relaxed instance termination test
[ghc-hetmet.git] / ghc / compiler / typecheck / TcMType.lhs
index 9d27e67..df1f069 100644 (file)
@@ -7,38 +7,44 @@ This module contains monadic operations over types that contain mutable type var
 
 \begin{code}
 module TcMType (
-  TcTyVar, TcKind, TcType, TcTauType, TcThetaType, TcRhoType, TcTyVarSet,
+  TcTyVar, TcKind, TcType, TcTauType, TcThetaType, TcTyVarSet,
 
   --------------------------------
   -- Creating new mutable type variables
-  newTyVar,
-  newTyVarTy,          -- Kind -> NF_TcM TcType
-  newTyVarTys,         -- Int -> Kind -> NF_TcM [TcType]
-  newKindVar, newKindVars, newBoxityVar,
+  newFlexiTyVar,
+  newFlexiTyVarTy,             -- Kind -> TcM TcType
+  newFlexiTyVarTys,            -- Int -> Kind -> TcM [TcType]
+  newKindVar, newKindVars, 
+  lookupTcTyVar, LookupTyVarResult(..),
+  newMetaTyVar, readMetaTyVar, writeMetaTyVar, 
 
   --------------------------------
-  -- Instantiation
-  tcInstTyVar, tcInstTyVars,
-  tcInstSigVars, tcInstType,
-  tcSplitRhoTyM,
+  -- Boxy type variables
+  newBoxyTyVar, newBoxyTyVars, newBoxyTyVarTys, readFilledBox, 
 
   --------------------------------
-  -- Checking type validity
-  Rank, UserTypeCtxt(..), checkValidType, pprUserTypeCtxt,
-  SourceTyCtxt(..), checkValidTheta, 
-  checkValidInstHead, instTypeErr,
+  -- Instantiation
+  tcInstTyVar, tcInstType, tcInstTyVars, tcInstBoxy, tcInstBoxyTyVar,
+  tcInstSigTyVars, zonkSigTyVar,
+  tcInstSkolTyVar, tcInstSkolTyVars, tcInstSkolType, 
+  tcSkolSigType, tcSkolSigTyVars,
 
   --------------------------------
-  -- Unification
-  unifyTauTy, unifyTauTyList, unifyTauTyLists, 
-  unifyFunTy, unifyListTy, unifyTupleTy,
-  unifyKind, unifyKinds, unifyOpenTypeKind,
+  -- Checking type validity
+  Rank, UserTypeCtxt(..), checkValidType, 
+  SourceTyCtxt(..), checkValidTheta, checkFreeness,
+  checkValidInstHead, instTypeErr, checkAmbiguity,
+  checkInstTermination,
+  arityErr, 
 
   --------------------------------
   -- Zonking
-  zonkTcTyVar, zonkTcTyVars, zonkTcTyVarsAndFV, zonkTcSigTyVars,
+  zonkType, zonkTcPredType, 
+  zonkTcTyVar, zonkTcTyVars, zonkTcTyVarsAndFV, zonkQuantifiedTyVar,
   zonkTcType, zonkTcTypes, zonkTcClassConstraints, zonkTcThetaType,
-  zonkTcPredType, zonkTcTypeToType, zonkTcTyVarToTyVar, zonkKindEnv,
+  zonkTcKindToKind, zonkTcKind,
+
+  readKindVar, writeKindVar
 
   ) where
 
@@ -46,221 +52,294 @@ module TcMType (
 
 
 -- friends:
-import TypeRep         ( Type(..), SourceType(..), TyNote(..),  -- Friend; can see representation
-                         Kind, TauType, ThetaType, 
-                         openKindCon, typeCon
+import TypeRep         ( Type(..), PredType(..),  -- Friend; can see representation
+                         ThetaType
                        ) 
-import TcType          ( tcEqType, tcCmpPred,
-                         tcSplitRhoTy, tcSplitPredTy_maybe, tcSplitAppTy_maybe, 
-                         tcSplitTyConApp_maybe, tcSplitFunTy_maybe, tcSplitForAllTys,
-                         tcGetTyVar, tcIsTyVarTy, tcSplitSigmaTy, isUnLiftedType, isIPPred,
-
-                         mkAppTy, mkTyVarTy, mkTyVarTys, mkFunTy, mkTyConApp,
+import TcType          ( TcType, TcThetaType, TcTauType, TcPredType,
+                         TcTyVarSet, TcKind, TcTyVar, TcTyVarDetails(..), 
+                         MetaDetails(..), SkolemInfo(..), BoxInfo(..), 
+                         BoxyTyVar, BoxyType, BoxyThetaType, BoxySigmaType, 
+                         UserTypeCtxt(..),
+                         isMetaTyVar, isSigTyVar, metaTvRef,
+                         tcCmpPred, isClassPred, tcGetTyVar,
+                         tcSplitPhiTy, tcSplitPredTy_maybe, tcSplitAppTy_maybe, 
+                         tcValidInstHeadTy, tcSplitForAllTys,
+                         tcIsTyVarTy, tcSplitSigmaTy, 
+                         isUnLiftedType, isIPPred, 
+                         typeKind, isSkolemTyVar,
+                         mkAppTy, mkTyVarTy, mkTyVarTys, 
                          tyVarsOfPred, getClassPredTys_maybe,
-
-                         liftedTypeKind, unliftedTypeKind, openTypeKind, defaultKind, superKind,
-                         superBoxity, liftedBoxity, hasMoreBoxityInfo, typeKind,
-                         tyVarsOfType, tyVarsOfTypes, tidyOpenType, tidyOpenTypes, tidyOpenTyVar,
-                         eqKind, isTypeKind,
-
-                         isFFIArgumentTy, isFFIImportResultTy
+                         tyVarsOfType, tyVarsOfTypes, tcView,
+                         pprPred, pprTheta, pprClassPred )
+import Kind            ( Kind(..), KindVar, kindVarRef, mkKindVar, 
+                         isLiftedTypeKind, isArgTypeKind, isOpenTypeKind,
+                         liftedTypeKind, defaultKind
                        )
-import Subst           ( Subst, mkTopTyVarSubst, substTy )
-import Class           ( classArity, className )
-import TyCon           ( TyCon, mkPrimTyCon, isSynTyCon, isUnboxedTupleTyCon, 
-                         isTupleTyCon, tyConArity, tupleTyConBoxity, tyConName )
-import PrimRep         ( PrimRep(VoidRep) )
-import Var             ( TyVar, varName, tyVarKind, tyVarName, isTyVar, mkTyVar,
-                         isMutTyVar, isSigTyVar )
+import Type            ( TvSubst, zipTopTvSubst, substTy )
+import Class           ( Class, classArity, className )
+import TyCon           ( TyCon, isSynTyCon, isUnboxedTupleTyCon, 
+                         tyConArity, tyConName )
+import Var             ( TyVar, tyVarKind, tyVarName, isTcTyVar, 
+                         mkTyVar, mkTcTyVar, tcTyVarDetails )
+
+       -- Assertions
+#ifdef DEBUG
+import TcType          ( isFlexi, isBoxyTyVar, isImmutableTyVar )
+import Kind            ( isSubKind )
+#endif
 
 -- others:
-import TcMonad          -- TcType, amongst others
-import TysWiredIn      ( voidTy, listTyCon, mkListTy, mkTupleTy )
-import PrelNames       ( cCallableClassKey, cReturnableClassKey, hasKey )
-import ForeignCall     ( Safety(..) )
+import TcRnMonad          -- TcType, amongst others
 import FunDeps         ( grow )
-import PprType         ( pprPred, pprSourceType, pprTheta, pprClassPred )
-import Name            ( Name, NamedThing(..), setNameUnique, mkSysLocalName,
-                         mkLocalName, mkDerivedTyConOcc, isSystemName
-                       )
+import Name            ( Name, setNameUnique, mkSysTvName )
 import VarSet
-import BasicTypes      ( Boxity, Arity, isBoxed )
-import CmdLineOpts     ( dopt, DynFlag(..) )
-import Unique          ( Uniquable(..) )
-import SrcLoc          ( noSrcLoc )
-import Util            ( nOfThem, isSingleton, equalLength )
+import DynFlags        ( dopt, DynFlag(..) )
+import Util            ( nOfThem, isSingleton, notNull )
 import ListSetOps      ( removeDups )
 import Outputable
+
+import Data.List       ( (\\) )
 \end{code}
 
 
 %************************************************************************
 %*                                                                     *
-\subsection{New type variables}
+       Instantiation in general
 %*                                                                     *
 %************************************************************************
 
 \begin{code}
-newTyVar :: Kind -> NF_TcM TcTyVar
-newTyVar kind
-  = tcGetUnique        `thenNF_Tc` \ uniq ->
-    tcNewMutTyVar (mkSysLocalName uniq SLIT("t")) kind
-
-newTyVarTy  :: Kind -> NF_TcM TcType
-newTyVarTy kind
-  = newTyVar kind      `thenNF_Tc` \ tc_tyvar ->
-    returnNF_Tc (TyVarTy tc_tyvar)
-
-newTyVarTys :: Int -> Kind -> NF_TcM [TcType]
-newTyVarTys n kind = mapNF_Tc newTyVarTy (nOfThem n kind)
-
-newKindVar :: NF_TcM TcKind
-newKindVar
-  = tcGetUnique                                                `thenNF_Tc` \ uniq ->
-    tcNewMutTyVar (mkSysLocalName uniq SLIT("k")) superKind    `thenNF_Tc` \ kv ->
-    returnNF_Tc (TyVarTy kv)
-
-newKindVars :: Int -> NF_TcM [TcKind]
-newKindVars n = mapNF_Tc (\ _ -> newKindVar) (nOfThem n ())
-
-newBoxityVar :: NF_TcM TcKind
-newBoxityVar
-  = tcGetUnique                                                `thenNF_Tc` \ uniq ->
-    tcNewMutTyVar (mkSysLocalName uniq SLIT("bx")) superBoxity `thenNF_Tc` \ kv ->
-    returnNF_Tc (TyVarTy kv)
+tcInstType :: ([TyVar] -> TcM [TcTyVar])               -- How to instantiate the type variables
+          -> TcType                                    -- Type to instantiate
+          -> TcM ([TcTyVar], TcThetaType, TcType)      -- Result
+tcInstType inst_tyvars ty
+  = case tcSplitForAllTys ty of
+       ([],     rho) -> let    -- There may be overloading despite no type variables;
+                               --      (?x :: Int) => Int -> Int
+                          (theta, tau) = tcSplitPhiTy rho
+                        in
+                        return ([], theta, tau)
+
+       (tyvars, rho) -> do { tyvars' <- inst_tyvars tyvars
+
+                           ; let  tenv = zipTopTvSubst tyvars (mkTyVarTys tyvars')
+                               -- Either the tyvars are freshly made, by inst_tyvars,
+                               -- or (in the call from tcSkolSigType) any nested foralls
+                               -- have different binders.  Either way, zipTopTvSubst is ok
+
+                           ; let  (theta, tau) = tcSplitPhiTy (substTy tenv rho)
+                           ; return (tyvars', theta, tau) }
 \end{code}
 
 
 %************************************************************************
 %*                                                                     *
-\subsection{Type instantiation}
+       Kind variables
 %*                                                                     *
 %************************************************************************
 
-I don't understand why this is needed
-An old comments says "No need for tcSplitForAllTyM because a type 
-       variable can't be instantiated to a for-all type"
-But the same is true of rho types!
-
 \begin{code}
-tcSplitRhoTyM :: TcType -> NF_TcM (TcThetaType, TcType)
-tcSplitRhoTyM t
-  = go t t []
- where
-       -- A type variable is never instantiated to a dictionary type,
-       -- so we don't need to do a tcReadVar on the "arg".
-    go syn_t (FunTy arg res) ts = case tcSplitPredTy_maybe arg of
-                                       Just pair -> go res res (pair:ts)
-                                       Nothing   -> returnNF_Tc (reverse ts, syn_t)
-    go syn_t (NoteTy n t)    ts = go syn_t t ts
-    go syn_t (TyVarTy tv)    ts = getTcTyVar tv                `thenNF_Tc` \ maybe_ty ->
-                                 case maybe_ty of
-                                   Just ty | not (tcIsTyVarTy ty) -> go syn_t ty ts
-                                   other                          -> returnNF_Tc (reverse ts, syn_t)
-    go syn_t (UsageTy _ t)   ts = go syn_t t ts
-    go syn_t t              ts = returnNF_Tc (reverse ts, syn_t)
+newKindVar :: TcM TcKind
+newKindVar = do        { uniq <- newUnique
+               ; ref <- newMutVar Nothing
+               ; return (KindVar (mkKindVar uniq ref)) }
+
+newKindVars :: Int -> TcM [TcKind]
+newKindVars n = mappM (\ _ -> newKindVar) (nOfThem n ())
 \end{code}
 
 
 %************************************************************************
 %*                                                                     *
-\subsection{Type instantiation}
+       SkolemTvs (immutable)
 %*                                                                     *
 %************************************************************************
 
-Instantiating a bunch of type variables
+\begin{code}
+mkSkolTyVar :: Name -> Kind -> SkolemInfo -> TcTyVar
+mkSkolTyVar name kind info = mkTcTyVar name kind (SkolemTv info)
+
+tcSkolSigType :: SkolemInfo -> Type -> TcM ([TcTyVar], TcThetaType, TcType)
+-- Instantiate a type signature with skolem constants, but 
+-- do *not* give them fresh names, because we want the name to
+-- be in the type environment -- it is lexically scoped.
+tcSkolSigType info ty = tcInstType (\tvs -> return (tcSkolSigTyVars info tvs)) ty
+
+tcSkolSigTyVars :: SkolemInfo -> [TyVar] -> [TcTyVar]
+-- Make skolem constants, but do *not* give them new names, as above
+tcSkolSigTyVars info tyvars = [ mkSkolTyVar (tyVarName tv) (tyVarKind tv) info
+                             | tv <- tyvars ]
+
+tcInstSkolType :: SkolemInfo -> TcType -> TcM ([TcTyVar], TcThetaType, TcType)
+-- Instantiate a type with fresh skolem constants
+tcInstSkolType info ty = tcInstType (tcInstSkolTyVars info) ty
+
+tcInstSkolTyVar :: SkolemInfo -> TyVar -> TcM TcTyVar
+tcInstSkolTyVar info tyvar
+  = do { uniq <- newUnique
+       ; let name = setNameUnique (tyVarName tyvar) uniq
+             kind = tyVarKind tyvar
+       ; return (mkSkolTyVar name kind info) }
+
+tcInstSkolTyVars :: SkolemInfo -> [TyVar] -> TcM [TcTyVar]
+tcInstSkolTyVars info tyvars = mapM (tcInstSkolTyVar info) tyvars
+\end{code}
+
+
+%************************************************************************
+%*                                                                     *
+       MetaTvs (meta type variables; mutable)
+%*                                                                     *
+%************************************************************************
 
 \begin{code}
-tcInstTyVars :: [TyVar] 
-            -> NF_TcM ([TcTyVar], [TcType], Subst)
+newMetaTyVar :: BoxInfo -> Kind -> TcM TcTyVar
+-- Make a new meta tyvar out of thin air
+newMetaTyVar box_info kind
+  = do { uniq <- newUnique
+       ; ref <- newMutVar Flexi ;
+       ; let name = mkSysTvName uniq fs 
+             fs = case box_info of
+                       BoxTv   -> FSLIT("bx")
+                       TauTv   -> FSLIT("t")
+                       SigTv _ -> FSLIT("a")
+       ; return (mkTcTyVar name kind (MetaTv box_info ref)) }
+
+instMetaTyVar :: BoxInfo -> TyVar -> TcM TcTyVar
+-- Make a new meta tyvar whose Name and Kind 
+-- come from an existing TyVar
+instMetaTyVar box_info tyvar
+  = do { uniq <- newUnique
+       ; ref <- newMutVar Flexi ;
+       ; let name = setNameUnique (tyVarName tyvar) uniq
+             kind = tyVarKind tyvar
+       ; return (mkTcTyVar name kind (MetaTv box_info ref)) }
+
+readMetaTyVar :: TyVar -> TcM MetaDetails
+readMetaTyVar tyvar = ASSERT2( isMetaTyVar tyvar, ppr tyvar )
+                     readMutVar (metaTvRef tyvar)
+
+writeMetaTyVar :: TcTyVar -> TcType -> TcM ()
+#ifndef DEBUG
+writeMetaTyVar tyvar ty = writeMutVar (metaTvRef tyvar) (Indirect ty)
+#else
+writeMetaTyVar tyvar ty
+  | not (isMetaTyVar tyvar)
+  = pprTrace "writeMetaTyVar" (ppr tyvar) $
+    returnM ()
 
-tcInstTyVars tyvars
-  = mapNF_Tc tcInstTyVar tyvars        `thenNF_Tc` \ tc_tyvars ->
-    let
-       tys = mkTyVarTys tc_tyvars
-    in
-    returnNF_Tc (tc_tyvars, tys, mkTopTyVarSubst tyvars tys)
-               -- Since the tyvars are freshly made,
-               -- they cannot possibly be captured by
-               -- any existing for-alls.  Hence mkTopTyVarSubst
-
-tcInstTyVar tyvar
-  = tcGetUnique                `thenNF_Tc` \ uniq ->
-    let
-       name = setNameUnique (tyVarName tyvar) uniq
-       -- Note that we don't change the print-name
-       -- This won't confuse the type checker but there's a chance
-       -- that two different tyvars will print the same way 
-       -- in an error message.  -dppr-debug will show up the difference
-       -- Better watch out for this.  If worst comes to worst, just
-       -- use mkSysLocalName.
-    in
-    tcNewMutTyVar name (tyVarKind tyvar)
-
-tcInstSigVars tyvars   -- Very similar to tcInstTyVar
-  = tcGetUniques       `thenNF_Tc` \ uniqs ->
-    listTc [ ASSERT( not (kind `eqKind` openTypeKind) )        -- Shouldn't happen
-            tcNewSigTyVar name kind 
-          | (tyvar, uniq) <- tyvars `zip` uniqs,
-            let name = setNameUnique (tyVarName tyvar) uniq, 
-            let kind = tyVarKind tyvar
-          ]
+  | otherwise
+  = ASSERT( isMetaTyVar tyvar )
+    ASSERT2( k2 `isSubKind` k1, (ppr tyvar <+> ppr k1) $$ (ppr ty <+> ppr k2) )
+    do { ASSERTM2( do { details <- readMetaTyVar tyvar; return (isFlexi details) }, ppr tyvar )
+       ; writeMutVar (metaTvRef tyvar) (Indirect ty) }
+  where
+    k1 = tyVarKind tyvar
+    k2 = typeKind ty
+#endif
 \end{code}
 
-@tcInstType@ instantiates the outer-level for-alls of a TcType with
-fresh type variables, splits off the dictionary part, and returns the results.
+
+%************************************************************************
+%*                                                                     *
+       MetaTvs: TauTvs
+%*                                                                     *
+%************************************************************************
 
 \begin{code}
-tcInstType :: TcType -> NF_TcM ([TcTyVar], TcThetaType, TcType)
-tcInstType ty
-  = case tcSplitForAllTys ty of
-       ([],     rho) ->        -- There may be overloading but no type variables;
-                               --      (?x :: Int) => Int -> Int
-                        let
-                          (theta, tau) = tcSplitRhoTy rho      -- Used to be tcSplitRhoTyM
-                        in
-                        returnNF_Tc ([], theta, tau)
+newFlexiTyVar :: Kind -> TcM TcTyVar
+newFlexiTyVar kind = newMetaTyVar TauTv kind
 
-       (tyvars, rho) -> tcInstTyVars tyvars                    `thenNF_Tc` \ (tyvars', _, tenv)  ->
-                        let
-                          (theta, tau) = tcSplitRhoTy (substTy tenv rho)       -- Used to be tcSplitRhoTyM
-                        in
-                        returnNF_Tc (tyvars', theta, tau)
-\end{code}
+newFlexiTyVarTy  :: Kind -> TcM TcType
+newFlexiTyVarTy kind
+  = newFlexiTyVar kind `thenM` \ tc_tyvar ->
+    returnM (TyVarTy tc_tyvar)
 
+newFlexiTyVarTys :: Int -> Kind -> TcM [TcType]
+newFlexiTyVarTys n kind = mappM newFlexiTyVarTy (nOfThem n kind)
+
+tcInstTyVar :: TyVar -> TcM TcTyVar
+-- Instantiate with a META type variable
+tcInstTyVar tyvar = instMetaTyVar TauTv tyvar
+
+tcInstTyVars :: [TyVar] -> TcM ([TcTyVar], [TcType], TvSubst)
+-- Instantiate with META type variables
+tcInstTyVars tyvars
+  = do { tc_tvs <- mapM tcInstTyVar tyvars
+       ; let tys = mkTyVarTys tc_tvs
+       ; returnM (tc_tvs, tys, zipTopTvSubst tyvars tys) }
+               -- Since the tyvars are freshly made,
+               -- they cannot possibly be captured by
+               -- any existing for-alls.  Hence zipTopTvSubst
+\end{code}
 
 
 %************************************************************************
 %*                                                                     *
-\subsection{Putting and getting  mutable type variables}
+       MetaTvs: SigTvs
 %*                                                                     *
 %************************************************************************
 
 \begin{code}
-putTcTyVar :: TcTyVar -> TcType -> NF_TcM TcType
-getTcTyVar :: TcTyVar -> NF_TcM (Maybe TcType)
+tcInstSigTyVars :: SkolemInfo -> [TyVar] -> TcM [TcTyVar]
+-- Instantiate with meta SigTvs
+tcInstSigTyVars skol_info tyvars 
+  = mapM (instMetaTyVar (SigTv skol_info)) tyvars
+
+zonkSigTyVar :: TcTyVar -> TcM TcTyVar
+zonkSigTyVar sig_tv 
+  | isSkolemTyVar sig_tv 
+  = return sig_tv      -- Happens in the call in TcBinds.checkDistinctTyVars
+  | otherwise
+  = ASSERT( isSigTyVar sig_tv )
+    do { ty <- zonkTcTyVar sig_tv
+       ; return (tcGetTyVar "zonkSigTyVar" ty) }
+       -- 'ty' is bound to be a type variable, because SigTvs
+       -- can only be unified with type variables
 \end{code}
 
-Putting is easy:
 
-\begin{code}
-putTcTyVar tyvar ty 
-  | not (isMutTyVar tyvar)
-  = pprTrace "putTcTyVar" (ppr tyvar) $
-    returnNF_Tc ty
+%************************************************************************
+%*                                                                     *
+       MetaTvs: BoxTvs
+%*                                                                     *
+%************************************************************************
 
-  | otherwise
-  = ASSERT( isMutTyVar tyvar )
-    UASSERT2( not (isUTy ty), ppr tyvar <+> ppr ty )
-    tcWriteMutTyVar tyvar (Just ty)    `thenNF_Tc_`
-    returnNF_Tc ty
+\begin{code}
+newBoxyTyVar :: Kind -> TcM BoxyTyVar
+newBoxyTyVar kind = newMetaTyVar BoxTv kind
+
+newBoxyTyVars :: [Kind] -> TcM [BoxyTyVar]
+newBoxyTyVars kinds = mapM newBoxyTyVar kinds
+
+newBoxyTyVarTys :: [Kind] -> TcM [BoxyType]
+newBoxyTyVarTys kinds = do { tvs <- mapM newBoxyTyVar kinds; return (mkTyVarTys tvs) }
+
+readFilledBox :: BoxyTyVar -> TcM TcType
+-- Read the contents of the box, which should be filled in by now
+readFilledBox box_tv = ASSERT( isBoxyTyVar box_tv )
+                      do { cts <- readMetaTyVar box_tv
+                         ; case cts of
+                               Flexi       -> pprPanic "readFilledBox" (ppr box_tv)
+                               Indirect ty -> return ty }
+
+tcInstBoxyTyVar :: TyVar -> TcM BoxyTyVar
+-- Instantiate with a BOXY type variable
+tcInstBoxyTyVar tyvar = instMetaTyVar BoxTv tyvar
+
+tcInstBoxy :: TcType -> TcM ([BoxyTyVar], BoxyThetaType, BoxySigmaType)
+-- tcInstType instantiates the outer-level for-alls of a TcType with
+-- fresh BOXY type variables, splits off the dictionary part, 
+-- and returns the pieces.
+tcInstBoxy ty = tcInstType (mapM tcInstBoxyTyVar) ty
 \end{code}
 
-Getting is more interesting.  The easy thing to do is just to read, thus:
 
-\begin{verbatim}
-getTcTyVar tyvar = tcReadMutTyVar tyvar
-\end{verbatim}
+%************************************************************************
+%*                                                                     *
+\subsection{Putting and getting  mutable type variables}
+%*                                                                     *
+%************************************************************************
 
 But it's more fun to short out indirections on the way: If this
 version returns a TyVar, then that TyVar is unbound.  If it returns
@@ -269,36 +348,54 @@ any other type, then there might be bound TyVars embedded inside it.
 We return Nothing iff the original box was unbound.
 
 \begin{code}
+data LookupTyVarResult -- The result of a lookupTcTyVar call
+  = DoneTv TcTyVarDetails      -- SkolemTv or virgin MetaTv
+  | IndirectTv TcType
+
+lookupTcTyVar :: TcTyVar -> TcM LookupTyVarResult
+lookupTcTyVar tyvar 
+  = case details of
+      SkolemTv _   -> return (DoneTv details)
+      MetaTv _ ref -> do { meta_details <- readMutVar ref
+                        ; case meta_details of
+                           Indirect ty -> return (IndirectTv ty)
+                           Flexi       -> return (DoneTv details) }
+  where
+    details =  tcTyVarDetails tyvar
+
+{- 
+-- gaw 2004 We aren't shorting anything out anymore, at least for now
 getTcTyVar tyvar
-  | not (isMutTyVar tyvar)
+  | not (isTcTyVar tyvar)
   = pprTrace "getTcTyVar" (ppr tyvar) $
-    returnNF_Tc (Just (mkTyVarTy tyvar))
+    returnM (Just (mkTyVarTy tyvar))
 
   | otherwise
-  = ASSERT2( isMutTyVar tyvar, ppr tyvar )
-    tcReadMutTyVar tyvar                               `thenNF_Tc` \ maybe_ty ->
+  = ASSERT2( isTcTyVar tyvar, ppr tyvar )
+    readMetaTyVar tyvar                                `thenM` \ maybe_ty ->
     case maybe_ty of
-       Just ty -> short_out ty                         `thenNF_Tc` \ ty' ->
-                  tcWriteMutTyVar tyvar (Just ty')     `thenNF_Tc_`
-                  returnNF_Tc (Just ty')
+       Just ty -> short_out ty                         `thenM` \ ty' ->
+                  writeMetaTyVar tyvar (Just ty')      `thenM_`
+                  returnM (Just ty')
 
-       Nothing    -> returnNF_Tc Nothing
+       Nothing    -> returnM Nothing
 
-short_out :: TcType -> NF_TcM TcType
+short_out :: TcType -> TcM TcType
 short_out ty@(TyVarTy tyvar)
-  | not (isMutTyVar tyvar)
-  = returnNF_Tc ty
+  | not (isTcTyVar tyvar)
+  = returnM ty
 
   | otherwise
-  = tcReadMutTyVar tyvar       `thenNF_Tc` \ maybe_ty ->
+  = readMetaTyVar tyvar        `thenM` \ maybe_ty ->
     case maybe_ty of
-       Just ty' -> short_out ty'                       `thenNF_Tc` \ ty' ->
-                   tcWriteMutTyVar tyvar (Just ty')    `thenNF_Tc_`
-                   returnNF_Tc ty'
+       Just ty' -> short_out ty'                       `thenM` \ ty' ->
+                   writeMetaTyVar tyvar (Just ty')     `thenM_`
+                   returnM ty'
 
-       other    -> returnNF_Tc ty
+       other    -> returnM ty
 
-short_out other_ty = returnNF_Tc other_ty
+short_out other_ty = returnM other_ty
+-}
 \end{code}
 
 
@@ -311,126 +408,116 @@ short_out other_ty = returnNF_Tc other_ty
 -----------------  Type variables
 
 \begin{code}
-zonkTcTyVars :: [TcTyVar] -> NF_TcM [TcType]
-zonkTcTyVars tyvars = mapNF_Tc zonkTcTyVar tyvars
-
-zonkTcTyVarsAndFV :: [TcTyVar] -> NF_TcM TcTyVarSet
-zonkTcTyVarsAndFV tyvars = mapNF_Tc zonkTcTyVar tyvars `thenNF_Tc` \ tys ->
-                          returnNF_Tc (tyVarsOfTypes tys)
-
-zonkTcTyVar :: TcTyVar -> NF_TcM TcType
-zonkTcTyVar tyvar = zonkTyVar (\ tv -> returnNF_Tc (TyVarTy tv)) tyvar
-
-zonkTcSigTyVars :: [TcTyVar] -> NF_TcM [TcTyVar]
--- This guy is to zonk the tyvars we're about to feed into tcSimplify
--- Usually this job is done by checkSigTyVars, but in a couple of places
--- that is overkill, so we use this simpler chap
-zonkTcSigTyVars tyvars
-  = zonkTcTyVars tyvars        `thenNF_Tc` \ tys ->
-    returnNF_Tc (map (tcGetTyVar "zonkTcSigTyVars") tys)
+zonkTcTyVars :: [TcTyVar] -> TcM [TcType]
+zonkTcTyVars tyvars = mappM zonkTcTyVar tyvars
+
+zonkTcTyVarsAndFV :: [TcTyVar] -> TcM TcTyVarSet
+zonkTcTyVarsAndFV tyvars = mappM zonkTcTyVar tyvars    `thenM` \ tys ->
+                          returnM (tyVarsOfTypes tys)
+
+zonkTcTyVar :: TcTyVar -> TcM TcType
+zonkTcTyVar tyvar = ASSERT( isTcTyVar tyvar )
+                   zonk_tc_tyvar (\ tv -> returnM (TyVarTy tv)) tyvar
 \end{code}
 
 -----------------  Types
 
 \begin{code}
-zonkTcType :: TcType -> NF_TcM TcType
-zonkTcType ty = zonkType (\ tv -> returnNF_Tc (TyVarTy tv)) ty
+zonkTcType :: TcType -> TcM TcType
+zonkTcType ty = zonkType (\ tv -> returnM (TyVarTy tv)) ty
 
-zonkTcTypes :: [TcType] -> NF_TcM [TcType]
-zonkTcTypes tys = mapNF_Tc zonkTcType tys
+zonkTcTypes :: [TcType] -> TcM [TcType]
+zonkTcTypes tys = mappM zonkTcType tys
 
-zonkTcClassConstraints cts = mapNF_Tc zonk cts
+zonkTcClassConstraints cts = mappM zonk cts
     where zonk (clas, tys)
-           = zonkTcTypes tys   `thenNF_Tc` \ new_tys ->
-             returnNF_Tc (clas, new_tys)
-
-zonkTcThetaType :: TcThetaType -> NF_TcM TcThetaType
-zonkTcThetaType theta = mapNF_Tc zonkTcPredType theta
-
-zonkTcPredType :: TcPredType -> NF_TcM TcPredType
-zonkTcPredType (ClassP c ts) =
-    zonkTcTypes ts     `thenNF_Tc` \ new_ts ->
-    returnNF_Tc (ClassP c new_ts)
-zonkTcPredType (IParam n t) =
-    zonkTcType t       `thenNF_Tc` \ new_t ->
-    returnNF_Tc (IParam n new_t)
+           = zonkTcTypes tys   `thenM` \ new_tys ->
+             returnM (clas, new_tys)
+
+zonkTcThetaType :: TcThetaType -> TcM TcThetaType
+zonkTcThetaType theta = mappM zonkTcPredType theta
+
+zonkTcPredType :: TcPredType -> TcM TcPredType
+zonkTcPredType (ClassP c ts)
+  = zonkTcTypes ts     `thenM` \ new_ts ->
+    returnM (ClassP c new_ts)
+zonkTcPredType (IParam n t)
+  = zonkTcType t       `thenM` \ new_t ->
+    returnM (IParam n new_t)
 \end{code}
 
 -------------------  These ...ToType, ...ToKind versions
                     are used at the end of type checking
 
 \begin{code}
-zonkKindEnv :: [(Name, TcKind)] -> NF_TcM [(Name, Kind)]
-zonkKindEnv pairs 
-  = mapNF_Tc zonk_it pairs
- where
-    zonk_it (name, tc_kind) = zonkType zonk_unbound_kind_var tc_kind `thenNF_Tc` \ kind ->
-                             returnNF_Tc (name, kind)
-
-       -- When zonking a kind, we want to
-       --      zonk a *kind* variable to (Type *)
-       --      zonk a *boxity* variable to *
-    zonk_unbound_kind_var kv | tyVarKind kv `eqKind` superKind   = putTcTyVar kv liftedTypeKind
-                            | tyVarKind kv `eqKind` superBoxity = putTcTyVar kv liftedBoxity
-                            | otherwise                         = pprPanic "zonkKindEnv" (ppr kv)
-                       
-zonkTcTypeToType :: TcType -> NF_TcM Type
-zonkTcTypeToType ty = zonkType zonk_unbound_tyvar ty
-  where
-       -- Zonk a mutable but unbound type variable to
-       --      Void            if it has kind Lifted
-       --      :Void           otherwise
-       -- We know it's unbound even though we don't carry an environment,
-       -- because at the binding site for a type variable we bind the
-       -- mutable tyvar to a fresh immutable one.  So the mutable store
-       -- plays the role of an environment.  If we come across a mutable
-       -- type variable that isn't so bound, it must be completely free.
-    zonk_unbound_tyvar tv
-       | kind `eqKind` liftedTypeKind || kind `eqKind` openTypeKind
-       = putTcTyVar tv voidTy  -- Just to avoid creating a new tycon in
-                               -- this vastly common case
-       | otherwise
-       = putTcTyVar tv (TyConApp (mk_void_tycon tv kind) [])
-       where
-         kind = tyVarKind tv
-
-    mk_void_tycon tv kind      -- Make a new TyCon with the same kind as the 
-                               -- type variable tv.  Same name too, apart from
-                               -- making it start with a colon (sigh)
-               -- I dread to think what will happen if this gets out into an 
-               -- interface file.  Catastrophe likely.  Major sigh.
-       = pprTrace "Urk! Inventing strangely-kinded void TyCon" (ppr tc_name) $
-         mkPrimTyCon tc_name kind 0 [] VoidRep
-       where
-         tc_name = mkLocalName (getUnique tv) (mkDerivedTyConOcc (getOccName tv)) noSrcLoc
-
--- zonkTcTyVarToTyVar is applied to the *binding* occurrence 
--- of a type variable, at the *end* of type checking.  It changes
--- the *mutable* type variable into an *immutable* one.
--- 
--- It does this by making an immutable version of tv and binds tv to it.
--- Now any bound occurences of the original type variable will get 
--- zonked to the immutable version.
+zonkQuantifiedTyVar :: TcTyVar -> TcM TyVar
+-- zonkQuantifiedTyVar is applied to the a TcTyVar when quantifying over it.
+-- It might be a meta TyVar, in which case we freeze it into an ordinary TyVar.
+-- When we do this, we also default the kind -- see notes with Kind.defaultKind
+-- The meta tyvar is updated to point to the new regular TyVar.  Now any 
+-- bound occurences of the original type variable will get zonked to 
+-- the immutable version.
+--
+-- We leave skolem TyVars alone; they are immutable.
+zonkQuantifiedTyVar tv
+  | isSkolemTyVar tv = return tv
+       -- It might be a skolem type variable, 
+       -- for example from a user type signature
+
+  | otherwise  -- It's a meta-type-variable
+  = do { details <- readMetaTyVar tv
+
+       -- Create the new, frozen, regular type variable
+       ; let final_kind = defaultKind (tyVarKind tv)
+             final_tv   = mkTyVar (tyVarName tv) final_kind
+
+       -- Bind the meta tyvar to the new tyvar
+       ; case details of
+           Indirect ty -> WARN( True, ppr tv $$ ppr ty ) 
+                          return ()
+               -- [Sept 04] I don't think this should happen
+               -- See note [Silly Type Synonym]
+
+           Flexi -> writeMetaTyVar tv (mkTyVarTy final_tv)
+
+       -- Return the new tyvar
+       ; return final_tv }
+\end{code}
 
-zonkTcTyVarToTyVar :: TcTyVar -> NF_TcM TyVar
-zonkTcTyVarToTyVar tv
-  = let
-               -- Make an immutable version, defaulting 
-               -- the kind to lifted if necessary
-       immut_tv    = mkTyVar (tyVarName tv) (defaultKind (tyVarKind tv))
-       immut_tv_ty = mkTyVarTy immut_tv
+[Silly Type Synonyms]
 
-        zap tv = putTcTyVar tv immut_tv_ty
-               -- Bind the mutable version to the immutable one
-    in 
-       -- If the type variable is mutable, then bind it to immut_tv_ty
-       -- so that all other occurrences of the tyvar will get zapped too
-    zonkTyVar zap tv           `thenNF_Tc` \ ty2 ->
+Consider this:
+       type C u a = u  -- Note 'a' unused
 
-    WARN( not (immut_tv_ty `tcEqType` ty2), ppr tv $$ ppr immut_tv $$ ppr ty2 )
+       foo :: (forall a. C u a -> C u a) -> u
+       foo x = ...
 
-    returnNF_Tc immut_tv
-\end{code}
+       bar :: Num u => u
+       bar = foo (\t -> t + t)
+
+* From the (\t -> t+t) we get type  {Num d} =>  d -> d
+  where d is fresh.
+
+* Now unify with type of foo's arg, and we get:
+       {Num (C d a)} =>  C d a -> C d a
+  where a is fresh.
+
+* Now abstract over the 'a', but float out the Num (C d a) constraint
+  because it does not 'really' mention a.  (see exactTyVarsOfType)
+  The arg to foo becomes
+       /\a -> \t -> t+t
+
+* So we get a dict binding for Num (C d a), which is zonked to give
+       a = ()
+  [Note Sept 04: now that we are zonking quantified type variables
+  on construction, the 'a' will be frozen as a regular tyvar on
+  quantification, so the floated dict will still have type (C d a).
+  Which renders this whole note moot; happily!]
+
+* Then the /\a abstraction has a zonked 'a' in it.
+
+All very silly.   I think its harmless to ignore the problem.  We'll end up with
+a /\a in the final result but all the occurrences of a will be zonked to ()
 
 
 %************************************************************************
@@ -442,77 +529,105 @@ zonkTcTyVarToTyVar tv
 %************************************************************************
 
 \begin{code}
--- zonkType is used for Kinds as well
-
 -- For unbound, mutable tyvars, zonkType uses the function given to it
 -- For tyvars bound at a for-all, zonkType zonks them to an immutable
 --     type variable and zonks the kind too
 
-zonkType :: (TcTyVar -> NF_TcM Type)   -- What to do with unbound mutable type variables
+zonkType :: (TcTyVar -> TcM Type)      -- What to do with unbound mutable type variables
                                        -- see zonkTcType, and zonkTcTypeToType
-        -> TcType
-        -> NF_TcM Type
+         -> TcType
+        -> TcM Type
 zonkType unbound_var_fn ty
   = go ty
   where
-    go (TyConApp tycon tys)      = mapNF_Tc go tys     `thenNF_Tc` \ tys' ->
-                                   returnNF_Tc (TyConApp tycon tys')
-
-    go (NoteTy (SynNote ty1) ty2) = go ty1             `thenNF_Tc` \ ty1' ->
-                                   go ty2              `thenNF_Tc` \ ty2' ->
-                                   returnNF_Tc (NoteTy (SynNote ty1') ty2')
-
-    go (NoteTy (FTVNote _) ty2)   = go ty2     -- Discard free-tyvar annotations
-
-    go (SourceTy p)              = go_pred p           `thenNF_Tc` \ p' ->
-                                   returnNF_Tc (SourceTy p')
-
-    go (FunTy arg res)           = go arg              `thenNF_Tc` \ arg' ->
-                                   go res              `thenNF_Tc` \ res' ->
-                                   returnNF_Tc (FunTy arg' res')
-    go (AppTy fun arg)           = go fun              `thenNF_Tc` \ fun' ->
-                                   go arg              `thenNF_Tc` \ arg' ->
-                                   returnNF_Tc (mkAppTy fun' arg')
-
-    go (UsageTy u ty)             = go u                `thenNF_Tc` \ u'  ->
-                                    go ty               `thenNF_Tc` \ ty' ->
-                                    returnNF_Tc (UsageTy u' ty')
+    go (NoteTy _ ty2)   = go ty2       -- Discard free-tyvar annotations
+                        
+    go (TyConApp tc tys) = mappM go tys        `thenM` \ tys' ->
+                          returnM (TyConApp tc tys')
+                           
+    go (PredTy p)       = go_pred p            `thenM` \ p' ->
+                          returnM (PredTy p')
+                        
+    go (FunTy arg res)   = go arg              `thenM` \ arg' ->
+                          go res               `thenM` \ res' ->
+                          returnM (FunTy arg' res')
+                        
+    go (AppTy fun arg)  = go fun               `thenM` \ fun' ->
+                          go arg               `thenM` \ arg' ->
+                          returnM (mkAppTy fun' arg')
+               -- NB the mkAppTy; we might have instantiated a
+               -- type variable to a type constructor, so we need
+               -- to pull the TyConApp to the top.
 
        -- The two interesting cases!
-    go (TyVarTy tyvar)     = zonkTyVar unbound_var_fn tyvar
-
-    go (ForAllTy tyvar ty) = zonkTcTyVarToTyVar tyvar  `thenNF_Tc` \ tyvar' ->
-                            go ty                      `thenNF_Tc` \ ty' ->
-                            returnNF_Tc (ForAllTy tyvar' ty')
-
-    go_pred (ClassP c tys) = mapNF_Tc go tys   `thenNF_Tc` \ tys' ->
-                            returnNF_Tc (ClassP c tys')
-    go_pred (NType tc tys) = mapNF_Tc go tys   `thenNF_Tc` \ tys' ->
-                            returnNF_Tc (NType tc tys')
-    go_pred (IParam n ty) = go ty              `thenNF_Tc` \ ty' ->
-                           returnNF_Tc (IParam n ty')
-
-zonkTyVar :: (TcTyVar -> NF_TcM Type)          -- What to do for an unbound mutable variable
-         -> TcTyVar -> NF_TcM TcType
-zonkTyVar unbound_var_fn tyvar 
-  | not (isMutTyVar tyvar)     -- Not a mutable tyvar.  This can happen when
-                               -- zonking a forall type, when the bound type variable
-                               -- needn't be mutable
-  = ASSERT( isTyVar tyvar )            -- Should not be any immutable kind vars
-    returnNF_Tc (TyVarTy tyvar)
-
-  | otherwise
-  =  getTcTyVar tyvar  `thenNF_Tc` \ maybe_ty ->
-     case maybe_ty of
-         Nothing       -> unbound_var_fn tyvar                 -- Mutable and unbound
-         Just other_ty -> zonkType unbound_var_fn other_ty     -- Bound
+    go (TyVarTy tyvar) | isTcTyVar tyvar = zonk_tc_tyvar unbound_var_fn tyvar
+                      | otherwise       = return (TyVarTy tyvar)
+               -- Ordinary (non Tc) tyvars occur inside quantified types
+
+    go (ForAllTy tyvar ty) = ASSERT( isImmutableTyVar tyvar )
+                            go ty              `thenM` \ ty' ->
+                            returnM (ForAllTy tyvar ty')
+
+    go_pred (ClassP c tys) = mappM go tys      `thenM` \ tys' ->
+                            returnM (ClassP c tys')
+    go_pred (IParam n ty)  = go ty             `thenM` \ ty' ->
+                            returnM (IParam n ty')
+
+zonk_tc_tyvar :: (TcTyVar -> TcM Type)         -- What to do for an unbound mutable variable
+             -> TcTyVar -> TcM TcType
+zonk_tc_tyvar unbound_var_fn tyvar 
+  | not (isMetaTyVar tyvar)    -- Skolems
+  = returnM (TyVarTy tyvar)
+
+  | otherwise                  -- Mutables
+  = do { cts <- readMetaTyVar tyvar
+       ; case cts of
+           Flexi       -> unbound_var_fn tyvar    -- Unbound meta type variable
+           Indirect ty -> zonkType unbound_var_fn ty  }
 \end{code}
 
 
 
 %************************************************************************
 %*                                                                     *
+                       Zonking kinds
+%*                                                                     *
+%************************************************************************
+
+\begin{code}
+readKindVar  :: KindVar -> TcM (Maybe TcKind)
+writeKindVar :: KindVar -> TcKind -> TcM ()
+readKindVar  kv = readMutVar (kindVarRef kv)
+writeKindVar kv val = writeMutVar (kindVarRef kv) (Just val)
+
+-------------
+zonkTcKind :: TcKind -> TcM TcKind
+zonkTcKind (FunKind k1 k2) = do { k1' <- zonkTcKind k1
+                               ; k2' <- zonkTcKind k2
+                               ; returnM (FunKind k1' k2') }
+zonkTcKind k@(KindVar kv) = do { mb_kind <- readKindVar kv 
+                              ; case mb_kind of
+                                   Nothing -> returnM k
+                                   Just k  -> zonkTcKind k }
+zonkTcKind other_kind = returnM other_kind
+
+-------------
+zonkTcKindToKind :: TcKind -> TcM Kind
+zonkTcKindToKind (FunKind k1 k2) = do { k1' <- zonkTcKindToKind k1
+                                     ; k2' <- zonkTcKindToKind k2
+                                     ; returnM (FunKind k1' k2') }
+
+zonkTcKindToKind (KindVar kv) = do { mb_kind <- readKindVar kv 
+                                  ; case mb_kind of
+                                      Nothing -> return liftedTypeKind
+                                      Just k  -> zonkTcKindToKind k }
+
+zonkTcKindToKind OpenTypeKind = returnM liftedTypeKind -- An "Open" kind defaults to *
+zonkTcKindToKind other_kind   = returnM other_kind
+\end{code}
+                       
+%************************************************************************
+%*                                                                     *
 \subsection{Checking a user type}
 %*                                                                     *
 %************************************************************************
@@ -546,119 +661,88 @@ This might not necessarily show up in kind checking.
 
        
 \begin{code}
-data UserTypeCtxt 
-  = FunSigCtxt Name    -- Function type signature
-  | ExprSigCtxt                -- Expression type signature
-  | ConArgCtxt Name    -- Data constructor argument
-  | TySynCtxt Name     -- RHS of a type synonym decl
-  | GenPatCtxt         -- Pattern in generic decl
-                       --      f{| a+b |} (Inl x) = ...
-  | PatSigCtxt         -- Type sig in pattern
-                       --      f (x::t) = ...
-  | ResSigCtxt         -- Result type sig
-                       --      f x :: t = ....
-  | ForSigCtxt Name    -- Foreign inport or export signature
-  | RuleSigCtxt Name   -- Signature on a forall'd variable in a RULE
-
--- Notes re TySynCtxt
--- We allow type synonyms that aren't types; e.g.  type List = []
---
--- If the RHS mentions tyvars that aren't in scope, we'll 
--- quantify over them:
---     e.g.    type T = a->a
--- will become type T = forall a. a->a
---
--- With gla-exts that's right, but for H98 we should complain. 
-
-
-pprUserTypeCtxt (FunSigCtxt n)         = ptext SLIT("the type signature for") <+> quotes (ppr n)
-pprUserTypeCtxt ExprSigCtxt            = ptext SLIT("an expression type signature")
-pprUserTypeCtxt (ConArgCtxt c)         = ptext SLIT("the type of constructor") <+> quotes (ppr c)
-pprUserTypeCtxt (TySynCtxt c)          = ptext SLIT("the RHS of a type synonym declaration") <+> quotes (ppr c)
-pprUserTypeCtxt GenPatCtxt             = ptext SLIT("the type pattern of a generic definition")
-pprUserTypeCtxt PatSigCtxt             = ptext SLIT("a pattern type signature")
-pprUserTypeCtxt ResSigCtxt             = ptext SLIT("a result type signature")
-pprUserTypeCtxt (ForSigCtxt n)         = ptext SLIT("the foreign signature for") <+> quotes (ppr n)
-pprUserTypeCtxt (RuleSigCtxt n) = ptext SLIT("the type signature on") <+> quotes (ppr n)
-\end{code}
-
-\begin{code}
 checkValidType :: UserTypeCtxt -> Type -> TcM ()
 -- Checks that the type is valid for the given context
 checkValidType ctxt ty
-  = doptsTc Opt_GlasgowExts    `thenNF_Tc` \ gla_exts ->
+  = traceTc (text "checkValidType" <+> ppr ty) `thenM_`
+    doptM Opt_GlasgowExts      `thenM` \ gla_exts ->
     let 
-       rank = case ctxt of
-                GenPatCtxt               -> 0
-                PatSigCtxt               -> 0
-                ResSigCtxt               -> 0
-                ExprSigCtxt              -> 1
-                FunSigCtxt _ | gla_exts  -> 2
-                             | otherwise -> 1
-                ConArgCtxt _ | gla_exts  -> 2  -- We are given the type of the entire
-                             | otherwise -> 1  -- constructor; hence rank 1 is ok
-                TySynCtxt _  | gla_exts  -> 1
-                             | otherwise -> 0
-                ForSigCtxt _             -> 1
-                RuleSigCtxt _            -> 1
+       rank | gla_exts = Arbitrary
+            | otherwise
+            = case ctxt of     -- Haskell 98
+                GenPatCtxt     -> Rank 0
+                LamPatSigCtxt  -> Rank 0
+                BindPatSigCtxt -> Rank 0
+                DefaultDeclCtxt-> Rank 0
+                ResSigCtxt     -> Rank 0
+                TySynCtxt _    -> Rank 0
+                ExprSigCtxt    -> Rank 1
+                FunSigCtxt _   -> Rank 1
+                ConArgCtxt _   -> Rank 1       -- We are given the type of the entire
+                                               -- constructor, hence rank 1
+                ForSigCtxt _   -> Rank 1
+                RuleSigCtxt _  -> Rank 1
+                SpecInstCtxt   -> Rank 1
 
        actual_kind = typeKind ty
 
-       actual_kind_is_lifted = actual_kind `eqKind` liftedTypeKind
-
        kind_ok = case ctxt of
                        TySynCtxt _  -> True    -- Any kind will do
-                       GenPatCtxt   -> actual_kind_is_lifted
-                       ForSigCtxt _ -> actual_kind_is_lifted
-                       other        -> isTypeKind actual_kind
+                       ResSigCtxt   -> isOpenTypeKind   actual_kind
+                       ExprSigCtxt  -> isOpenTypeKind   actual_kind
+                       GenPatCtxt   -> isLiftedTypeKind actual_kind
+                       ForSigCtxt _ -> isLiftedTypeKind actual_kind
+                       other        -> isArgTypeKind    actual_kind
+       
+       ubx_tup | not gla_exts = UT_NotOk
+               | otherwise    = case ctxt of
+                                  TySynCtxt _ -> UT_Ok
+                                  ExprSigCtxt -> UT_Ok
+                                  other       -> UT_NotOk
+               -- Unboxed tuples ok in function results,
+               -- but for type synonyms we allow them even at
+               -- top level
     in
-    tcAddErrCtxt (checkTypeCtxt ctxt ty)       $
-
        -- Check that the thing has kind Type, and is lifted if necessary
-    checkTc kind_ok (kindErr actual_kind)      `thenTc_`
+    checkTc kind_ok (kindErr actual_kind)      `thenM_`
 
        -- Check the internal validity of the type itself
-    check_poly_type rank ty
-
-
-checkTypeCtxt ctxt ty
-  = vcat [ptext SLIT("In the type:") <+> ppr_ty ty,
-         ptext SLIT("While checking") <+> pprUserTypeCtxt ctxt ]
-
-       -- Hack alert.  If there are no tyvars, (ppr sigma_ty) will print
-       -- something strange like {Eq k} -> k -> k, because there is no
-       -- ForAll at the top of the type.  Since this is going to the user
-       -- we want it to look like a proper Haskell type even then; hence the hack
-       -- 
-       -- This shows up in the complaint about
-       --      case C a where
-       --        op :: Eq a => a -> a
-ppr_ty ty | null forall_tvs && not (null theta) = pprTheta theta <+> ptext SLIT("=>") <+> ppr tau
-          | otherwise                       = ppr ty
-          where
-           (forall_tvs, theta, tau) = tcSplitSigmaTy ty
+    check_poly_type rank ubx_tup ty            `thenM_`
+
+    traceTc (text "checkValidType done" <+> ppr ty)
 \end{code}
 
 
 \begin{code}
-type Rank = Int
-check_poly_type :: Rank -> Type -> TcM ()
-check_poly_type rank ty 
-  | rank == 0 
-  = check_tau_type 0 False ty
-  | otherwise  -- rank > 0
+data Rank = Rank Int | Arbitrary
+
+decRank :: Rank -> Rank
+decRank Arbitrary = Arbitrary
+decRank (Rank n)  = Rank (n-1)
+
+----------------------------------------
+data UbxTupFlag = UT_Ok        | UT_NotOk
+       -- The "Ok" version means "ok if -fglasgow-exts is on"
+
+----------------------------------------
+check_poly_type :: Rank -> UbxTupFlag -> Type -> TcM ()
+check_poly_type (Rank 0) ubx_tup ty 
+  = check_tau_type (Rank 0) ubx_tup ty
+
+check_poly_type rank ubx_tup ty 
   = let
        (tvs, theta, tau) = tcSplitSigmaTy ty
     in
-    check_valid_theta SigmaCtxt theta  `thenTc_`
-    check_tau_type (rank-1) False tau  `thenTc_`
-    checkAmbiguity tvs theta tau
+    check_valid_theta SigmaCtxt theta          `thenM_`
+    check_tau_type (decRank rank) ubx_tup tau  `thenM_`
+    checkFreeness tvs theta                    `thenM_`
+    checkAmbiguity tvs theta (tyVarsOfType tau)
 
 ----------------------------------------
 check_arg_type :: Type -> TcM ()
 -- The sort of type that can instantiate a type variable,
 -- or be the argument of a type constructor.
--- Not an unboxed tuple, not a forall.
+-- Not an unboxed tuple, but now *can* be a forall (since impredicativity)
 -- Other unboxed types are very occasionally allowed as type
 -- arguments depending on the kind of the type constructor
 -- 
@@ -671,54 +755,81 @@ check_arg_type :: Type -> TcM ()
 -- NB: unboxed tuples can have polymorphic or unboxed args.
 --     This happens in the workers for functions returning
 --     product types with polymorphic components.
---     But not in user code
--- 
--- Question: what about nested unboxed tuples?
---          Currently rejected.
+--     But not in user code.
+-- Anyway, they are dealt with by a special case in check_tau_type
+
 check_arg_type ty 
-  = check_tau_type 0 False ty  `thenTc_` 
+  = check_poly_type Arbitrary UT_NotOk ty      `thenM_` 
     checkTc (not (isUnLiftedType ty)) (unliftedArgErr ty)
 
 ----------------------------------------
-check_tau_type :: Rank -> Bool -> Type -> TcM ()
+check_tau_type :: Rank -> UbxTupFlag -> Type -> TcM ()
 -- Rank is allowed rank for function args
 -- No foralls otherwise
--- Bool is True iff unboxed tuple are allowed here
-
-check_tau_type rank ubx_tup_ok ty@(UsageTy _ _)  = failWithTc (usageTyErr ty)
-check_tau_type rank ubx_tup_ok ty@(ForAllTy _ _) = failWithTc (forAllTyErr ty)
-check_tau_type rank ubx_tup_ok (SourceTy sty)    = getDOptsTc          `thenNF_Tc` \ dflags ->
-                                                  check_source_ty dflags TypeCtxt sty
-check_tau_type rank ubx_tup_ok (TyVarTy _)       = returnTc ()
-check_tau_type rank ubx_tup_ok ty@(FunTy arg_ty res_ty)
-  = check_poly_type rank      arg_ty   `thenTc_`
-    check_tau_type  rank True res_ty
-
-check_tau_type rank ubx_tup_ok (AppTy ty1 ty2)
-  = check_arg_type ty1 `thenTc_` check_arg_type ty2
-
-check_tau_type rank ubx_tup_ok (NoteTy note ty)
-  = check_note note `thenTc_` check_tau_type rank ubx_tup_ok ty
-
-check_tau_type rank ubx_tup_ok ty@(TyConApp tc tys)
-  | isSynTyCon tc
-  = checkTc syn_arity_ok arity_msg     `thenTc_`
-    mapTc_ check_arg_type tys
+
+check_tau_type rank ubx_tup ty@(ForAllTy _ _)       = failWithTc (forAllTyErr ty)
+check_tau_type rank ubx_tup ty@(FunTy (PredTy _) _) = failWithTc (forAllTyErr ty)
+       -- Reject e.g. (Maybe (?x::Int => Int)), with a decent error message
+
+-- Naked PredTys don't usually show up, but they can as a result of
+--     {-# SPECIALISE instance Ord Char #-}
+-- The Right Thing would be to fix the way that SPECIALISE instance pragmas
+-- are handled, but the quick thing is just to permit PredTys here.
+check_tau_type rank ubx_tup (PredTy sty) = getDOpts            `thenM` \ dflags ->
+                                          check_source_ty dflags TypeCtxt sty
+
+check_tau_type rank ubx_tup (TyVarTy _)       = returnM ()
+check_tau_type rank ubx_tup ty@(FunTy arg_ty res_ty)
+  = check_poly_type rank UT_NotOk arg_ty       `thenM_`
+    check_poly_type rank UT_Ok    res_ty
+
+check_tau_type rank ubx_tup (AppTy ty1 ty2)
+  = check_arg_type ty1 `thenM_` check_arg_type ty2
+
+check_tau_type rank ubx_tup (NoteTy other_note ty)
+  = check_tau_type rank ubx_tup ty
+
+check_tau_type rank ubx_tup ty@(TyConApp tc tys)
+  | isSynTyCon tc      
+  = do {       -- It's OK to have an *over-applied* type synonym
+               --      data Tree a b = ...
+               --      type Foo a = Tree [a]
+               --      f :: Foo a b -> ...
+       ; case tcView ty of
+            Just ty' -> check_tau_type rank ubx_tup ty'        -- Check expansion
+            Nothing  -> failWithTc arity_msg
+
+       ; gla_exts <- doptM Opt_GlasgowExts
+       ; if gla_exts then
+       -- If -fglasgow-exts then don't check the type arguments
+       -- This allows us to instantiate a synonym defn with a 
+       -- for-all type, or with a partially-applied type synonym.
+       --      e.g.   type T a b = a
+       --             type S m   = m ()
+       --             f :: S (T Int)
+       -- Here, T is partially applied, so it's illegal in H98.
+       -- But if you expand S first, then T we get just 
+       --             f :: Int
+       -- which is fine.
+               returnM ()
+         else
+               -- For H98, do check the type args
+               mappM_ check_arg_type tys
+       }
     
   | isUnboxedTupleTyCon tc
-  = checkTc ubx_tup_ok ubx_tup_msg     `thenTc_`
-    mapTc_ (check_tau_type 0 True) tys         -- Args are allowed to be unlifted, or
-                                               -- more unboxed tuples, so can't use check_arg_ty
+  = doptM Opt_GlasgowExts                      `thenM` \ gla_exts ->
+    checkTc (ubx_tup_ok gla_exts) ubx_tup_msg  `thenM_`
+    mappM_ (check_tau_type (Rank 0) UT_Ok) tys 
+               -- Args are allowed to be unlifted, or
+               -- more unboxed tuples, so can't use check_arg_ty
 
   | otherwise
-  = mapTc_ check_arg_type tys
+  = mappM_ check_arg_type tys
 
   where
-    syn_arity_ok = tc_arity <= n_args
-               -- It's OK to have an *over-applied* type synonym
-               --      data Tree a b = ...
-               --      type Foo a = Tree [a]
-               --      f :: Foo a b -> ...
+    ubx_tup_ok gla_exts = case ubx_tup of { UT_Ok -> gla_exts; other -> False }
+
     n_args    = length tys
     tc_arity  = tyConArity tc
 
@@ -726,86 +837,13 @@ check_tau_type rank ubx_tup_ok ty@(TyConApp tc tys)
     ubx_tup_msg = ubxArgTyErr ty
 
 ----------------------------------------
-check_note (FTVNote _)  = returnTc ()
-check_note (SynNote ty) = check_tau_type 0 False ty
-\end{code}
-
-Check for ambiguity
-~~~~~~~~~~~~~~~~~~~
-         forall V. P => tau
-is ambiguous if P contains generic variables
-(i.e. one of the Vs) that are not mentioned in tau
-
-However, we need to take account of functional dependencies
-when we speak of 'mentioned in tau'.  Example:
-       class C a b | a -> b where ...
-Then the type
-       forall x y. (C x y) => x
-is not ambiguous because x is mentioned and x determines y
-
-NOTE: In addition, GHC insists that at least one type variable
-in each constraint is in V.  So we disallow a type like
-       forall a. Eq b => b -> b
-even in a scope where b is in scope.
-This is the is_free test below.
-
-NB; the ambiguity check is only used for *user* types, not for types
-coming from inteface files.  The latter can legitimately have
-ambiguous types. Example
-
-   class S a where s :: a -> (Int,Int)
-   instance S Char where s _ = (1,1)
-   f:: S a => [a] -> Int -> (Int,Int)
-   f (_::[a]) x = (a*x,b)
-       where (a,b) = s (undefined::a)
-
-Here the worker for f gets the type
-       fw :: forall a. S a => Int -> (# Int, Int #)
-
-If the list of tv_names is empty, we have a monotype, and then we
-don't need to check for ambiguity either, because the test can't fail
-(see is_ambig).
-
-\begin{code}
-checkAmbiguity :: [TyVar] -> ThetaType -> TauType -> TcM ()
-checkAmbiguity forall_tyvars theta tau
-  = mapTc_ check_pred theta    `thenTc_`
-    returnTc ()
-  where
-    tau_vars         = tyVarsOfType tau
-    extended_tau_vars = grow theta tau_vars
-
-    is_ambig ct_var   = (ct_var `elem` forall_tyvars) &&
-                       not (ct_var `elemVarSet` extended_tau_vars)
-    is_free ct_var    = not (ct_var `elem` forall_tyvars)
-    
-    check_pred pred = checkTc (not any_ambig)                 (ambigErr pred) `thenTc_`
-                     checkTc (isIPPred pred || not all_free) (freeErr  pred)
-             where 
-               ct_vars   = varSetElems (tyVarsOfPred pred)
-               all_free  = all is_free ct_vars
-               any_ambig = any is_ambig ct_vars
+forAllTyErr     ty = ptext SLIT("Illegal polymorphic or qualified type:") <+> ppr ty
+unliftedArgErr  ty = ptext SLIT("Illegal unlifted type argument:") <+> ppr ty
+ubxArgTyErr     ty = ptext SLIT("Illegal unboxed tuple type as function argument:") <+> ppr ty
+kindErr kind       = ptext SLIT("Expecting an ordinary type, but found a type of kind") <+> ppr kind
 \end{code}
 
-\begin{code}
-ambigErr pred
-  = sep [ptext SLIT("Ambiguous constraint") <+> quotes (pprPred pred),
-        nest 4 (ptext SLIT("At least one of the forall'd type variables mentioned by the constraint") $$
-                ptext SLIT("must be reachable from the type after the =>"))]
-
 
-freeErr pred
-  = sep [ptext SLIT("All of the type variables in the constraint") <+> quotes (pprPred pred) <+>
-                  ptext SLIT("are already in scope"),
-        nest 4 (ptext SLIT("At least one must be universally quantified here"))
-    ]
-
-forAllTyErr     ty = ptext SLIT("Illegal polymorphic type:") <+> ppr_ty ty
-usageTyErr      ty = ptext SLIT("Illegal usage type:") <+> ppr_ty ty
-unliftedArgErr  ty = ptext SLIT("Illegal unlifted type argument:") <+> ppr_ty ty
-ubxArgTyErr     ty = ptext SLIT("Illegal unboxed tuple type as function argument:") <+> ppr_ty ty
-kindErr kind       = ptext SLIT("Expecting an ordinary type, but found a type of kind") <+> ppr kind
-\end{code}
 
 %************************************************************************
 %*                                                                     *
@@ -814,43 +852,55 @@ kindErr kind       = ptext SLIT("Expecting an ordinary type, but found a type of
 %************************************************************************
 
 \begin{code}
+-- Enumerate the contexts in which a "source type", <S>, can occur
+--     Eq a 
+-- or  ?x::Int
+-- or  r <: {x::Int}
+-- or  (N a) where N is a newtype
+
 data SourceTyCtxt
   = ClassSCCtxt Name   -- Superclasses of clas
-  | SigmaCtxt          -- Context of a normal for-all type
-  | DataTyCtxt Name    -- Context of a data decl
+                       --      class <S> => C a where ...
+  | SigmaCtxt          -- Theta part of a normal for-all type
+                       --      f :: <S> => a -> a
+  | DataTyCtxt Name    -- Theta part of a data decl
+                       --      data <S> => T a = MkT a
   | TypeCtxt           -- Source type in an ordinary type
+                       --      f :: N a -> N a
   | InstThetaCtxt      -- Context of an instance decl
-  | InstHeadCtxt       -- Head of an instance decl
+                       --      instance <S> => C [a] where ...
                
 pprSourceTyCtxt (ClassSCCtxt c) = ptext SLIT("the super-classes of class") <+> quotes (ppr c)
 pprSourceTyCtxt SigmaCtxt       = ptext SLIT("the context of a polymorphic type")
 pprSourceTyCtxt (DataTyCtxt tc) = ptext SLIT("the context of the data type declaration for") <+> quotes (ppr tc)
 pprSourceTyCtxt InstThetaCtxt   = ptext SLIT("the context of an instance declaration")
-pprSourceTyCtxt InstHeadCtxt    = ptext SLIT("the head of an instance declaration")
 pprSourceTyCtxt TypeCtxt        = ptext SLIT("the context of a type")
 \end{code}
 
 \begin{code}
 checkValidTheta :: SourceTyCtxt -> ThetaType -> TcM ()
 checkValidTheta ctxt theta 
-  = tcAddErrCtxt (checkThetaCtxt ctxt theta) (check_valid_theta ctxt theta)
+  = addErrCtxt (checkThetaCtxt ctxt theta) (check_valid_theta ctxt theta)
 
 -------------------------
 check_valid_theta ctxt []
-  = returnTc ()
+  = returnM ()
 check_valid_theta ctxt theta
-  = getDOptsTc                                 `thenNF_Tc` \ dflags ->
-    warnTc (not (null dups)) (dupPredWarn dups)        `thenNF_Tc_`
-    mapTc_ (check_source_ty dflags ctxt) theta
+  = getDOpts                                   `thenM` \ dflags ->
+    warnTc (notNull dups) (dupPredWarn dups)   `thenM_`
+    mappM_ (check_source_ty dflags ctxt) theta
   where
     (_,dups) = removeDups tcCmpPred theta
 
 -------------------------
 check_source_ty dflags ctxt pred@(ClassP cls tys)
   =    -- Class predicates are valid in all contexts
-    mapTc_ check_arg_type tys                  `thenTc_`
-    checkTc (arity == n_tys) arity_err         `thenTc_`
-    checkTc (all tyvar_head tys || arby_preds_ok) (predTyVarErr pred)
+    checkTc (arity == n_tys) arity_err         `thenM_`
+
+       -- Check the form of the argument types
+    mappM_ check_arg_type tys                          `thenM_`
+    checkTc (check_class_pred_tys dflags ctxt tys)
+           (predTyVarErr pred $$ how_to_allow)
 
   where
     class_name = className cls
@@ -858,19 +908,36 @@ check_source_ty dflags ctxt pred@(ClassP cls tys)
     n_tys      = length tys
     arity_err  = arityErr "Class" class_name arity n_tys
 
-    arby_preds_ok = case ctxt of
-                       InstHeadCtxt  -> True   -- We check for instance-head formation
-                                               -- in checkValidInstHead
-                       InstThetaCtxt -> dopt Opt_AllowUndecidableInstances dflags
-                       other         -> dopt Opt_GlasgowExts               dflags
-
-check_source_ty dflags SigmaCtxt (IParam name ty) = check_arg_type ty
-check_source_ty dflags TypeCtxt  (NType tc tys)   = mapTc_ check_arg_type tys
+    how_to_allow = case ctxt of
+                    InstHeadCtxt  -> empty     -- Should not happen
+                    InstThetaCtxt -> parens undecidableMsg
+                    other         -> parens (ptext SLIT("Use -fglasgow-exts to permit this"))
+
+check_source_ty dflags SigmaCtxt (IParam _ ty) = check_arg_type ty
+       -- Implicit parameters only allows in type
+       -- signatures; not in instance decls, superclasses etc
+       -- The reason for not allowing implicit params in instances is a bit subtle
+       -- If we allowed        instance (?x::Int, Eq a) => Foo [a] where ...
+       -- then when we saw (e :: (?x::Int) => t) it would be unclear how to 
+       -- discharge all the potential usas of the ?x in e.   For example, a
+       -- constraint Foo [Int] might come out of e,and applying the
+       -- instance decl would show up two uses of ?x.
 
 -- Catch-all
 check_source_ty dflags ctxt sty = failWithTc (badSourceTyErr sty)
 
 -------------------------
+check_class_pred_tys dflags ctxt tys 
+  = case ctxt of
+       TypeCtxt      -> True   -- {-# SPECIALISE instance Eq (T Int) #-} is fine
+       InstHeadCtxt  -> True   -- We check for instance-head 
+                               -- formation in checkValidInstHead
+       InstThetaCtxt -> undecidable_ok || distinct_tyvars tys
+       other         -> gla_exts       || all tyvar_head tys
+  where
+    gla_exts      = dopt Opt_GlasgowExts dflags
+
+-------------------------
 tyvar_head ty                  -- Haskell 98 allows predicates of form 
   | tcIsTyVarTy ty = True      --      C (a ty1 .. tyn)
   | otherwise                  -- where a is a type variable
@@ -879,14 +946,99 @@ tyvar_head ty                     -- Haskell 98 allows predicates of form
        Nothing      -> False
 \end{code}
 
+Check for ambiguity
+~~~~~~~~~~~~~~~~~~~
+         forall V. P => tau
+is ambiguous if P contains generic variables
+(i.e. one of the Vs) that are not mentioned in tau
+
+However, we need to take account of functional dependencies
+when we speak of 'mentioned in tau'.  Example:
+       class C a b | a -> b where ...
+Then the type
+       forall x y. (C x y) => x
+is not ambiguous because x is mentioned and x determines y
+
+NB; the ambiguity check is only used for *user* types, not for types
+coming from inteface files.  The latter can legitimately have
+ambiguous types. Example
+
+   class S a where s :: a -> (Int,Int)
+   instance S Char where s _ = (1,1)
+   f:: S a => [a] -> Int -> (Int,Int)
+   f (_::[a]) x = (a*x,b)
+       where (a,b) = s (undefined::a)
+
+Here the worker for f gets the type
+       fw :: forall a. S a => Int -> (# Int, Int #)
+
+If the list of tv_names is empty, we have a monotype, and then we
+don't need to check for ambiguity either, because the test can't fail
+(see is_ambig).
+
+\begin{code}
+checkAmbiguity :: [TyVar] -> ThetaType -> TyVarSet -> TcM ()
+checkAmbiguity forall_tyvars theta tau_tyvars
+  = mappM_ complain (filter is_ambig theta)
+  where
+    complain pred     = addErrTc (ambigErr pred)
+    extended_tau_vars = grow theta tau_tyvars
+
+       -- Only a *class* predicate can give rise to ambiguity
+       -- An *implicit parameter* cannot.  For example:
+       --      foo :: (?x :: [a]) => Int
+       --      foo = length ?x
+       -- is fine.  The call site will suppply a particular 'x'
+    is_ambig pred     = isClassPred  pred &&
+                       any ambig_var (varSetElems (tyVarsOfPred pred))
+
+    ambig_var ct_var  = (ct_var `elem` forall_tyvars) &&
+                       not (ct_var `elemVarSet` extended_tau_vars)
+
+ambigErr pred
+  = sep [ptext SLIT("Ambiguous constraint") <+> quotes (pprPred pred),
+        nest 4 (ptext SLIT("At least one of the forall'd type variables mentioned by the constraint") $$
+                ptext SLIT("must be reachable from the type after the '=>'"))]
+\end{code}
+    
+In addition, GHC insists that at least one type variable
+in each constraint is in V.  So we disallow a type like
+       forall a. Eq b => b -> b
+even in a scope where b is in scope.
+
 \begin{code}
-badSourceTyErr sty = ptext SLIT("Illegal constraint") <+> pprSourceType sty
-predTyVarErr pred  = ptext SLIT("Non-type variables in constraint:") <+> pprPred pred
-dupPredWarn dups   = ptext SLIT("Duplicate constraint(s):") <+> pprWithCommas pprPred (map head dups)
+checkFreeness forall_tyvars theta
+  = mappM_ complain (filter is_free theta)
+  where    
+    is_free pred     =  not (isIPPred pred)
+                    && not (any bound_var (varSetElems (tyVarsOfPred pred)))
+    bound_var ct_var = ct_var `elem` forall_tyvars
+    complain pred    = addErrTc (freeErr pred)
 
+freeErr pred
+  = sep [ptext SLIT("All of the type variables in the constraint") <+> quotes (pprPred pred) <+>
+                  ptext SLIT("are already in scope"),
+        nest 4 (ptext SLIT("(at least one must be universally quantified here)"))
+    ]
+\end{code}
+
+\begin{code}
 checkThetaCtxt ctxt theta
   = vcat [ptext SLIT("In the context:") <+> pprTheta theta,
          ptext SLIT("While checking") <+> pprSourceTyCtxt ctxt ]
+
+badSourceTyErr sty = ptext SLIT("Illegal constraint") <+> pprPred sty
+predTyVarErr pred  = sep [ptext SLIT("Non-type variable argument"),
+                         nest 2 (ptext SLIT("in the constraint:") <+> pprPred pred)]
+dupPredWarn dups   = ptext SLIT("Duplicate constraint(s):") <+> pprWithCommas pprPred (map head dups)
+
+arityErr kind name n m
+  = hsep [ text kind, quotes (ppr name), ptext SLIT("should have"),
+          n_arguments <> comma, text "but has been given", int m]
+    where
+       n_arguments | n == 0 = ptext SLIT("no arguments")
+                   | n == 1 = ptext SLIT("1 argument")
+                   | True   = hsep [int n, ptext SLIT("arguments")]
 \end{code}
 
 
@@ -906,7 +1058,7 @@ compiled elsewhere). In these cases, we let them go through anyway.
 We can also have instances for functions: @instance Foo (a -> b) ...@.
 
 \begin{code}
-checkValidInstHead :: Type -> TcM ()
+checkValidInstHead :: Type -> TcM (Class, [TcType])
 
 checkValidInstHead ty  -- Should be a source type
   = case tcSplitPredTy_maybe ty of {
@@ -917,560 +1069,116 @@ checkValidInstHead ty  -- Should be a source type
        Nothing -> failWithTc (instTypeErr (pprPred pred) empty) ;
         Just (clas,tys) ->
 
-    getDOptsTc                                 `thenNF_Tc` \ dflags ->
-    mapTc_ check_arg_type tys                  `thenTc_`
-    check_inst_head dflags clas tys
+    getDOpts                                   `thenM` \ dflags ->
+    mappM_ check_arg_type tys                  `thenM_`
+    check_inst_head dflags clas tys            `thenM_`
+    returnM (clas, tys)
     }}
 
 check_inst_head dflags clas tys
-  |    -- CCALL CHECK
-       -- A user declaration of a CCallable/CReturnable instance
-       -- must be for a "boxed primitive" type.
-        (clas `hasKey` cCallableClassKey   
-            && not (ccallable_type first_ty)) 
-  ||    (clas `hasKey` cReturnableClassKey 
-            && not (creturnable_type first_ty))
-  = failWithTc (nonBoxedPrimCCallErr clas first_ty)
-
        -- If GlasgowExts then check at least one isn't a type variable
   | dopt Opt_GlasgowExts dflags
-  = check_tyvars dflags clas tys
+  = returnM ()
 
-       -- WITH HASKELL 1.4, MUST HAVE C (T a b c)
+       -- WITH HASKELL 98, MUST HAVE C (T a b c)
   | isSingleton tys,
-    Just (tycon, arg_tys) <- tcSplitTyConApp_maybe first_ty,
-    not (isSynTyCon tycon),            -- ...but not a synonym
-    all tcIsTyVarTy arg_tys,           -- Applied to type variables
-    equalLength (varSetElems (tyVarsOfTypes arg_tys)) arg_tys
-          -- This last condition checks that all the type variables are distinct
-  = returnTc ()
+    tcValidInstHeadTy first_ty
+  = returnM ()
 
   | otherwise
   = failWithTc (instTypeErr (pprClassPred clas tys) head_shape_msg)
 
   where
-    (first_ty : _)       = tys
+    (first_ty : _) = tys
 
-    ccallable_type   ty = isFFIArgumentTy dflags PlayRisky ty
-    creturnable_type ty = isFFIImportResultTy dflags ty
-       
     head_shape_msg = parens (text "The instance type must be of form (T a b c)" $$
                             text "where T is not a synonym, and a,b,c are distinct type variables")
-
-check_tyvars dflags clas tys
-       -- Check that at least one isn't a type variable
-       -- unless -fallow-undecideable-instances
-  | dopt Opt_AllowUndecidableInstances dflags = returnTc ()
-  | not (all tcIsTyVarTy tys)                = returnTc ()
-  | otherwise                                = failWithTc (instTypeErr (pprClassPred clas tys) msg)
-  where
-    msg =  parens (ptext SLIT("There must be at least one non-type-variable in the instance head")
-               $$ ptext SLIT("Use -fallow-undecidable-instances to lift this restriction"))
 \end{code}
 
 \begin{code}
 instTypeErr pp_ty msg
   = sep [ptext SLIT("Illegal instance declaration for") <+> quotes pp_ty, 
         nest 4 msg]
-
-nonBoxedPrimCCallErr clas inst_ty
-  = hang (ptext SLIT("Unacceptable instance type for ccall-ish class"))
-        4 (pprClassPred clas [inst_ty])
-\end{code}
-
-
-%************************************************************************
-%*                                                                     *
-\subsection{Kind unification}
-%*                                                                     *
-%************************************************************************
-
-\begin{code}
-unifyKind :: TcKind                -- Expected
-         -> TcKind                 -- Actual
-         -> TcM ()
-unifyKind k1 k2 
-  = tcAddErrCtxtM (unifyCtxt "kind" k1 k2) $
-    uTys k1 k1 k2 k2
-
-unifyKinds :: [TcKind] -> [TcKind] -> TcM ()
-unifyKinds []       []       = returnTc ()
-unifyKinds (k1:ks1) (k2:ks2) = unifyKind k1 k2         `thenTc_`
-                              unifyKinds ks1 ks2
-unifyKinds _ _ = panic "unifyKinds: length mis-match"
-\end{code}
-
-\begin{code}
-unifyOpenTypeKind :: TcKind -> TcM ()  
--- Ensures that the argument kind is of the form (Type bx)
--- for some boxity bx
-
-unifyOpenTypeKind ty@(TyVarTy tyvar)
-  = getTcTyVar tyvar   `thenNF_Tc` \ maybe_ty ->
-    case maybe_ty of
-       Just ty' -> unifyOpenTypeKind ty'
-       other    -> unify_open_kind_help ty
-
-unifyOpenTypeKind ty
-  | isTypeKind ty = returnTc ()
-  | otherwise     = unify_open_kind_help ty
-
-unify_open_kind_help ty        -- Revert to ordinary unification
-  = newBoxityVar       `thenNF_Tc` \ boxity ->
-    unifyKind ty (mkTyConApp typeCon [boxity])
-\end{code}
-
-
-%************************************************************************
-%*                                                                     *
-\subsection[Unify-exported]{Exported unification functions}
-%*                                                                     *
-%************************************************************************
-
-The exported functions are all defined as versions of some
-non-exported generic functions.
-
-Unify two @TauType@s.  Dead straightforward.
-
-\begin{code}
-unifyTauTy :: TcTauType -> TcTauType -> TcM ()
-unifyTauTy ty1 ty2     -- ty1 expected, ty2 inferred
-  = tcAddErrCtxtM (unifyCtxt "type" ty1 ty2) $
-    uTys ty1 ty1 ty2 ty2
-\end{code}
-
-@unifyTauTyList@ unifies corresponding elements of two lists of
-@TauType@s.  It uses @uTys@ to do the real work.  The lists should be
-of equal length.  We charge down the list explicitly so that we can
-complain if their lengths differ.
-
-\begin{code}
-unifyTauTyLists :: [TcTauType] -> [TcTauType] ->  TcM ()
-unifyTauTyLists []          []         = returnTc ()
-unifyTauTyLists (ty1:tys1) (ty2:tys2) = uTys ty1 ty1 ty2 ty2   `thenTc_`
-                                       unifyTauTyLists tys1 tys2
-unifyTauTyLists ty1s ty2s = panic "Unify.unifyTauTyLists: mismatched type lists!"
-\end{code}
-
-@unifyTauTyList@ takes a single list of @TauType@s and unifies them
-all together.  It is used, for example, when typechecking explicit
-lists, when all the elts should be of the same type.
-
-\begin{code}
-unifyTauTyList :: [TcTauType] -> TcM ()
-unifyTauTyList []               = returnTc ()
-unifyTauTyList [ty]             = returnTc ()
-unifyTauTyList (ty1:tys@(ty2:_)) = unifyTauTy ty1 ty2  `thenTc_`
-                                  unifyTauTyList tys
-\end{code}
-
-%************************************************************************
-%*                                                                     *
-\subsection[Unify-uTys]{@uTys@: getting down to business}
-%*                                                                     *
-%************************************************************************
-
-@uTys@ is the heart of the unifier.  Each arg happens twice, because
-we want to report errors in terms of synomyms if poss.  The first of
-the pair is used in error messages only; it is always the same as the
-second, except that if the first is a synonym then the second may be a
-de-synonym'd version.  This way we get better error messages.
-
-We call the first one \tr{ps_ty1}, \tr{ps_ty2} for ``possible synomym''.
-
-\begin{code}
-uTys :: TcTauType -> TcTauType -- Error reporting ty1 and real ty1
-                               -- ty1 is the *expected* type
-
-     -> TcTauType -> TcTauType -- Error reporting ty2 and real ty2
-                               -- ty2 is the *actual* type
-     -> TcM ()
-
-       -- Always expand synonyms (see notes at end)
-        -- (this also throws away FTVs)
-uTys ps_ty1 (NoteTy n1 ty1) ps_ty2 ty2 = uTys ps_ty1 ty1 ps_ty2 ty2
-uTys ps_ty1 ty1 ps_ty2 (NoteTy n2 ty2) = uTys ps_ty1 ty1 ps_ty2 ty2
-
-       -- Ignore usage annotations inside typechecker
-uTys ps_ty1 (UsageTy _ ty1) ps_ty2 ty2 = uTys ps_ty1 ty1 ps_ty2 ty2
-uTys ps_ty1 ty1 ps_ty2 (UsageTy _ ty2) = uTys ps_ty1 ty1 ps_ty2 ty2
-
-       -- Variables; go for uVar
-uTys ps_ty1 (TyVarTy tyvar1) ps_ty2 ty2 = uVar False tyvar1 ps_ty2 ty2
-uTys ps_ty1 ty1 ps_ty2 (TyVarTy tyvar2) = uVar True  tyvar2 ps_ty1 ty1
-                                       -- "True" means args swapped
-
-       -- Predicates
-uTys _ (SourceTy (IParam n1 t1)) _ (SourceTy (IParam n2 t2))
-  | n1 == n2 = uTys t1 t1 t2 t2
-uTys _ (SourceTy (ClassP c1 tys1)) _ (SourceTy (ClassP c2 tys2))
-  | c1 == c2 = unifyTauTyLists tys1 tys2
-uTys _ (SourceTy (NType tc1 tys1)) _ (SourceTy (NType tc2 tys2))
-  | tc1 == tc2 = unifyTauTyLists tys1 tys2
-
-       -- Functions; just check the two parts
-uTys _ (FunTy fun1 arg1) _ (FunTy fun2 arg2)
-  = uTys fun1 fun1 fun2 fun2   `thenTc_`    uTys arg1 arg1 arg2 arg2
-
-       -- Type constructors must match
-uTys ps_ty1 (TyConApp con1 tys1) ps_ty2 (TyConApp con2 tys2)
-  | con1 == con2 && equalLength tys1 tys2
-  = unifyTauTyLists tys1 tys2
-
-  | con1 == openKindCon
-       -- When we are doing kind checking, we might match a kind '?' 
-       -- against a kind '*' or '#'.  Notably, CCallable :: ? -> *, and
-       -- (CCallable Int) and (CCallable Int#) are both OK
-  = unifyOpenTypeKind ps_ty2
-
-       -- Applications need a bit of care!
-       -- They can match FunTy and TyConApp, so use splitAppTy_maybe
-       -- NB: we've already dealt with type variables and Notes,
-       -- so if one type is an App the other one jolly well better be too
-uTys ps_ty1 (AppTy s1 t1) ps_ty2 ty2
-  = case tcSplitAppTy_maybe ty2 of
-       Just (s2,t2) -> uTys s1 s1 s2 s2        `thenTc_`    uTys t1 t1 t2 t2
-       Nothing      -> unifyMisMatch ps_ty1 ps_ty2
-
-       -- Now the same, but the other way round
-       -- Don't swap the types, because the error messages get worse
-uTys ps_ty1 ty1 ps_ty2 (AppTy s2 t2)
-  = case tcSplitAppTy_maybe ty1 of
-       Just (s1,t1) -> uTys s1 s1 s2 s2        `thenTc_`    uTys t1 t1 t2 t2
-       Nothing      -> unifyMisMatch ps_ty1 ps_ty2
-
-       -- Not expecting for-alls in unification
-       -- ... but the error message from the unifyMisMatch more informative
-       -- than a panic message!
-
-       -- Anything else fails
-uTys ps_ty1 ty1 ps_ty2 ty2  = unifyMisMatch ps_ty1 ps_ty2
-\end{code}
-
-
-Notes on synonyms
-~~~~~~~~~~~~~~~~~
-If you are tempted to make a short cut on synonyms, as in this
-pseudocode...
-
-\begin{verbatim}
--- NO  uTys (SynTy con1 args1 ty1) (SynTy con2 args2 ty2)
--- NO     = if (con1 == con2) then
--- NO  -- Good news!  Same synonym constructors, so we can shortcut
--- NO  -- by unifying their arguments and ignoring their expansions.
--- NO  unifyTauTypeLists args1 args2
--- NO    else
--- NO  -- Never mind.  Just expand them and try again
--- NO  uTys ty1 ty2
-\end{verbatim}
-
-then THINK AGAIN.  Here is the whole story, as detected and reported
-by Chris Okasaki \tr{<Chris_Okasaki@loch.mess.cs.cmu.edu>}:
-\begin{quotation}
-Here's a test program that should detect the problem:
-
-\begin{verbatim}
-       type Bogus a = Int
-       x = (1 :: Bogus Char) :: Bogus Bool
-\end{verbatim}
-
-The problem with [the attempted shortcut code] is that
-\begin{verbatim}
-       con1 == con2
-\end{verbatim}
-is not a sufficient condition to be able to use the shortcut!
-You also need to know that the type synonym actually USES all
-its arguments.  For example, consider the following type synonym
-which does not use all its arguments.
-\begin{verbatim}
-       type Bogus a = Int
-\end{verbatim}
-
-If you ever tried unifying, say, \tr{Bogus Char} with \tr{Bogus Bool},
-the unifier would blithely try to unify \tr{Char} with \tr{Bool} and
-would fail, even though the expanded forms (both \tr{Int}) should
-match.
-
-Similarly, unifying \tr{Bogus Char} with \tr{Bogus t} would
-unnecessarily bind \tr{t} to \tr{Char}.
-
-... You could explicitly test for the problem synonyms and mark them
-somehow as needing expansion, perhaps also issuing a warning to the
-user.
-\end{quotation}
-
-
-%************************************************************************
-%*                                                                     *
-\subsection[Unify-uVar]{@uVar@: unifying with a type variable}
-%*                                                                     *
-%************************************************************************
-
-@uVar@ is called when at least one of the types being unified is a
-variable.  It does {\em not} assume that the variable is a fixed point
-of the substitution; rather, notice that @uVar@ (defined below) nips
-back into @uTys@ if it turns out that the variable is already bound.
-
-\begin{code}
-uVar :: Bool           -- False => tyvar is the "expected"
-                       -- True  => ty    is the "expected" thing
-     -> TcTyVar
-     -> TcTauType -> TcTauType -- printing and real versions
-     -> TcM ()
-
-uVar swapped tv1 ps_ty2 ty2
-  = getTcTyVar tv1     `thenNF_Tc` \ maybe_ty1 ->
-    case maybe_ty1 of
-       Just ty1 | swapped   -> uTys ps_ty2 ty2 ty1 ty1 -- Swap back
-                | otherwise -> uTys ty1 ty1 ps_ty2 ty2 -- Same order
-       other       -> uUnboundVar swapped tv1 maybe_ty1 ps_ty2 ty2
-
-       -- Expand synonyms; ignore FTVs
-uUnboundVar swapped tv1 maybe_ty1 ps_ty2 (NoteTy n2 ty2)
-  = uUnboundVar swapped tv1 maybe_ty1 ps_ty2 ty2
-
-
-       -- The both-type-variable case
-uUnboundVar swapped tv1 maybe_ty1 ps_ty2 ty2@(TyVarTy tv2)
-
-       -- Same type variable => no-op
-  | tv1 == tv2
-  = returnTc ()
-
-       -- Distinct type variables
-       -- ASSERT maybe_ty1 /= Just
-  | otherwise
-  = getTcTyVar tv2     `thenNF_Tc` \ maybe_ty2 ->
-    case maybe_ty2 of
-       Just ty2' -> uUnboundVar swapped tv1 maybe_ty1 ty2' ty2'
-
-       Nothing | update_tv2
-
-               -> WARN( not (k1 `hasMoreBoxityInfo` k2), (ppr tv1 <+> ppr k1) $$ (ppr tv2 <+> ppr k2) )
-                  putTcTyVar tv2 (TyVarTy tv1)         `thenNF_Tc_`
-                  returnTc ()
-               |  otherwise
-
-               -> WARN( not (k2 `hasMoreBoxityInfo` k1), (ppr tv2 <+> ppr k2) $$ (ppr tv1 <+> ppr k1) )
-                   (putTcTyVar tv1 ps_ty2              `thenNF_Tc_`
-                   returnTc ())
-  where
-    k1 = tyVarKind tv1
-    k2 = tyVarKind tv2
-    update_tv2 = (k2 `eqKind` openTypeKind) || (not (k1 `eqKind` openTypeKind) && nicer_to_update_tv2)
-                       -- Try to get rid of open type variables as soon as poss
-
-    nicer_to_update_tv2 =  isSigTyVar tv1 
-                               -- Don't unify a signature type variable if poss
-                       || isSystemName (varName tv2)
-                               -- Try to update sys-y type variables in preference to sig-y ones
-
-       -- Second one isn't a type variable
-uUnboundVar swapped tv1 maybe_ty1 ps_ty2 non_var_ty2
-  =    -- Check that the kinds match
-    checkKinds swapped tv1 non_var_ty2                 `thenTc_`
-
-       -- Check that tv1 isn't a type-signature type variable
-    checkTcM (not (isSigTyVar tv1))
-            (failWithTcM (unifyWithSigErr tv1 ps_ty2)) `thenTc_`
-
-       -- Check that we aren't losing boxity info (shouldn't happen)
-    warnTc (not (typeKind non_var_ty2 `hasMoreBoxityInfo` tyVarKind tv1))
-          ((ppr tv1 <+> ppr (tyVarKind tv1)) $$ 
-            (ppr non_var_ty2 <+> ppr (typeKind non_var_ty2)))          `thenNF_Tc_` 
-
-       -- Occurs check
-       -- Basically we want to update     tv1 := ps_ty2
-       -- because ps_ty2 has type-synonym info, which improves later error messages
-       -- 
-       -- But consider 
-       --      type A a = ()
-       --
-       --      f :: (A a -> a -> ()) -> ()
-       --      f = \ _ -> ()
-       --
-       --      x :: ()
-       --      x = f (\ x p -> p x)
-       --
-       -- In the application (p x), we try to match "t" with "A t".  If we go
-       -- ahead and bind t to A t (= ps_ty2), we'll lead the type checker into 
-       -- an infinite loop later.
-       -- But we should not reject the program, because A t = ().
-       -- Rather, we should bind t to () (= non_var_ty2).
-       -- 
-       -- That's why we have this two-state occurs-check
-    zonkTcType ps_ty2                                  `thenNF_Tc` \ ps_ty2' ->
-    if not (tv1 `elemVarSet` tyVarsOfType ps_ty2') then
-       putTcTyVar tv1 ps_ty2'                          `thenNF_Tc_`
-       returnTc ()
-    else
-    zonkTcType non_var_ty2                             `thenNF_Tc` \ non_var_ty2' ->
-    if not (tv1 `elemVarSet` tyVarsOfType non_var_ty2') then
-       -- This branch rarely succeeds, except in strange cases
-       -- like that in the example above
-       putTcTyVar tv1 non_var_ty2'                     `thenNF_Tc_`
-       returnTc ()
-    else
-    failWithTcM (unifyOccurCheck tv1 ps_ty2')
-
-
-checkKinds swapped tv1 ty2
--- We're about to unify a type variable tv1 with a non-tyvar-type ty2.
--- We need to check that we don't unify a lifted type variable with an
--- unlifted type: e.g.  (id 3#) is illegal
-  | tk1 `eqKind` liftedTypeKind && tk2 `eqKind` unliftedTypeKind
-  = tcAddErrCtxtM (unifyKindCtxt swapped tv1 ty2)      $
-    unifyMisMatch k1 k2
-  | otherwise
-  = returnTc ()
-  where
-    (k1,k2) | swapped   = (tk2,tk1)
-           | otherwise = (tk1,tk2)
-    tk1 = tyVarKind tv1
-    tk2 = typeKind ty2
 \end{code}
 
 
 %************************************************************************
 %*                                                                     *
-\subsection[Unify-fun]{@unifyFunTy@}
+\subsection{Checking instance for termination}
 %*                                                                     *
 %************************************************************************
 
-@unifyFunTy@ is used to avoid the fruitless creation of type variables.
+Termination test: each assertion in the context satisfies
+ (1) no variable has more occurrences in the assertion than in the head, and
+ (2) the assertion has fewer constructors and variables (taken together
+     and counting repetitions) than the head.
+This is only needed with -fglasgow-exts, as Haskell 98 restrictions
+(which have already been checked) guarantee termination.
 
 \begin{code}
-unifyFunTy :: TcType                           -- Fail if ty isn't a function type
-          -> TcM (TcType, TcType)      -- otherwise return arg and result types
-
-unifyFunTy ty@(TyVarTy tyvar)
-  = getTcTyVar tyvar   `thenNF_Tc` \ maybe_ty ->
-    case maybe_ty of
-       Just ty' -> unifyFunTy ty'
-       other       -> unify_fun_ty_help ty
-
-unifyFunTy ty
-  = case tcSplitFunTy_maybe ty of
-       Just arg_and_res -> returnTc arg_and_res
-       Nothing          -> unify_fun_ty_help ty
-
-unify_fun_ty_help ty   -- Special cases failed, so revert to ordinary unification
-  = newTyVarTy openTypeKind    `thenNF_Tc` \ arg ->
-    newTyVarTy openTypeKind    `thenNF_Tc` \ res ->
-    unifyTauTy ty (mkFunTy arg res)    `thenTc_`
-    returnTc (arg,res)
-\end{code}
-
-\begin{code}
-unifyListTy :: TcType              -- expected list type
-           -> TcM TcType      -- list element type
-
-unifyListTy ty@(TyVarTy tyvar)
-  = getTcTyVar tyvar   `thenNF_Tc` \ maybe_ty ->
-    case maybe_ty of
-       Just ty' -> unifyListTy ty'
-       other    -> unify_list_ty_help ty
-
-unifyListTy ty
-  = case tcSplitTyConApp_maybe ty of
-       Just (tycon, [arg_ty]) | tycon == listTyCon -> returnTc arg_ty
-       other                                       -> unify_list_ty_help ty
-
-unify_list_ty_help ty  -- Revert to ordinary unification
-  = newTyVarTy liftedTypeKind          `thenNF_Tc` \ elt_ty ->
-    unifyTauTy ty (mkListTy elt_ty)    `thenTc_`
-    returnTc elt_ty
-\end{code}
-
-\begin{code}
-unifyTupleTy :: Boxity -> Arity -> TcType -> TcM [TcType]
-unifyTupleTy boxity arity ty@(TyVarTy tyvar)
-  = getTcTyVar tyvar   `thenNF_Tc` \ maybe_ty ->
-    case maybe_ty of
-       Just ty' -> unifyTupleTy boxity arity ty'
-       other    -> unify_tuple_ty_help boxity arity ty
-
-unifyTupleTy boxity arity ty
-  = case tcSplitTyConApp_maybe ty of
-       Just (tycon, arg_tys)
-               |  isTupleTyCon tycon 
-               && tyConArity tycon == arity
-               && tupleTyConBoxity tycon == boxity
-               -> returnTc arg_tys
-       other -> unify_tuple_ty_help boxity arity ty
-
-unify_tuple_ty_help boxity arity ty
-  = newTyVarTys arity kind                             `thenNF_Tc` \ arg_tys ->
-    unifyTauTy ty (mkTupleTy boxity arity arg_tys)     `thenTc_`
-    returnTc arg_tys
-  where
-    kind | isBoxed boxity = liftedTypeKind
-        | otherwise      = openTypeKind
-\end{code}
-
-
-%************************************************************************
-%*                                                                     *
-\subsection[Unify-context]{Errors and contexts}
-%*                                                                     *
-%************************************************************************
-
-Errors
-~~~~~~
-
-\begin{code}
-unifyCtxt s ty1 ty2 tidy_env   -- ty1 expected, ty2 inferred
-  = zonkTcType ty1     `thenNF_Tc` \ ty1' ->
-    zonkTcType ty2     `thenNF_Tc` \ ty2' ->
-    returnNF_Tc (err ty1' ty2')
-  where
-    err ty1 ty2 = (env1, 
-                  nest 4 
-                       (vcat [
-                          text "Expected" <+> text s <> colon <+> ppr tidy_ty1,
-                          text "Inferred" <+> text s <> colon <+> ppr tidy_ty2
-                       ]))
-                 where
-                   (env1, [tidy_ty1,tidy_ty2]) = tidyOpenTypes tidy_env [ty1,ty2]
-
-unifyKindCtxt swapped tv1 ty2 tidy_env -- not swapped => tv1 expected, ty2 inferred
-       -- tv1 is zonked already
-  = zonkTcType ty2     `thenNF_Tc` \ ty2' ->
-    returnNF_Tc (err ty2')
-  where
-    err ty2 = (env2, ptext SLIT("When matching types") <+> 
-                    sep [quotes pp_expected, ptext SLIT("and"), quotes pp_actual])
-           where
-             (pp_expected, pp_actual) | swapped   = (pp2, pp1)
-                                      | otherwise = (pp1, pp2)
-             (env1, tv1') = tidyOpenTyVar tidy_env tv1
-             (env2, ty2') = tidyOpenType  env1 ty2
-             pp1 = ppr tv1'
-             pp2 = ppr ty2'
-
-unifyMisMatch ty1 ty2
-  = zonkTcType ty1     `thenNF_Tc` \ ty1' ->
-    zonkTcType ty2     `thenNF_Tc` \ ty2' ->
-    let
-       (env, [tidy_ty1, tidy_ty2]) = tidyOpenTypes emptyTidyEnv [ty1',ty2']
-       msg = hang (ptext SLIT("Couldn't match"))
-                  4 (sep [quotes (ppr tidy_ty1), 
-                          ptext SLIT("against"), 
-                          quotes (ppr tidy_ty2)])
-    in
-    failWithTcM (env, msg)
-
-unifyWithSigErr tyvar ty
-  = (env2, hang (ptext SLIT("Cannot unify the type-signature variable") <+> quotes (ppr tidy_tyvar))
-             4 (ptext SLIT("with the type") <+> quotes (ppr tidy_ty)))
-  where
-    (env1, tidy_tyvar) = tidyOpenTyVar emptyTidyEnv tyvar
-    (env2, tidy_ty)    = tidyOpenType  env1         ty
-
-unifyOccurCheck tyvar ty
-  = (env2, hang (ptext SLIT("Occurs check: cannot construct the infinite type:"))
-             4 (sep [ppr tidy_tyvar, char '=', ppr tidy_ty]))
-  where
-    (env1, tidy_tyvar) = tidyOpenTyVar emptyTidyEnv tyvar
-    (env2, tidy_ty)    = tidyOpenType  env1         ty
+checkInstTermination :: ThetaType -> [TcType] -> TcM ()
+checkInstTermination theta tys
+  = do
+    dflags <- getDOpts
+    check_inst_termination dflags theta tys
+
+check_inst_termination dflags theta tys
+  | not (dopt Opt_GlasgowExts dflags)         = returnM ()
+  | dopt Opt_AllowUndecidableInstances dflags = returnM ()
+  | otherwise = do
+    mappM_ (check_nomore (fvTypes tys)) theta
+    mappM_ (check_smaller (sizeTypes tys)) theta
+
+check_nomore :: [TyVar] -> PredType -> TcM ()
+check_nomore fvs pred
+  = checkTc (null (fvPred pred \\ fvs))
+           (predUndecErr pred nomoreMsg $$ parens undecidableMsg)
+
+check_smaller :: Int -> PredType -> TcM ()
+check_smaller n pred
+  = checkTc (sizePred pred < n)
+           (predUndecErr pred smallerMsg $$ parens undecidableMsg)
+
+predUndecErr pred msg = sep [msg,
+                       nest 2 (ptext SLIT("in the constraint:") <+> pprPred pred)]
+
+nomoreMsg = ptext SLIT("Variable occurs more often in a constraint than in the instance head")
+smallerMsg = ptext SLIT("Constraint is no smaller than the instance head")
+undecidableMsg = ptext SLIT("Use -fallow-undecidable-instances to permit this")
+
+-- free variables of a type, retaining repetitions
+fvType :: Type -> [TyVar]
+fvType ty | Just exp_ty <- tcView ty = fvType exp_ty
+fvType (TyVarTy tv)        = [tv]
+fvType (TyConApp _ tys)    = fvTypes tys
+fvType (NoteTy _ ty)       = fvType ty
+fvType (PredTy pred)       = fvPred pred
+fvType (FunTy arg res)     = fvType arg ++ fvType res
+fvType (AppTy fun arg)     = fvType fun ++ fvType arg
+fvType (ForAllTy tyvar ty) = filter (/= tyvar) (fvType ty)
+
+fvTypes :: [Type] -> [TyVar]
+fvTypes tys                = concat (map fvType tys)
+
+fvPred :: PredType -> [TyVar]
+fvPred (ClassP _ tys')     = fvTypes tys'
+fvPred (IParam _ ty)       = fvType ty
+
+-- size of a type: the number of variables and constructors
+sizeType :: Type -> Int
+sizeType ty | Just exp_ty <- tcView ty = sizeType exp_ty
+sizeType (TyVarTy _)       = 1
+sizeType (TyConApp _ tys)  = sizeTypes tys + 1
+sizeType (NoteTy _ ty)     = sizeType ty
+sizeType (PredTy pred)     = sizePred pred
+sizeType (FunTy arg res)   = sizeType arg + sizeType res + 1
+sizeType (AppTy fun arg)   = sizeType fun + sizeType arg
+sizeType (ForAllTy _ ty)   = sizeType ty
+
+sizeTypes :: [Type] -> Int
+sizeTypes xs               = sum (map sizeType xs)
+
+sizePred :: PredType -> Int
+sizePred (ClassP _ tys')   = sizeTypes tys'
+sizePred (IParam _ ty)     = sizeType ty
 \end{code}