary></indexterm>, 
+both the Paterson Conditions and the Coverage Condition
+(described in <xref linkend="instance-rules"/>) are lifted.  Termination is ensured by having a
 fixed-depth recursion stack.  If you exceed the stack depth you get a
 sort of backtrace, and the opportunity to increase the stack depth
-with <option>-fcontext-stack</option><emphasis>N</emphasis>.
+with <option>-fcontext-stack=</option><emphasis>N</emphasis>.
 </para>
 
 </sect3>
@@ -2102,11 +3363,11 @@ with <option>-fcontext-stack</option><emphasis>N</emphasis>.
 In general, <emphasis>GHC requires that that it be unambiguous which instance
 declaration
 should be used to resolve a type-class constraint</emphasis>. This behaviour
-can be modified by two flags: <option>-fallow-overlapping-instances</option>
-<indexterm><primary>-fallow-overlapping-instances
+can be modified by two flags: <option>-XOverlappingInstances</option>
+<indexterm><primary>-XOverlappingInstances
 </primary></indexterm> 
-and <option>-fallow-incoherent-instances</option>
-<indexterm><primary>-fallow-incoherent-instances
+and <option>-XIncoherentInstances</option>
+<indexterm><primary>-XIncoherentInstances
 </primary></indexterm>, as this section discusses.  Both these
 flags are dynamic flags, and can be set on a per-module basis, using 
 an <literal>OPTIONS_GHC</literal> pragma if desired (<xref linkend="source-file-options"/>).</para>
@@ -2134,7 +3395,7 @@ particular constraint matches more than one.
 </para>
 
 <para>
-The <option>-fallow-overlapping-instances</option> flag instructs GHC to allow
+The <option>-XOverlappingInstances</option> flag instructs GHC to allow
 more than one instance to match, provided there is a most specific one.  For
 example, the constraint <literal>C Int [Int]</literal> matches instances (A),
 (C) and (D), but the last is more specific, and hence is chosen.  If there is no
@@ -2151,38 +3412,65 @@ Suppose that from the RHS of <literal>f</literal> we get the constraint
 GHC does not commit to instance (C), because in a particular
 call of <literal>f</literal>, <literal>b</literal> might be instantiate 
 to <literal>Int</literal>, in which case instance (D) would be more specific still.
-So GHC rejects the program.  If you add the flag <option>-fallow-incoherent-instances</option>,
+So GHC rejects the program.  
+(If you add the flag <option>-XIncoherentInstances</option>,
 GHC will instead pick (C), without complaining about 
-the problem of subsequent instantiations.
+the problem of subsequent instantiations.)
+</para>
+<para>
+Notice that we gave a type signature to <literal>f</literal>, so GHC had to
+<emphasis>check</emphasis> that <literal>f</literal> has the specified type.  
+Suppose instead we do not give a type signature, asking GHC to <emphasis>infer</emphasis>
+it instead.  In this case, GHC will refrain from
+simplifying the constraint <literal>C Int [Int]</literal> (for the same reason
+as before) but, rather than rejecting the program, it will infer the type
+<programlisting>
+  f :: C Int b => [b] -> [b]
+</programlisting>
+That postpones the question of which instance to pick to the 
+call site for <literal>f</literal>
+by which time more is known about the type <literal>b</literal>.
 </para>
 <para>
 The willingness to be overlapped or incoherent is a property of 
 the <emphasis>instance declaration</emphasis> itself, controlled by the
-presence or otherwise of the <option>-fallow-overlapping-instances</option> 
-and <option>-fallow-incoherent-instances</option> flags when that mdodule is
+presence or otherwise of the <option>-XOverlappingInstances</option> 
+and <option>-XIncoherentInstances</option> flags when that module is
 being defined.  Neither flag is required in a module that imports and uses the
 instance declaration.  Specifically, during the lookup process:
 <itemizedlist>
 <listitem><para>
 An instance declaration is ignored during the lookup process if (a) a more specific
 match is found, and (b) the instance declaration was compiled with 
-<option>-fallow-overlapping-instances</option>.  The flag setting for the
+<option>-XOverlappingInstances</option>.  The flag setting for the
 more-specific instance does not matter.
 </para></listitem>
 <listitem><para>
-Suppose an instance declaration does not matche the constraint being looked up, but
+Suppose an instance declaration does not match the constraint being looked up, but
 does unify with it, so that it might match when the constraint is further 
 instantiated.  Usually GHC will regard this as a reason for not committing to
 some other constraint.  But if the instance declaration was compiled with
-<option>-fallow-incoherent-instances</option>, GHC will skip the "does-it-unify?" 
+<option>-XIncoherentInstances</option>, GHC will skip the "does-it-unify?" 
 check for that declaration.
 </para></listitem>
 </itemizedlist>
-All this makes it possible for a library author to design a library that relies on 
-overlapping instances without the library client having to know.
+These rules make it possible for a library author to design a library that relies on 
+overlapping instances without the library client having to know.  
+</para>
+<para>
+If an instance declaration is compiled without
+<option>-XOverlappingInstances</option>,
+then that instance can never be overlapped.  This could perhaps be
+inconvenient.  Perhaps the rule should instead say that the
+<emphasis>overlapping</emphasis> instance declaration should be compiled in
+this way, rather than the <emphasis>overlapped</emphasis> one.  Perhaps overlap
+at a usage site should be permitted regardless of how the instance declarations
+are compiled, if the <option>-XOverlappingInstances</option> flag is
+used at the usage site.  (Mind you, the exact usage site can occasionally be
+hard to pin down.)  We are interested to receive feedback on these points.
 </para>
-<para>The <option>-fallow-incoherent-instances</option> flag implies the
-<option>-fallow-overlapping-instances</option> flag, but not vice versa.
+<para>The <option>-XIncoherentInstances</option> flag implies the
+<option>-XOverlappingInstances</option> flag, but not vice versa.
 </para>
 </sect3>
 
@@ -2231,10 +3519,90 @@ reversed, but it makes sense to me.
 
 </sect2>
 
+<sect2 id="overloaded-strings">
+<title>Overloaded string literals
+</title>
+
+<para>
+GHC supports <emphasis>overloaded string literals</emphasis>.  Normally a
+string literal has type <literal>String</literal>, but with overloaded string
+literals enabled (with <literal>-XOverloadedStrings</literal>)
+ a string literal has type <literal>(IsString a) => a</literal>.
+</para>
+<para>
+This means that the usual string syntax can be used, e.g., for packed strings
+and other variations of string like types.  String literals behave very much
+like integer literals, i.e., they can be used in both expressions and patterns.
+If used in a pattern the literal with be replaced by an equality test, in the same
+way as an integer literal is.
+</para>
+<para>
+The class <literal>IsString</literal> is defined as:
+<programlisting>
+class IsString a where
+    fromString :: String -> a
+</programlisting>
+The only predefined instance is the obvious one to make strings work as usual:
+<programlisting>
+instance IsString [Char] where
+    fromString cs = cs
+</programlisting>
+The class <literal>IsString</literal> is not in scope by default.  If you want to mention
+it explicitly (for example, to give an instance declaration for it), you can import it
+from module <literal>GHC.Exts</literal>.
+</para>
+<para>
+Haskell's defaulting mechanism is extended to cover string literals, when <option>-XOverloadedStrings</option> is specified.
+Specifically:
+<itemizedlist>
+<listitem><para>
+Each type in a default declaration must be an 
+instance of <literal>Num</literal> <emphasis>or</emphasis> of <literal>IsString</literal>.
+</para></listitem>
+
+<listitem><para>
+The standard defaulting rule (<ulink url="http://www.haskell.org/onlinereport/decls.html#sect4.3.4">Haskell Report, Section 4.3.4</ulink>)
+is extended thus: defaulting applies when all the unresolved constraints involve standard classes
+<emphasis>or</emphasis> <literal>IsString</literal>; and at least one is a numeric class
+<emphasis>or</emphasis> <literal>IsString</literal>.
+</para></listitem>
+</itemizedlist>
+</para>
+<para>
+A small example:
+<programlisting>
+module Main where
+
+import GHC.Exts( IsString(..) )
+
+newtype MyString = MyString String deriving (Eq, Show)
+instance IsString MyString where
+    fromString = MyString
+
+greet :: MyString -> MyString
+greet "hello" = "world"
+greet other = other
+
+main = do
+    print $ greet "hello"
+    print $ greet "fool"
+</programlisting>
+</para>
+<para>
+Note that deriving <literal>Eq</literal> is necessary for the pattern matching
+to work since it gets translated into an equality comparison.
+</para>
+</sect2>
+
+</sect1>
+
+<sect1 id="other-type-extensions">
+<title>Other type system extensions</title>
+
 <sect2 id="type-restrictions">
 <title>Type signatures</title>
 
-<sect3><title>The context of a type signature</title>
+<sect3 id="flexible-contexts"><title>The context of a type signature</title>
 <para>
 Unlike Haskell 98, constraints in types do <emphasis>not</emphasis> have to be of
 the form <emphasis>(class type-variable)</emphasis> or
@@ -2347,54 +3715,6 @@ territory free in case we need it later.
 </para>
 </sect3>
 
-<sect3 id="hoist">
-<title>For-all hoisting</title>
-<para>
-It is often convenient to use generalised type synonyms (see <xref linkend="type-synonyms"/>) at the right hand
-end of an arrow, thus:
-<programlisting>
-  type Discard a = forall b. a -> b -> a
-
-  g :: Int -> Discard Int
-  g x y z = x+y
-</programlisting>
-Simply expanding the type synonym would give
-<programlisting>
-  g :: Int -> (forall b. Int -> b -> Int)
-</programlisting>
-but GHC "hoists" the <literal>forall</literal> to give the isomorphic type
-<programlisting>
-  g :: forall b. Int -> Int -> b -> Int
-</programlisting>
-In general, the rule is this: <emphasis>to determine the type specified by any explicit
-user-written type (e.g. in a type signature), GHC expands type synonyms and then repeatedly
-performs the transformation:</emphasis>
-<programlisting>
-  <emphasis>type1</emphasis> -> forall a1..an. <emphasis>context2</emphasis> => <emphasis>type2</emphasis>
-==>
-  forall a1..an. <emphasis>context2</emphasis> => <emphasis>type1</emphasis> -> <emphasis>type2</emphasis>
-</programlisting>
-(In fact, GHC tries to retain as much synonym information as possible for use in
-error messages, but that is a usability issue.)  This rule applies, of course, whether
-or not the <literal>forall</literal> comes from a synonym. For example, here is another
-valid way to write <literal>g</literal>'s type signature:
-<programlisting>
-  g :: Int -> Int -> forall b. b -> Int
-</programlisting>
-</para>
-<para>
-When doing this hoisting operation, GHC eliminates duplicate constraints.  For
-example:
-<programlisting>
-  type Foo a = (?x::Int) => Bool -> a
-  g :: Foo (Foo Int)
-</programlisting>
-means
-<programlisting>
-  g :: (?x::Int) => Bool -> Bool -> Int
-</programlisting>
-</para>
-</sect3>
 
 
 </sect2>
@@ -2409,11 +3729,11 @@ J Lewis, MB Shields, E Meijer, J Launchbury,
 Boston, Jan 2000.
 </para>
 
-<para>(Most of the following, stil rather incomplete, documentation is
+<para>(Most of the following, still rather incomplete, documentation is
 due to Jeff Lewis.)</para>
 
 <para>Implicit parameter support is enabled with the option
-<option>-fimplicit-params</option>.</para>
+<option>-XImplicitParams</option>.</para>
 
 <para>
 A variable is called <emphasis>dynamically bound</emphasis> when it is bound by the calling
@@ -2466,7 +3786,7 @@ function that called it. For example, our <literal>sort</literal> function might
 to pick out the least value in a list:
 <programlisting>
   least   :: (?cmp :: a -> a -> Bool) => [a] -> a
-  least xs = fst (sort xs)
+  least xs = head (sort xs)
 </programlisting>
 Without lifting a finger, the <literal>?cmp</literal> parameter is
 propagated to become a parameter of <literal>least</literal> as well. With explicit
@@ -2589,7 +3909,7 @@ In the former case, <literal>len_acc1</literal> is monomorphic in its own
 right-hand side, so the implicit parameter <literal>?acc</literal> is not
 passed to the recursive call.  In the latter case, because <literal>len_acc2</literal>
 has a type signature, the recursive call is made to the
-<emphasis>polymoprhic</emphasis> version, which takes <literal>?acc</literal>
+<emphasis>polymorphic</emphasis> version, which takes <literal>?acc</literal>
 as an implicit parameter.  So we get the following results in GHCi:
 <programlisting>
   Prog> len1 "hello"
@@ -2626,6 +3946,11 @@ inner binding of <literal>?x</literal>, so <literal>(f 9)</literal> will return
 </sect3>
 </sect2>
 
+    <!--   ======================= COMMENTED OUT ========================
+
+    We intend to remove linear implicit parameters, so I'm at least removing
+    them from the 6.6 user manual
+
 <sect2 id="linear-implicit-parameters">
 <title>Linear implicit parameters</title>
 <para>
@@ -2641,7 +3966,7 @@ problem that monads seem over-kill for certain sorts of problem, notably:
 
 <para>
 Linear implicit parameters are just like ordinary implicit parameters,
-except that they are "linear" -- that is, they cannot be copied, and
+except that they are "linear"; that is, they cannot be copied, and
 must be explicitly "split" instead.  Linear implicit parameters are
 written '<literal>%x</literal>' instead of '<literal>?x</literal>'.  
 (The '/' in the '%' suggests the split!)
@@ -2709,7 +4034,7 @@ Other points:
 <itemizedlist>
 <listitem> <para> '<literal>?x</literal>' and '<literal>%x</literal>' 
 are entirely distinct implicit parameters: you 
-  can use them together and they won't intefere with each other. </para>
+  can use them together and they won't interfere with each other. </para>
 </listitem>
 
 <listitem> <para> You can bind linear implicit parameters in 'with' clauses. </para> </listitem>
@@ -2796,7 +4121,9 @@ and you'd be right.  That is why they are an experimental feature.
 
 </sect2>
 
-<sect2 id="sec-kinding">
+================ END OF Linear Implicit Parameters commented out -->
+
+<sect2 id="kinding">
 <title>Explicitly-kinded quantification</title>
 
 <para>
@@ -2814,7 +4141,10 @@ kind for the type variable <literal>cxt</literal>.
 </para>
 <para>
 GHC now instead allows you to specify the kind of a type variable directly, wherever
-a type variable is explicitly bound.  Namely:
+a type variable is explicitly bound, with the flag <option>-XKindSignatures</option>.
+</para>
+<para>
+This flag enables kind signatures in the following places:
 <itemizedlist>
 <listitem><para><literal>data</literal> declarations:
 <screen>
@@ -2890,6 +4220,8 @@ For example, all the following types are legal:
     g2 :: (forall a. Eq a => [a] -> a -> Bool) -> Int -> Int
 
     f3 :: ((forall a. a->a) -> Int) -> Bool -> Bool
+
+    f4 :: Int -> (forall a. a -> a)
 </programlisting>
 Here, <literal>f1</literal> and <literal>g1</literal> are rank-1 types, and
 can be written in standard Haskell (e.g. <literal>f1 :: a->b->a</literal>).
@@ -2906,28 +4238,31 @@ The function <literal>f3</literal> has a rank-3 type;
 it has rank-2 types on the left of a function arrow.
 </para>
 <para>
-GHC allows types of arbitrary rank; you can nest <literal>forall</literal>s
-arbitrarily deep in function arrows.   (GHC used to be restricted to rank 2, but
-that restriction has now been lifted.)
+GHC has three flags to control higher-rank types:
+<itemizedlist>
+<listitem><para>
+ <option>-XPolymorphicComponents</option>: data constructors (only) can have polymorphic argment types.
+</para></listitem>
+<listitem><para>
+ <option>-XRank2Types</option>: any function (including data constructors) can have a rank-2 type.
+</para></listitem>
+<listitem><para>
+ <option>-XRankNTypes</option>: any function (including data constructors) can have an arbitrary-rank type.
+That is,  you can nest <literal>forall</literal>s
+arbitrarily deep in function arrows.
 In particular, a forall-type (also called a "type scheme"),
 including an operational type class context, is legal:
 <itemizedlist>
-<listitem> <para> On the left of a function arrow </para> </listitem>
-<listitem> <para> On the right of a function arrow (see <xref linkend="hoist"/>) </para> </listitem>
+<listitem> <para> On the left or right (see <literal>f4</literal>, for example)
+of a function arrow </para> </listitem>
 <listitem> <para> As the argument of a constructor, or type of a field, in a data type declaration. For
 example, any of the <literal>f1,f2,f3,g1,g2</literal> above would be valid
 field type signatures.</para> </listitem>
 <listitem> <para> As the type of an implicit parameter </para> </listitem>
 <listitem> <para> In a pattern type signature (see <xref linkend="scoped-type-variables"/>) </para> </listitem>
 </itemizedlist>
-There is one place you cannot put a <literal>forall</literal>:
-you cannot instantiate a type variable with a forall-type.  So you cannot 
-make a forall-type the argument of a type constructor.  So these types are illegal:
-<programlisting>
-    x1 :: [forall a. a->a]
-    x2 :: (forall a. a->a, Int)
-    x3 :: Maybe (forall a. a->a)
-</programlisting>
+</para></listitem>
+</itemizedlist>
 Of course <literal>forall</literal> becomes a keyword; you can't use <literal>forall</literal> as
 a type variable any more!
 </para>
@@ -3114,277 +4449,152 @@ it needs to know.
 </sect3>
 
 
-<sect3 id="implicit-quant">
-<title>Implicit quantification</title>
-
-<para>
-GHC performs implicit quantification as follows.  <emphasis>At the top level (only) of 
-user-written types, if and only if there is no explicit <literal>forall</literal>,
-GHC finds all the type variables mentioned in the type that are not already
-in scope, and universally quantifies them.</emphasis>  For example, the following pairs are 
-equivalent:
-<programlisting>
-  f :: a -> a
-  f :: forall a. a -> a
-
-  g (x::a) = let
-                h :: a -> b -> b
-                h x y = y
-             in ...
-  g (x::a) = let
-                h :: forall b. a -> b -> b
-                h x y = y
-             in ...
-</programlisting>
-</para>
-<para>
-Notice that GHC does <emphasis>not</emphasis> find the innermost possible quantification
-point.  For example:
-<programlisting>
-  f :: (a -> a) -> Int
-           -- MEANS
-  f :: forall a. (a -> a) -> Int
-           -- NOT
-  f :: (forall a. a -> a) -> Int
-
-
-  g :: (Ord a => a -> a) -> Int
-           -- MEANS the illegal type
-  g :: forall a. (Ord a => a -> a) -> Int
-           -- NOT
-  g :: (forall a. Ord a => a -> a) -> Int
-</programlisting>
-The latter produces an illegal type, which you might think is silly,
-but at least the rule is simple.  If you want the latter type, you
-can write your for-alls explicitly.  Indeed, doing so is strongly advised
-for rank-2 types.
-</para>
-</sect3>
-</sect2>
-
-
-
-
-<sect2 id="scoped-type-variables">
-<title>Scoped type variables
-</title>
-
-<para>
-A <emphasis>lexically scoped type variable</emphasis> can be bound by:
-<itemizedlist>
-<listitem><para>A declaration type signature (<xref linkend="decl-type-sigs"/>)</para></listitem>
-<listitem><para>A pattern type signature (<xref linkend="pattern-type-sigs"/>)</para></listitem>
-<listitem><para>A result type signature (<xref linkend="result-type-sigs"/>)</para></listitem>
-</itemizedlist>
-For example:
-<programlisting>
-f (xs::[a]) = ys ++ ys
-           where
-              ys :: [a]
-              ys = reverse xs
-</programlisting>
-The pattern <literal>(xs::[a])</literal> includes a type signature for <varname>xs</varname>.
-This brings the type variable <literal>a</literal> into scope; it scopes over
-all the patterns and right hand sides for this equation for <function>f</function>.
-In particular, it is in scope at the type signature for <varname>y</varname>.
-</para>
-
-<para>
-At ordinary type signatures, such as that for <varname>ys</varname>, any type variables
-mentioned in the type signature <emphasis>that are not in scope</emphasis> are
-implicitly universally quantified.  (If there are no type variables in
-scope, all type variables mentioned in the signature are universally
-quantified, which is just as in Haskell 98.)  In this case, since <varname>a</varname>
-is in scope, it is not universally quantified, so the type of <varname>ys</varname> is
-the same as that of <varname>xs</varname>.  In Haskell 98 it is not possible to declare
-a type for <varname>ys</varname>; a major benefit of scoped type variables is that
-it becomes possible to do so.
-</para>
-
-<para>
-Scoped type variables are implemented in both GHC and Hugs.  Where the
-implementations differ from the specification below, those differences
-are noted.
-</para>
-
-<para>
-So much for the basic idea.  Here are the details.
-</para>
-
-<sect3>
-<title>What a scoped type variable means</title>
-<para>
-A lexically-scoped type variable is simply
-the name for a type.   The restriction it expresses is that all occurrences
-of the same name mean the same type.  For example:
-<programlisting>
-  f :: [Int] -> Int -> Int
-  f (xs::[a]) (y::a) = (head xs + y) :: a
-</programlisting>
-The pattern type signatures on the left hand side of
-<literal>f</literal> express the fact that <literal>xs</literal>
-must be a list of things of some type <literal>a</literal>; and that <literal>y</literal>
-must have this same type.  The type signature on the expression <literal>(head xs)</literal>
-specifies that this expression must have the same type <literal>a</literal>.
-<emphasis>There is no requirement that the type named by "<literal>a</literal>" is
-in fact a type variable</emphasis>.  Indeed, in this case, the type named by "<literal>a</literal>" is
-<literal>Int</literal>.  (This is a slight liberalisation from the original rather complex
-rules, which specified that a pattern-bound type variable should be universally quantified.)
-For example, all of these are legal:</para>
-
-<programlisting>
-  t (x::a) (y::a) = x+y*2
-
-  f (x::a) (y::b) = [x,y]       -- a unifies with b
-
-  g (x::a) = x + 1::Int         -- a unifies with Int
-
-  h x = let k (y::a) = [x,y]    -- a is free in the
-        in k x                  -- environment
-
-  k (x::a) True    = ...        -- a unifies with Int
-  k (x::Int) False = ...
-
-  w :: [b] -> [b]
-  w (x::a) = x                  -- a unifies with [b]
-</programlisting>
-
-</sect3>
-
-<sect3>
-<title>Scope and implicit quantification</title>
-
-<para>
-
-<itemizedlist>
-<listitem>
+<sect3 id="implicit-quant">
+<title>Implicit quantification</title>
 
 <para>
-All the type variables mentioned in a pattern,
-that are not already in scope,
-are brought into scope by the pattern.  We describe this set as
-the <emphasis>type variables bound by the pattern</emphasis>.
-For example:
+GHC performs implicit quantification as follows.  <emphasis>At the top level (only) of 
+user-written types, if and only if there is no explicit <literal>forall</literal>,
+GHC finds all the type variables mentioned in the type that are not already
+in scope, and universally quantifies them.</emphasis>  For example, the following pairs are 
+equivalent:
 <programlisting>
-  f (x::a) = let g (y::(a,b)) = fst y
-             in
-             g (x,True)
+  f :: a -> a
+  f :: forall a. a -> a
+
+  g (x::a) = let
+                h :: a -> b -> b
+                h x y = y
+             in ...
+  g (x::a) = let
+                h :: forall b. a -> b -> b
+                h x y = y
+             in ...
 </programlisting>
-The pattern <literal>(x::a)</literal> brings the type variable
-<literal>a</literal> into scope, as well as the term 
-variable <literal>x</literal>.  The pattern <literal>(y::(a,b))</literal>
-contains an occurrence of the already-in-scope type variable <literal>a</literal>,
-and brings into scope the type variable <literal>b</literal>.
 </para>
-</listitem>
-
-<listitem>
 <para>
-The type variable(s) bound by the pattern have the same scope
-as the term variable(s) bound by the pattern.  For example:
+Notice that GHC does <emphasis>not</emphasis> find the innermost possible quantification
+point.  For example:
 <programlisting>
-  let
-    f (x::a) = &lt;...rhs of f...>
-    (p::b, q::b) = (1,2)
-  in &lt;...body of let...>
-</programlisting>
-Here, the type variable <literal>a</literal> scopes over the right hand side of <literal>f</literal>,
-just like <literal>x</literal> does; while the type variable <literal>b</literal> scopes over the
-body of the <literal>let</literal>, and all the other definitions in the <literal>let</literal>,
-just like <literal>p</literal> and <literal>q</literal> do.
-Indeed, the newly bound type variables also scope over any ordinary, separate
-type signatures in the <literal>let</literal> group.
-</para>
-</listitem>
-
+  f :: (a -> a) -> Int
+           -- MEANS
+  f :: forall a. (a -> a) -> Int
+           -- NOT
+  f :: (forall a. a -> a) -> Int
 
-<listitem>
-<para>
-The type variables bound by the pattern may be 
-mentioned in ordinary type signatures or pattern 
-type signatures anywhere within their scope.
 
+  g :: (Ord a => a -> a) -> Int
+           -- MEANS the illegal type
+  g :: forall a. (Ord a => a -> a) -> Int
+           -- NOT
+  g :: (forall a. Ord a => a -> a) -> Int
+</programlisting>
+The latter produces an illegal type, which you might think is silly,
+but at least the rule is simple.  If you want the latter type, you
+can write your for-alls explicitly.  Indeed, doing so is strongly advised
+for rank-2 types.
 </para>
-</listitem>
+</sect3>
+</sect2>
 
-<listitem>
-<para>
- In ordinary type signatures, any type variable mentioned in the
-signature that is in scope is <emphasis>not</emphasis> universally quantified.
 
+<sect2 id="impredicative-polymorphism">
+<title>Impredicative polymorphism
+</title>
+<para>GHC supports <emphasis>impredicative polymorphism</emphasis>.  This means
+that you can call a polymorphic function at a polymorphic type, and
+parameterise data structures over polymorphic types.  For example:
+<programlisting>
+  f :: Maybe (forall a. [a] -> [a]) -> Maybe ([Int], [Char])
+  f (Just g) = Just (g [3], g "hello")
+  f Nothing  = Nothing
+</programlisting>
+Notice here that the <literal>Maybe</literal> type is parameterised by the
+<emphasis>polymorphic</emphasis> type <literal>(forall a. [a] ->
+[a])</literal>.
 </para>
-</listitem>
+<para>The technical details of this extension are described in the paper
+<ulink url="http://research.microsoft.com/%7Esimonpj/papers/boxy/">Boxy types:
+type inference for higher-rank types and impredicativity</ulink>,
+which appeared at ICFP 2006.  
+</para>
+</sect2>
 
-<listitem>
+<sect2 id="scoped-type-variables">
+<title>Lexically scoped type variables
+</title>
 
 <para>
- Ordinary type signatures do not bring any new type variables
-into scope (except in the type signature itself!). So this is illegal:
-
+GHC supports <emphasis>lexically scoped type variables</emphasis>, without
+which some type signatures are simply impossible to write. For example:
 <programlisting>
-  f :: a -> a
-  f x = x::a
+f :: forall a. [a] -> [a]
+f xs = ys ++ ys
+     where
+       ys :: [a]
+       ys = reverse xs
 </programlisting>
+The type signature for <literal>f</literal> brings the type variable <literal>a</literal> into scope; it scopes over
+the entire definition of <literal>f</literal>.
+In particular, it is in scope at the type signature for <varname>ys</varname>. 
+In Haskell 98 it is not possible to declare
+a type for <varname>ys</varname>; a major benefit of scoped type variables is that
+it becomes possible to do so.
+</para>
+<para>Lexically-scoped type variables are enabled by
+<option>-fglasgow-exts</option>.
+</para>
+<para>Note: GHC 6.6 contains substantial changes to the way that scoped type
+variables work, compared to earlier releases.  Read this section
+carefully!</para>
 
-It's illegal because <varname>a</varname> is not in scope in the body of <function>f</function>,
-so the ordinary signature <literal>x::a</literal> is equivalent to <literal>x::forall a.a</literal>;
-and that is an incorrect typing.
+<sect3>
+<title>Overview</title>
 
+<para>The design follows the following principles
+<itemizedlist>
+<listitem><para>A scoped type variable stands for a type <emphasis>variable</emphasis>, and not for
+a <emphasis>type</emphasis>. (This is a change from GHC's earlier
+design.)</para></listitem>
+<listitem><para>Furthermore, distinct lexical type variables stand for distinct
+type variables.  This means that every programmer-written type signature
+(including one that contains free scoped type variables) denotes a
+<emphasis>rigid</emphasis> type; that is, the type is fully known to the type
+checker, and no inference is involved.</para></listitem>
+<listitem><para>Lexical type variables may be alpha-renamed freely, without
+changing the program.</para></listitem>
+</itemizedlist>
 </para>
-</listitem>
-
-<listitem>
 <para>
-The pattern type signature is a monotype:
-</para>
-
+A <emphasis>lexically scoped type variable</emphasis> can be bound by:
 <itemizedlist>
-<listitem> <para> 
-A pattern type signature cannot contain any explicit <literal>forall</literal> quantification.
-</para> </listitem>
-
-<listitem>  <para> 
-The type variables bound by a pattern type signature can only be instantiated to monotypes,
-not to type schemes.
-</para> </listitem>
-
-<listitem>  <para> 
-There is no implicit universal quantification on pattern type signatures (in contrast to
-ordinary type signatures).
-</para> </listitem>
-
+<listitem><para>A declaration type signature (<xref linkend="decl-type-sigs"/>)</para></listitem>
+<listitem><para>An expression type signature (<xref linkend="exp-type-sigs"/>)</para></listitem>
+<listitem><para>A pattern type signature (<xref linkend="pattern-type-sigs"/>)</para></listitem>
+<listitem><para>Class and instance declarations (<xref linkend="cls-inst-scoped-tyvars"/>)</para></listitem>
 </itemizedlist>
-
-</listitem>
-
-<listitem>
+</para>
 <para>
-
-The type variables in the head of a <literal>class</literal> or <literal>instance</literal> declaration
-scope over the methods defined in the <literal>where</literal> part.  For example:
-
-
+In Haskell, a programmer-written type signature is implicitly quantified over
+its free type variables (<ulink
+url="http://www.haskell.org/onlinereport/decls.html#sect4.1.2">Section
+4.1.2</ulink> 
+of the Haskel Report).
+Lexically scoped type variables affect this implicit quantification rules
+as follows: any type variable that is in scope is <emphasis>not</emphasis> universally
+quantified. For example, if type variable <literal>a</literal> is in scope,
+then
 <programlisting>
-  class C a where
-    op :: [a] -> a
-
-    op xs = let ys::[a]
-                ys = reverse xs
-            in
-            head ys
+  (e :: a -> a)     means     (e :: a -> a)
+  (e :: b -> b)     means     (e :: forall b. b->b)
+  (e :: a -> b)     means     (e :: forall b. a->b)
 </programlisting>
-
-
-(Not implemented in Hugs yet, Dec 98).
 </para>
-</listitem>
-
-</itemizedlist>
 
-</para>
 
 </sect3>
 
+
 <sect3 id="decl-type-sigs">
 <title>Declaration type signatures</title>
 <para>A declaration type signature that has <emphasis>explicit</emphasis>
@@ -3411,417 +4621,173 @@ quantification rules.
 </para>
 </sect3>
 
-<sect3 id="pattern-type-sigs">
-<title>Where a pattern type signature can occur</title>
-
-<para>
-A pattern type signature can occur in any pattern.  For example:
-<itemizedlist>
-
-<listitem>
-<para>
-A pattern type signature can be on an arbitrary sub-pattern, not
-just on a variable:
-
-
-<programlisting>
-  f ((x,y)::(a,b)) = (y,x) :: (b,a)
-</programlisting>
-
-
-</para>
-</listitem>
-<listitem>
-
-<para>
- Pattern type signatures, including the result part, can be used
-in lambda abstractions:
-
-<programlisting>
-  (\ (x::a, y) :: a -> x)
-</programlisting>
-</para>
-</listitem>
-<listitem>
-
-<para>
- Pattern type signatures, including the result part, can be used
-in <literal>case</literal> expressions:
-
-<programlisting>
-  case e of { ((x::a, y) :: (a,b)) -> x }
-</programlisting>
-
-Note that the <literal>-&gt;</literal> symbol in a case alternative
-leads to difficulties when parsing a type signature in the pattern: in
-the absence of the extra parentheses in the example above, the parser
-would try to interpret the <literal>-&gt;</literal> as a function
-arrow and give a parse error later.
-
-</para>
-
-</listitem>
-
-<listitem>
-<para>
-To avoid ambiguity, the type after the &ldquo;<literal>::</literal>&rdquo; in a result
-pattern signature on a lambda or <literal>case</literal> must be atomic (i.e. a single
-token or a parenthesised type of some sort).  To see why,
-consider how one would parse this:
-
-
-<programlisting>
-  \ x :: a -> b -> x
-</programlisting>
-
-
-</para>
-</listitem>
-
-<listitem>
-
-<para>
- Pattern type signatures can bind existential type variables.
-For example:
-
+<sect3 id="exp-type-sigs">
+<title>Expression type signatures</title>
 
+<para>An expression type signature that has <emphasis>explicit</emphasis>
+quantification (using <literal>forall</literal>) brings into scope the
+explicitly-quantified
+type variables, in the annotated expression.  For example:
 <programlisting>
-  data T = forall a. MkT [a]
-
-  f :: T -> T
-  f (MkT [t::a]) = MkT t3
-                 where
-                   t3::[a] = [t,t,t]
-</programlisting>
-
-
-</para>
-</listitem>
-
-
-<listitem>
-
-<para>
-Pattern type signatures 
-can be used in pattern bindings:
-
-<programlisting>
-  f x = let (y, z::a) = x in ...
-  f1 x                = let (y, z::Int) = x in ...
-  f2 (x::(Int,a))     = let (y, z::a)   = x in ...
-  f3 :: (b->b)        = \x -> x
-</programlisting>
-
-In all such cases, the binding is not generalised over the pattern-bound
-type variables.  Thus <literal>f3</literal> is monomorphic; <literal>f3</literal>
-has type <literal>b -&gt; b</literal> for some type <literal>b</literal>, 
-and <emphasis>not</emphasis> <literal>forall b. b -&gt; b</literal>.
-In contrast, the binding
-<programlisting>
-  f4 :: b->b
-  f4 = \x -> x
+  f = runST ( (op >>= \(x :: STRef s Int) -> g x) :: forall s. ST s Bool )
 </programlisting>
-makes a polymorphic function, but <literal>b</literal> is not in scope anywhere
-in <literal>f4</literal>'s scope.
-
-</para>
-</listitem>
-</itemizedlist>
+Here, the type signature <literal>forall a. ST s Bool</literal> brings the 
+type variable <literal>s</literal> into scope, in the annotated expression 
+<literal>(op >>= \(x :: STRef s Int) -> g x)</literal>.
 </para>
-<para>Pattern type signatures are completely orthogonal to ordinary, separate
-type signatures.  The two can be used independently or together.</para>
 
 </sect3>
 
-<sect3 id="result-type-sigs">
-<title>Result type signatures</title>
-
+<sect3 id="pattern-type-sigs">
+<title>Pattern type signatures</title>
 <para>
-The result type of a function can be given a signature, thus:
-
-
-<programlisting>
-  f (x::a) :: [a] = [x,x,x]
-</programlisting>
-
-
-The final <literal>:: [a]</literal> after all the patterns gives a signature to the
-result type.  Sometimes this is the only way of naming the type variable
-you want:
-
-
+A type signature may occur in any pattern; this is a <emphasis>pattern type
+signature</emphasis>. 
+For example:
 <programlisting>
-  f :: Int -> [a] -> [a]
-  f n :: ([a] -> [a]) = let g (x::a, y::a) = (y,x)
-                        in \xs -> map g (reverse xs `zip` xs)
+  -- f and g assume that 'a' is already in scope
+  f = \(x::Int, y::a) -> x
+  g (x::a) = x
+  h ((x,y) :: (Int,Bool)) = (y,x)
 </programlisting>
-
+In the case where all the type variables in the pattern type signature are
+already in scope (i.e. bound by the enclosing context), matters are simple: the
+signature simply constrains the type of the pattern in the obvious way.
 </para>
 <para>
-The type variables bound in a result type signature scope over the right hand side
-of the definition. However, consider this corner-case:
+Unlike expression and declaration type signatures, pattern type signatures are not implictly generalised.
+The pattern in a <emphasis>patterm binding</emphasis> may only mention type variables
+that are already in scope.  For example:
 <programlisting>
-  rev1 :: [a] -> [a] = \xs -> reverse xs
+  f :: forall a. [a] -> (Int, [a])
+  f xs = (n, zs)
+    where
+      (ys::[a], n) = (reverse xs, length xs) -- OK
+      zs::[a] = xs ++ ys                     -- OK
 
-  foo ys = rev (ys::[a])
+      Just (v::b) = ...  -- Not OK; b is not in scope
 </programlisting>
-The signature on <literal>rev1</literal> is considered a pattern type signature, not a result
-type signature, and the type variables it binds have the same scope as <literal>rev1</literal>
-itself (i.e. the right-hand side of <literal>rev1</literal> and the rest of the module too).
-In particular, the expression <literal>(ys::[a])</literal> is OK, because the type variable <literal>a</literal>
-is in scope (otherwise it would mean <literal>(ys::forall a.[a])</literal>, which would be rejected).  
+Here, the pattern signatures for <literal>ys</literal> and <literal>zs</literal>
+are fine, but the one for <literal>v</literal> is not because <literal>b</literal> is
+not in scope. 
 </para>
 <para>
-As mentioned above, <literal>rev1</literal> is made monomorphic by this scoping rule.
-For example, the following program would be rejected, because it claims that <literal>rev1</literal>
-is polymorphic:
+However, in all patterns <emphasis>other</emphasis> than pattern bindings, a pattern
+type signature may mention a type variable that is not in scope; in this case,
+<emphasis>the signature brings that type variable into scope</emphasis>.
+This is particularly important for existential data constructors.  For example:
 <programlisting>
-  rev1 :: [b] -> [b]
-  rev1 :: [a] -> [a] = \xs -> reverse xs
-</programlisting>
-</para>
-
-<para>
-Result type signatures are not yet implemented in Hugs.
-</para>
-
-</sect3>
-
-</sect2>
-
-<sect2 id="deriving-typeable">
-<title>Deriving clause for classes <literal>Typeable</literal> and <literal>Data</literal></title>
-
-<para>
-Haskell 98 allows the programmer to add "<literal>deriving( Eq, Ord )</literal>" to a data type 
-declaration, to generate a standard instance declaration for classes specified in the <literal>deriving</literal> clause.  
-In Haskell 98, the only classes that may appear in the <literal>deriving</literal> clause are the standard
-classes <literal>Eq</literal>, <literal>Ord</literal>, 
-<literal>Enum</literal>, <literal>Ix</literal>, <literal>Bounded</literal>, <literal>Read</literal>, and <literal>Show</literal>.
-</para>
-<para>
-GHC extends this list with two more classes that may be automatically derived 
-(provided the <option>-fglasgow-exts</option> flag is specified):
-<literal>Typeable</literal>, and <literal>Data</literal>.  These classes are defined in the library
-modules <literal>Data.Typeable</literal> and <literal>Data.Generics</literal> respectively, and the
-appropriate class must be in scope before it can be mentioned in the <literal>deriving</literal> clause.
-</para>
-<para>An instance of <literal>Typeable</literal> can only be derived if the
-data type has seven or fewer type parameters, all of kind <literal>*</literal>.
-The reason for this is that the <literal>Typeable</literal> class is derived using the scheme
-described in
-<ulink url="http://research.microsoft.com/%7Esimonpj/papers/hmap/gmap2.ps">
-Scrap More Boilerplate: Reflection, Zips, and Generalised Casts
-</ulink>.
-(Section 7.4 of the paper describes the multiple <literal>Typeable</literal> classes that
-are used, and only <literal>Typeable1</literal> up to
-<literal>Typeable7</literal> are provided in the library.)
-In other cases, there is nothing to stop the programmer writing a <literal>TypableX</literal>
-class, whose kind suits that of the data type constructor, and
-then writing the data type instance by hand.
-</para>
-</sect2>
-
-<sect2 id="newtype-deriving">
-<title>Generalised derived instances for newtypes</title>
-
-<para>
-When you define an abstract type using <literal>newtype</literal>, you may want
-the new type to inherit some instances from its representation. In
-Haskell 98, you can inherit instances of <literal>Eq</literal>, <literal>Ord</literal>,
-<literal>Enum</literal> and <literal>Bounded</literal> by deriving them, but for any
-other classes you have to write an explicit instance declaration. For
-example, if you define
-
-<programlisting> 
-  newtype Dollars = Dollars Int 
-</programlisting> 
-
-and you want to use arithmetic on <literal>Dollars</literal>, you have to
-explicitly define an instance of <literal>Num</literal>:
+  data T = forall a. MkT [a]
 
-<programlisting> 
-  instance Num Dollars where
-    Dollars a + Dollars b = Dollars (a+b)
-    ...
+  k :: T -> T
+  k (MkT [t::a]) = MkT t3
+                 where
+                   t3::[a] = [t,t,t]
 </programlisting>
-All the instance does is apply and remove the <literal>newtype</literal>
-constructor. It is particularly galling that, since the constructor
-doesn't appear at run-time, this instance declaration defines a
-dictionary which is <emphasis>wholly equivalent</emphasis> to the <literal>Int</literal>
-dictionary, only slower!
+Here, the pattern type signature <literal>(t::a)</literal> mentions a lexical type
+variable that is not already in scope.  Indeed, it <emphasis>cannot</emphasis> already be in scope,
+because it is bound by the pattern match.  GHC's rule is that in this situation
+(and only then), a pattern type signature can mention a type variable that is
+not already in scope; the effect is to bring it into scope, standing for the
+existentially-bound type variable.
+</para>
+<para>
+When a pattern type signature binds a type variable in this way, GHC insists that the 
+type variable is bound to a <emphasis>rigid</emphasis>, or fully-known, type variable.
+This means that any user-written type signature always stands for a completely known type.
+</para>
+<para>
+If all this seems a little odd, we think so too.  But we must have
+<emphasis>some</emphasis> way to bring such type variables into scope, else we
+could not name existentially-bound type variables in subsequent type signatures.
+</para>
+<para>
+This is (now) the <emphasis>only</emphasis> situation in which a pattern type 
+signature is allowed to mention a lexical variable that is not already in
+scope.
+For example, both <literal>f</literal> and <literal>g</literal> would be
+illegal if <literal>a</literal> was not already in scope.
 </para>
 
 
-<sect3> <title> Generalising the deriving clause </title>
-<para>
-GHC now permits such instances to be derived instead, so one can write 
-<programlisting> 
-  newtype Dollars = Dollars Int deriving (Eq,Show,Num)
-</programlisting> 
+</sect3>
 
-and the implementation uses the <emphasis>same</emphasis> <literal>Num</literal> dictionary
-for <literal>Dollars</literal> as for <literal>Int</literal>. Notionally, the compiler
-derives an instance declaration of the form
+<!-- ==================== Commented out part about result type signatures 
 
-<programlisting> 
-  instance Num Int => Num Dollars
-</programlisting> 
+<sect3 id="result-type-sigs">
+<title>Result type signatures</title>
 
-which just adds or removes the <literal>newtype</literal> constructor according to the type.
-</para>
 <para>
+The result type of a function, lambda, or case expression alternative can be given a signature, thus:
 
-We can also derive instances of constructor classes in a similar
-way. For example, suppose we have implemented state and failure monad
-transformers, such that
-
-<programlisting> 
-  instance Monad m => Monad (State s m) 
-  instance Monad m => Monad (Failure m)
-</programlisting> 
-In Haskell 98, we can define a parsing monad by 
-<programlisting> 
-  type Parser tok m a = State [tok] (Failure m) a
-</programlisting> 
+<programlisting>
+  {- f assumes that 'a' is already in scope -}
+  f x y :: [a] = [x,y,x]
 
-which is automatically a monad thanks to the instance declarations
-above. With the extension, we can make the parser type abstract,
-without needing to write an instance of class <literal>Monad</literal>, via
+  g = \ x :: [Int] -> [3,4]
 
-<programlisting> 
-  newtype Parser tok m a = Parser (State [tok] (Failure m) a)
-                         deriving Monad
+  h :: forall a. [a] -> a
+  h xs = case xs of
+           (y:ys) :: a -> y
 </programlisting>
-In this case the derived instance declaration is of the form 
-<programlisting> 
-  instance Monad (State [tok] (Failure m)) => Monad (Parser tok m) 
-</programlisting> 
-
-Notice that, since <literal>Monad</literal> is a constructor class, the
-instance is a <emphasis>partial application</emphasis> of the new type, not the
-entire left hand side. We can imagine that the type declaration is
-``eta-converted'' to generate the context of the instance
-declaration.
+The final <literal>:: [a]</literal> after the patterns of <literal>f</literal> gives the type of 
+the result of the function.  Similarly, the body of the lambda in the RHS of
+<literal>g</literal> is <literal>[Int]</literal>, and the RHS of the case
+alternative in <literal>h</literal> is <literal>a</literal>.
 </para>
+<para> A result type signature never brings new type variables into scope.</para>
 <para>
+There are a couple of syntactic wrinkles.  First, notice that all three
+examples would parse quite differently with parentheses:
+<programlisting>
+  {- f assumes that 'a' is already in scope -}
+  f x (y :: [a]) = [x,y,x]
 
-We can even derive instances of multi-parameter classes, provided the
-newtype is the last class parameter. In this case, a ``partial
-application'' of the class appears in the <literal>deriving</literal>
-clause. For example, given the class
+  g = \ (x :: [Int]) -> [3,4]
 
-<programlisting> 
-  class StateMonad s m | m -> s where ... 
-  instance Monad m => StateMonad s (State s m) where ... 
-</programlisting> 
-then we can derive an instance of <literal>StateMonad</literal> for <literal>Parser</literal>s by 
-<programlisting> 
-  newtype Parser tok m a = Parser (State [tok] (Failure m) a)
-                         deriving (Monad, StateMonad [tok])
+  h :: forall a. [a] -> a
+  h xs = case xs of
+           ((y:ys) :: a) -> y
 </programlisting>
+Now the signature is on the <emphasis>pattern</emphasis>; and
+<literal>h</literal> would certainly be ill-typed (since the pattern
+<literal>(y:ys)</literal> cannot have the type <literal>a</literal>.
 
-The derived instance is obtained by completing the application of the
-class to the new type:
-
-<programlisting> 
-  instance StateMonad [tok] (State [tok] (Failure m)) =>
-           StateMonad [tok] (Parser tok m)
+Second, to avoid ambiguity, the type after the &ldquo;<literal>::</literal>&rdquo; in a result
+pattern signature on a lambda or <literal>case</literal> must be atomic (i.e. a single
+token or a parenthesised type of some sort).  To see why,
+consider how one would parse this:
+<programlisting>
+  \ x :: a -> b -> x
 </programlisting>
 </para>
-<para>
-
-As a result of this extension, all derived instances in newtype
- declarations are treated uniformly (and implemented just by reusing
-the dictionary for the representation type), <emphasis>except</emphasis>
-<literal>Show</literal> and <literal>Read</literal>, which really behave differently for
-the newtype and its representation.
-</para>
 </sect3>
 
-<sect3> <title> A more precise specification </title>
-<para>
-Derived instance declarations are constructed as follows. Consider the
-declaration (after expansion of any type synonyms)
-
-<programlisting> 
-  newtype T v1...vn = T' (t vk+1...vn) deriving (c1...cm) 
-</programlisting> 
+ -->
 
-where 
- <itemizedlist>
-<listitem><para>
-  The type <literal>t</literal> is an arbitrary type
-</para></listitem>
-<listitem><para>
-  The <literal>vk+1...vn</literal> are type variables which do not occur in 
-  <literal>t</literal>, and
-</para></listitem>
-<listitem><para>
-  The <literal>ci</literal> are partial applications of
-  classes of the form <literal>C t1'...tj'</literal>, where the arity of <literal>C</literal>
-  is exactly <literal>j+1</literal>.  That is, <literal>C</literal> lacks exactly one type argument.
-</para></listitem>
-<listitem><para>
-  None of the <literal>ci</literal> is <literal>Read</literal>, <literal>Show</literal>, 
-               <literal>Typeable</literal>, or <literal>Data</literal>.  These classes
-               should not "look through" the type or its constructor.  You can still
-               derive these classes for a newtype, but it happens in the usual way, not 
-               via this new mechanism.  
-</para></listitem>
-</itemizedlist>
-Then, for each <literal>ci</literal>, the derived instance
-declaration is:
-<programlisting> 
-  instance ci (t vk+1...v) => ci (T v1...vp)
-</programlisting>
-where <literal>p</literal> is chosen so that <literal>T v1...vp</literal> is of the 
-right <emphasis>kind</emphasis> for the last parameter of class <literal>Ci</literal>.
-</para>
+<sect3 id="cls-inst-scoped-tyvars">
+<title>Class and instance declarations</title>
 <para>
 
-As an example which does <emphasis>not</emphasis> work, consider 
-<programlisting> 
-  newtype NonMonad m s = NonMonad (State s m s) deriving Monad 
-</programlisting> 
-Here we cannot derive the instance 
-<programlisting> 
-  instance Monad (State s m) => Monad (NonMonad m) 
-</programlisting> 
+The type variables in the head of a <literal>class</literal> or <literal>instance</literal> declaration
+scope over the methods defined in the <literal>where</literal> part.  For example:
 
-because the type variable <literal>s</literal> occurs in <literal>State s m</literal>,
-and so cannot be "eta-converted" away. It is a good thing that this
-<literal>deriving</literal> clause is rejected, because <literal>NonMonad m</literal> is
-not, in fact, a monad --- for the same reason. Try defining
-<literal>>>=</literal> with the correct type: you won't be able to.
-</para>
-<para>
 
-Notice also that the <emphasis>order</emphasis> of class parameters becomes
-important, since we can only derive instances for the last one. If the
-<literal>StateMonad</literal> class above were instead defined as
+<programlisting>
+  class C a where
+    op :: [a] -> a
 
-<programlisting> 
-  class StateMonad m s | m -> s where ... 
+    op xs = let ys::[a]
+                ys = reverse xs
+            in
+            head ys
 </programlisting>
-
-then we would not have been able to derive an instance for the
-<literal>Parser</literal> type above. We hypothesise that multi-parameter
-classes usually have one "main" parameter for which deriving new
-instances is most interesting.
-</para>
-<para>Lastly, all of this applies only for classes other than
-<literal>Read</literal>, <literal>Show</literal>, <literal>Typeable</literal>, 
-and <literal>Data</literal>, for which the built-in derivation applies (section
-4.3.3. of the Haskell Report).
-(For the standard classes <literal>Eq</literal>, <literal>Ord</literal>,
-<literal>Ix</literal>, and <literal>Bounded</literal> it is immaterial whether
-the standard method is used or the one described here.)
 </para>
 </sect3>
 
 </sect2>
 
+
 <sect2 id="typing-binds">
 <title>Generalised typing of mutually recursive bindings</title>
 
@@ -3829,20 +4795,20 @@ the standard method is used or the one described here.)
 The Haskell Report specifies that a group of bindings (at top level, or in a
 <literal>let</literal> or <literal>where</literal>) should be sorted into
 strongly-connected components, and then type-checked in dependency order
-(<ulink url="http://haskell.org/onlinereport/decls.html#sect4.5.1">Haskell
+(<ulink url="http://www.haskell.org/onlinereport/decls.html#sect4.5.1">Haskell
 Report, Section 4.5.1</ulink>).  
 As each group is type-checked, any binders of the group that
 have
 an explicit type signature are put in the type environment with the specified
 polymorphic type,
 and all others are monomorphic until the group is generalised 
-(<ulink url="http://haskell.org/onlinereport/decls.html#sect4.5.2">Haskell Report, Section 4.5.2</ulink>).
+(<ulink url="http://www.haskell.org/onlinereport/decls.html#sect4.5.2">Haskell Report, Section 4.5.2</ulink>).
 </para>
 
 <para>Following a suggestion of Mark Jones, in his paper
-<ulink url="http://www.cse.ogi.edu/~mpj/thih/">Typing Haskell in
+<ulink url="http://citeseer.ist.psu.edu/424440.html">Typing Haskell in
 Haskell</ulink>,
-GHC implements a more general scheme.  If <option>-fglasgow-exts</option> is
+GHC implements a more general scheme.  If <option>-XRelaxedPolyRec</option> is
 specified:
 <emphasis>the dependency analysis ignores references to variables that have an explicit
 type signature</emphasis>.
@@ -3858,12 +4824,12 @@ This is rejected by Haskell 98, but under Jones's scheme the definition for
 <literal>g</literal> is typechecked first, separately from that for
 <literal>f</literal>,
 because the reference to <literal>f</literal> in <literal>g</literal>'s right
-hand side is ingored by the dependency analysis.  Then <literal>g</literal>'s
+hand side is ignored by the dependency analysis.  Then <literal>g</literal>'s
 type is generalised, to get
 <programlisting>
   g :: Ord a =&gt; a -> Bool
 </programlisting>
-Now, the defintion for <literal>f</literal> is typechecked, with this type for
+Now, the definition for <literal>f</literal> is typechecked, with this type for
 <literal>g</literal> in the type environment.
 </para>
 
@@ -3871,215 +4837,86 @@ Now, the defintion for <literal>f</literal> is typechecked, with this type for
 The same refined dependency analysis also allows the type signatures of 
 mutually-recursive functions to have different contexts, something that is illegal in
 Haskell 98 (Section 4.5.2, last sentence).  With
-<option>-fglasgow-exts</option>
+<option>-XRelaxedPolyRec</option>
 GHC only insists that the type signatures of a <emphasis>refined</emphasis> group have identical
 type signatures; in practice this means that only variables bound by the same
 pattern binding must have the same context.  For example, this is fine:
 <programlisting>
-  f :: Eq a =&gt; a -> Bool
-  f x = (x == x) || g True
-  
-  g :: Ord a =&gt; a -> Bool
-  g y = (y &lt;= y) || f True
-</programlisting>
-</para>
-</sect2>
-
-</sect1>
-<!-- ==================== End of type system extensions =================  -->
-  
-<!-- ====================== Generalised algebraic data types =======================  -->
-
-<sect1 id="gadt">
-<title>Generalised Algebraic Data Types</title>
-
-<para>Generalised Algebraic Data Types (GADTs) generalise ordinary algebraic data types by allowing you
-to give the type signatures of constructors explicitly.  For example:
-<programlisting>
-  data Term a where
-      Lit    :: Int -> Term Int
-      Succ   :: Term Int -> Term Int
-      IsZero :: Term Int -> Term Bool  
-      If     :: Term Bool -> Term a -> Term a -> Term a
-      Pair   :: Term a -> Term b -> Term (a,b)
-</programlisting>
-Notice that the return type of the constructors is not always <literal>Term a</literal>, as is the
-case with ordinary vanilla data types.  Now we can write a well-typed <literal>eval</literal> function
-for these <literal>Terms</literal>:
-<programlisting>
-  eval :: Term a -> a
-  eval (Lit i)             = i
-  eval (Succ t)     = 1 + eval t
-  eval (IsZero t)   = eval t == 0
-  eval (If b e1 e2) = if eval b then eval e1 else eval e2
-  eval (Pair e1 e2) = (eval e1, eval e2)
-</programlisting>
-These and many other examples are given in papers by Hongwei Xi, and Tim Sheard.
-</para>
-<para> The extensions to GHC are these:
-<itemizedlist>
-<listitem><para>
-  Data type declarations have a 'where' form, as exemplified above.  The type signature of
-each constructor is independent, and is implicitly universally quantified as usual. Unlike a normal
-Haskell data type declaration, the type variable(s) in the "<literal>data Term a where</literal>" header 
-have no scope.  Indeed, one can write a kind signature instead:
-<programlisting>
-  data Term :: * -> * where ...
-</programlisting>
-or even a mixture of the two:
-<programlisting>
-  data Foo a :: (* -> *) -> * where ...
-</programlisting>
-The type variables (if given) may be explicitly kinded, so we could also write the header for <literal>Foo</literal>
-like this:
-<programlisting>
-  data Foo a (b :: * -> *) where ...
-</programlisting>
-</para></listitem>
-
-<listitem><para>
-There are no restrictions on the type of the data constructor, except that the result
-type must begin with the type constructor being defined.  For example, in the <literal>Term</literal> data
-type above, the type of each constructor must end with <literal> ... -> Term ...</literal>.
-</para></listitem>
-
-<listitem><para>
-You can use record syntax on a GADT-style data type declaration:
-
-<programlisting>
-  data Term a where
-      Lit    { val  :: Int }      :: Term Int
-      Succ   { num  :: Term Int } :: Term Int
-      Pred   { num  :: Term Int } :: Term Int
-      IsZero { arg  :: Term Int } :: Term Bool 
-      Pair   { arg1 :: Term a
-             , arg2 :: Term b
-             }                    :: Term (a,b)
-      If     { cnd  :: Term Bool
-             , tru  :: Term a
-             , fls  :: Term a
-             }                    :: Term a
-</programlisting>
-For every constructor that has a field <literal>f</literal>, (a) the type of
-field <literal>f</literal> must be the same; and (b) the
-result type of the constructor must be the same; both modulo alpha conversion.
-Hence, in our example, we cannot merge the <literal>num</literal> and <literal>arg</literal>
-fields above into a 
-single name.  Although their field types are both <literal>Term Int</literal>,
-their selector functions actually have different types:
-
-<programlisting>
-  num :: Term Int -> Term Int
-  arg :: Term Bool -> Term Int
-</programlisting>
-
-At the moment, record updates are not yet possible with GADT, so support is 
-limited to record construction, selection and pattern matching:
-
-<programlisting>
-  someTerm :: Term Bool
-  someTerm = IsZero { arg = Succ { num = Lit { val = 0 } } }
-
-  eval :: Term a -> a
-  eval Lit    { val = i } = i
-  eval Succ   { num = t } = eval t + 1
-  eval Pred   { num = t } = eval t - 1
-  eval IsZero { arg = t } = eval t == 0
-  eval Pair   { arg1 = t1, arg2 = t2 } = (eval t1, eval t2)
-  eval t@If{} = if eval (cnd t) then eval (tru t) else eval (fls t)
-</programlisting>
-
-</para></listitem>
-
-<listitem><para>
-You can use strictness annotations, in the obvious places
-in the constructor type:
-<programlisting>
-  data Term a where
-      Lit    :: !Int -> Term Int
-      If     :: Term Bool -> !(Term a) -> !(Term a) -> Term a
-      Pair   :: Term a -> Term b -> Term (a,b)
-</programlisting>
-</para></listitem>
-
-<listitem><para>
-You can use a <literal>deriving</literal> clause on a GADT-style data type
-declaration, but only if the data type could also have been declared in
-Haskell-98 syntax.   For example, these two declarations are equivalent
-<programlisting>
-  data Maybe1 a where {
-      Nothing1 :: Maybe a ;
-      Just1    :: a -> Maybe a
-    } deriving( Eq, Ord )
-
-  data Maybe2 a = Nothing2 | Just2 a 
-       deriving( Eq, Ord )
-</programlisting>
-This simply allows you to declare a vanilla Haskell-98 data type using the
-<literal>where</literal> form without losing the <literal>deriving</literal> clause.
-</para></listitem>
-
-<listitem><para>
-Pattern matching causes type refinement.  For example, in the right hand side of the equation
-<programlisting>
-  eval :: Term a -> a
-  eval (Lit i) =  ...
+  f :: Eq a =&gt; a -> Bool
+  f x = (x == x) || g True
+  
+  g :: Ord a =&gt; a -> Bool
+  g y = (y &lt;= y) || f True
 </programlisting>
-the type <literal>a</literal> is refined to <literal>Int</literal>.  (That's the whole point!)
-A precise specification of the type rules is beyond what this user manual aspires to, but there is a paper
-about the ideas: "Wobbly types: practical type inference for generalised algebraic data types", on Simon PJ's home page.</para>
+</para>
+</sect2>
 
-<para> The general principle is this: <emphasis>type refinement is only carried out based on user-supplied type annotations</emphasis>.
-So if no type signature is supplied for <literal>eval</literal>, no type refinement happens, and lots of obscure error messages will
-occur.  However, the refinement is quite general.  For example, if we had:
-<programlisting>
-  eval :: Term a -> a -> a
-  eval (Lit i) j =  i+j
-</programlisting>
-the pattern match causes the type <literal>a</literal> to be refined to <literal>Int</literal> (because of the type
-of the constructor <literal>Lit</literal>, and that refinement also applies to the type of <literal>j</literal>, and
-the result type of the <literal>case</literal> expression.  Hence the addition <literal>i+j</literal> is legal.
+<sect2 id="type-families">
+<title>Type families
+</title>
+
+<para>
+GHC supports the definition of type families indexed by types.  They may be
+seen as an extension of Haskell 98's class-based overloading of values to
+types.  When type families are declared in classes, they are also known as
+associated types.
 </para>
-</listitem>
-</itemizedlist>
+<para>
+There are two forms of type families: data families and type synonym families.
+Currently, only the former are fully implemented, while we are still working
+on the latter.  As a result, the specification of the language extension is
+also still to some degree in flux.  Hence, a more detailed description of
+the language extension and its use is currently available
+from <ulink url="http://www.haskell.org/haskellwiki/GHC/Indexed_types">the Haskell
+wiki page on type families</ulink>.  The material will be moved to this user's
+guide when it has stabilised.
 </para>
-
-<para>Notice that GADTs generalise existential types.  For example, these two declarations are equivalent:
-<programlisting>
-  data T a = forall b. MkT b (b->a)
-  data T' a where { MKT :: b -> (b->a) -> T' a }
-</programlisting>
+<para>
+Type families are enabled by the flag <option>-XTypeFamilies</option>.
 </para>
-</sect1>
 
-<!-- ====================== End of Generalised algebraic data types =======================  -->
 
+</sect2>
+
+</sect1>
+<!-- ==================== End of type system extensions =================  -->
+  
 <!-- ====================== TEMPLATE HASKELL =======================  -->
 
 <sect1 id="template-haskell">
 <title>Template Haskell</title>
 
-<para>Template Haskell allows you to do compile-time meta-programming in Haskell.  There is a "home page" for
-Template Haskell at <ulink url="http://www.haskell.org/th/">
-http://www.haskell.org/th/</ulink>, while
-the background to
+<para>Template Haskell allows you to do compile-time meta-programming in
+Haskell.  
+The background to
 the main technical innovations is discussed in "<ulink
-url="http://research.microsoft.com/~simonpj/papers/meta-haskell">
+url="http://research.microsoft.com/~simonpj/papers/meta-haskell/">
 Template Meta-programming for Haskell</ulink>" (Proc Haskell Workshop 2002).
-The details of the Template Haskell design are still in flux.  Make sure you
-consult the <ulink url="http://www.haskell.org/ghc/docs/latest/html/libraries/index.html">online library reference material</ulink> 
-(search for the type ExpQ).
-[Temporary: many changes to the original design are described in 
-      <ulink url="http://research.microsoft.com/~simonpj/tmp/notes2.ps">"http://research.microsoft.com/~simonpj/tmp/notes2.ps"</ulink>.
-Not all of these changes are in GHC 6.2.]
+</para>
+<para>
+There is a Wiki page about
+Template Haskell at <ulink url="http://www.haskell.org/haskellwiki/Template_Haskell">
+http://www.haskell.org/haskellwiki/Template_Haskell</ulink>, and that is the best place to look for
+further details.
+You may also 
+consult the <ulink
+url="http://www.haskell.org/ghc/docs/latest/html/libraries/index.html">online
+Haskell library reference material</ulink> 
+(look for module <literal>Language.Haskell.TH</literal>).
+Many changes to the original design are described in 
+      <ulink url="http://research.microsoft.com/~simonpj/papers/meta-haskell/notes2.ps">
+Notes on Template Haskell version 2</ulink>.
+Not all of these changes are in GHC, however.
 </para>
 
-<para> The first example from that paper is set out below as a worked example to help get you started. 
+<para> The first example from that paper is set out below (<xref linkend="th-example"/>) 
+as a worked example to help get you started. 
 </para>
 
 <para>
-The documentation here describes the realisation in GHC.  (It's rather sketchy just now;
-Tim Sheard is going to expand it.)
+The documentation here describes the realisation of Template Haskell in GHC.  It is not detailed enough to 
+understand Template Haskell; see the <ulink url="http://haskell.org/haskellwiki/Template_Haskell">
+Wiki page</ulink>.
 </para>
 
     <sect2>
@@ -4087,9 +4924,10 @@ Tim Sheard is going to expand it.)
 
       <para> Template Haskell has the following new syntactic
       constructions.  You need to use the flag
-      <option>-fth</option><indexterm><primary><option>-fth</option></primary>
+      <option>-XTemplateHaskell</option>
+       <indexterm><primary><option>-XTemplateHaskell</option></primary>
       </indexterm>to switch these syntactic extensions on
-      (<option>-fth</option> is no longer implied by
+      (<option>-XTemplateHaskell</option> is no longer implied by
       <option>-fglasgow-exts</option>).</para>
 
        <itemizedlist>
@@ -4104,41 +4942,47 @@ Tim Sheard is going to expand it.)
                  <itemizedlist>
                    <listitem><para> an expression; the spliced expression must
                    have type <literal>Q Exp</literal></para></listitem>
-                   <listitem><para> a list of top-level declarations; ; the spliced expression must have type <literal>Q [Dec]</literal></para></listitem>
-                   <listitem><para> [Planned, but not implemented yet.] a
-                   type; the spliced expression must have type <literal>Q Typ</literal>.</para></listitem>
+                   <listitem><para> a list of top-level declarations; the spliced expression must have type <literal>Q [Dec]</literal></para></listitem>
                    </itemizedlist>
-          (Note that the syntax for a declaration splice uses "<literal>$</literal>" not "<literal>splice</literal>" as in
-       the paper. Also the type of the enclosed expression must be  <literal>Q [Dec]</literal>, not  <literal>[Q Dec]</literal>
-       as in the paper.)
-               </para></listitem>
+               </para>
+           Inside a splice you can can only call functions defined in imported modules,
+       not functions defined elsewhere in the same module.</listitem>
 
 
              <listitem><para>
                  A expression quotation is written in Oxford brackets, thus:
                  <itemizedlist>
                    <listitem><para> <literal>[| ... |]</literal>, where the "..." is an expression; 
-                             the quotation has type <literal>Expr</literal>.</para></listitem>
+                             the quotation has type <literal>Q Exp</literal>.</para></listitem>
                    <listitem><para> <literal>[d| ... |]</literal>, where the "..." is a list of top-level declarations;
                              the quotation has type <literal>Q [Dec]</literal>.</para></listitem>
-                   <listitem><para>  [Planned, but not implemented yet.]  <literal>[t| ... |]</literal>, where the "..." is a type; 
-                             the quotation has type <literal>Type</literal>.</para></listitem>
+                   <listitem><para> <literal>[t| ... |]</literal>, where the "..." is a type;
+                             the quotation has type <literal>Q Typ</literal>.</para></listitem>
                  </itemizedlist></para></listitem>
 
              <listitem><para>
-                 Reification is written thus:
+                 A name can be quoted with either one or two prefix single quotes:
                  <itemizedlist>
-                   <listitem><para> <literal>reifyDecl T</literal>, where <literal>T</literal> is a type constructor; this expression
-                     has type <literal>Dec</literal>. </para></listitem>
-                   <listitem><para> <literal>reifyDecl C</literal>, where <literal>C</literal> is a class; has type <literal>Dec</literal>.</para></listitem>
-                   <listitem><para> <literal>reifyType f</literal>, where <literal>f</literal> is an identifier; has type <literal>Typ</literal>.</para></listitem>
-                   <listitem><para> Still to come: fixities </para></listitem>
-                   
-                 </itemizedlist></para>
+                   <listitem><para> <literal>'f</literal> has type <literal>Name</literal>, and names the function <literal>f</literal>.
+                 Similarly <literal>'C</literal> has type <literal>Name</literal> and names the data constructor <literal>C</literal>.
+                 In general <literal>'</literal><replaceable>thing</replaceable> interprets <replaceable>thing</replaceable> in an expression context.
+                    </para></listitem> 
+                   <listitem><para> <literal>''T</literal> has type <literal>Name</literal>, and names the type constructor  <literal>T</literal>.
+                 That is, <literal>''</literal><replaceable>thing</replaceable> interprets <replaceable>thing</replaceable> in a type context.
+                    </para></listitem> 
+                 </itemizedlist>
+                 These <literal>Names</literal> can be used to construct Template Haskell expressions, patterns, delarations etc.  They
+                 may also be given as an argument to the <literal>reify</literal> function.
+                </para>
                </listitem>
 
                  
        </itemizedlist>
+(Compared to the original paper, there are many differnces of detail.
+The syntax for a declaration splice uses "<literal>$</literal>" not "<literal>splice</literal>".
+The type of the enclosed expression must be  <literal>Q [Dec]</literal>, not  <literal>[Q Dec]</literal>.
+Type splices are not implemented, and neither are pattern splices or quotations.
+
 </sect2>
 
 <sect2>  <title> Using Template Haskell </title>
@@ -4155,6 +4999,14 @@ Tim Sheard is going to expand it.)
            (It would make sense to do so, but it's hard to implement.)
    </para></listitem>
 
+   <listitem><para>
+   Furthermore, you can only run a function at compile time if it is imported
+   from another module <emphasis>that is not part of a mutually-recursive group of modules
+   that includes the module currently being compiled</emphasis>.  For example, when compiling module A,
+   you can only run Template Haskell functions imported from B if B does not import A (directly or indirectly).
+   The reason should be clear: to run B we must compile and run A, but we are currently type-checking A.
+   </para></listitem>
+
     <listitem><para>
            The flag <literal>-ddump-splices</literal> shows the expansion of all top-level splices as they happen.
    </para></listitem>
@@ -4173,7 +5025,7 @@ Tim Sheard is going to expand it.)
 </para>
 </sect2>
  
-<sect2>  <title> A Template Haskell Worked Example </title>
+<sect2 id="th-example">  <title> A Template Haskell Worked Example </title>
 <para>To help you get over the confidence barrier, try out this skeletal worked example.
   First cut and paste the two modules below into "Main.hs" and "Printf.hs":</para>
 
@@ -4213,21 +5065,21 @@ parse s   = [ L s ]
 -- Generate Haskell source code from a parsed representation
 -- of the format string.  This code will be spliced into
 -- the module which calls "pr", at compile time.
-gen :: [Format] -> ExpQ
+gen :: [Format] -> Q Exp
 gen [D]   = [| \n -> show n |]
 gen [S]   = [| \s -> s |]
 gen [L s] = stringE s
 
 -- Here we generate the Haskell code for the splice
 -- from an input format string.
-pr :: String -> ExpQ
-pr s      = gen (parse s)
+pr :: String -> Q Exp
+pr s = gen (parse s)
 </programlisting>
 
 <para>Now run the compiler (here we are a Cygwin prompt on Windows):
 </para>
 <programlisting>
-$ ghc --make -fth main.hs -o main.exe
+$ ghc --make -XTemplateHaskell main.hs -o main.exe
 </programlisting>
 
 <para>Run "main.exe" and here is your output:</para>
@@ -4268,7 +5120,7 @@ The basic idea is to compile the program twice:</para>
   <para>Then compile it again with <option>-prof</option>, and
   additionally use <option>-osuf
   p_o</option><indexterm><primary><option>-osuf</option></primary></indexterm>
-  to name the object files differentliy (you can choose any suffix
+  to name the object files differently (you can choose any suffix
   that isn't the normal object suffix here).  GHC will automatically
   load the object files built in the first step when executing splice
   expressions.  If you omit the <option>-osuf</option> flag when
@@ -4316,7 +5168,7 @@ Palgrave, 2003.
 </itemizedlist>
 and the arrows web page at
 <ulink url="http://www.haskell.org/arrows/"><literal>http://www.haskell.org/arrows/</literal></ulink>.
-With the <option>-farrows</option> flag, GHC supports the arrow
+With the <option>-XArrows</option> flag, GHC supports the arrow
 notation described in the second of these papers.
 What follows is a brief introduction to the notation;
 it won't make much sense unless you've read Hughes's paper.
@@ -4772,9 +5624,153 @@ Because the preprocessor targets Haskell (rather than Core),
 
 </sect1>
 
+<!-- ==================== BANG PATTERNS =================  -->
+
+<sect1 id="bang-patterns">
+<title>Bang patterns
+<indexterm><primary>Bang patterns</primary></indexterm>
+</title>
+<para>GHC supports an extension of pattern matching called <emphasis>bang
+patterns</emphasis>.   Bang patterns are under consideration for Haskell Prime.
+The <ulink
+url="http://hackage.haskell.org/trac/haskell-prime/wiki/BangPatterns">Haskell
+prime feature description</ulink> contains more discussion and examples
+than the material below.
+</para>
+<para>
+Bang patterns are enabled by the flag <option>-XBangPatterns</option>.
+</para>
+
+<sect2 id="bang-patterns-informal">
+<title>Informal description of bang patterns
+</title>
+<para>
+The main idea is to add a single new production to the syntax of patterns:
+<programlisting>
+  pat ::= !pat
+</programlisting>
+Matching an expression <literal>e</literal> against a pattern <literal>!p</literal> is done by first
+evaluating <literal>e</literal> (to WHNF) and then matching the result against <literal>p</literal>.
+Example:
+<programlisting>
+f1 !x = True
+</programlisting>
+This definition makes <literal>f1</literal> is strict in <literal>x</literal>,
+whereas without the bang it would be lazy.
+Bang patterns can be nested of course:
+<programlisting>
+f2 (!x, y) = [x,y]
+</programlisting>
+Here, <literal>f2</literal> is strict in <literal>x</literal> but not in
+<literal>y</literal>.  
+A bang only really has an effect if it precedes a variable or wild-card pattern:
+<programlisting>
+f3 !(x,y) = [x,y]
+f4 (x,y)  = [x,y]
+</programlisting>
+Here, <literal>f3</literal> and <literal>f4</literal> are identical; putting a bang before a pattern that
+forces evaluation anyway does nothing.
+</para><para>
+Bang patterns work in <literal>case</literal> expressions too, of course:
+<programlisting>
+g5 x = let y = f x in body
+g6 x = case f x of { y -&gt; body }
+g7 x = case f x of { !y -&gt; body }
+</programlisting>
+The functions <literal>g5</literal> and <literal>g6</literal> mean exactly the same thing.  
+But <literal>g7</literal> evaluates <literal>(f x)</literal>, binds <literal>y</literal> to the
+result, and then evaluates <literal>body</literal>.
+</para><para>
+Bang patterns work in <literal>let</literal> and <literal>where</literal>
+definitions too. For example:
+<programlisting>
+let ![x,y] = e in b
+</programlisting>
+is a strict pattern: operationally, it evaluates <literal>e</literal>, matches
+it against the pattern <literal>[x,y]</literal>, and then evaluates <literal>b</literal>
+The "<literal>!</literal>" should not be regarded as part of the pattern; after all,
+in a function argument <literal>![x,y]</literal> means the 
+same as <literal>[x,y]</literal>.  Rather, the "<literal>!</literal>" 
+is part of the syntax of <literal>let</literal> bindings.
+</para>
+</sect2>
+
+
+<sect2 id="bang-patterns-sem">
+<title>Syntax and semantics
+</title>
+<para>
+
+We add a single new production to the syntax of patterns:
+<programlisting>
+  pat ::= !pat
+</programlisting>
+There is one problem with syntactic ambiguity.  Consider:
+<programlisting>
+f !x = 3
+</programlisting>
+Is this a definition of the infix function "<literal>(!)</literal>",
+or of the "<literal>f</literal>" with a bang pattern? GHC resolves this
+ambiguity in favour of the latter.  If you want to define
+<literal>(!)</literal> with bang-patterns enabled, you have to do so using
+prefix notation:
+<programlisting>
+(!) f x = 3
+</programlisting>
+The semantics of Haskell pattern matching is described in <ulink
+url="http://www.haskell.org/onlinereport/exps.html#sect3.17.2">
+Section 3.17.2</ulink> of the Haskell Report.  To this description add 
+one extra item 10, saying:
+<itemizedlist><listitem><para>Matching
+the pattern <literal>!pat</literal> against a value <literal>v</literal> behaves as follows:
+<itemizedlist><listitem><para>if <literal>v</literal> is bottom, the match diverges</para></listitem>
+               <listitem><para>otherwise, <literal>pat</literal> is matched against
+               <literal>v</literal></para></listitem>
+</itemizedlist>
+</para></listitem></itemizedlist>
+Similarly, in Figure 4 of  <ulink url="http://www.haskell.org/onlinereport/exps.html#sect3.17.3">
+Section 3.17.3</ulink>, add a new case (t):
+<programlisting>
+case v of { !pat -> e; _ -> e' }
+   = v `seq` case v of { pat -> e; _ -> e' }
+</programlisting>
+</para><para>
+That leaves let expressions, whose translation is given in 
+<ulink url="http://www.haskell.org/onlinereport/exps.html#sect3.12">Section
+3.12</ulink>
+of the Haskell Report.
+In the translation box, first apply 
+the following transformation:  for each pattern <literal>pi</literal> that is of 
+form <literal>!qi = ei</literal>, transform it to <literal>(xi,!qi) = ((),ei)</literal>, and and replace <literal>e0</literal> 
+by <literal>(xi `seq` e0)</literal>.  Then, when none of the left-hand-side patterns
+have a bang at the top, apply the rules in the existing box.
+</para>
+<para>The effect of the let rule is to force complete matching of the pattern
+<literal>qi</literal> before evaluation of the body is begun.  The bang is
+retained in the translated form in case <literal>qi</literal> is a variable,
+thus:
+<programlisting>
+  let !y = f x in b
+</programlisting>
+
+</para>
+<para>
+The let-binding can be recursive.  However, it is much more common for
+the let-binding to be non-recursive, in which case the following law holds:
+<literal>(let !p = rhs in body)</literal>
+     is equivalent to
+<literal>(case rhs of !p -> body)</literal>
+</para>
+<para>
+A pattern with a bang at the outermost level is not allowed at the top level of
+a module.
+</para>
+</sect2>
+</sect1>
+
 <!-- ==================== ASSERTIONS =================  -->
 
-<sect1 id="sec-assertions">
+<sect1 id="assertions">
 <title>Assertions
 <indexterm><primary>Assertions</primary></indexterm>
 </title>
@@ -4884,6 +5880,87 @@ Assertion failures can be caught, see the documentation for the
     unrecognised <replaceable>word</replaceable> is (silently)
     ignored.</para>
 
+    <para>Certain pragmas are <emphasis>file-header pragmas</emphasis>.  A file-header
+      pragma must precede the <literal>module</literal> keyword in the file.  
+      There can be as many file-header pragmas as you please, and they can be
+      preceded or followed by comments.</para>
+
+    <sect2 id="language-pragma">
+      <title>LANGUAGE pragma</title>
+
+      <indexterm><primary>LANGUAGE</primary><secondary>pragma</secondary></indexterm>
+      <indexterm><primary>pragma</primary><secondary>LANGUAGE</secondary></indexterm>
+
+      <para>The <literal>LANGUAGE</literal> pragma allows language extensions to be enabled 
+       in a portable way.
+       It is the intention that all Haskell compilers support the
+       <literal>LANGUAGE</literal> pragma with the same syntax, although not
+       all extensions are supported by all compilers, of
+       course.  The <literal>LANGUAGE</literal> pragma should be used instead
+       of <literal>OPTIONS_GHC</literal>, if possible.</para>
+
+      <para>For example, to enable the FFI and preprocessing with CPP:</para>
+
+<programlisting>{-# LANGUAGE ForeignFunctionInterface, CPP #-}</programlisting>
+
+        <para><literal>LANGUAGE</literal> is a file-header pragma (see <xref linkend="pragmas"/>).</para>
+
+      <para>Every language extension can also be turned into a command-line flag
+       by prefixing it with "<literal>-X</literal>"; for example <option>-XForeignFunctionInterface</option>.
+       (Similarly, all "<literal>-X</literal>" flags can be written as <literal>LANGUAGE</literal> pragmas.
+      </para>
+
+      <para>A list of all supported language extensions can be obtained by invoking
+       <literal>ghc --supported-languages</literal> (see <xref linkend="modes"/>).</para>
+
+      <para>Any extension from the <literal>Extension</literal> type defined in
+       <ulink
+         url="../libraries/Cabal/Language-Haskell-Extension.html"><literal>Language.Haskell.Extension</literal></ulink>
+       may be used.  GHC will report an error if any of the requested extensions are not supported.</para>
+    </sect2>
+
+
+    <sect2 id="options-pragma">
+      <title>OPTIONS_GHC pragma</title>
+      <indexterm><primary>OPTIONS_GHC</primary>
+      </indexterm>
+      <indexterm><primary>pragma</primary><secondary>OPTIONS_GHC</secondary>
+      </indexterm>
+
+      <para>The <literal>OPTIONS_GHC</literal> pragma is used to specify
+      additional options that are given to the compiler when compiling
+      this source file.  See <xref linkend="source-file-options"/> for
+      details.</para>
+
+      <para>Previous versions of GHC accepted <literal>OPTIONS</literal> rather
+       than <literal>OPTIONS_GHC</literal>, but that is now deprecated.</para>
+    </sect2>
+
+        <para><literal>OPTIONS_GHC</literal> is a file-header pragma (see <xref linkend="pragmas"/>).</para>
+
+    <sect2 id="include-pragma">
+      <title>INCLUDE pragma</title>
+
+      <para>The <literal>INCLUDE</literal> pragma is for specifying the names
+       of C header files that should be <literal>#include</literal>'d into
+       the C source code generated by the compiler for the current module (if
+       compiling via C).  For example:</para>
+
+<programlisting>
+{-# INCLUDE "foo.h" #-}
+{-# INCLUDE &lt;stdio.h&gt; #-}</programlisting>
+
+        <para><literal>INCLUDE</literal> is a file-header pragma (see <xref linkend="pragmas"/>).</para>
+
+      <para>An <literal>INCLUDE</literal> pragma is  the preferred alternative
+       to the <option>-#include</option> option (<xref
+         linkend="options-C-compiler" />), because the
+       <literal>INCLUDE</literal> pragma is understood by other
+       compilers.  Yet another alternative is to add the include file to each
+       <literal>foreign import</literal> declaration in your code, but we
+       don't recommend using this approach with GHC.</para>
+    </sect2>
+
     <sect2 id="deprecated-pragma">
       <title>DEPRECATED pragma</title>
       <indexterm><primary>DEPRECATED</primary>
@@ -4914,7 +5991,7 @@ Assertion failures can be caught, see the documentation for the
          <para>When you compile any module that imports and uses any
           of the specified entities, GHC will print the specified
           message.</para>
-         <para> You can only depecate entities declared at top level in the module
+         <para> You can only deprecate entities declared at top level in the module
          being compiled, and you can only use unqualified names in the list of
          entities being deprecated.  A capitalised name, such as <literal>T</literal>
          refers to <emphasis>either</emphasis> the type constructor <literal>T</literal>
@@ -4936,31 +6013,6 @@ Assertion failures can be caught, see the documentation for the
       <option>-fno-warn-deprecations</option>.</para>
     </sect2>
 
-    <sect2 id="include-pragma">
-      <title>INCLUDE pragma</title>
-
-      <para>The <literal>INCLUDE</literal> pragma is for specifying the names
-       of C header files that should be <literal>#include</literal>'d into
-       the C source code generated by the compiler for the current module (if
-       compiling via C).  For example:</para>
-
-<programlisting>
-{-# INCLUDE "foo.h" #-}
-{-# INCLUDE &lt;stdio.h&gt; #-}</programlisting>
-
-      <para>The <literal>INCLUDE</literal> pragma(s) must appear at the top of
-       your source file with any <literal>OPTIONS_GHC</literal>
-       pragma(s).</para>
-
-      <para>An <literal>INCLUDE</literal> pragma is  the preferred alternative
-       to the <option>-#include</option> option (<xref
-         linkend="options-C-compiler" />), because the
-       <literal>INCLUDE</literal> pragma is understood by other
-       compilers.  Yet another alternative is to add the include file to each
-       <literal>foreign import</literal> declaration in your code, but we
-       don't recommend using this approach with GHC.</para>
-    </sect2>
-
     <sect2 id="inline-noinline-pragma">
       <title>INLINE and NOINLINE pragmas</title>
 
@@ -4998,8 +6050,26 @@ key_function :: Int -> String -> (Bool, Double)
         <para>The major effect of an <literal>INLINE</literal> pragma
         is to declare a function's &ldquo;cost&rdquo; to be very low.
         The normal unfolding machinery will then be very keen to
-        inline it.</para>
-
+        inline it.  However, an <literal>INLINE</literal> pragma for a 
+       function "<literal>f</literal>" has a number of other effects:
+<itemizedlist>
+<listitem><para>
+No funtions are inlined into <literal>f</literal>.  Otherwise
+GHC might inline a big function into <literal>f</literal>'s right hand side, 
+making <literal>f</literal> big; and then inline <literal>f</literal> blindly.
+</para></listitem>
+<listitem><para>
+The float-in, float-out, and common-sub-expression transformations are not 
+applied to the body of <literal>f</literal>.  
+</para></listitem>
+<listitem><para>
+An INLINE function is not worker/wrappered by strictness analysis.
+It's going to be inlined wholesale instead.
+</para></listitem>
+</itemizedlist>
+All of these effects are aimed at ensuring that what gets inlined is
+exactly what you asked for, no more and no less.
+</para>
        <para>Syntactically, an <literal>INLINE</literal> pragma for a
         function can be put anywhere its type signature could be
         put.</para>
@@ -5107,29 +6177,6 @@ happen.
       </sect3>
     </sect2>
 
-    <sect2 id="language-pragma">
-      <title>LANGUAGE pragma</title>
-
-      <indexterm><primary>LANGUAGE</primary><secondary>pragma</secondary></indexterm>
-      <indexterm><primary>pragma</primary><secondary>LANGUAGE</secondary></indexterm>
-
-      <para>This allows language extensions to be enabled in a portable way.
-       It is the intention that all Haskell compilers support the
-       <literal>LANGUAGE</literal> pragma with the same syntax, although not
-       all extensions are supported by all compilers, of
-       course.  The <literal>LANGUAGE</literal> pragma should be used instead
-       of <literal>OPTIONS_GHC</literal>, if possible.</para>
-
-      <para>For example, to enable the FFI and preprocessing with CPP:</para>
-
-<programlisting>{-# LANGUAGE ForeignFunctionInterface, CPP #-}</programlisting>
-
-      <para>Any extension from the <literal>Extension</literal> type defined in
-       <ulink
-         url="../libraries/Cabal/Language-Haskell-Extension.html"><literal>Language.Haskell.Extension</literal></ulink> may be used.  GHC will report an error if any of the requested extensions are not supported.</para>
-    </sect2>
-
-
     <sect2 id="line-pragma">
       <title>LINE pragma</title>
 
@@ -5149,22 +6196,6 @@ happen.
       pragma.</para>
     </sect2>
 
-    <sect2 id="options-pragma">
-      <title>OPTIONS_GHC pragma</title>
-      <indexterm><primary>OPTIONS_GHC</primary>
-      </indexterm>
-      <indexterm><primary>pragma</primary><secondary>OPTIONS_GHC</secondary>
-      </indexterm>
-
-      <para>The <literal>OPTIONS_GHC</literal> pragma is used to specify
-      additional options that are given to the compiler when compiling
-      this source file.  See <xref linkend="source-file-options"/> for
-      details.</para>
-
-      <para>Previous versions of GHC accepted <literal>OPTIONS</literal> rather
-       than <literal>OPTIONS_GHC</literal>, but that is now deprecated.</para>
-    </sect2>
-
     <sect2 id="rules">
       <title>RULES pragma</title>
 
@@ -5210,7 +6241,7 @@ happen.
 <programlisting>
   {-# SPECIALIZE f :: &lt;type&gt; #-}
 </programlisting>
-      is valid if and only if the defintion
+      is valid if and only if the definition
 <programlisting>
   f_spec :: &lt;type&gt;
   f_spec = f
@@ -5226,7 +6257,7 @@ happen.
 
   h :: Eq a => a -> a -> a
   {-# SPECIALISE h :: (Eq a) => [a] -> [a] -> [a] #-}
-</programlisting>  
+</programlisting>
 The last of these examples will generate a 
 RULE with a somewhat-complex left-hand side (try it yourself), so it might not fire very
 well.  If you use this kind of specialisation, let us know how well it works.
@@ -5235,7 +6266,7 @@ well.  If you use this kind of specialisation, let us know how well it works.
 <para>A <literal>SPECIALIZE</literal> pragma can optionally be followed with a
 <literal>INLINE</literal> or <literal>NOINLINE</literal> pragma, optionally 
 followed by a phase, as described in <xref linkend="inline-noinline-pragma"/>.
-The <literal>INLINE</literal> pragma affects the specialised verison of the
+The <literal>INLINE</literal> pragma affects the specialised version of the
 function (only), and applies even if the function is recursive.  The motivating
 example is this:
 <programlisting>
@@ -5743,12 +6774,6 @@ The following are good consumers:
 <listitem>
 
 <para>
- <function>length</function>
-</para>
-</listitem>
-<listitem>
-
-<para>
  <function>++</function> (on its first argument)
 </para>
 </listitem>
@@ -5937,7 +6962,7 @@ If you add <option>-dppr-debug</option> you get a more detailed listing.
 <listitem>
 
 <para>
- The definition of (say) <function>build</function> in <filename>GHC/Base.lhs</filename> looks llike this:
+ The definition of (say) <function>build</function> in <filename>GHC/Base.lhs</filename> looks like this:
 
 <programlisting>
         build   :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
@@ -6016,7 +7041,7 @@ r)
                    GHCziBase.ZMZN GHCziBase.Char -> GHCziBase.ZMZN GHCziBase.Cha
 r) ->
               tpl2})
-        (%note "foo"
+        (%note "bar"
          eta);
 </programlisting>
 
@@ -6034,78 +7059,16 @@ r) ->
 
 <sect1 id="special-ids">
 <title>Special built-in functions</title>
-<para>GHC has a few built-in funcions with special behaviour, 
-described in this section.  All are exported by
-<literal>GHC.Exts</literal>.</para>
-
-<sect2> <title>The <literal>inline</literal> function </title>
-<para>
-The <literal>inline</literal> function is somewhat experimental.
-<programlisting>
-  inline :: a -> a
-</programlisting>
-The call <literal>(inline f)</literal> arranges that <literal>f</literal> 
-is inlined, regardless of its size.  More precisely, the call
-<literal>(inline f)</literal> rewrites to the right-hand side of <literal>f</literal>'s 
-definition.  
-This allows the programmer to control inlining from 
-a particular <emphasis>call site</emphasis>
-rather than the <emphasis>definition site</emphasis> of the function 
-(c.f. <literal>INLINE</literal> pragmas <xref linkend="inline-noinline-pragma"/>).
-</para>
-<para>
-This inlining occurs regardless of the argument to the call
-or the size of <literal>f</literal>'s definition; it is unconditional.
-The main caveat is that <literal>f</literal>'s definition must be
-visible to the compiler.  That is, <literal>f</literal> must be
-let-bound in the current scope.
-If no inlining takes place, the <literal>inline</literal> function
-expands to the identity function in Phase zero; so its use imposes
-no overhead.</para>
-
-<para> If the function is defined in another
-module, GHC only exposes its inlining in the interface file if the
-function is sufficiently small that it <emphasis>might</emphasis> be
-inlined by the automatic mechanism.  There is currently no way to tell
-GHC to expose arbitrarily-large functions in the interface file.  (This
-shortcoming is something that could be fixed, with some kind of pragma.)
-</para>
-</sect2>
-
-<sect2> <title>The <literal>inline</literal> function </title>
-<para>
-The <literal>lazy</literal> function restrains strictness analysis a little:
-<programlisting>
-  lazy :: a -> a
-</programlisting>
-The call <literal>(lazy e)</literal> means the same as <literal>e</literal>, 
-but <literal>lazy</literal> has a magical property so far as strictness
-analysis is concerned: it is lazy in its first argument,
-even though its semantics is strict.  After strictness analysis has run,
-calls to <literal>lazy</literal> are inlined to be the identity function.
-</para>
-<para>
-This behaviour is occasionally useful when controlling evaluation order.
-Notably, <literal>lazy</literal> is used in the library definition of
-<literal>Control.Parallel.par</literal>:
-<programlisting>
-  par :: a -> b -> b
-  par x y = case (par# x) of { _ -> lazy y }
-</programlisting>
-If <literal>lazy</literal> were not lazy, <literal>par</literal> would
-look strict in <literal>y</literal> which would defeat the whole 
-purpose of <literal>par</literal>.
-</para>
-</sect2>
+<para>GHC has a few built-in functions with special behaviour.  These
+are now described in the module <ulink
+url="../libraries/base/GHC-Prim.html"><literal>GHC.Prim</literal></ulink>
+in the library documentation.</para>
 </sect1>
 
 
 <sect1 id="generic-classes">
 <title>Generic classes</title>
 
-    <para>(Note: support for generic classes is currently broken in
-    GHC 5.02).</para>
-
 <para>
 The ideas behind this extension are described in detail in "Derivable type classes",
 Ralf Hinze and Simon Peyton Jones, Haskell Workshop, Montreal Sept 2000, pp94-105.
@@ -6156,7 +7119,7 @@ where clause and over-ride whichever methods you please.
       <itemizedlist>
        <listitem>
          <para>Use the flags <option>-fglasgow-exts</option> (to enable the extra syntax), 
-                <option>-fgenerics</option> (to generate extra per-data-type code),
+                <option>-XGenerics</option> (to generate extra per-data-type code),
                 and <option>-package lang</option> (to make the <literal>Generics</literal> library
                 available.  </para>
        </listitem>
@@ -6266,7 +7229,7 @@ So this too is illegal:
     op2 :: a -> Bool
     op2 {| p :*: q |} (x :*: y) = False
 </programlisting>
-(The reason for this restriction is that we gather all the equations for a particular type consructor
+(The reason for this restriction is that we gather all the equations for a particular type constructor
 into a single generic instance declaration.)
 </para>
 </listitem>
@@ -6297,7 +7260,7 @@ Here, op1, op2, op3 are OK, but op4 is rejected, because it has a type variable
 inside a list.  
 </para>
 <para>
-This restriction is an implementation restriction: we just havn't got around to
+This restriction is an implementation restriction: we just haven't got around to
 implementing the necessary bidirectional maps over arbitrary type constructors.
 It would be relatively easy to add specific type constructors, such as Maybe and list,
 to the ones that are allowed.</para>
@@ -6356,6 +7319,51 @@ Just to finish with, here's another example I rather like:
 </sect2>
 </sect1>
 
+<sect1 id="monomorphism">
+<title>Control over monomorphism</title>
+
+<para>GHC supports two flags that control the way in which generalisation is
+carried out at let and where bindings.
+</para>
+
+<sect2>
+<title>Switching off the dreaded Monomorphism Restriction</title>
+          <indexterm><primary><option>-XNoMonomorphismRestriction</option></primary></indexterm>
+
+<para>Haskell's monomorphism restriction (see 
+<ulink url="http://www.haskell.org/onlinereport/decls.html#sect4.5.5">Section
+4.5.5</ulink>
+of the Haskell Report)
+can be completely switched off by
+<option>-XNoMonomorphismRestriction</option>.
+</para>
+</sect2>
+
+<sect2>
+<title>Monomorphic pattern bindings</title>
+          <indexterm><primary><option>-XNoMonoPatBinds</option></primary></indexterm>
+          <indexterm><primary><option>-XMonoPatBinds</option></primary></indexterm>
+
+         <para> As an experimental change, we are exploring the possibility of
+         making pattern bindings monomorphic; that is, not generalised at all.  
+           A pattern binding is a binding whose LHS has no function arguments,
+           and is not a simple variable.  For example:
+<programlisting>
+  f x = x                    -- Not a pattern binding
+  f = \x -> x                -- Not a pattern binding
+  f :: Int -> Int = \x -> x  -- Not a pattern binding
+
+  (g,h) = e                  -- A pattern binding
+  (f) = e                    -- A pattern binding
+  [x] = e                    -- A pattern binding
+</programlisting>
+Experimentally, GHC now makes pattern bindings monomorphic <emphasis>by
+default</emphasis>.  Use <option>-XNoMonoPatBinds</option> to recover the
+standard behaviour.
+</para>
+</sect2>
+</sect1>
+
 
 
 <!-- Emacs stuff: