replace several 'fromJust's with 'expectJust's
[ghc-hetmet.git] / ghc / compiler / typecheck / TcBinds.lhs
index 2f3a888..cffcb9c 100644 (file)
@@ -4,55 +4,68 @@
 \section[TcBinds]{TcBinds}
 
 \begin{code}
-module TcBinds ( tcBindsAndThen, tcTopBinds,
-                tcSpecSigs, tcBindWithSigs ) where
+module TcBinds ( tcLocalBinds, tcTopBinds, 
+                tcHsBootSigs, tcMonoBinds, 
+                TcPragFun, tcSpecPrag, tcPrags, mkPragFun,
+                TcSigInfo(..),
+                badBootDeclErr ) where
 
 #include "HsVersions.h"
 
-import {-# SOURCE #-} TcMatches ( tcGRHSs, tcMatchesFun )
-import {-# SOURCE #-} TcExpr  ( tcExpr )
-
-import CmdLineOpts     ( opt_NoMonomorphismRestriction )
-import HsSyn           ( HsExpr(..), HsBinds(..), MonoBinds(..), Sig(..), 
-                         Match(..), HsMatchContext(..), 
-                         collectMonoBinders, andMonoBinds,
-                         collectSigTysFromMonoBinds
-                       )
-import RnHsSyn         ( RenamedHsBinds, RenamedSig, RenamedMonoBinds )
-import TcHsSyn         ( TcMonoBinds, TcId, zonkId, mkHsLet )
-
-import TcMonad
-import Inst            ( LIE, emptyLIE, mkLIE, plusLIE, InstOrigin(..),
-                         newDicts, instToId
+import {-# SOURCE #-} TcMatches ( tcGRHSsPat, tcMatchesFun )
+import {-# SOURCE #-} TcExpr  ( tcMonoExpr )
+
+import DynFlags                ( DynFlag(Opt_MonomorphismRestriction, Opt_GlasgowExts) )
+import HsSyn           ( HsExpr(..), HsBind(..), LHsBinds, LHsBind, Sig(..),
+                         HsLocalBinds(..), HsValBinds(..), HsIPBinds(..),
+                         LSig, Match(..), IPBind(..), Prag(..),
+                         HsType(..), LHsType, HsExplicitForAll(..), hsLTyVarNames, 
+                         isVanillaLSig, sigName, placeHolderNames, isPragLSig,
+                         LPat, GRHSs, MatchGroup(..), pprLHsBinds, mkHsCoerce,
+                         collectHsBindBinders, collectPatBinders, pprPatBind, isBangHsBind
                        )
-import TcEnv           ( tcExtendLocalValEnv, newLocalName )
-import TcUnify         ( unifyTauTyLists, checkSigTyVars, sigCtxt )
-import TcSimplify      ( tcSimplifyInfer, tcSimplifyInferCheck, tcSimplifyRestricted, tcSimplifyToDicts )
-import TcMonoType      ( tcHsSigType, UserTypeCtxt(..), 
-                         TcSigInfo(..), tcTySig, maybeSig, tcAddScopedTyVars
-                       )
-import TcPat           ( tcPat, tcSubPat, tcMonoPatBndr )
+import TcHsSyn         ( zonkId )
+
+import TcRnMonad
+import Inst            ( newDictsAtLoc, newIPDict, instToId )
+import TcEnv           ( tcExtendIdEnv, tcExtendIdEnv2, tcExtendTyVarEnv2, 
+                         pprBinders, tcLookupLocalId_maybe, tcLookupId,
+                         tcGetGlobalTyVars )
+import TcUnify         ( tcInfer, tcSubExp, unifyTheta, 
+                         bleatEscapedTvs, sigCtxt )
+import TcSimplify      ( tcSimplifyInfer, tcSimplifyInferCheck, 
+                         tcSimplifyRestricted, tcSimplifyIPs )
+import TcHsType                ( tcHsSigType, UserTypeCtxt(..) )
+import TcPat           ( tcPat, PatCtxt(..) )
 import TcSimplify      ( bindInstsOfLocalFuns )
-import TcMType         ( newTyVar, newTyVarTy, newHoleTyVarTy,
-                         zonkTcTyVarToTyVar
-                       )
-import TcType          ( mkTyVarTy, mkForAllTys, mkFunTys, tyVarsOfType, 
-                         mkPredTy, mkForAllTy, isUnLiftedType, 
-                         unliftedTypeKind, liftedTypeKind, openTypeKind, eqKind
-                       )
-
-import CoreFVs         ( idFreeTyVars )
-import Id              ( mkLocalId, mkSpecPragmaId, setInlinePragma )
-import Var             ( idType, idName )
-import Name            ( Name, getSrcLoc )
+import TcMType         ( newFlexiTyVarTy, zonkQuantifiedTyVar, zonkSigTyVar,
+                         tcInstSigTyVars, tcInstSkolTyVars, tcInstType, 
+                         zonkTcType, zonkTcTypes, zonkTcTyVars )
+import TcType          ( TcType, TcTyVar, TcThetaType, 
+                         SkolemInfo(SigSkol), UserTypeCtxt(FunSigCtxt), 
+                         TcTauType, TcSigmaType, isUnboxedTupleType,
+                         mkTyVarTy, mkForAllTys, mkFunTys, exactTyVarsOfType, 
+                         mkForAllTy, isUnLiftedType, tcGetTyVar, 
+                         mkTyVarTys, tidyOpenTyVar )
+import Kind            ( argTypeKind )
+import VarEnv          ( TyVarEnv, emptyVarEnv, lookupVarEnv, extendVarEnv ) 
+import TysWiredIn      ( unitTy )
+import TysPrim         ( alphaTyVar )
+import Id              ( Id, mkLocalId, mkVanillaGlobal )
+import IdInfo          ( vanillaIdInfo )
+import Var             ( TyVar, idType, idName )
+import Name            ( Name )
 import NameSet
-import Var             ( tyVarKind )
+import NameEnv
 import VarSet
+import SrcLoc          ( Located(..), unLoc, getLoc )
 import Bag
-import Util            ( isIn, equalLength )
-import BasicTypes      ( TopLevelFlag(..), RecFlag(..), isNonRec, isNotTopLevel,
-                         isAlwaysActive )
-import FiniteMap       ( listToFM, lookupFM )
+import ErrUtils                ( Message )
+import Digraph         ( SCC(..), stronglyConnComp )
+import Maybes          ( expectJust, isJust, isNothing, orElse )
+import Util            ( singleton )
+import BasicTypes      ( TopLevelFlag(..), isTopLevel, isNotTopLevel,
+                         RecFlag(..), isNonRec, InlineSpec, defaultInlineSpec )
 import Outputable
 \end{code}
 
@@ -89,410 +102,734 @@ At the top-level the LIE is sure to contain nothing but constant
 dictionaries, which we resolve at the module level.
 
 \begin{code}
-tcTopBinds :: RenamedHsBinds -> TcM ((TcMonoBinds, TcEnv), LIE)
+tcTopBinds :: HsValBinds Name -> TcM (LHsBinds TcId, TcLclEnv)
+       -- Note: returning the TcLclEnv is more than we really
+       --       want.  The bit we care about is the local bindings
+       --       and the free type variables thereof
 tcTopBinds binds
-  = tc_binds_and_then TopLevel glue binds      $
-    tcGetEnv                                   `thenNF_Tc` \ env ->
-    returnTc ((EmptyMonoBinds, env), emptyLIE)
+  = do { (ValBindsOut prs _, env) <- tcValBinds TopLevel binds getLclEnv
+       ; return (foldr (unionBags . snd) emptyBag prs, env) }
+       -- The top level bindings are flattened into a giant 
+       -- implicitly-mutually-recursive LHsBinds
+
+tcHsBootSigs :: HsValBinds Name -> TcM [Id]
+-- A hs-boot file has only one BindGroup, and it only has type
+-- signatures in it.  The renamer checked all this
+tcHsBootSigs (ValBindsOut binds sigs)
+  = do { checkTc (null binds) badBootDeclErr
+       ; mapM (addLocM tc_boot_sig) (filter isVanillaLSig sigs) }
   where
-    glue is_rec binds1 (binds2, thing) = (binds1 `AndMonoBinds` binds2, thing)
-
+    tc_boot_sig (TypeSig (L _ name) ty)
+      = do { sigma_ty <- tcHsSigType (FunSigCtxt name) ty
+          ; return (mkVanillaGlobal name sigma_ty vanillaIdInfo) }
+       -- Notice that we make GlobalIds, not LocalIds
+tcHsBootSigs groups = pprPanic "tcHsBootSigs" (ppr groups)
+
+badBootDeclErr :: Message
+badBootDeclErr = ptext SLIT("Illegal declarations in an hs-boot file")
+
+------------------------
+tcLocalBinds :: HsLocalBinds Name -> TcM thing
+            -> TcM (HsLocalBinds TcId, thing)
+
+tcLocalBinds EmptyLocalBinds thing_inside 
+  = do { thing <- thing_inside
+       ; return (EmptyLocalBinds, thing) }
+
+tcLocalBinds (HsValBinds binds) thing_inside
+  = do { (binds', thing) <- tcValBinds NotTopLevel binds thing_inside
+       ; return (HsValBinds binds', thing) }
+
+tcLocalBinds (HsIPBinds (IPBinds ip_binds _)) thing_inside
+  = do { (thing, lie) <- getLIE thing_inside
+       ; (avail_ips, ip_binds') <- mapAndUnzipM (wrapLocSndM tc_ip_bind) ip_binds
+
+       -- If the binding binds ?x = E, we  must now 
+       -- discharge any ?x constraints in expr_lie
+       ; dict_binds <- tcSimplifyIPs avail_ips lie
+       ; return (HsIPBinds (IPBinds ip_binds' dict_binds), thing) }
+  where
+       -- I wonder if we should do these one at at time
+       -- Consider     ?x = 4
+       --              ?y = ?x + 1
+    tc_ip_bind (IPBind ip expr)
+      = newFlexiTyVarTy argTypeKind            `thenM` \ ty ->
+       newIPDict (IPBindOrigin ip) ip ty       `thenM` \ (ip', ip_inst) ->
+       tcMonoExpr expr ty                      `thenM` \ expr' ->
+       returnM (ip_inst, (IPBind ip' expr'))
+
+------------------------
+tcValBinds :: TopLevelFlag 
+          -> HsValBinds Name -> TcM thing
+          -> TcM (HsValBinds TcId, thing) 
+
+tcValBinds top_lvl (ValBindsIn binds sigs) thing_inside
+  = pprPanic "tcValBinds" (ppr binds)
+
+tcValBinds top_lvl (ValBindsOut binds sigs) thing_inside
+  = do         {       -- Typecheck the signature
+       ; let { prag_fn = mkPragFun sigs
+             ; ty_sigs = filter isVanillaLSig sigs
+             ; sig_fn  = mkSigFun ty_sigs }
+
+       ; poly_ids <- mapM tcTySig ty_sigs
+
+               -- Extend the envt right away with all 
+               -- the Ids declared with type signatures
+       ; (binds', thing) <- tcExtendIdEnv poly_ids $
+                            tc_val_binds top_lvl sig_fn prag_fn 
+                                         binds thing_inside
+
+       ; return (ValBindsOut binds' sigs, thing) }
+
+------------------------
+tc_val_binds :: TopLevelFlag -> TcSigFun -> TcPragFun
+            -> [(RecFlag, LHsBinds Name)] -> TcM thing
+            -> TcM ([(RecFlag, LHsBinds TcId)], thing)
+-- Typecheck a whole lot of value bindings,
+-- one strongly-connected component at a time
+
+tc_val_binds top_lvl sig_fn prag_fn [] thing_inside
+  = do { thing <- thing_inside
+       ; return ([], thing) }
+
+tc_val_binds top_lvl sig_fn prag_fn (group : groups) thing_inside
+  = do { (group', (groups', thing))
+               <- tc_group top_lvl sig_fn prag_fn group $ 
+                  tc_val_binds top_lvl sig_fn prag_fn groups thing_inside
+       ; return (group' ++ groups', thing) }
+
+------------------------
+tc_group :: TopLevelFlag -> TcSigFun -> TcPragFun
+        -> (RecFlag, LHsBinds Name) -> TcM thing
+        -> TcM ([(RecFlag, LHsBinds TcId)], thing)
+
+-- Typecheck one strongly-connected component of the original program.
+-- We get a list of groups back, because there may 
+-- be specialisations etc as well
+
+tc_group top_lvl sig_fn prag_fn (NonRecursive, binds) thing_inside
+  =    -- A single non-recursive binding
+       -- We want to keep non-recursive things non-recursive
+        -- so that we desugar unlifted bindings correctly
+    do { (binds, thing) <- tcPolyBinds top_lvl NonRecursive NonRecursive
+                                       sig_fn prag_fn binds thing_inside
+       ; return ([(NonRecursive, b) | b <- binds], thing) }
+
+tc_group top_lvl sig_fn prag_fn (Recursive, binds) thing_inside
+  =    -- A recursive strongly-connected component
+       -- To maximise polymorphism (with -fglasgow-exts), we do a new 
+       -- strongly-connected-component analysis, this time omitting 
+       -- any references to variables with type signatures.
+       --
+       -- Then we bring into scope all the variables with type signatures
+    do { traceTc (text "tc_group rec" <+> pprLHsBinds binds)
+       ; gla_exts     <- doptM Opt_GlasgowExts
+       ; (binds,thing) <- if gla_exts 
+                          then go new_sccs
+                          else tc_binds Recursive binds thing_inside
+       ; return ([(Recursive, unionManyBags binds)], thing) }
+               -- Rec them all together
+  where
+    new_sccs :: [SCC (LHsBind Name)]
+    new_sccs = stronglyConnComp (mkEdges sig_fn binds)
 
-tcBindsAndThen
-       :: (RecFlag -> TcMonoBinds -> thing -> thing)           -- Combinator
-       -> RenamedHsBinds
-       -> TcM (thing, LIE)
-       -> TcM (thing, LIE)
+--  go :: SCC (LHsBind Name) -> TcM ([LHsBind TcId], thing)
+    go (scc:sccs) = do { (binds1, (binds2, thing)) <- go1 scc (go sccs)
+                       ; return (binds1 ++ binds2, thing) }
+    go []        = do  { thing <- thing_inside; return ([], thing) }
 
-tcBindsAndThen = tc_binds_and_then NotTopLevel
+    go1 (AcyclicSCC bind) = tc_binds NonRecursive (unitBag bind)
+    go1 (CyclicSCC binds) = tc_binds Recursive    (listToBag binds)
 
-tc_binds_and_then top_lvl combiner EmptyBinds do_next
-  = do_next
-tc_binds_and_then top_lvl combiner (MonoBind EmptyMonoBinds sigs is_rec) do_next
-  = do_next
+    tc_binds rec_tc binds = tcPolyBinds top_lvl Recursive rec_tc sig_fn prag_fn binds
 
-tc_binds_and_then top_lvl combiner (ThenBinds b1 b2) do_next
-  = tc_binds_and_then top_lvl combiner b1      $
-    tc_binds_and_then top_lvl combiner b2      $
-    do_next
+------------------------
+mkEdges :: TcSigFun -> LHsBinds Name
+       -> [(LHsBind Name, BKey, [BKey])]
 
-tc_binds_and_then top_lvl combiner (MonoBind bind sigs is_rec) do_next
-  =    -- BRING ANY SCOPED TYPE VARIABLES INTO SCOPE
-       -- Notice that they scope over 
-       --      a) the type signatures in the binding group
-       --      b) the bindings in the group
-       --      c) the scope of the binding group (the "in" part)
-      tcAddScopedTyVars (collectSigTysFromMonoBinds bind)      $
+type BKey  = Int -- Just number off the bindings
 
-       -- TYPECHECK THE SIGNATURES
-      mapTc tcTySig [sig | sig@(Sig name _ _) <- sigs] `thenTc` \ tc_ty_sigs ->
-  
-      tcBindWithSigs top_lvl bind tc_ty_sigs
-                    sigs is_rec                        `thenTc` \ (poly_binds, poly_lie, poly_ids) ->
-  
-         -- Extend the environment to bind the new polymorphic Ids
-      tcExtendLocalValEnv [(idName poly_id, poly_id) | poly_id <- poly_ids] $
-  
-         -- Build bindings and IdInfos corresponding to user pragmas
-      tcSpecSigs sigs          `thenTc` \ (prag_binds, prag_lie) ->
-
-       -- Now do whatever happens next, in the augmented envt
-      do_next                  `thenTc` \ (thing, thing_lie) ->
-
-       -- Create specialisations of functions bound here
-       -- We want to keep non-recursive things non-recursive
-       -- so that we desugar unlifted bindings correctly
-      case (top_lvl, is_rec) of
-
-               -- For the top level don't bother will all this bindInstsOfLocalFuns stuff
-               -- All the top level things are rec'd together anyway, so it's fine to
-               -- leave them to the tcSimplifyTop, and quite a bit faster too
-       (TopLevel, _)
-               -> returnTc (combiner Recursive (poly_binds `andMonoBinds` prag_binds) thing,
-                            thing_lie `plusLIE` prag_lie `plusLIE` poly_lie)
-
-       (NotTopLevel, NonRecursive) 
-               -> bindInstsOfLocalFuns 
-                               (thing_lie `plusLIE` prag_lie)
-                               poly_ids                        `thenTc` \ (thing_lie', lie_binds) ->
-
-                  returnTc (
-                       combiner NonRecursive poly_binds $
-                       combiner NonRecursive prag_binds $
-                       combiner Recursive lie_binds  $
-                               -- NB: the binds returned by tcSimplify and bindInstsOfLocalFuns
-                               -- aren't guaranteed in dependency order (though we could change
-                               -- that); hence the Recursive marker.
-                       thing,
-
-                       thing_lie' `plusLIE` poly_lie
-                  )
-
-       (NotTopLevel, Recursive)
-               -> bindInstsOfLocalFuns 
-                               (thing_lie `plusLIE` poly_lie `plusLIE` prag_lie) 
-                               poly_ids                        `thenTc` \ (final_lie, lie_binds) ->
-
-                  returnTc (
-                       combiner Recursive (
-                               poly_binds `andMonoBinds`
-                               lie_binds  `andMonoBinds`
-                               prag_binds) thing,
-                       final_lie
-                  )
-\end{code}
+mkEdges sig_fn binds
+  = [ (bind, key, [key | n <- nameSetToList (bind_fvs (unLoc bind)),
+                        Just key <- [lookupNameEnv key_map n], no_sig n ])
+    | (bind, key) <- keyd_binds
+    ]
+  where
+    no_sig :: Name -> Bool
+    no_sig n = isNothing (sig_fn n)
+
+    keyd_binds = bagToList binds `zip` [0::BKey ..]
+
+    key_map :: NameEnv BKey    -- Which binding it comes from
+    key_map = mkNameEnv [(bndr, key) | (L _ bind, key) <- keyd_binds
+                                    , bndr <- bindersOfHsBind bind ]
+
+bindersOfHsBind :: HsBind Name -> [Name]
+bindersOfHsBind (PatBind { pat_lhs = pat })  = collectPatBinders pat
+bindersOfHsBind (FunBind { fun_id = L _ f }) = [f]
+
+------------------------
+tcPolyBinds :: TopLevelFlag 
+           -> RecFlag                  -- Whether the group is really recursive
+           -> RecFlag                  -- Whether it's recursive for typechecking purposes
+           -> TcSigFun -> TcPragFun
+           -> LHsBinds Name
+           -> TcM thing
+           -> TcM ([LHsBinds TcId], thing)
+
+-- Typechecks a single bunch of bindings all together, 
+-- and generalises them.  The bunch may be only part of a recursive
+-- group, because we use type signatures to maximise polymorphism
+--
+-- Deals with the bindInstsOfLocalFuns thing too
+--
+-- Returns a list because the input may be a single non-recursive binding,
+-- in which case the dependency order of the resulting bindings is
+-- important.  
+
+tcPolyBinds top_lvl rec_group rec_tc sig_fn prag_fn scc thing_inside
+  =    -- NB: polymorphic recursion means that a function
+       -- may use an instance of itself, we must look at the LIE arising
+       -- from the function's own right hand side.  Hence the getLIE
+       -- encloses the tc_poly_binds. 
+    do { traceTc (text "tcPolyBinds" <+> ppr scc)
+       ; ((binds1, poly_ids, thing), lie) <- getLIE $ 
+               do { (binds1, poly_ids) <- tc_poly_binds top_lvl rec_group rec_tc
+                                                        sig_fn prag_fn scc
+                  ; thing <- tcExtendIdEnv poly_ids thing_inside
+                  ; return (binds1, poly_ids, thing) }
+
+       ; if isTopLevel top_lvl 
+         then          -- For the top level don't bother will all this
+                       -- bindInstsOfLocalFuns stuff. All the top level 
+                       -- things are rec'd together anyway, so it's fine to
+                       -- leave them to the tcSimplifyTop, 
+                       -- and quite a bit faster too
+               do { extendLIEs lie; return (binds1, thing) }
+
+         else do       -- Nested case
+               { lie_binds <- bindInstsOfLocalFuns lie poly_ids
+               ; return (binds1 ++ [lie_binds], thing) }}
+
+------------------------
+tc_poly_binds :: TopLevelFlag          -- See comments on tcPolyBinds
+             -> RecFlag -> RecFlag
+             -> TcSigFun -> TcPragFun
+             -> LHsBinds Name
+             -> TcM ([LHsBinds TcId], [TcId])
+-- Typechecks the bindings themselves
+-- Knows nothing about the scope of the bindings
+
+tc_poly_binds top_lvl rec_group rec_tc sig_fn prag_fn binds
+  = let 
+        binder_names = collectHsBindBinders binds
+       bind_list    = bagToList binds
+
+       loc = getLoc (head bind_list)
+               -- TODO: location a bit awkward, but the mbinds have been
+               --       dependency analysed and may no longer be adjacent
+    in
+       -- SET UP THE MAIN RECOVERY; take advantage of any type sigs
+    setSrcSpan loc                             $
+    recoverM (recoveryCode binder_names)       $ do 
+
+  { traceTc (ptext SLIT("------------------------------------------------"))
+  ; traceTc (ptext SLIT("Bindings for") <+> ppr binder_names)
+
+       -- TYPECHECK THE BINDINGS
+  ; ((binds', mono_bind_infos), lie_req) 
+       <- getLIE (tcMonoBinds bind_list sig_fn rec_tc)
+
+       -- CHECK FOR UNLIFTED BINDINGS
+       -- These must be non-recursive etc, and are not generalised
+       -- They desugar to a case expression in the end
+  ; zonked_mono_tys <- zonkTcTypes (map getMonoType mono_bind_infos)
+  ; is_strict <- checkStrictBinds top_lvl rec_group binds' 
+                                 zonked_mono_tys mono_bind_infos
+  ; if is_strict then
+    do { extendLIEs lie_req
+       ; let exports = zipWith mk_export mono_bind_infos zonked_mono_tys
+             mk_export (name, Nothing,  mono_id) mono_ty = ([], mkLocalId name mono_ty, mono_id, [])
+             mk_export (name, Just sig, mono_id) mono_ty = ([], sig_id sig,             mono_id, [])
+                       -- ToDo: prags for unlifted bindings
+
+       ; return ( [unitBag $ L loc $ AbsBinds [] [] exports binds'],
+                  [poly_id | (_, poly_id, _, _) <- exports]) } -- Guaranteed zonked
+
+    else do    -- The normal lifted case: GENERALISE
+  { is_unres <- isUnRestrictedGroup bind_list sig_fn
+  ; (tyvars_to_gen, dict_binds, dict_ids)
+       <- addErrCtxt (genCtxt (bndrNames mono_bind_infos)) $
+          generalise top_lvl is_unres mono_bind_infos lie_req
+
+       -- FINALISE THE QUANTIFIED TYPE VARIABLES
+       -- The quantified type variables often include meta type variables
+       -- we want to freeze them into ordinary type variables, and
+       -- default their kind (e.g. from OpenTypeKind to TypeKind)
+  ; tyvars_to_gen' <- mappM zonkQuantifiedTyVar tyvars_to_gen
 
+       -- BUILD THE POLYMORPHIC RESULT IDs
+  ; exports <- mapM (mkExport prag_fn tyvars_to_gen' (map idType dict_ids))
+                   mono_bind_infos
 
-%************************************************************************
-%*                                                                     *
-\subsection{tcBindWithSigs}
-%*                                                                     *
-%************************************************************************
+       -- ZONK THE poly_ids, because they are used to extend the type 
+       -- environment; see the invariant on TcEnv.tcExtendIdEnv 
+  ; let        poly_ids = [poly_id | (_, poly_id, _, _) <- exports]
+  ; zonked_poly_ids <- mappM zonkId poly_ids
 
-@tcBindWithSigs@ deals with a single binding group.  It does generalisation,
-so all the clever stuff is in here.
+  ; traceTc (text "binding:" <+> ppr (zonked_poly_ids `zip` map idType zonked_poly_ids))
 
-* binder_names and mbind must define the same set of Names
+  ; let abs_bind = L loc $ AbsBinds tyvars_to_gen'
+                                   dict_ids exports
+                                   (dict_binds `unionBags` binds')
 
-* The Names in tc_ty_sigs must be a subset of binder_names
+  ; return ([unitBag abs_bind], zonked_poly_ids)
+  } }
 
-* The Ids in tc_ty_sigs don't necessarily have to have the same name
-  as the Name in the tc_ty_sig
 
-\begin{code}
-tcBindWithSigs 
-       :: TopLevelFlag
-       -> RenamedMonoBinds
-       -> [TcSigInfo]
-       -> [RenamedSig]         -- Used solely to get INLINE, NOINLINE sigs
-       -> RecFlag
-       -> TcM (TcMonoBinds, LIE, [TcId])
-
-tcBindWithSigs top_lvl mbind tc_ty_sigs inline_sigs is_rec
-  = recoverTc (
-       -- If typechecking the binds fails, then return with each
-       -- signature-less binder given type (forall a.a), to minimise subsequent
-       -- error messages
-       newTyVar liftedTypeKind         `thenNF_Tc` \ alpha_tv ->
-       let
-         forall_a_a    = mkForAllTy alpha_tv (mkTyVarTy alpha_tv)
-          binder_names  = collectMonoBinders mbind
-         poly_ids      = map mk_dummy binder_names
-         mk_dummy name = case maybeSig tc_ty_sigs name of
-                           Just (TySigInfo _ poly_id _ _ _ _ _ _) -> poly_id   -- Signature
-                           Nothing -> mkLocalId name forall_a_a                -- No signature
-       in
-       returnTc (EmptyMonoBinds, emptyLIE, poly_ids)
-    )                                          $
-
-       -- TYPECHECK THE BINDINGS
-    tcMonoBinds mbind tc_ty_sigs is_rec                `thenTc` \ (mbind', lie_req, binder_names, mono_ids) ->
-    let
-       tau_tvs = foldr (unionVarSet . tyVarsOfType . idType) emptyVarSet mono_ids
-    in
+--------------
+mkExport :: TcPragFun -> [TyVar] -> [TcType] -> MonoBindInfo
+        -> TcM ([TyVar], Id, Id, [Prag])
+mkExport prag_fn inferred_tvs dict_tys (poly_name, mb_sig, mono_id)
+  = case mb_sig of
+      Nothing  -> do { prags <- tcPrags poly_id (prag_fn poly_name)
+                    ; return (inferred_tvs, poly_id, mono_id, prags) }
+         where
+           poly_id = mkLocalId poly_name poly_ty
+           poly_ty = mkForAllTys inferred_tvs
+                                      $ mkFunTys dict_tys 
+                                      $ idType mono_id
+
+      Just sig -> do { let poly_id = sig_id sig
+                    ; prags <- tcPrags poly_id (prag_fn poly_name)
+                    ; sig_tys <- zonkTcTyVars (sig_tvs sig)
+                    ; let sig_tvs' = map (tcGetTyVar "mkExport") sig_tys
+                    ; return (sig_tvs', poly_id, mono_id, prags) }
+               -- We zonk the sig_tvs here so that the export triple
+               -- always has zonked type variables; 
+               -- a convenient invariant
+
+
+------------------------
+type TcPragFun = Name -> [LSig Name]
+
+mkPragFun :: [LSig Name] -> TcPragFun
+mkPragFun sigs = \n -> lookupNameEnv env n `orElse` []
+       where
+         prs = [(expectJust "mkPragFun" (sigName sig), sig) 
+               | sig <- sigs, isPragLSig sig]
+         env = foldl add emptyNameEnv prs
+         add env (n,p) = extendNameEnv_Acc (:) singleton env n p
+
+tcPrags :: Id -> [LSig Name] -> TcM [Prag]
+tcPrags poly_id prags = mapM tc_prag prags
+  where
+    tc_prag (L loc prag) = setSrcSpan loc $ 
+                          addErrCtxt (pragSigCtxt prag) $ 
+                          tcPrag poly_id prag
 
-       -- GENERALISE
-    tcAddSrcLoc  (minimum (map getSrcLoc binder_names))                $
-    tcAddErrCtxt (genCtxt binder_names)                                $
-    generalise binder_names mbind tau_tvs lie_req tc_ty_sigs
-                               `thenTc` \ (tc_tyvars_to_gen, lie_free, dict_binds, dict_ids) ->
-
-
-       -- ZONK THE GENERALISED TYPE VARIABLES TO REAL TyVars
-       -- This commits any unbound kind variables to boxed kind, by unification
-       -- It's important that the final quanfified type variables
-       -- are fully zonked, *including boxity*, because they'll be 
-       -- included in the forall types of the polymorphic Ids.
-       -- At calls of these Ids we'll instantiate fresh type variables from
-       -- them, and we use their boxity then.
-    mapNF_Tc zonkTcTyVarToTyVar tc_tyvars_to_gen       `thenNF_Tc` \ real_tyvars_to_gen ->
-
-       -- ZONK THE Ids
-       -- It's important that the dict Ids are zonked, including the boxity set
-       -- in the previous step, because they are later used to form the type of 
-       -- the polymorphic thing, and forall-types must be zonked so far as 
-       -- their bound variables are concerned
-    mapNF_Tc zonkId dict_ids                           `thenNF_Tc` \ zonked_dict_ids ->
-    mapNF_Tc zonkId mono_ids                           `thenNF_Tc` \ zonked_mono_ids ->
-
-       -- CHECK FOR BOGUS UNLIFTED BINDINGS
-    checkUnliftedBinds top_lvl is_rec real_tyvars_to_gen mbind zonked_mono_ids `thenTc_`
+pragSigCtxt prag = hang (ptext SLIT("In the pragma")) 2 (ppr prag)
 
-       -- BUILD THE POLYMORPHIC RESULT IDs
-    let
-       exports  = zipWith mk_export binder_names zonked_mono_ids
-       dict_tys = map idType zonked_dict_ids
-
-       inlines    = mkNameSet [name | InlineSig True name _ loc <- inline_sigs]
-        no_inlines = listToFM [(name, phase) | InlineSig _ name phase _ <- inline_sigs, 
-                                              not (isAlwaysActive phase)]
-                       -- AlwaysActive is the default, so don't bother with them
-
-       mk_export binder_name zonked_mono_id
-         = (tyvars, 
-            attachNoInlinePrag no_inlines poly_id,
-            zonked_mono_id)
-         where
-           (tyvars, poly_id) = 
-               case maybeSig tc_ty_sigs binder_name of
-                 Just (TySigInfo _ sig_poly_id sig_tyvars _ _ _ _ _) -> 
-                       (sig_tyvars, sig_poly_id)
-                 Nothing -> (real_tyvars_to_gen, new_poly_id)
-
-           new_poly_id = mkLocalId binder_name poly_ty
-           poly_ty = mkForAllTys real_tyvars_to_gen
-                   $ mkFunTys dict_tys 
-                   $ idType zonked_mono_id
-               -- It's important to build a fully-zonked poly_ty, because
-               -- we'll slurp out its free type variables when extending the
-               -- local environment (tcExtendLocalValEnv); if it's not zonked
-               -- it appears to have free tyvars that aren't actually free 
-               -- at all.
-    in
+tcPrag :: TcId -> Sig Name -> TcM Prag
+tcPrag poly_id (SpecSig orig_name hs_ty inl) = tcSpecPrag poly_id hs_ty inl
+tcPrag poly_id (SpecInstSig hs_ty)          = tcSpecPrag poly_id hs_ty defaultInlineSpec
+tcPrag poly_id (InlineSig v inl)             = return (InlinePrag inl)
 
-    traceTc (text "binding:" <+> ppr ((zonked_dict_ids, dict_binds),
-            exports, [idType poly_id | (_, poly_id, _) <- exports])) `thenTc_`
-
-        -- BUILD RESULTS
-    returnTc (
-       AbsBinds real_tyvars_to_gen
-                zonked_dict_ids
-                exports
-                inlines
-                (dict_binds `andMonoBinds` mbind'),
-       lie_free,
-       [poly_id | (_, poly_id, _) <- exports]
-    )
-
-attachNoInlinePrag no_inlines bndr
-  = case lookupFM no_inlines (idName bndr) of
-       Just prag -> bndr `setInlinePragma` prag
-       Nothing   -> bndr
-
-checkUnliftedBinds top_lvl is_rec real_tyvars_to_gen mbind zonked_mono_ids
-  = ASSERT( not (any ((eqKind unliftedTypeKind) . tyVarKind) real_tyvars_to_gen) )
-               -- The instCantBeGeneralised stuff in tcSimplify should have
-               -- already raised an error if we're trying to generalise an 
-               -- unboxed tyvar (NB: unboxed tyvars are always introduced 
-               -- along with a class constraint) and it's better done there 
-               -- because we have more precise origin information.
-               -- That's why we just use an ASSERT here.
-
-       -- Check that pattern-bound variables are not unlifted
-    (if or [ (idName id `elem` pat_binders) && isUnLiftedType (idType id) 
-          | id <- zonked_mono_ids ] then
-       addErrTc (unliftedBindErr "Pattern" mbind)
-     else
-       returnTc ()
-    )                                                          `thenTc_`
-
-       -- Unlifted bindings must be non-recursive,
-       -- not top level, non-polymorphic, and not pattern bound
-    if any (isUnLiftedType . idType) zonked_mono_ids then
-       checkTc (isNotTopLevel top_lvl)
-               (unliftedBindErr "Top-level" mbind)             `thenTc_`
-       checkTc (isNonRec is_rec)
-               (unliftedBindErr "Recursive" mbind)             `thenTc_`
-       checkTc (null real_tyvars_to_gen)
-               (unliftedBindErr "Polymorphic" mbind)
-     else
-       returnTc ()
 
+tcSpecPrag :: TcId -> LHsType Name -> InlineSpec -> TcM Prag
+tcSpecPrag poly_id hs_ty inl
+  = do { spec_ty <- tcHsSigType (FunSigCtxt (idName poly_id)) hs_ty
+       ; (co_fn, lie) <- getLIE (tcSubExp (idType poly_id) spec_ty)
+       ; extendLIEs lie
+       ; let const_dicts = map instToId lie
+       ; return (SpecPrag (mkHsCoerce co_fn (HsVar poly_id)) spec_ty const_dicts inl) }
+  
+--------------
+-- If typechecking the binds fails, then return with each
+-- signature-less binder given type (forall a.a), to minimise 
+-- subsequent error messages
+recoveryCode binder_names
+  = do { traceTc (text "tcBindsWithSigs: error recovery" <+> ppr binder_names)
+       ; poly_ids <- mapM mk_dummy binder_names
+       ; return ([], poly_ids) }
+  where
+    mk_dummy name = do { mb_id <- tcLookupLocalId_maybe name
+                       ; case mb_id of
+                             Just id -> return id              -- Had signature, was in envt
+                             Nothing -> return (mkLocalId name forall_a_a) }    -- No signature
+
+forall_a_a :: TcType
+forall_a_a = mkForAllTy alphaTyVar (mkTyVarTy alphaTyVar)
+
+
+-- Check that non-overloaded unlifted bindings are
+--     a) non-recursive,
+--     b) not top level, 
+--     c) not a multiple-binding group (more or less implied by (a))
+
+checkStrictBinds :: TopLevelFlag -> RecFlag
+                -> LHsBinds TcId -> [TcType] -> [MonoBindInfo]
+                -> TcM Bool
+checkStrictBinds top_lvl rec_group mbind mono_tys infos
+  | unlifted || bang_pat
+  = do         { checkTc (isNotTopLevel top_lvl)
+                 (strictBindErr "Top-level" unlifted mbind)
+       ; checkTc (isNonRec rec_group)
+                 (strictBindErr "Recursive" unlifted mbind)
+       ; checkTc (isSingletonBag mbind)
+                 (strictBindErr "Multiple" unlifted mbind) 
+       ; mapM_ check_sig infos
+       ; return True }
+  | otherwise
+  = return False
+  where
+    unlifted = any isUnLiftedType mono_tys
+    bang_pat = anyBag (isBangHsBind . unLoc) mbind
+    check_sig (_, Just sig, _) = checkTc (null (sig_tvs sig) && null (sig_theta sig))
+                                        (badStrictSig unlifted sig)
+    check_sig other           = return ()
+
+strictBindErr flavour unlifted mbind
+  = hang (text flavour <+> msg <+> ptext SLIT("aren't allowed:")) 4 (ppr mbind)
   where
-    pat_binders :: [Name]
-    pat_binders = collectMonoBinders (justPatBindings mbind EmptyMonoBinds)
+    msg | unlifted  = ptext SLIT("bindings for unlifted types")
+       | otherwise = ptext SLIT("bang-pattern bindings")
 
-    justPatBindings bind@(PatMonoBind _ _ _) binds = bind `andMonoBinds` binds
-    justPatBindings (AndMonoBinds b1 b2) binds = 
-           justPatBindings b1 (justPatBindings b2 binds) 
-    justPatBindings other_bind binds = binds
+badStrictSig unlifted sig
+  = hang (ptext SLIT("Illegal polymorphic signature in") <+> msg)
+        4 (ppr sig)
+  where
+    msg | unlifted  = ptext SLIT("an unlifted binding")
+       | otherwise = ptext SLIT("a bang-pattern binding")
 \end{code}
 
 
-Polymorphic recursion
-~~~~~~~~~~~~~~~~~~~~~
-The game plan for polymorphic recursion in the code above is 
+%************************************************************************
+%*                                                                     *
+\subsection{tcMonoBind}
+%*                                                                     *
+%************************************************************************
 
-       * Bind any variable for which we have a type signature
-         to an Id with a polymorphic type.  Then when type-checking 
-         the RHSs we'll make a full polymorphic call.
+@tcMonoBinds@ deals with a perhaps-recursive group of HsBinds.
+The signatures have been dealt with already.
 
-This fine, but if you aren't a bit careful you end up with a horrendous
-amount of partial application and (worse) a huge space leak. For example:
+\begin{code}
+tcMonoBinds :: [LHsBind Name]
+           -> TcSigFun
+           -> RecFlag  -- Whether the binding is recursive for typechecking purposes
+                       -- i.e. the binders are mentioned in their RHSs, and
+                       --      we are not resuced by a type signature
+           -> TcM (LHsBinds TcId, [MonoBindInfo])
+
+tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
+                               fun_matches = matches, bind_fvs = fvs })]
+           sig_fn              -- Single function binding,
+           NonRecursive        -- binder isn't mentioned in RHS,
+  | Nothing <- sig_fn name     -- ...with no type signature
+  =    -- In this very special case we infer the type of the
+       -- right hand side first (it may have a higher-rank type)
+       -- and *then* make the monomorphic Id for the LHS
+       -- e.g.         f = \(x::forall a. a->a) -> <body>
+       --      We want to infer a higher-rank type for f
+    setSrcSpan b_loc   $
+    do { ((co_fn, matches'), rhs_ty) <- tcInfer (tcMatchesFun name matches)
+
+               -- Check for an unboxed tuple type
+               --      f = (# True, False #)
+               -- Zonk first just in case it's hidden inside a meta type variable
+               -- (This shows up as a (more obscure) kind error 
+               --  in the 'otherwise' case of tcMonoBinds.)
+       ; zonked_rhs_ty <- zonkTcType rhs_ty
+       ; checkTc (not (isUnboxedTupleType zonked_rhs_ty))
+                 (unboxedTupleErr name zonked_rhs_ty)
+
+       ; mono_name <- newLocalName name
+       ; let mono_id = mkLocalId mono_name zonked_rhs_ty
+       ; return (unitBag (L b_loc (FunBind { fun_id = L nm_loc mono_id, fun_infix = inf,
+                                             fun_matches = matches', bind_fvs = fvs,
+                                             fun_co_fn = co_fn })),
+                 [(name, Nothing, mono_id)]) }
+
+tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
+                               fun_matches = matches, bind_fvs = fvs })]
+           sig_fn              -- Single function binding
+           non_rec     
+  | Just sig <- sig_fn name    -- ...with a type signature
+  =    -- When we have a single function binding, with a type signature
+       -- we can (a) use genuine, rigid skolem constants for the type variables
+       --        (b) bring (rigid) scoped type variables into scope
+    setSrcSpan b_loc   $
+    do { tc_sig <- tcInstSig True sig
+       ; mono_name <- newLocalName name
+       ; let mono_ty = sig_tau tc_sig
+             mono_id = mkLocalId mono_name mono_ty
+             rhs_tvs = [ (name, mkTyVarTy tv)
+                       | (name, tv) <- sig_scoped tc_sig `zip` sig_tvs tc_sig ]
+
+       ; (co_fn, matches') <- tcExtendTyVarEnv2 rhs_tvs    $
+                              tcMatchesFun mono_name matches mono_ty
+
+       ; let fun_bind' = FunBind { fun_id = L nm_loc mono_id, 
+                                   fun_infix = inf, fun_matches = matches',
+                                   bind_fvs = placeHolderNames, fun_co_fn = co_fn }
+       ; return (unitBag (L b_loc fun_bind'),
+                 [(name, Just tc_sig, mono_id)]) }
+
+tcMonoBinds binds sig_fn non_rec
+  = do { tc_binds <- mapM (wrapLocM (tcLhs sig_fn)) binds
+
+       -- Bring the monomorphic Ids, into scope for the RHSs
+       ; let mono_info  = getMonoBindInfo tc_binds
+             rhs_id_env = [(name,mono_id) | (name, Nothing, mono_id) <- mono_info]
+                               -- A monomorphic binding for each term variable that lacks 
+                               -- a type sig.  (Ones with a sig are already in scope.)
+
+       ; binds' <- tcExtendIdEnv2    rhs_id_env $
+                   traceTc (text "tcMonoBinds" <+> vcat [ ppr n <+> ppr id <+> ppr (idType id) 
+                                                        | (n,id) <- rhs_id_env]) `thenM_`
+                   mapM (wrapLocM tcRhs) tc_binds
+       ; return (listToBag binds', mono_info) }
+
+------------------------
+-- tcLhs typechecks the LHS of the bindings, to construct the environment in which
+-- we typecheck the RHSs.  Basically what we are doing is this: for each binder:
+--     if there's a signature for it, use the instantiated signature type
+--     otherwise invent a type variable
+-- You see that quite directly in the FunBind case.
+-- 
+-- But there's a complication for pattern bindings:
+--     data T = MkT (forall a. a->a)
+--     MkT f = e
+-- Here we can guess a type variable for the entire LHS (which will be refined to T)
+-- but we want to get (f::forall a. a->a) as the RHS environment.
+-- The simplest way to do this is to typecheck the pattern, and then look up the
+-- bound mono-ids.  Then we want to retain the typechecked pattern to avoid re-doing
+-- it; hence the TcMonoBind data type in which the LHS is done but the RHS isn't
+
+data TcMonoBind                -- Half completed; LHS done, RHS not done
+  = TcFunBind  MonoBindInfo  (Located TcId) Bool (MatchGroup Name) 
+  | TcPatBind [MonoBindInfo] (LPat TcId) (GRHSs Name) TcSigmaType
+
+type MonoBindInfo = (Name, Maybe TcSigInfo, TcId)
+       -- Type signature (if any), and
+       -- the monomorphic bound things
+
+bndrNames :: [MonoBindInfo] -> [Name]
+bndrNames mbi = [n | (n,_,_) <- mbi]
+
+getMonoType :: MonoBindInfo -> TcTauType
+getMonoType (_,_,mono_id) = idType mono_id
+
+tcLhs :: TcSigFun -> HsBind Name -> TcM TcMonoBind
+tcLhs sig_fn (FunBind { fun_id = L nm_loc name, fun_infix = inf, fun_matches = matches })
+  = do { mb_sig <- tcInstSig_maybe (sig_fn name)
+       ; mono_name <- newLocalName name
+       ; mono_ty   <- mk_mono_ty mb_sig
+       ; let mono_id = mkLocalId mono_name mono_ty
+       ; return (TcFunBind (name, mb_sig, mono_id) (L nm_loc mono_id) inf matches) }
+  where
+    mk_mono_ty (Just sig) = return (sig_tau sig)
+    mk_mono_ty Nothing    = newFlexiTyVarTy argTypeKind
 
-       f :: Eq a => [a] -> [a]
-       f xs = ...f...
+tcLhs sig_fn bind@(PatBind { pat_lhs = pat, pat_rhs = grhss })
+  = do { mb_sigs <- mapM (tcInstSig_maybe . sig_fn) names
 
-If we don't take care, after typechecking we get
+       ; let nm_sig_prs  = names `zip` mb_sigs
+             tau_sig_env = mkNameEnv [ (name, sig_tau sig) | (name, Just sig) <- nm_sig_prs]
+             sig_tau_fn  = lookupNameEnv tau_sig_env
 
-       f = /\a -> \d::Eq a -> let f' = f a d
-                              in
-                              \ys:[a] -> ...f'...
+             tc_pat exp_ty = tcPat (LetPat sig_tau_fn) pat exp_ty unitTy $ \ _ ->
+                             mapM lookup_info nm_sig_prs
+               -- The unitTy is a bit bogus; it's the "result type" for lookup_info.  
 
-Notice the the stupid construction of (f a d), which is of course
-identical to the function we're executing.  In this case, the
-polymorphic recursion isn't being used (but that's a very common case).
-We'd prefer
+               -- After typechecking the pattern, look up the binder
+               -- names, which the pattern has brought into scope.
+             lookup_info :: (Name, Maybe TcSigInfo) -> TcM MonoBindInfo
+             lookup_info (name, mb_sig) = do { mono_id <- tcLookupId name
+                                             ; return (name, mb_sig, mono_id) }
 
-       f = /\a -> \d::Eq a -> letrec
-                                fm = \ys:[a] -> ...fm...
-                              in
-                              fm
+       ; ((pat', infos), pat_ty) <- addErrCtxt (patMonoBindsCtxt pat grhss) $
+                                    tcInfer tc_pat
 
-This can lead to a massive space leak, from the following top-level defn
-(post-typechecking)
+       ; return (TcPatBind infos pat' grhss pat_ty) }
+  where
+    names = collectPatBinders pat
 
-       ff :: [Int] -> [Int]
-       ff = f Int dEqInt
 
-Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
-f' is another thunk which evaluates to the same thing... and you end
-up with a chain of identical values all hung onto by the CAF ff.
+tcLhs sig_fn other_bind = pprPanic "tcLhs" (ppr other_bind)
+       -- AbsBind, VarBind impossible
 
-       ff = f Int dEqInt
+-------------------
+tcRhs :: TcMonoBind -> TcM (HsBind TcId)
+tcRhs (TcFunBind info fun'@(L _ mono_id) inf matches)
+  = do { (co_fn, matches') <- tcMatchesFun (idName mono_id) matches 
+                                           (idType mono_id)
+       ; return (FunBind { fun_id = fun', fun_infix = inf, fun_matches = matches',
+                           bind_fvs = placeHolderNames, fun_co_fn = co_fn }) }
 
-          = let f' = f Int dEqInt in \ys. ...f'...
+tcRhs bind@(TcPatBind _ pat' grhss pat_ty)
+  = do { grhss' <- addErrCtxt (patMonoBindsCtxt pat' grhss) $
+                   tcGRHSsPat grhss pat_ty
+       ; return (PatBind { pat_lhs = pat', pat_rhs = grhss', pat_rhs_ty = pat_ty, 
+                           bind_fvs = placeHolderNames }) }
 
-          = let f' = let f' = f Int dEqInt in \ys. ...f'...
-                     in \ys. ...f'...
 
-Etc.
-Solution: when typechecking the RHSs we always have in hand the
-*monomorphic* Ids for each binding.  So we just need to make sure that
-if (Method f a d) shows up in the constraints emerging from (...f...)
-we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
-to the "givens" when simplifying constraints.  That's what the "lies_avail"
-is doing.
+---------------------
+getMonoBindInfo :: [Located TcMonoBind] -> [MonoBindInfo]
+getMonoBindInfo tc_binds
+  = foldr (get_info . unLoc) [] tc_binds
+  where
+    get_info (TcFunBind info _ _ _)  rest = info : rest
+    get_info (TcPatBind infos _ _ _) rest = infos ++ rest
+\end{code}
 
 
 %************************************************************************
 %*                                                                     *
-\subsection{getTyVarsToGen}
+               Generalisation
 %*                                                                     *
 %************************************************************************
 
 \begin{code}
-generalise binder_names mbind tau_tvs lie_req sigs
-  | not is_unrestricted        -- RESTRICTED CASE
+generalise :: TopLevelFlag -> Bool 
+          -> [MonoBindInfo] -> [Inst]
+          -> TcM ([TcTyVar], TcDictBinds, [TcId])
+generalise top_lvl is_unrestricted mono_infos lie_req
+  | not is_unrestricted        -- RESTRICTED CASE
   =    -- Check signature contexts are empty 
-    checkTc (all is_mono_sig sigs)
-           (restrictedBindCtxtErr binder_names)        `thenTc_`
+    do { checkTc (all is_mono_sig sigs)
+                 (restrictedBindCtxtErr bndrs)
 
        -- Now simplify with exactly that set of tyvars
        -- We have to squash those Methods
-    tcSimplifyRestricted doc tau_tvs lie_req           `thenTc` \ (qtvs, lie_free, binds) ->
+       ; (qtvs, binds) <- tcSimplifyRestricted doc top_lvl bndrs 
+                                               tau_tvs lie_req
 
        -- Check that signature type variables are OK
-    checkSigsTyVars sigs                               `thenTc_`
+       ; final_qtvs <- checkSigsTyVars qtvs sigs
 
-    returnTc (qtvs, lie_free, binds, [])
+       ; return (final_qtvs, binds, []) }
 
-  | null sigs                  -- UNRESTRICTED CASE, NO TYPE SIGS
+  | null sigs  -- UNRESTRICTED CASE, NO TYPE SIGS
   = tcSimplifyInfer doc tau_tvs lie_req
 
-  | otherwise                  -- UNRESTRICTED CASE, WITH TYPE SIGS
-  =    -- CHECKING CASE: Unrestricted group, there are type signatures
-       -- Check signature contexts are empty 
-    checkSigsCtxts sigs                                `thenTc` \ (sig_avails, sig_dicts) ->
-    
+  | otherwise  -- UNRESTRICTED CASE, WITH TYPE SIGS
+  = do { sig_lie <- unifyCtxts sigs    -- sigs is non-empty
+       ; let   -- The "sig_avails" is the stuff available.  We get that from
+               -- the context of the type signature, BUT ALSO the lie_avail
+               -- so that polymorphic recursion works right (see Note [Polymorphic recursion])
+               local_meths = [mkMethInst sig mono_id | (_, Just sig, mono_id) <- mono_infos]
+               sig_avails = sig_lie ++ local_meths
+
        -- Check that the needed dicts can be
        -- expressed in terms of the signature ones
-    tcSimplifyInferCheck doc tau_tvs sig_avails lie_req        `thenTc` \ (forall_tvs, lie_free, dict_binds) ->
+       ; (forall_tvs, dict_binds) <- tcSimplifyInferCheck doc tau_tvs sig_avails lie_req
        
        -- Check that signature type variables are OK
-    checkSigsTyVars sigs                                       `thenTc_`
-
-    returnTc (forall_tvs, lie_free, dict_binds, sig_dicts)
+       ; final_qtvs <- checkSigsTyVars forall_tvs sigs
 
+       ; returnM (final_qtvs, dict_binds, map instToId sig_lie) }
   where
-    is_unrestricted | opt_NoMonomorphismRestriction = True
-                   | otherwise                     = isUnRestrictedGroup tysig_names mbind
-
-    tysig_names = [name | (TySigInfo name _ _ _ _ _ _ _) <- sigs]
-    is_mono_sig (TySigInfo _ _ _ theta _ _ _ _) = null theta
+    bndrs   = bndrNames mono_infos
+    sigs    = [sig | (_, Just sig, _) <- mono_infos]
+    tau_tvs = foldr (unionVarSet . exactTyVarsOfType . getMonoType) emptyVarSet mono_infos
+               -- NB: exactTyVarsOfType; see Note [Silly type synonym] 
+               --     near defn of TcType.exactTyVarsOfType
+    is_mono_sig sig = null (sig_theta sig)
+    doc = ptext SLIT("type signature(s) for") <+> pprBinders bndrs
+
+    mkMethInst (TcSigInfo { sig_id = poly_id, sig_tvs = tvs, 
+                           sig_theta = theta, sig_loc = loc }) mono_id
+      = Method mono_id poly_id (mkTyVarTys tvs) theta loc
+\end{code}
 
-    doc = ptext SLIT("type signature(s) for") <+> pprBinders binder_names
+unifyCtxts checks that all the signature contexts are the same
+The type signatures on a mutually-recursive group of definitions
+must all have the same context (or none).
 
------------------------
-       -- CHECK THAT ALL THE SIGNATURE CONTEXTS ARE UNIFIABLE
-       -- The type signatures on a mutually-recursive group of definitions
-       -- must all have the same context (or none).
-       --
-       -- We unify them because, with polymorphic recursion, their types
-       -- might not otherwise be related.  This is a rather subtle issue.
-       -- ToDo: amplify
-checkSigsCtxts sigs@(TySigInfo _ id1 sig_tvs theta1 _ _ _ src_loc : other_sigs)
-  = tcAddSrcLoc src_loc                        $
-    mapTc_ check_one other_sigs                `thenTc_` 
-    if null theta1 then
-       returnTc ([], [])               -- Non-overloaded type signatures
-    else
-    newDicts SignatureOrigin theta1    `thenNF_Tc` \ sig_dicts ->
-    let
-       -- The "sig_avails" is the stuff available.  We get that from
-       -- the context of the type signature, BUT ALSO the lie_avail
-       -- so that polymorphic recursion works right (see comments at end of fn)
-       sig_avails = sig_dicts ++ sig_meths
-    in
-    returnTc (sig_avails, map instToId sig_dicts)
-  where
-    sig1_dict_tys = map mkPredTy theta1
-    sig_meths    = concat [insts | TySigInfo _ _ _ _ _ _ insts _ <- sigs]
+The trick here is that all the signatures should have the same
+context, and we want to share type variables for that context, so that
+all the right hand sides agree a common vocabulary for their type
+constraints
 
-    check_one sig@(TySigInfo _ id _ theta _ _ _ src_loc)
-       = tcAddErrCtxt (sigContextsCtxt id1 id)                 $
-        checkTc (equalLength theta theta1) sigContextsErr      `thenTc_`
-        unifyTauTyLists sig1_dict_tys (map mkPredTy theta)
+We unify them because, with polymorphic recursion, their types
+might not otherwise be related.  This is a rather subtle issue.
 
-checkSigsTyVars sigs = mapTc_ check_one sigs
+\begin{code}
+unifyCtxts :: [TcSigInfo] -> TcM [Inst]
+unifyCtxts (sig1 : sigs)       -- Argument is always non-empty
+  = do { mapM unify_ctxt sigs
+       ; newDictsAtLoc (sig_loc sig1) (sig_theta sig1) }
   where
-    check_one (TySigInfo _ id sig_tyvars sig_theta sig_tau _ _ src_loc)
-      = tcAddSrcLoc src_loc                                            $
-       tcAddErrCtxt (ptext SLIT("When checking the type signature for") 
-                     <+> quotes (ppr id))                              $
-       tcAddErrCtxtM (sigCtxt sig_tyvars sig_theta sig_tau)            $
-       checkSigTyVars sig_tyvars (idFreeTyVars id)
-\end{code}
+    theta1 = sig_theta sig1
+    unify_ctxt :: TcSigInfo -> TcM ()
+    unify_ctxt sig@(TcSigInfo { sig_theta = theta })
+       = setSrcSpan (instLocSrcSpan (sig_loc sig))     $
+         addErrCtxt (sigContextsCtxt sig1 sig)         $
+         unifyTheta theta1 theta
+
+checkSigsTyVars :: [TcTyVar] -> [TcSigInfo] -> TcM [TcTyVar]
+checkSigsTyVars qtvs sigs 
+  = do { gbl_tvs <- tcGetGlobalTyVars
+       ; sig_tvs_s <- mappM (check_sig gbl_tvs) sigs
+
+       ; let   -- Sigh.  Make sure that all the tyvars in the type sigs
+               -- appear in the returned ty var list, which is what we are
+               -- going to generalise over.  Reason: we occasionally get
+               -- silly types like
+               --      type T a = () -> ()
+               --      f :: T a
+               --      f () = ()
+               -- Here, 'a' won't appear in qtvs, so we have to add it
+               sig_tvs = foldl extendVarSetList emptyVarSet sig_tvs_s
+               all_tvs = varSetElems (extendVarSetList sig_tvs qtvs)
+       ; returnM all_tvs }
+  where
+    check_sig gbl_tvs (TcSigInfo {sig_id = id, sig_tvs = tvs, 
+                                 sig_theta = theta, sig_tau = tau})
+      = addErrCtxt (ptext SLIT("In the type signature for") <+> quotes (ppr id))       $
+       addErrCtxtM (sigCtxt id tvs theta tau)                                          $
+       do { tvs' <- checkDistinctTyVars tvs
+          ; ifM (any (`elemVarSet` gbl_tvs) tvs')
+                (bleatEscapedTvs gbl_tvs tvs tvs') 
+          ; return tvs' }
+
+checkDistinctTyVars :: [TcTyVar] -> TcM [TcTyVar]
+-- (checkDistinctTyVars tvs) checks that the tvs from one type signature
+-- are still all type variables, and all distinct from each other.  
+-- It returns a zonked set of type variables.
+-- For example, if the type sig is
+--     f :: forall a b. a -> b -> b
+-- we want to check that 'a' and 'b' haven't 
+--     (a) been unified with a non-tyvar type
+--     (b) been unified with each other (all distinct)
+
+checkDistinctTyVars sig_tvs
+  = do { zonked_tvs <- mapM zonkSigTyVar sig_tvs
+       ; foldlM check_dup emptyVarEnv (sig_tvs `zip` zonked_tvs)
+       ; return zonked_tvs }
+  where
+    check_dup :: TyVarEnv TcTyVar -> (TcTyVar, TcTyVar) -> TcM (TyVarEnv TcTyVar)
+       -- The TyVarEnv maps each zonked type variable back to its
+       -- corresponding user-written signature type variable
+    check_dup acc (sig_tv, zonked_tv)
+       = case lookupVarEnv acc zonked_tv of
+               Just sig_tv' -> bomb_out sig_tv sig_tv'
+
+               Nothing -> return (extendVarEnv acc zonked_tv sig_tv)
+
+    bomb_out sig_tv1 sig_tv2
+       = do { env0 <- tcInitTidyEnv
+           ; let (env1, tidy_tv1) = tidyOpenTyVar env0 sig_tv1
+                 (env2, tidy_tv2) = tidyOpenTyVar env1 sig_tv2
+                 msg = ptext SLIT("Quantified type variable") <+> quotes (ppr tidy_tv1) 
+                        <+> ptext SLIT("is unified with another quantified type variable") 
+                        <+> quotes (ppr tidy_tv2)
+           ; failWithTcM (env2, msg) }
+       where
+\end{code}    
+
 
 @getTyVarsToGen@ decides what type variables to generalise over.
 
@@ -533,237 +870,210 @@ So we are careful, and do a complete simplification just to find the
 constrained tyvars. We don't use any of the results, except to
 find which tyvars are constrained.
 
-\begin{code}
-isUnRestrictedGroup :: [Name]          -- Signatures given for these
-                   -> RenamedMonoBinds
-                   -> Bool
-
-is_elem v vs = isIn "isUnResMono" v vs
-
-isUnRestrictedGroup sigs (PatMonoBind other        _ _) = False
-isUnRestrictedGroup sigs (VarMonoBind v _)             = v `is_elem` sigs
-isUnRestrictedGroup sigs (FunMonoBind v _ matches _)   = isUnRestrictedMatch matches || 
-                                                         v `is_elem` sigs
-isUnRestrictedGroup sigs (AndMonoBinds mb1 mb2)                = isUnRestrictedGroup sigs mb1 &&
-                                                         isUnRestrictedGroup sigs mb2
-isUnRestrictedGroup sigs EmptyMonoBinds                        = True
-
-isUnRestrictedMatch (Match [] _ _ : _) = False -- No args => like a pattern binding
-isUnRestrictedMatch other             = True   -- Some args => a function binding
-\end{code}
+Note [Polymorphic recursion]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+The game plan for polymorphic recursion in the code above is 
 
+       * Bind any variable for which we have a type signature
+         to an Id with a polymorphic type.  Then when type-checking 
+         the RHSs we'll make a full polymorphic call.
 
-%************************************************************************
-%*                                                                     *
-\subsection{tcMonoBind}
-%*                                                                     *
-%************************************************************************
+This fine, but if you aren't a bit careful you end up with a horrendous
+amount of partial application and (worse) a huge space leak. For example:
 
-@tcMonoBinds@ deals with a single @MonoBind@.  
-The signatures have been dealt with already.
+       f :: Eq a => [a] -> [a]
+       f xs = ...f...
 
-\begin{code}
-tcMonoBinds :: RenamedMonoBinds 
-           -> [TcSigInfo]
-           -> RecFlag
-           -> TcM (TcMonoBinds, 
-                     LIE,              -- LIE required
-                     [Name],           -- Bound names
-                     [TcId])           -- Corresponding monomorphic bound things
-
-tcMonoBinds mbinds tc_ty_sigs is_rec
-  = tc_mb_pats mbinds          `thenTc` \ (complete_it, lie_req_pat, tvs, ids, lie_avail) ->
-    let
-       id_list           = bagToList ids
-       (names, mono_ids) = unzip id_list
-
-               -- This last defn is the key one:
-               -- extend the val envt with bindings for the 
-               -- things bound in this group, overriding the monomorphic
-               -- ids with the polymorphic ones from the pattern
-       extra_val_env = case is_rec of
-                         Recursive    -> map mk_bind id_list
-                         NonRecursive -> []
-    in
-       -- Don't know how to deal with pattern-bound existentials yet
-    checkTc (isEmptyBag tvs && isEmptyBag lie_avail) 
-           (existentialExplode mbinds)                 `thenTc_` 
-
-       -- *Before* checking the RHSs, but *after* checking *all* the patterns,
-       -- extend the envt with bindings for all the bound ids;
-       --   and *then* override with the polymorphic Ids from the signatures
-       -- That is the whole point of the "complete_it" stuff.
-       --
-       -- There's a further wrinkle: we have to delay extending the environment
-       -- until after we've dealt with any pattern-bound signature type variables
-       -- Consider  f (x::a) = ...f...
-       -- We're going to check that a isn't unified with anything in the envt, 
-       -- so f itself had better not be!  So we pass the envt binding f into
-       -- complete_it, which extends the actual envt in TcMatches.tcMatch, after
-       -- dealing with the signature tyvars
+If we don't take care, after typechecking we get
 
-    complete_it extra_val_env                          `thenTc` \ (mbinds', lie_req_rhss) ->
+       f = /\a -> \d::Eq a -> let f' = f a d
+                              in
+                              \ys:[a] -> ...f'...
 
-    returnTc (mbinds', lie_req_pat `plusLIE` lie_req_rhss, names, mono_ids)
-  where
+Notice the the stupid construction of (f a d), which is of course
+identical to the function we're executing.  In this case, the
+polymorphic recursion isn't being used (but that's a very common case).
+This can lead to a massive space leak, from the following top-level defn
+(post-typechecking)
+
+       ff :: [Int] -> [Int]
+       ff = f Int dEqInt
+
+Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
+f' is another thunk which evaluates to the same thing... and you end
+up with a chain of identical values all hung onto by the CAF ff.
+
+       ff = f Int dEqInt
+
+          = let f' = f Int dEqInt in \ys. ...f'...
+
+          = let f' = let f' = f Int dEqInt in \ys. ...f'...
+                     in \ys. ...f'...
+
+Etc.
+
+NOTE: a bit of arity anaysis would push the (f a d) inside the (\ys...),
+which would make the space leak go away in this case
+
+Solution: when typechecking the RHSs we always have in hand the
+*monomorphic* Ids for each binding.  So we just need to make sure that
+if (Method f a d) shows up in the constraints emerging from (...f...)
+we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
+to the "givens" when simplifying constraints.  That's what the "lies_avail"
+is doing.
+
+Then we get
+
+       f = /\a -> \d::Eq a -> letrec
+                                fm = \ys:[a] -> ...fm...
+                              in
+                              fm
 
-    mk_bind (name, mono_id) = case maybeSig tc_ty_sigs name of
-                               Nothing                                   -> (name, mono_id)
-                               Just (TySigInfo name poly_id _ _ _ _ _ _) -> (name, poly_id)
-
-    tc_mb_pats EmptyMonoBinds
-      = returnTc (\ xve -> returnTc (EmptyMonoBinds, emptyLIE), emptyLIE, emptyBag, emptyBag, emptyLIE)
-
-    tc_mb_pats (AndMonoBinds mb1 mb2)
-      = tc_mb_pats mb1         `thenTc` \ (complete_it1, lie_req1, tvs1, ids1, lie_avail1) ->
-        tc_mb_pats mb2         `thenTc` \ (complete_it2, lie_req2, tvs2, ids2, lie_avail2) ->
-       let
-          complete_it xve = complete_it1 xve   `thenTc` \ (mb1', lie1) ->
-                            complete_it2 xve   `thenTc` \ (mb2', lie2) ->
-                            returnTc (AndMonoBinds mb1' mb2', lie1 `plusLIE` lie2)
-       in
-       returnTc (complete_it,
-                 lie_req1 `plusLIE` lie_req2,
-                 tvs1 `unionBags` tvs2,
-                 ids1 `unionBags` ids2,
-                 lie_avail1 `plusLIE` lie_avail2)
-
-    tc_mb_pats (FunMonoBind name inf matches locn)
-      = (case maybeSig tc_ty_sigs name of
-           Just (TySigInfo _ _ _ _ _ mono_id _ _) 
-                   -> returnNF_Tc mono_id
-           Nothing -> newLocalName name        `thenNF_Tc` \ bndr_name ->
-                      newTyVarTy openTypeKind  `thenNF_Tc` \ bndr_ty -> 
-                       -- NB: not a 'hole' tyvar; since there is no type 
-                       -- signature, we revert to ordinary H-M typechecking
-                       -- which means the variable gets an inferred tau-type
-                      returnNF_Tc (mkLocalId bndr_name bndr_ty)
-       )                                       `thenNF_Tc` \ bndr_id ->
-       let
-          bndr_ty         = idType bndr_id
-          complete_it xve = tcAddSrcLoc locn                           $
-                            tcMatchesFun xve name bndr_ty  matches     `thenTc` \ (matches', lie) ->
-                            returnTc (FunMonoBind bndr_id inf matches' locn, lie)
-       in
-       returnTc (complete_it, emptyLIE, emptyBag, unitBag (name, bndr_id), emptyLIE)
-
-    tc_mb_pats bind@(PatMonoBind pat grhss locn)
-      = tcAddSrcLoc locn               $
-       newHoleTyVarTy                  `thenNF_Tc` \ pat_ty -> 
-
-               --      Now typecheck the pattern
-               -- We do now support binding fresh (not-already-in-scope) scoped 
-               -- type variables in the pattern of a pattern binding.  
-               -- For example, this is now legal:
-               --      (x::a, y::b) = e
-               -- The type variables are brought into scope in tc_binds_and_then,
-               -- so we don't have to do anything here.
-
-       tcPat tc_pat_bndr pat pat_ty            `thenTc` \ (pat', lie_req, tvs, ids, lie_avail) ->
-       let
-          complete_it xve = tcAddSrcLoc locn                           $
-                            tcAddErrCtxt (patMonoBindsCtxt bind)       $
-                            tcExtendLocalValEnv xve                    $
-                            tcGRHSs PatBindRhs grhss pat_ty            `thenTc` \ (grhss', lie) ->
-                            returnTc (PatMonoBind pat' grhss' locn, lie)
-       in
-       returnTc (complete_it, lie_req, tvs, ids, lie_avail)
-
-       -- tc_pat_bndr is used when dealing with a LHS binder in a pattern.
-       -- If there was a type sig for that Id, we want to make it much
-       -- as if that type signature had been on the binder as a SigPatIn.
-       -- We check for a type signature; if there is one, we use the mono_id
-       -- from the signature.  This is how we make sure the tau part of the
-       -- signature actually matches the type of the LHS; then tc_mb_pats
-       -- ensures the LHS and RHS have the same type
-       
-    tc_pat_bndr name pat_ty
-       = case maybeSig tc_ty_sigs name of
-           Nothing
-               -> newLocalName name    `thenNF_Tc` \ bndr_name ->
-                  tcMonoPatBndr bndr_name pat_ty
-
-           Just (TySigInfo _ _ _ _ _ mono_id _ _)
-               -> tcAddSrcLoc (getSrcLoc name)         $
-                  tcSubPat pat_ty (idType mono_id)     `thenTc` \ (co_fn, lie) ->
-                  returnTc (co_fn, lie, mono_id)
-\end{code}
 
 
 %************************************************************************
 %*                                                                     *
-\subsection{SPECIALIZE pragmas}
+               Signatures
 %*                                                                     *
 %************************************************************************
 
-@tcSpecSigs@ munches up the specialisation "signatures" that arise through *user*
-pragmas.  It is convenient for them to appear in the @[RenamedSig]@
-part of a binding because then the same machinery can be used for
-moving them into place as is done for type signatures.
-
-They look like this:
-
-\begin{verbatim}
-       f :: Ord a => [a] -> b -> b
-       {-# SPECIALIZE f :: [Int] -> b -> b #-}
-\end{verbatim}
-
-For this we generate:
-\begin{verbatim}
-       f* = /\ b -> let d1 = ...
-                    in f Int b d1
-\end{verbatim}
-
-where f* is a SpecPragmaId.  The **sole** purpose of SpecPragmaIds is to
-retain a right-hand-side that the simplifier will otherwise discard as
-dead code... the simplifier has a flag that tells it not to discard
-SpecPragmaId bindings.
-
-In this case the f* retains a call-instance of the overloaded
-function, f, (including appropriate dictionaries) so that the
-specialiser will subsequently discover that there's a call of @f@ at
-Int, and will create a specialisation for @f@.  After that, the
-binding for @f*@ can be discarded.
-
-We used to have a form
-       {-# SPECIALISE f :: <type> = g #-}
-which promised that g implemented f at <type>, but we do that with 
-a RULE now:
-       {-# SPECIALISE (f::<type) = g #-}
+Type signatures are tricky.  See Note [Signature skolems] in TcType
+
+@tcSigs@ checks the signatures for validity, and returns a list of
+{\em freshly-instantiated} signatures.  That is, the types are already
+split up, and have fresh type variables installed.  All non-type-signature
+"RenamedSigs" are ignored.
+
+The @TcSigInfo@ contains @TcTypes@ because they are unified with
+the variable's type, and after that checked to see whether they've
+been instantiated.
 
 \begin{code}
-tcSpecSigs :: [RenamedSig] -> TcM (TcMonoBinds, LIE)
-tcSpecSigs (SpecSig name poly_ty src_loc : sigs)
-  =    -- SPECIALISE f :: forall b. theta => tau  =  g
-    tcAddSrcLoc src_loc                                $
-    tcAddErrCtxt (valSpecSigCtxt name poly_ty) $
-
-       -- Get and instantiate its alleged specialised type
-    tcHsSigType (FunSigCtxt name) poly_ty      `thenTc` \ sig_ty ->
-
-       -- Check that f has a more general type, and build a RHS for
-       -- the spec-pragma-id at the same time
-    tcExpr (HsVar name) sig_ty                 `thenTc` \ (spec_expr, spec_lie) ->
-
-       -- Squeeze out any Methods (see comments with tcSimplifyToDicts)
-    tcSimplifyToDicts spec_lie                 `thenTc` \ (spec_dicts, spec_binds) ->
-
-       -- Just specialise "f" by building a SpecPragmaId binding
-       -- It is the thing that makes sure we don't prematurely 
-       -- dead-code-eliminate the binding we are really interested in.
-    newLocalName name                  `thenNF_Tc` \ spec_name ->
-    let
-       spec_bind = VarMonoBind (mkSpecPragmaId spec_name sig_ty)
-                               (mkHsLet spec_binds spec_expr)
-    in
+type TcSigFun = Name -> Maybe (LSig Name)
 
-       -- Do the rest and combine
-    tcSpecSigs sigs                    `thenTc` \ (binds_rest, lie_rest) ->
-    returnTc (binds_rest `andMonoBinds` spec_bind,
-             lie_rest   `plusLIE`      mkLIE spec_dicts)
+mkSigFun :: [LSig Name] -> TcSigFun
+-- Search for a particular type signature
+-- Precondition: the sigs are all type sigs
+-- Precondition: no duplicates
+mkSigFun sigs = lookupNameEnv env
+  where
+    env = mkNameEnv [(expectJust "mkSigFun" (sigName sig), sig) | sig <- sigs]
+
+---------------
+data TcSigInfo
+  = TcSigInfo {
+       sig_id     :: TcId,             --  *Polymorphic* binder for this value...
+
+       sig_scoped :: [Name],           -- Names for any scoped type variables
+                                       -- Invariant: correspond 1-1 with an initial
+                                       -- segment of sig_tvs (see Note [Scoped])
+
+       sig_tvs    :: [TcTyVar],        -- Instantiated type variables
+                                       -- See Note [Instantiate sig]
+
+       sig_theta  :: TcThetaType,      -- Instantiated theta
+       sig_tau    :: TcTauType,        -- Instantiated tau
+       sig_loc    :: InstLoc           -- The location of the signature
+    }
+
+--     Note [Scoped]
+-- There may be more instantiated type variables than scoped 
+-- ones.  For example:
+--     type T a = forall b. b -> (a,b)
+--     f :: forall c. T c
+-- Here, the signature for f will have one scoped type variable, c,
+-- but two instantiated type variables, c' and b'.  
+--
+-- We assume that the scoped ones are at the *front* of sig_tvs,
+-- and remember the names from the original HsForAllTy in sig_scoped
+
+--     Note [Instantiate sig]
+-- It's vital to instantiate a type signature with fresh variable.
+-- For example:
+--     type S = forall a. a->a
+--     f,g :: S
+--     f = ...
+--     g = ...
+-- Here, we must use distinct type variables when checking f,g's right hand sides.
+-- (Instantiation is only necessary because of type synonyms.  Otherwise,
+-- it's all cool; each signature has distinct type variables from the renamer.)
+
+instance Outputable TcSigInfo where
+    ppr (TcSigInfo { sig_id = id, sig_tvs = tyvars, sig_theta = theta, sig_tau = tau})
+       = ppr id <+> ptext SLIT("::") <+> ppr tyvars <+> ppr theta <+> ptext SLIT("=>") <+> ppr tau
+\end{code}
 
-tcSpecSigs (other_sig : sigs) = tcSpecSigs sigs
-tcSpecSigs []                = returnTc (EmptyMonoBinds, emptyLIE)
+\begin{code}
+tcTySig :: LSig Name -> TcM TcId
+tcTySig (L span (TypeSig (L _ name) ty))
+  = setSrcSpan span            $
+    do { sigma_ty <- tcHsSigType (FunSigCtxt name) ty
+       ; return (mkLocalId name sigma_ty) }
+
+-------------------
+tcInstSig_maybe :: Maybe (LSig Name) -> TcM (Maybe TcSigInfo)
+-- Instantiate with *meta* type variables; 
+-- this signature is part of a multi-signature group
+tcInstSig_maybe Nothing    = return Nothing
+tcInstSig_maybe (Just sig) = do { tc_sig <- tcInstSig False sig
+                               ; return (Just tc_sig) }
+
+tcInstSig :: Bool -> LSig Name -> TcM TcSigInfo
+-- Instantiate the signature, with either skolems or meta-type variables
+-- depending on the use_skols boolean
+--
+-- We always instantiate with freshs uniques,
+-- although we keep the same print-name
+--     
+--     type T = forall a. [a] -> [a]
+--     f :: T; 
+--     f = g where { g :: T; g = <rhs> }
+--
+-- We must not use the same 'a' from the defn of T at both places!!
+
+tcInstSig use_skols (L loc (TypeSig (L _ name) hs_ty))
+  = setSrcSpan loc $
+    do { poly_id <- tcLookupId name    -- Cannot fail; the poly ids are put into 
+                                       -- scope when starting the binding group
+       ; let skol_info = SigSkol (FunSigCtxt name)
+             inst_tyvars | use_skols = tcInstSkolTyVars skol_info
+                         | otherwise = tcInstSigTyVars  skol_info
+       ; (tvs, theta, tau) <- tcInstType inst_tyvars (idType poly_id)
+       ; loc <- getInstLoc (SigOrigin skol_info)
+       ; return (TcSigInfo { sig_id = poly_id,
+                             sig_tvs = tvs, sig_theta = theta, sig_tau = tau, 
+                             sig_scoped = scoped_names, sig_loc = loc }) }
+               -- Note that the scoped_names and the sig_tvs will have
+               -- different Names. That's quite ok; when we bring the 
+               -- scoped_names into scope, we just bind them to the sig_tvs
+  where
+       -- The scoped names are the ones explicitly mentioned
+       -- in the HsForAll.  (There may be more in sigma_ty, because
+       -- of nested type synonyms.  See Note [Scoped] with TcSigInfo.)
+       -- We also only have scoped type variables when we are instantiating
+       -- with true skolems
+    scoped_names = case (use_skols, hs_ty) of
+                    (True, L _ (HsForAllTy Explicit tvs _ _)) -> hsLTyVarNames tvs
+                    other                                     -> []
+
+-------------------
+isUnRestrictedGroup :: [LHsBind Name] -> TcSigFun -> TcM Bool
+isUnRestrictedGroup binds sig_fn
+  = do { mono_restriction <- doptM Opt_MonomorphismRestriction
+       ; return (not mono_restriction || all_unrestricted) }
+  where 
+    all_unrestricted = all (unrestricted . unLoc) binds
+    has_sig n = isJust (sig_fn n)
+
+    unrestricted (PatBind {})                                           = False
+    unrestricted (VarBind { var_id = v })                       = has_sig v
+    unrestricted (FunBind { fun_id = v, fun_matches = matches }) = unrestricted_match matches 
+                                                                || has_sig (unLoc v)
+
+    unrestricted_match (MatchGroup (L _ (Match [] _ _) : _) _) = False
+       -- No args => like a pattern binding
+    unrestricted_match other             = True
+       -- Some args => a function binding
 \end{code}
 
 
@@ -775,34 +1085,26 @@ tcSpecSigs []                  = returnTc (EmptyMonoBinds, emptyLIE)
 
 
 \begin{code}
-patMonoBindsCtxt bind
-  = hang (ptext SLIT("In a pattern binding:")) 4 (ppr bind)
-
------------------------------------------------
-valSpecSigCtxt v ty
-  = sep [ptext SLIT("In a SPECIALIZE pragma for a value:"),
-        nest 4 (ppr v <+> dcolon <+> ppr ty)]
+-- This one is called on LHS, when pat and grhss are both Name 
+-- and on RHS, when pat is TcId and grhss is still Name
+patMonoBindsCtxt pat grhss
+  = hang (ptext SLIT("In a pattern binding:")) 4 (pprPatBind pat grhss)
 
 -----------------------------------------------
-sigContextsErr = ptext SLIT("Mismatched contexts")
-
-sigContextsCtxt s1 s2
+sigContextsCtxt sig1 sig2
   = vcat [ptext SLIT("When matching the contexts of the signatures for"), 
-         nest 2 (vcat [ppr s1 <+> dcolon <+> ppr (idType s1),
-                       ppr s2 <+> dcolon <+> ppr (idType s2)]),
+         nest 2 (vcat [ppr id1 <+> dcolon <+> ppr (idType id1),
+                       ppr id2 <+> dcolon <+> ppr (idType id2)]),
          ptext SLIT("The signature contexts in a mutually recursive group should all be identical")]
+  where
+    id1 = sig_id sig1
+    id2 = sig_id sig2
 
------------------------------------------------
-unliftedBindErr flavour mbind
-  = hang (text flavour <+> ptext SLIT("bindings for unlifted types aren't allowed:"))
-        4 (ppr mbind)
 
 -----------------------------------------------
-existentialExplode mbinds
-  = hang (vcat [text "My brain just exploded.",
-               text "I can't handle pattern bindings for existentially-quantified constructors.",
-               text "In the binding group"])
-       4 (ppr mbinds)
+unboxedTupleErr name ty
+  = hang (ptext SLIT("Illegal binding of unboxed tuple"))
+        4 (ppr name <+> dcolon <+> ppr ty)
 
 -----------------------------------------------
 restrictedBindCtxtErr binder_names
@@ -812,7 +1114,4 @@ restrictedBindCtxtErr binder_names
 
 genCtxt binder_names
   = ptext SLIT("When generalising the type(s) for") <+> pprBinders binder_names
-
--- Used in error messages
-pprBinders bndrs = pprWithCommas ppr bndrs
 \end{code}