[project @ 2003-06-30 09:31:46 by ross]
[ghc-hetmet.git] / ghc / docs / users_guide / glasgow_exts.sgml
index 8589b04..38aa5b1 100644 (file)
@@ -16,134 +16,15 @@ performance because of the implementation costs of Haskell's
 </para>
 
 <para>
-Executive summary of our extensions:
-</para>
-
-  <variablelist>
-
-    <varlistentry>
-      <term>Unboxed types and primitive operations:</Term>
-      <listitem>
-       <para>You can get right down to the raw machine types and
-        operations; included in this are &ldquo;primitive
-        arrays&rdquo; (direct access to Big Wads of Bytes).  Please
-        see <XRef LinkEnd="glasgow-unboxed"> and following.</para>
-      </listitem>
-    </varlistentry>
-
-    <varlistentry>
-      <term>Type system extensions:</term>
-      <listitem>
-       <para> GHC supports a large number of extensions to Haskell's
-        type system.  Specifically:</para>
-
-       <variablelist>
-         <varlistentry>
-           <term>Multi-parameter type classes:</term>
-           <listitem>
-             <para><xref LinkEnd="multi-param-type-classes"></para>
-           </listitem>
-         </varlistentry>
-
-         <varlistentry>
-           <term>Functional dependencies:</term>
-           <listitem>
-             <para><xref LinkEnd="functional-dependencies"></para>
-           </listitem>
-         </varlistentry>
-
-         <varlistentry>
-           <term>Implicit parameters:</term>
-           <listitem>
-             <para><xref LinkEnd="implicit-parameters"></para>
-           </listitem>
-         </varlistentry>
-
-         <varlistentry>
-           <term>Local universal quantification:</term>
-           <listitem>
-             <para><xref LinkEnd="universal-quantification"></para>
-           </listitem>
-         </varlistentry>
-
-         <varlistentry>
-           <term>Extistentially quantification in data types:</term>
-           <listitem>
-             <para><xref LinkEnd="existential-quantification"></para>
-           </listitem>
-         </varlistentry>
-
-         <varlistentry>
-           <term>Scoped type variables:</term>
-           <listitem>
-             <para>Scoped type variables enable the programmer to
-              supply type signatures for some nested declarations,
-              where this would not be legal in Haskell 98.  Details in
-              <xref LinkEnd="scoped-type-variables">.</para>
-           </listitem>
-         </varlistentry>
-       </variablelist>
-      </listitem>
-    </varlistentry>
-
-    <varlistentry>
-      <term>Pattern guards</term>
-      <listitem>
-       <para>Instead of being a boolean expression, a guard is a list
-       of qualifiers, exactly as in a list comprehension. See <xref
-       LinkEnd="pattern-guards">.</para>
-      </listitem>
-    </varlistentry>
-
-    <varlistentry>
-      <term>Foreign calling:</term>
-      <listitem>
-       <para>Just what it sounds like.  We provide
-        <emphasis>lots</emphasis> of rope that you can dangle around
-        your neck.  Please see <xref LinkEnd="ffi">.</para>
-      </listitem>
-    </varlistentry>
-
-    <varlistentry>
-      <term>Pragmas</term>
-      <listitem>
-       <para>Pragmas are special instructions to the compiler placed
-        in the source file.  The pragmas GHC supports are described in
-        <xref LinkEnd="pragmas">.</para>
-      </listitem>
-    </varlistentry>
-
-    <varlistentry>
-      <term>Rewrite rules:</term>
-      <listitem>
-       <para>The programmer can specify rewrite rules as part of the
-        source program (in a pragma).  GHC applies these rewrite rules
-        wherever it can.  Details in <xref
-        LinkEnd="rewrite-rules">.</para>
-      </listitem>
-    </varlistentry>
-
-    <varlistentry>
-      <term>Generic classes:</term>
-      <listitem>
-       <para>Generic class declarations allow you to define a class
-        whose methods say how to work over an arbitrary data type.
-        Then it's really easy to make any new type into an instance of
-        the class.  This generalises the rather ad-hoc "deriving"
-        feature of Haskell 98.  Details in <xref
-        LinkEnd="generic-classes">.</para>
-      </listitem>
-    </varlistentry>
-  </variablelist>
-
-<para>
 Before you get too carried away working at the lowest level (e.g.,
 sloshing <literal>MutableByteArray&num;</literal>s around your
 program), you may wish to check if there are libraries that provide a
-&ldquo;Haskellised veneer&rdquo; over the features you want.  See
-<xref linkend="book-hslibs">.
+&ldquo;Haskellised veneer&rdquo; over the features you want.  The
+separate libraries documentation describes all the libraries that come
+with GHC.
 </para>
 
+<!-- LANGUAGE OPTIONS -->
   <sect1 id="options-language">
     <title>Language options</title>
 
@@ -172,6 +53,30 @@ program), you may wish to check if there are libraries that provide a
       </varlistentry>
 
       <varlistentry>
+       <term><option>-ffi</option> and <option>-fffi</option>:</term>
+       <indexterm><primary><option>-ffi</option></primary></indexterm>
+       <indexterm><primary><option>-fffi</option></primary></indexterm>
+       <listitem>
+         <para>This option enables the language extension defined in the
+         Haskell 98 Foreign Function Interface Addendum plus deprecated
+         syntax of previous versions of the FFI for backwards
+         compatibility.</para> 
+       </listitem>
+      </varlistentry>
+
+      <varlistentry>
+       <term><option>-fwith</option>:</term>
+       <indexterm><primary><option>-fwith</option></primary></indexterm>
+       <listitem>
+         <para>This option enables the deprecated <literal>with</literal>
+         keyword for implicit parameters; it is merely provided for backwards
+         compatibility.
+          It is independent of the <option>-fglasgow-exts</option>
+          flag. </para>
+       </listitem>
+      </varlistentry>
+
+      <varlistentry>
        <term><option>-fno-monomorphism-restriction</option>:</term>
        <indexterm><primary><option>-fno-monomorphism-restriction</option></primary></indexterm>
        <listitem>
@@ -184,6 +89,7 @@ program), you may wish to check if there are libraries that provide a
       <varlistentry>
        <term><option>-fallow-overlapping-instances</option></term>
        <term><option>-fallow-undecidable-instances</option></term>
+       <term><option>-fallow-incoherent-instances</option></term>
        <term><option>-fcontext-stack</option></term>
        <indexterm><primary><option>-fallow-overlapping-instances</option></primary></indexterm>
        <indexterm><primary><option>-fallow-undecidable-instances</option></primary></indexterm>
@@ -204,6 +110,15 @@ program), you may wish to check if there are libraries that provide a
       </varlistentry>
 
       <varlistentry>
+       <term><option>-farrows</option></term>
+       <indexterm><primary><option>-farrows</option></primary></indexterm>
+       <listitem>
+         <para>See <xref LinkEnd="arrow-notation">.  Independent of
+          <option>-fglasgow-exts</option>.</para>
+       </listitem>
+      </varlistentry>
+
+      <varlistentry>
        <term><option>-fgenerics</option></term>
        <indexterm><primary><option>-fgenerics</option></primary></indexterm>
        <listitem>
@@ -225,7 +140,7 @@ program), you may wish to check if there are libraries that provide a
             module namespace is flat, and you must not conflict with
             any Prelude module.)</para>
 
-           <para>Even though you have not imported the Prelude, all
+           <para>Even though you have not imported the Prelude, most of
             the built-in syntax still refers to the built-in Haskell
             Prelude types and values, as specified by the Haskell
             Report.  For example, the type <literal>[Int]</literal>
@@ -234,38 +149,9 @@ program), you may wish to check if there are libraries that provide a
             translation for list comprehensions continues to use
             <literal>Prelude.map</literal> etc.</para>
 
-           <para> With one group of exceptions!  You may want to
-            define your own numeric class hierarchy.  It completely
-            defeats that purpose if the literal "1" means
-            "<literal>Prelude.fromInteger 1</literal>", which is what
-            the Haskell Report specifies.  So the
-            <option>-fno-implicit-prelude</option> flag causes the
-            following pieces of built-in syntax to refer to whatever
-            is in scope, not the Prelude versions:</para>
-
-           <itemizedlist>
-             <listitem>
-               <para>Integer and fractional literals mean
-                "<literal>fromInteger 1</literal>" and
-                "<literal>fromRational 3.2</literal>", not the
-                Prelude-qualified versions; both in expressions and in
-                patterns.</para>
-             </listitem>
-
-             <listitem>
-               <para>Negation (e.g. "<literal>- (f x)</literal>")
-               means "<literal>negate (f x)</literal>" (not
-               <literal>Prelude.negate</literal>).</para>
-             </listitem>
-
-             <listitem>
-               <para>In an n+k pattern, the standard Prelude
-                <literal>Ord</literal> class is used for comparison,
-                but the necessary subtraction uses whatever
-                "<literal>(-)</literal>" is in scope (not
-                "<literal>Prelude.(-)</literal>").</para>
-             </listitem>
-           </itemizedlist>
+           <para>However, <option>-fno-implicit-prelude</option> does
+           change the handling of certain built-in syntax: see
+           <xref LinkEnd="rebindable-syntax">.</para>
 
          </listitem>
        </varlistentry>
@@ -274,126 +160,279 @@ program), you may wish to check if there are libraries that provide a
   </sect1>
 
 <!-- UNBOXED TYPES AND PRIMITIVE OPERATIONS -->
-&primitives;
+<!--    included from primitives.sgml  -->
+<!-- &primitives; -->
+<sect1 id="primitives">
+  <title>Unboxed types and primitive operations</title>
+
+<para>GHC is built on a raft of primitive data types and operations.
+While you really can use this stuff to write fast code,
+  we generally find it a lot less painful, and more satisfying in the
+  long run, to use higher-level language features and libraries.  With
+  any luck, the code you write will be optimised to the efficient
+  unboxed version in any case.  And if it isn't, we'd like to know
+  about it.</para>
+
+<para>We do not currently have good, up-to-date documentation about the
+primitives, perhaps because they are mainly intended for internal use.
+There used to be a long section about them here in the User Guide, but it
+became out of date, and wrong information is worse than none.</para>
+
+<para>The Real Truth about what primitive types there are, and what operations
+work over those types, is held in the file
+<filename>fptools/ghc/compiler/prelude/primops.txt</filename>.
+This file is used directly to generate GHC's primitive-operation definitions, so
+it is always correct!  It is also intended for processing into text.</para>
+
+<para> Indeed,
+the result of such processing is part of the description of the 
+ <ulink
+      url="http://haskell.cs.yale.edu/ghc/docs/papers/core.ps.gz">External
+        Core language</ulink>.
+So that document is a good place to look for a type-set version.
+We would be very happy if someone wanted to volunteer to produce an SGML
+back end to the program that processes <filename>primops.txt</filename> so that
+we could include the results here in the User Guide.</para>
+
+<para>What follows here is a brief summary of some main points.</para>
+  
+<sect2 id="glasgow-unboxed">
+<title>Unboxed types
+</title>
+
+<para>
+<indexterm><primary>Unboxed types (Glasgow extension)</primary></indexterm>
+</para>
 
-<sect1 id="glasgow-ST-monad">
-<title>Primitive state-transformer monad</title>
+<para>Most types in GHC are <firstterm>boxed</firstterm>, which means
+that values of that type are represented by a pointer to a heap
+object.  The representation of a Haskell <literal>Int</literal>, for
+example, is a two-word heap object.  An <firstterm>unboxed</firstterm>
+type, however, is represented by the value itself, no pointers or heap
+allocation are involved.
+</para>
 
 <para>
-<indexterm><primary>state transformers (Glasgow extensions)</primary></indexterm>
-<indexterm><primary>ST monad (Glasgow extension)</primary></indexterm>
+Unboxed types correspond to the &ldquo;raw machine&rdquo; types you
+would use in C: <literal>Int&num;</literal> (long int),
+<literal>Double&num;</literal> (double), <literal>Addr&num;</literal>
+(void *), etc.  The <emphasis>primitive operations</emphasis>
+(PrimOps) on these types are what you might expect; e.g.,
+<literal>(+&num;)</literal> is addition on
+<literal>Int&num;</literal>s, and is the machine-addition that we all
+know and love&mdash;usually one instruction.
 </para>
 
 <para>
-This monad underlies our implementation of arrays, mutable and
-immutable, and our implementation of I/O, including &ldquo;C calls&rdquo;.
+Primitive (unboxed) types cannot be defined in Haskell, and are
+therefore built into the language and compiler.  Primitive types are
+always unlifted; that is, a value of a primitive type cannot be
+bottom.  We use the convention that primitive types, values, and
+operations have a <literal>&num;</literal> suffix.
 </para>
 
 <para>
-The <literal>ST</literal> library, which provides access to the
-<function>ST</function> monad, is described in <xref
-linkend="sec-ST">.
+Primitive values are often represented by a simple bit-pattern, such
+as <literal>Int&num;</literal>, <literal>Float&num;</literal>,
+<literal>Double&num;</literal>.  But this is not necessarily the case:
+a primitive value might be represented by a pointer to a
+heap-allocated object.  Examples include
+<literal>Array&num;</literal>, the type of primitive arrays.  A
+primitive array is heap-allocated because it is too big a value to fit
+in a register, and would be too expensive to copy around; in a sense,
+it is accidental that it is represented by a pointer.  If a pointer
+represents a primitive value, then it really does point to that value:
+no unevaluated thunks, no indirections&hellip;nothing can be at the
+other end of the pointer than the primitive value.
 </para>
 
-</sect1>
+<para>
+There are some restrictions on the use of primitive types, the main
+one being that you can't pass a primitive value to a polymorphic
+function or store one in a polymorphic data type.  This rules out
+things like <literal>[Int&num;]</literal> (i.e. lists of primitive
+integers).  The reason for this restriction is that polymorphic
+arguments and constructor fields are assumed to be pointers: if an
+unboxed integer is stored in one of these, the garbage collector would
+attempt to follow it, leading to unpredictable space leaks.  Or a
+<function>seq</function> operation on the polymorphic component may
+attempt to dereference the pointer, with disastrous results.  Even
+worse, the unboxed value might be larger than a pointer
+(<literal>Double&num;</literal> for instance).
+</para>
+
+<para>
+Nevertheless, A numerically-intensive program using unboxed types can
+go a <emphasis>lot</emphasis> faster than its &ldquo;standard&rdquo;
+counterpart&mdash;we saw a threefold speedup on one example.
+</para>
+
+</sect2>
 
-<sect1 id="glasgow-prim-arrays">
-<title>Primitive arrays, mutable and otherwise
+<sect2 id="unboxed-tuples">
+<title>Unboxed Tuples
 </title>
 
 <para>
-<indexterm><primary>primitive arrays (Glasgow extension)</primary></indexterm>
-<indexterm><primary>arrays, primitive (Glasgow extension)</primary></indexterm>
+Unboxed tuples aren't really exported by <literal>GHC.Exts</literal>,
+they're available by default with <option>-fglasgow-exts</option>.  An
+unboxed tuple looks like this:
 </para>
 
 <para>
-GHC knows about quite a few flavours of Large Swathes of Bytes.
+
+<programlisting>
+(# e_1, ..., e_n #)
+</programlisting>
+
 </para>
 
 <para>
-First, GHC distinguishes between primitive arrays of (boxed) Haskell
-objects (type <literal>Array&num; obj</literal>) and primitive arrays of bytes (type
-<literal>ByteArray&num;</literal>).
+where <literal>e&lowbar;1..e&lowbar;n</literal> are expressions of any
+type (primitive or non-primitive).  The type of an unboxed tuple looks
+the same.
 </para>
 
 <para>
-Second, it distinguishes between&hellip;
-<variablelist>
+Unboxed tuples are used for functions that need to return multiple
+values, but they avoid the heap allocation normally associated with
+using fully-fledged tuples.  When an unboxed tuple is returned, the
+components are put directly into registers or on the stack; the
+unboxed tuple itself does not have a composite representation.  Many
+of the primitive operations listed in this section return unboxed
+tuples.
+</para>
 
-<varlistentry>
-<term>Immutable:</term>
-<listitem>
 <para>
-Arrays that do not change (as with &ldquo;standard&rdquo; Haskell arrays); you
-can only read from them.  Obviously, they do not need the care and
-attention of the state-transformer monad.
+There are some pretty stringent restrictions on the use of unboxed tuples:
 </para>
-</listitem>
-</varlistentry>
-<varlistentry>
-<term>Mutable:</term>
+
+<para>
+
+<itemizedlist>
 <listitem>
+
 <para>
-Arrays that may be changed or &ldquo;mutated.&rdquo;  All the operations on them
-live within the state-transformer monad and the updates happen
-<emphasis>in-place</emphasis>.
+ Unboxed tuple types are subject to the same restrictions as
+other unboxed types; i.e. they may not be stored in polymorphic data
+structures or passed to polymorphic functions.
+
 </para>
 </listitem>
-</varlistentry>
-<varlistentry>
-<term>&ldquo;Static&rdquo; (in C land):</term>
 <listitem>
+
 <para>
-A C routine may pass an <literal>Addr&num;</literal> pointer back into Haskell land.  There
-are then primitive operations with which you may merrily grab values
-over in C land, by indexing off the &ldquo;static&rdquo; pointer.
+ Unboxed tuples may only be constructed as the direct result of
+a function, and may only be deconstructed with a <literal>case</literal> expression.
+eg. the following are valid:
+
+
+<programlisting>
+f x y = (# x+1, y-1 #)
+g x = case f x x of { (# a, b #) -&#62; a + b }
+</programlisting>
+
+
+but the following are invalid:
+
+
+<programlisting>
+f x y = g (# x, y #)
+g (# x, y #) = x + y
+</programlisting>
+
+
 </para>
 </listitem>
-</varlistentry>
-<varlistentry>
-<term>&ldquo;Stable&rdquo; pointers:</term>
 <listitem>
-<para>
-If, for some reason, you wish to hand a Haskell pointer (i.e.,
-<emphasis>not</emphasis> an unboxed value) to a C routine, you first make the
-pointer &ldquo;stable,&rdquo; so that the garbage collector won't forget that it
-exists.  That is, GHC provides a safe way to pass Haskell pointers to
-C.
-</para>
 
 <para>
-Please see <xref LinkEnd="sec-stable-pointers"> for more details.
+ No variable can have an unboxed tuple type.  This is illegal:
+
+
+<programlisting>
+f :: (# Int, Int #) -&#62; (# Int, Int #)
+f x = x
+</programlisting>
+
+
+because <literal>x</literal> has an unboxed tuple type.
+
 </para>
 </listitem>
-</varlistentry>
-<varlistentry>
-<term>&ldquo;Foreign objects&rdquo;:</term>
-<listitem>
-<para>
-A &ldquo;foreign object&rdquo; is a safe way to pass an external object (a
-C-allocated pointer, say) to Haskell and have Haskell do the Right
-Thing when it no longer references the object.  So, for example, C
-could pass a large bitmap over to Haskell and say &ldquo;please free this
-memory when you're done with it.&rdquo;
+
+</itemizedlist>
+
 </para>
 
 <para>
-Please see <xref LinkEnd="sec-ForeignObj"> for more details.
-</para>
-</listitem>
-</varlistentry>
-</variablelist>
+Note: we may relax some of these restrictions in the future.
 </para>
 
 <para>
-The libraries documentatation gives more details on all these
-&ldquo;primitive array&rdquo; types and the operations on them.
+The <literal>IO</literal> and <literal>ST</literal> monads use unboxed
+tuples to avoid unnecessary allocation during sequences of operations.
 </para>
 
+</sect2>
 </sect1>
 
 
-<sect1 id="pattern-guards">
+<!-- ====================== SYNTACTIC EXTENSIONS =======================  -->
+
+<sect1 id="syntax-extns">
+<title>Syntactic extensions</title>
+    <!-- ====================== HIERARCHICAL MODULES =======================  -->
+
+    <sect2 id="hierarchical-modules">
+      <title>Hierarchical Modules</title>
+
+      <para>GHC supports a small extension to the syntax of module
+      names: a module name is allowed to contain a dot
+      <literal>&lsquo;.&rsquo;</literal>.  This is also known as the
+      &ldquo;hierarchical module namespace&rdquo; extension, because
+      it extends the normally flat Haskell module namespace into a
+      more flexible hierarchy of modules.</para>
+
+      <para>This extension has very little impact on the language
+      itself; modules names are <emphasis>always</emphasis> fully
+      qualified, so you can just think of the fully qualified module
+      name as <quote>the module name</quote>.  In particular, this
+      means that the full module name must be given after the
+      <literal>module</literal> keyword at the beginning of the
+      module; for example, the module <literal>A.B.C</literal> must
+      begin</para>
+
+<programlisting>module A.B.C</programlisting>
+
+
+      <para>It is a common strategy to use the <literal>as</literal>
+      keyword to save some typing when using qualified names with
+      hierarchical modules.  For example:</para>
+
+<programlisting>
+import qualified Control.Monad.ST.Strict as ST
+</programlisting>
+
+      <para>Hierarchical modules have an impact on the way that GHC
+      searches for files.  For a description, see <xref
+      linkend="finding-hierarchical-modules">.</para>
+
+      <para>GHC comes with a large collection of libraries arranged
+      hierarchically; see the accompanying library documentation.
+      There is an ongoing project to create and maintain a stable set
+      of <quote>core</quote> libraries used by several Haskell
+      compilers, and the libraries that GHC comes with represent the
+      current status of that project.  For more details, see <ulink
+      url="http://www.haskell.org/~simonmar/libraries/libraries.html">Haskell
+      Libraries</ulink>.</para>
+
+    </sect2>
+
+    <!-- ====================== PATTERN GUARDS =======================  -->
+
+<sect2 id="pattern-guards">
 <title>Pattern guards</title>
 
 <para>
@@ -518,111 +557,380 @@ f x | [y] <- x
 Haskell's current guards therefore emerge as a special case, in which the
 qualifier list has just one element, a boolean expression.
 </para>
+</sect2>
+
+    <!-- ===================== Recursive do-notation ===================  -->
+
+<sect2 id="mdo-notation">
+<title>The recursive do-notation
+</title>
+
+<para> The recursive do-notation (also known as mdo-notation) is implemented as described in
+"A recursive do for Haskell",
+Levent Erkok, John Launchbury",
+Haskell Workshop 2002, pages: 29-37. Pittsburgh, Pennsylvania. 
+</para>
+<para>
+The do-notation of Haskell does not allow <emphasis>recursive bindings</emphasis>,
+that is, the variables bound in a do-expression are visible only in the textually following 
+code block. Compare this to a let-expression, where bound variables are visible in the entire binding
+group. It turns out that several applications can benefit from recursive bindings in
+the do-notation, and this extension provides the necessary syntactic support.
+</para>
+<para>
+Here is a simple (yet contrived) example:
+</para>
+<programlisting>
+import Control.Monad.Fix
+
+justOnes = mdo xs <- Just (1:xs)
+               return xs
+</programlisting>
+<para>
+As you can guess <literal>justOnes</literal> will evaluate to <literal>Just [1,1,1,...</literal>.
+</para>
+
+<para>
+The Control.Monad.Fix library introduces the <literal>MonadFix</literal> class. It's definition is:
+</para>
+<programlisting>
+class Monad m => MonadFix m where
+   mfix :: (a -> m a) -> m a
+</programlisting>
+<para>
+The function <literal>mfix</literal>
+dictates how the required recursion operation should be performed. If recursive bindings are required for a monad,
+then that monad must be declared an instance of the <literal>MonadFix</literal> class.
+For details, see the above mentioned reference.
+</para>
+<para>
+The following instances of <literal>MonadFix</literal> are automatically provided: List, Maybe, IO. 
+Furthermore, the Control.Monad.ST and Control.Monad.ST.Lazy modules provide the instances of the MonadFix class 
+for Haskell's internal state monad (strict and lazy, respectively).
+</para>
+<para>
+There are three important points in using the recursive-do notation:
+<itemizedlist>
+<listitem><para>
+The recursive version of the do-notation uses the keyword <literal>mdo</literal> (rather
+than <literal>do</literal>).
+</para></listitem>
+
+<listitem><para>
+You should <literal>import Control.Monad.Fix</literal>.
+(Note: Strictly speaking, this import is required only when you need to refer to the name
+<literal>MonadFix</literal> in your program, but the import is always safe, and the programmers
+are encouraged to always import this module when using the mdo-notation.)
+</para></listitem>
+
+<listitem><para>
+As with other extensions, ghc should be given the flag <literal>-fglasgow-exts</literal>
+</para></listitem>
+</itemizedlist>
+</para>
+
+<para>
+The web page: <ulink url="http://www.cse.ogi.edu/PacSoft/projects/rmb">http://www.cse.ogi.edu/PacSoft/projects/rmb</ulink>
+contains up to date information on recursive monadic bindings.
+</para>
+
+<para>
+Historical note: The old implementation of the mdo-notation (and most
+of the existing documents) used the name
+<literal>MonadRec</literal> for the class and the corresponding library.
+This name is not supported by GHC.
+</para>
+
+</sect2>
+
+
+   <!-- ===================== PARALLEL LIST COMPREHENSIONS ===================  -->
+
+  <sect2 id="parallel-list-comprehensions">
+    <title>Parallel List Comprehensions</title>
+    <indexterm><primary>list comprehensions</primary><secondary>parallel</secondary>
+    </indexterm>
+    <indexterm><primary>parallel list comprehensions</primary>
+    </indexterm>
+
+    <para>Parallel list comprehensions are a natural extension to list
+    comprehensions.  List comprehensions can be thought of as a nice
+    syntax for writing maps and filters.  Parallel comprehensions
+    extend this to include the zipWith family.</para>
+
+    <para>A parallel list comprehension has multiple independent
+    branches of qualifier lists, each separated by a `|' symbol.  For
+    example, the following zips together two lists:</para>
+
+<programlisting>
+   [ (x, y) | x <- xs | y <- ys ] 
+</programlisting>
+
+    <para>The behavior of parallel list comprehensions follows that of
+    zip, in that the resulting list will have the same length as the
+    shortest branch.</para>
+
+    <para>We can define parallel list comprehensions by translation to
+    regular comprehensions.  Here's the basic idea:</para>
+
+    <para>Given a parallel comprehension of the form: </para>
+
+<programlisting>
+   [ e | p1 <- e11, p2 <- e12, ... 
+       | q1 <- e21, q2 <- e22, ... 
+       ... 
+   ] 
+</programlisting>
+
+    <para>This will be translated to: </para>
+
+<programlisting>
+   [ e | ((p1,p2), (q1,q2), ...) <- zipN [(p1,p2) | p1 <- e11, p2 <- e12, ...] 
+                                         [(q1,q2) | q1 <- e21, q2 <- e22, ...] 
+                                         ... 
+   ] 
+</programlisting>
+
+    <para>where `zipN' is the appropriate zip for the given number of
+    branches.</para>
+
+  </sect2>
+
+<sect2 id="rebindable-syntax">
+<title>Rebindable syntax</title>
+
+
+      <para>GHC allows most kinds of built-in syntax to be rebound by
+      the user, to facilitate replacing the <literal>Prelude</literal>
+      with a home-grown version, for example.</para>
+
+            <para>You may want to define your own numeric class
+            hierarchy.  It completely defeats that purpose if the
+            literal "1" means "<literal>Prelude.fromInteger
+            1</literal>", which is what the Haskell Report specifies.
+            So the <option>-fno-implicit-prelude</option> flag causes
+            the following pieces of built-in syntax to refer to
+            <emphasis>whatever is in scope</emphasis>, not the Prelude
+            versions:</para>
+
+           <itemizedlist>
+             <listitem>
+               <para>Integer and fractional literals mean
+                "<literal>fromInteger 1</literal>" and
+                "<literal>fromRational 3.2</literal>", not the
+                Prelude-qualified versions; both in expressions and in
+                patterns. </para>
+               <para>However, the standard Prelude <literal>Eq</literal> class
+               is still used for the equality test necessary for literal patterns.</para>
+             </listitem>
+
+             <listitem>
+               <para>Negation (e.g. "<literal>- (f x)</literal>")
+               means "<literal>negate (f x)</literal>" (not
+               <literal>Prelude.negate</literal>).</para>
+             </listitem>
+
+             <listitem>
+               <para>In an n+k pattern, the standard Prelude
+                <literal>Ord</literal> class is still used for comparison,
+                but the necessary subtraction uses whatever
+                "<literal>(-)</literal>" is in scope (not
+                "<literal>Prelude.(-)</literal>").</para>
+             </listitem>
+
+             <listitem>
+         <para>"Do" notation is translated using whatever
+             functions <literal>(>>=)</literal>,
+             <literal>(>>)</literal>, <literal>fail</literal>, and
+             <literal>return</literal>, are in scope (not the Prelude
+             versions).  List comprehensions, and parallel array
+             comprehensions, are unaffected.  </para></listitem>
+           </itemizedlist>
+
+            <para>Be warned: this is an experimental facility, with fewer checks than
+            usual.  In particular, it is essential that the functions GHC finds in scope
+            must have the appropriate types, namely:
+            <screen>
+               fromInteger  :: forall a. (...) => Integer  -> a
+               fromRational :: forall a. (...) => Rational -> a
+               negate       :: forall a. (...) => a -> a
+               (-)          :: forall a. (...) => a -> a -> a
+               (>>=)        :: forall m a. (...) => m a -> (a -> m b) -> m b
+               (>>)         :: forall m a. (...) => m a -> m b -> m b
+               return       :: forall m a. (...) => a      -> m a
+               fail         :: forall m a. (...) => String -> m a
+            </screen>
+            (The (...) part can be any context including the empty context; that part 
+            is up to you.)
+            If the functions don't have the right type, very peculiar things may 
+            happen.  Use <literal>-dcore-lint</literal> to
+            typecheck the desugared program.  If Core Lint is happy you should be all right.</para>
+
+</sect2>
 </sect1>
 
-  <sect1 id="sec-ffi">
-    <title>The foreign interface</title>
 
-    <para>The foreign interface consists of the following components:</para>
+<!-- TYPE SYSTEM EXTENSIONS -->
+<sect1 id="type-extensions">
+<title>Type system extensions</title>
 
-    <itemizedlist>
-      <listitem>
-       <para>The Foreign Function Interface language specification
-       (included in this manual, in <xref linkend="ffi">).</para>
-      </listitem>
+<sect2 id="nullary-types">
+<title>Data types with no constructors</title>
 
-      <listitem>
-       <para>The <literal>Foreign</literal> module (see <xref
-       linkend="sec-Foreign">) collects together several interfaces
-       which are useful in specifying foreign language
-       interfaces, including the following:</para>
+<para>With the <option>-fglasgow-exts</option> flag, GHC lets you declare
+a data type with no constructors.  For example:</para>
 
-       <itemizedlist>
-         <listitem>
-           <para>The <literal>ForeignObj</literal> module (see <xref
-           linkend="sec-ForeignObj">), for managing pointers from
-           Haskell into the outside world.</para>
-         </listitem>
-      
-         <listitem>
-           <para>The <literal>StablePtr</literal> module (see <xref
-           linkend="sec-stable-pointers">), for managing pointers
-           into Haskell from the outside world.</para>
-         </listitem>
-      
-         <listitem>
-           <para>The <literal>CTypes</literal> module (see <xref
-           linkend="sec-CTypes">) gives Haskell equivalents for the
-           standard C datatypes, for use in making Haskell bindings
-           to existing C libraries.</para>
-         </listitem>
-      
-         <listitem>
-           <para>The <literal>CTypesISO</literal> module (see <xref
-           linkend="sec-CTypesISO">) gives Haskell equivalents for C
-           types defined by the ISO C standard.</para>
-         </listitem>
-      
-         <listitem>
-           <para>The <literal>Storable</literal> library, for
-           primitive marshalling of data types between Haskell and
-           the foreign language.</para>
-         </listitem>
-       </itemizedlist>
+<programlisting>
+  data S      -- S :: *
+  data T a    -- T :: * -> *
+</programlisting>
 
-      </listitem>
-    </itemizedlist>
+<para>Syntactically, the declaration lacks the "= constrs" part.  The 
+type can be parameterised over types of any kind, but if the kind is
+not <literal>*</literal> then an explicit kind annotation must be used
+(see <xref linkend="sec-kinding">).</para>
 
-<para>The following sections also give some hints and tips on the use
-of the foreign function interface in GHC.</para>
+<para>Such data types have only one value, namely bottom.
+Nevertheless, they can be useful when defining "phantom types".</para>
+</sect2>
 
-<sect2 id="glasgow-foreign-headers">
-<title>Using function headers
-</title>
+<sect2 id="infix-tycons">
+<title>Infix type constructors</title>
 
 <para>
-<indexterm><primary>C calls, function headers</primary></indexterm>
+GHC allows type constructors to be operators, and to be written infix, very much 
+like expressions.  More specifically:
+<itemizedlist>
+<listitem><para>
+  A type constructor can be an operator, beginning with a colon; e.g. <literal>:*:</literal>.
+  The lexical syntax is the same as that for data constructors.
+  </para></listitem>
+<listitem><para>
+  Types can be written infix.  For example <literal>Int :*: Bool</literal>.  
+  </para></listitem>
+<listitem><para>
+  Back-quotes work
+  as for expressions, both for type constructors and type variables;  e.g. <literal>Int `Either` Bool</literal>, or
+  <literal>Int `a` Bool</literal>.  Similarly, parentheses work the same; e.g.  <literal>(:*:) Int Bool</literal>.
+  </para></listitem>
+<listitem><para>
+  Fixities may be declared for type constructors just as for data constructors.  However,
+  one cannot distinguish between the two in a fixity declaration; a fixity declaration
+  sets the fixity for a data constructor and the corresponding type constructor.  For example:
+<screen>
+  infixl 7 T, :*:
+</screen>
+  sets the fixity for both type constructor <literal>T</literal> and data constructor <literal>T</literal>,
+  and similarly for <literal>:*:</literal>.
+  <literal>Int `a` Bool</literal>.
+  </para></listitem>
+<listitem><para>
+  Function arrow is <literal>infixr</literal> with fixity 0.  (This might change; I'm not sure what it should be.)
+  </para></listitem>
+<listitem><para>
+  Data type and type-synonym declarations can be written infix.  E.g.
+<screen>
+  data a :*: b = Foo a b
+  type a :+: b = Either a b
+</screen>
+  </para></listitem>
+<listitem><para>
+  The only thing that differs between operators in types and operators in expressions is that
+  ordinary non-constructor operators, such as <literal>+</literal> and <literal>*</literal>
+  are not allowed in types. Reason: the uniform thing to do would be to make them type
+  variables, but that's not very useful.  A less uniform but more useful thing would be to
+  allow them to be type <emphasis>constructors</emphasis>.  But that gives trouble in export
+  lists.  So for now we just exclude them.
+  </para></listitem>
+
+</itemizedlist>
 </para>
+</sect2>
+
+<sect2 id="sec-kinding">
+<title>Explicitly-kinded quantification</title>
 
 <para>
-When generating C (using the <option>-fvia-C</option> directive), one can assist the
-C compiler in detecting type errors by using the <Command>-&num;include</Command> directive
-to provide <filename>.h</filename> files containing function headers.
+Haskell infers the kind of each type variable.  Sometimes it is nice to be able
+to give the kind explicitly as (machine-checked) documentation, 
+just as it is nice to give a type signature for a function.  On some occasions,
+it is essential to do so.  For example, in his paper "Restricted Data Types in Haskell" (Haskell Workshop 1999)
+John Hughes had to define the data type:
+<Screen>
+     data Set cxt a = Set [a]
+                    | Unused (cxt a -> ())
+</Screen>
+The only use for the <literal>Unused</literal> constructor was to force the correct
+kind for the type variable <literal>cxt</literal>.
+</para>
+<para>
+GHC now instead allows you to specify the kind of a type variable directly, wherever
+a type variable is explicitly bound.  Namely:
+<itemizedlist>
+<listitem><para><literal>data</literal> declarations:
+<Screen>
+  data Set (cxt :: * -> *) a = Set [a]
+</Screen></para></listitem>
+<listitem><para><literal>type</literal> declarations:
+<Screen>
+  type T (f :: * -> *) = f Int
+</Screen></para></listitem>
+<listitem><para><literal>class</literal> declarations:
+<Screen>
+  class (Eq a) => C (f :: * -> *) a where ...
+</Screen></para></listitem>
+<listitem><para><literal>forall</literal>'s in type signatures:
+<Screen>
+  f :: forall (cxt :: * -> *). Set cxt Int
+</Screen></para></listitem>
+</itemizedlist>
 </para>
 
 <para>
-For example,
+The parentheses are required.  Some of the spaces are required too, to
+separate the lexemes.  If you write <literal>(f::*->*)</literal> you
+will get a parse error, because "<literal>::*->*</literal>" is a
+single lexeme in Haskell.
 </para>
 
 <para>
+As part of the same extension, you can put kind annotations in types
+as well.  Thus:
+<Screen>
+   f :: (Int :: *) -> Int
+   g :: forall a. a -> (a :: *)
+</Screen>
+The syntax is
+<Screen>
+   atype ::= '(' ctype '::' kind ')
+</Screen>
+The parentheses are required.
+</para>
+</sect2>
 
-<programlisting>
-#include "HsFFI.h"
 
-void         initialiseEFS (HsInt size);
-HsInt        terminateEFS (void);
-HsForeignObj emptyEFS(void);
-HsForeignObj updateEFS (HsForeignObj a, HsInt i, HsInt x);
-HsInt        lookupEFS (HsForeignObj a, HsInt i);
+<sect2 id="class-method-types">
+<title>Class method types
+</title>
+<para>
+Haskell 98 prohibits class method types to mention constraints on the
+class type variable, thus:
+<programlisting>
+  class Seq s a where
+    fromList :: [a] -> s a
+    elem     :: Eq a => a -> s a -> Bool
 </programlisting>
+The type of <literal>elem</literal> is illegal in Haskell 98, because it
+contains the constraint <literal>Eq a</literal>, constrains only the 
+class type variable (in this case <literal>a</literal>).
+</para>
+<para>
+With the <option>-fglasgow-exts</option> GHC lifts this restriction.
 </para>
-
-      <para>The types <literal>HsInt</literal>,
-      <literal>HsForeignObj</literal> etc. are described in <xref
-      linkend="sec-mapping-table">.</para>
-
-      <para>Note that this approach is only
-      <emphasis>essential</emphasis> for returning
-      <literal>float</literal>s (or if <literal>sizeof(int) !=
-      sizeof(int *)</literal> on your architecture) but is a Good
-      Thing for anyone who cares about writing solid code.  You're
-      crazy not to do it.</para>
 
 </sect2>
 
-</sect1>
-
-<sect1 id="multi-param-type-classes">
+<sect2 id="multi-param-type-classes">
 <title>Multi-parameter type classes
 </title>
 
@@ -634,38 +942,19 @@ classes: exploring the design space</ULink > (Simon Peyton Jones, Mark
 Jones, Erik Meijer).
 </para>
 
-<para>
-I'd like to thank people who reported shorcomings in the GHC 3.02
-implementation.  Our default decisions were all conservative ones, and
-the experience of these heroic pioneers has given useful concrete
-examples to support several generalisations.  (These appear below as
-design choices not implemented in 3.02.)
-</para>
-
-<para>
-I've discussed these notes with Mark Jones, and I believe that Hugs
-will migrate towards the same design choices as I outline here.
-Thanks to him, and to many others who have offered very useful
-feedback.
-</para>
 
-<sect2>
+<sect3 id="type-restrictions">
 <title>Types</title>
 
 <para>
-There are the following restrictions on the form of a qualified
-type:
-</para>
-
-<para>
+GHC imposes the following restrictions on the form of a qualified
+type, whether declared in a type signature
+or inferred. Consider the type:
 
 <programlisting>
   forall tv1..tvn (c1, ...,cn) => type
 </programlisting>
 
-</para>
-
-<para>
 (Here, I write the "foralls" explicitly, although the Haskell source
 language omits them; in Haskell 1.4, all the free type variables of an
 explicit source-language type signature are universally quantified,
@@ -680,11 +969,15 @@ in GHC, you can give the foralls if you want.  See <xref LinkEnd="universal-quan
 
 <para>
  <emphasis>Each universally quantified type variable
-<literal>tvi</literal> must be mentioned (i.e. appear free) in <literal>type</literal></emphasis>.
+<literal>tvi</literal> must be reachable from <literal>type</literal></emphasis>.
 
+A type variable is "reachable" if it it is functionally dependent
+(see <xref linkend="functional-dependencies">)
+on the type variables free in <literal>type</literal>.
 The reason for this is that a value with a type that does not obey
 this restriction could not be used without introducing
-ambiguity. Here, for example, is an illegal type:
+ambiguity. 
+Here, for example, is an illegal type:
 
 
 <programlisting>
@@ -739,10 +1032,6 @@ territory free in case we need it later.
 
 </para>
 
-<para>
-These restrictions apply to all types, whether declared in a type signature
-or inferred.
-</para>
 
 <para>
 Unlike Haskell 1.4, constraints in types do <emphasis>not</emphasis> have to be of
@@ -763,9 +1052,9 @@ are perfectly OK
 This choice recovers principal types, a property that Haskell 1.4 does not have.
 </para>
 
-</sect2>
+</sect3>
 
-<sect2>
+<sect3>
 <title>Class declarations</title>
 
 <para>
@@ -829,56 +1118,14 @@ be acyclic</emphasis>.  So these class declarations are OK:
 
 </para>
 </listitem>
-<listitem>
-
-<para>
- <emphasis>In the signature of a class operation, every constraint
-must mention at least one type variable that is not a class type
-variable</emphasis>.
-
-Thus:
-
-
-<programlisting>
-  class Collection c a where
-    mapC :: Collection c b => (a->b) -> c a -> c b
-</programlisting>
-
-
-is OK because the constraint <literal>(Collection a b)</literal> mentions
-<literal>b</literal>, even though it also mentions the class variable
-<literal>a</literal>.  On the other hand:
-
-
-<programlisting>
-  class C a where
-    op :: Eq a => (a,b) -> (a,b)
-</programlisting>
 
-
-is not OK because the constraint <literal>(Eq a)</literal> mentions on the class
-type variable <literal>a</literal>, but not <literal>b</literal>.  However, any such
-example is easily fixed by moving the offending context up to the
-superclass context:
-
-
-<programlisting>
-  class Eq a => C a where
-    op ::(a,b) -> (a,b)
-</programlisting>
-
-
-A yet more relaxed rule would allow the context of a class-op signature
-to mention only class type variables.  However, that conflicts with
-Rule 1(b) for types above.
-
-</para>
-</listitem>
 <listitem>
 
 <para>
- <emphasis>The type of each class operation must mention <emphasis>all</emphasis> of
-the class type variables</emphasis>.  For example:
+ <emphasis>All of the class type variables must be reachable (in the sense 
+mentioned in <xref linkend="type-restrictions">)
+from the free varibles of each method type
+</emphasis>.  For example:
 
 
 <programlisting>
@@ -925,9 +1172,9 @@ class like this:
 
 </para>
 
-</sect2>
+</sect3>
 
-<sect2 id="instance-decls">
+<sect3 id="instance-decls">
 <title>Instance declarations</title>
 
 <para>
@@ -950,9 +1197,9 @@ declarations
 
 However, if you give the command line option
 <option>-fallow-overlapping-instances</option><indexterm><primary>-fallow-overlapping-instances
-option</primary></indexterm> then two overlapping instance declarations are permitted
-iff
-
+option</primary></indexterm> then overlapping instance declarations are permitted.
+However, GHC arranges never to commit to using an instance declaration
+if another instance declaration also applies, either now or later.
 
 <itemizedlist>
 <listitem>
@@ -965,22 +1212,11 @@ iff
 
 <para>
  OR <literal>type2</literal> is a substitution instance of <literal>type1</literal>
-(but not identical to <literal>type1</literal>)
-</para>
-</listitem>
-<listitem>
-
-<para>
- OR vice versa
+(but not identical to <literal>type1</literal>), or vice versa.
 </para>
 </listitem>
-
 </itemizedlist>
-
-
 Notice that these rules
-
-
 <itemizedlist>
 <listitem>
 
@@ -1000,8 +1236,34 @@ Reason: you can pick which instance decl
 </listitem>
 
 </itemizedlist>
-
-
+However the rules are over-conservative.  Two instance declarations can overlap,
+but it can still be clear in particular situations which to use.  For example:
+<programlisting>
+  instance C (Int,a) where ...
+  instance C (a,Bool) where ...
+</programlisting>
+These are rejected by GHC's rules, but it is clear what to do when trying
+to solve the constraint <literal>C (Int,Int)</literal> because the second instance
+cannot apply.  Yell if this restriction bites you.
+</para>
+<para>
+GHC is also conservative about committing to an overlapping instance.  For example:
+<programlisting>
+  class C a where { op :: a -> a }
+  instance C [Int] where ...
+  instance C a => C [a] where ...
+  
+  f :: C b => [b] -> [b]
+  f x = op x
+</programlisting>
+From the RHS of f we get the constraint <literal>C [b]</literal>.  But
+GHC does not commit to the second instance declaration, because in a paricular
+call of f, b might be instantiate to Int, so the first instance declaration
+would be appropriate.  So GHC rejects the program.  If you add <option>-fallow-incoherent-instances</option>
+GHC will instead silently pick the second instance, without complaining about 
+the problem of subsequent instantiations.
+</para>
+<para>
 Regrettably, GHC doesn't guarantee to detect overlapping instance
 declarations if they appear in different modules.  GHC can "see" the
 instance declarations in the transitive closure of all the modules
@@ -1039,63 +1301,8 @@ For example, this is OK:
   instance Stateful (ST s) (MutVar s) where ...
 </programlisting>
 
-
-The "at least one not a type variable" restriction is to ensure that
-context reduction terminates: each reduction step removes one type
-constructor.  For example, the following would make the type checker
-loop if it wasn't excluded:
-
-
-<programlisting>
-  instance C a => C a where ...
-</programlisting>
-
-
-There are two situations in which the rule is a bit of a pain. First,
-if one allows overlapping instance declarations then it's quite
-convenient to have a "default instance" declaration that applies if
-something more specific does not:
-
-
-<programlisting>
-  instance C a where
-    op = ... -- Default
-</programlisting>
-
-
-Second, sometimes you might want to use the following to get the
-effect of a "class synonym":
-
-
-<programlisting>
-  class (C1 a, C2 a, C3 a) => C a where { }
-
-  instance (C1 a, C2 a, C3 a) => C a where { }
-</programlisting>
-
-
-This allows you to write shorter signatures:
-
-
-<programlisting>
-  f :: C a => ...
-</programlisting>
-
-
-instead of
-
-
-<programlisting>
-  f :: (C1 a, C2 a, C3 a) => ...
-</programlisting>
-
-
-I'm on the lookout for a simple rule that preserves decidability while
-allowing these idioms.  The experimental flag
-<option>-fallow-undecidable-instances</option><indexterm><primary>-fallow-undecidable-instances
-option</primary></indexterm> lifts this restriction, allowing all the types in an
-instance head to be type variables.
-
+See <xref linkend="undecidable-instances"> for an experimental
+extension to lift this restriction.
 </para>
 </listitem>
 <listitem>
@@ -1157,16 +1364,10 @@ instance C Int b => Foo b where ...
 </programlisting>
 
 
-is not OK.  Again, the intent here is to make sure that context
-reduction terminates.
+is not OK.  See <xref linkend="undecidable-instances"> for an experimental
+extension to lift this restriction.
+
 
-Voluminous correspondence on the Haskell mailing list has convinced me
-that it's worth experimenting with a more liberal rule.  If you use
-the flag <option>-fallow-undecidable-instances</option> can use arbitrary
-types in an instance context.  Termination is ensured by having a
-fixed-depth recursion stack.  If you exceed the stack depth you get a
-sort of backtrace, and the opportunity to increase the stack depth
-with <option>-fcontext-stack</option><emphasis>N</emphasis>.
 
 </para>
 </listitem>
@@ -1175,448 +1376,839 @@ with <option>-fcontext-stack</option><emphasis>N</emphasis>.
 
 </para>
 
+</sect3>
+
 </sect2>
 
-</sect1>
+<sect2 id="undecidable-instances">
+<title>Undecidable instances</title>
 
-<sect1 id="implicit-parameters">
-<title>Implicit parameters
-</title>
+<para>The rules for instance declarations state that:
+<itemizedlist>
+<listitem><para>At least one of the types in the <emphasis>head</emphasis> of
+an instance declaration <emphasis>must not</emphasis> be a type variable.
+</para></listitem>
+<listitem><para>All of the types in the <emphasis>context</emphasis> of
+an instance declaration <emphasis>must</emphasis> be type variables.
+</para></listitem>
+</itemizedlist>
+These restrictions ensure that 
+context reduction terminates: each reduction step removes one type
+constructor.  For example, the following would make the type checker
+loop if it wasn't excluded:
+<programlisting>
+  instance C a => C a where ...
+</programlisting>
+There are two situations in which the rule is a bit of a pain. First,
+if one allows overlapping instance declarations then it's quite
+convenient to have a "default instance" declaration that applies if
+something more specific does not:
 
-<para> Implicit paramters are implemented as described in 
-"Implicit parameters: dynamic scoping with static types", 
-J Lewis, MB Shields, E Meijer, J Launchbury,
-27th ACM Symposium on Principles of Programming Languages (POPL'00),
-Boston, Jan 2000.
-</para>
 
-<para>
-There should be more documentation, but there isn't (yet).  Yell if you need it.
-</para>
-<itemizedlist>
-<listitem>
-<para> You can't have an implicit parameter in the context of a class or instance
-declaration.  For example, both these declarations are illegal:
 <programlisting>
-  class (?x::Int) => C a where ...
-  instance (?x::a) => Foo [a] where ...
+  instance C a where
+    op = ... -- Default
 </programlisting>
-Reason: exactly which implicit parameter you pick up depends on exactly where
-you invoke a function. But the ``invocation'' of instance declarations is done
-behind the scenes by the compiler, so it's hard to figure out exactly where it is done.
-Easiest thing is to outlaw the offending types.</para>
-</listitem>
 
-</itemizedlist>
 
-</sect1>
+Second, sometimes you might want to use the following to get the
+effect of a "class synonym":
 
 
-<sect1 id="functional-dependencies">
-<title>Functional dependencies
-</title>
+<programlisting>
+  class (C1 a, C2 a, C3 a) => C a where { }
 
-<para> Functional dependencies are implemented as described by Mark Jones
-in "Type Classes with Functional Dependencies", Mark P. Jones, 
-In Proceedings of the 9th European Symposium on Programming, 
-ESOP 2000, Berlin, Germany, March 2000, Springer-Verlag LNCS 1782.
-</para>
+  instance (C1 a, C2 a, C3 a) => C a where { }
+</programlisting>
 
-<para>
-There should be more documentation, but there isn't (yet).  Yell if you need it.
-</para>
-</sect1>
 
+This allows you to write shorter signatures:
 
-<sect1 id="universal-quantification">
-<title>Explicit universal quantification
-</title>
 
-<para>
-GHC's type system supports explicit universal quantification in
-constructor fields and function arguments.  This is useful for things
-like defining <literal>runST</literal> from the state-thread world. 
-GHC's syntax for this now agrees with Hugs's, namely:
-</para>
+<programlisting>
+  f :: C a => ...
+</programlisting>
+
+
+instead of
 
-<para>
 
 <programlisting>
-        forall a b. (Ord a, Eq  b) => a -> b -> a
+  f :: (C1 a, C2 a, C3 a) => ...
 </programlisting>
 
-</para>
 
+Voluminous correspondence on the Haskell mailing list has convinced me
+that it's worth experimenting with more liberal rules.  If you use
+the experimental flag <option>-fallow-undecidable-instances</option>
+<indexterm><primary>-fallow-undecidable-instances
+option</primary></indexterm>, you can use arbitrary
+types in both an instance context and instance head.  Termination is ensured by having a
+fixed-depth recursion stack.  If you exceed the stack depth you get a
+sort of backtrace, and the opportunity to increase the stack depth
+with <option>-fcontext-stack</option><emphasis>N</emphasis>.
+</para>
 <para>
-The context is, of course, optional.  You can't use <literal>forall</literal> as
-a type variable any more!
+I'm on the lookout for a less brutal solution: a simple rule that preserves decidability while
+allowing these idioms interesting idioms.  
 </para>
+</sect2>
 
+<sect2 id="implicit-parameters">
+<title>Implicit parameters
+</title>
+
+<para> Implicit paramters are implemented as described in 
+"Implicit parameters: dynamic scoping with static types", 
+J Lewis, MB Shields, E Meijer, J Launchbury,
+27th ACM Symposium on Principles of Programming Languages (POPL'00),
+Boston, Jan 2000.
+</para>
+<para>(Most of the following, stil rather incomplete, documentation is due to Jeff Lewis.)</para>
 <para>
-Haskell type signatures are implicitly quantified.  The <literal>forall</literal>
-allows us to say exactly what this means.  For example:
+A variable is called <emphasis>dynamically bound</emphasis> when it is bound by the calling
+context of a function and <emphasis>statically bound</emphasis> when bound by the callee's
+context. In Haskell, all variables are statically bound. Dynamic
+binding of variables is a notion that goes back to Lisp, but was later
+discarded in more modern incarnations, such as Scheme. Dynamic binding
+can be very confusing in an untyped language, and unfortunately, typed
+languages, in particular Hindley-Milner typed languages like Haskell,
+only support static scoping of variables.
 </para>
-
 <para>
-
+However, by a simple extension to the type class system of Haskell, we
+can support dynamic binding. Basically, we express the use of a
+dynamically bound variable as a constraint on the type. These
+constraints lead to types of the form <literal>(?x::t') => t</literal>, which says "this
+function uses a dynamically-bound variable <literal>?x</literal> 
+of type <literal>t'</literal>". For
+example, the following expresses the type of a sort function,
+implicitly parameterized by a comparison function named <literal>cmp</literal>.
 <programlisting>
-        g :: b -> b
+  sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]
 </programlisting>
+The dynamic binding constraints are just a new form of predicate in the type class system.
+</para>
+<para>
+An implicit parameter occurs in an expression using the special form <literal>?x</literal>, 
+where <literal>x</literal> is
+any valid identifier (e.g. <literal>ord ?x</literal> is a valid expression). 
+Use of this construct also introduces a new
+dynamic-binding constraint in the type of the expression. 
+For example, the following definition
+shows how we can define an implicitly parameterized sort function in
+terms of an explicitly parameterized <literal>sortBy</literal> function:
+<programlisting>
+  sortBy :: (a -> a -> Bool) -> [a] -> [a]
 
+  sort   :: (?cmp :: a -> a -> Bool) => [a] -> [a]
+  sort    = sortBy ?cmp
+</programlisting>
 </para>
 
+<sect3>
+<title>Implicit-parameter type constraints</title>
 <para>
-means this:
+Dynamic binding constraints behave just like other type class
+constraints in that they are automatically propagated. Thus, when a
+function is used, its implicit parameters are inherited by the
+function that called it. For example, our <literal>sort</literal> function might be used
+to pick out the least value in a list:
+<programlisting>
+  least   :: (?cmp :: a -> a -> Bool) => [a] -> a
+  least xs = fst (sort xs)
+</programlisting>
+Without lifting a finger, the <literal>?cmp</literal> parameter is
+propagated to become a parameter of <literal>least</literal> as well. With explicit
+parameters, the default is that parameters must always be explicit
+propagated. With implicit parameters, the default is to always
+propagate them.
 </para>
-
 <para>
+An implicit-parameter type constraint differs from other type class constraints in the
+following way: All uses of a particular implicit parameter must have
+the same type. This means that the type of <literal>(?x, ?x)</literal> 
+is <literal>(?x::a) => (a,a)</literal>, and not 
+<literal>(?x::a, ?x::b) => (a, b)</literal>, as would be the case for type
+class constraints.
+</para>
 
+<para> You can't have an implicit parameter in the context of a class or instance
+declaration.  For example, both these declarations are illegal:
 <programlisting>
-        g :: forall b. (b -> b)
+  class (?x::Int) => C a where ...
+  instance (?x::a) => Foo [a] where ...
 </programlisting>
+Reason: exactly which implicit parameter you pick up depends on exactly where
+you invoke a function. But the ``invocation'' of instance declarations is done
+behind the scenes by the compiler, so it's hard to figure out exactly where it is done.
+Easiest thing is to outlaw the offending types.</para>
+<para>
+Implicit-parameter constraints do not cause ambiguity.  For example, consider:
+<programlisting>
+   f :: (?x :: [a]) => Int -> Int
+   f n = n + length ?x
 
+   g :: (Read a, Show a) => String -> String
+   g s = show (read s)
+</programlisting>
+Here, <literal>g</literal> has an ambiguous type, and is rejected, but <literal>f</literal>
+is fine.  The binding for <literal>?x</literal> at <literal>f</literal>'s call site is 
+quite unambiguous, and fixes the type <literal>a</literal>.
 </para>
+</sect3>
+
+<sect3>
+<title>Implicit-parameter bindings</title>
 
 <para>
-The two are treated identically.
+An implicit parameter is <emphasis>bound</emphasis> using the standard
+<literal>let</literal> or <literal>where</literal> binding forms.
+For example, we define the <literal>min</literal> function by binding
+<literal>cmp</literal>.
+<programlisting>
+  min :: [a] -> a
+  min  = let ?cmp = (<=) in least
+</programlisting>
+</para>
+<para>
+A group of implicit-parameter bindings may occur anywhere a normal group of Haskell
+bindings can occur, except at top level.  That is, they can occur in a <literal>let</literal> 
+(including in a list comprehension, or do-notation, or pattern guards), 
+or a <literal>where</literal> clause.
+Note the following points:
+<itemizedlist>
+<listitem><para>
+An implicit-parameter binding group must be a
+collection of simple bindings to implicit-style variables (no
+function-style bindings, and no type signatures); these bindings are
+neither polymorphic or recursive.  
+</para></listitem>
+<listitem><para>
+You may not mix implicit-parameter bindings with ordinary bindings in a 
+single <literal>let</literal>
+expression; use two nested <literal>let</literal>s instead.
+(In the case of <literal>where</literal> you are stuck, since you can't nest <literal>where</literal> clauses.)
+</para></listitem>
+
+<listitem><para>
+You may put multiple implicit-parameter bindings in a
+single binding group; but they are <emphasis>not</emphasis> treated
+as a mutually recursive group (as ordinary <literal>let</literal> bindings are).
+Instead they are treated as a non-recursive group, simultaneously binding all the implicit
+parameter.  The bindings are not nested, and may be re-ordered without changing
+the meaning of the program.
+For example, consider:
+<programlisting>
+  f t = let { ?x = t; ?y = ?x+(1::Int) } in ?x + ?y
+</programlisting>
+The use of <literal>?x</literal> in the binding for <literal>?y</literal> does not "see"
+the binding for <literal>?x</literal>, so the type of <literal>f</literal> is
+<programlisting>
+  f :: (?x::Int) => Int -> Int
+</programlisting>
+</para></listitem>
+</itemizedlist>
 </para>
 
-<sect2 id="univ">
-<title>Universally-quantified data type fields
-</title>
+</sect3>
+</sect2>
 
+<sect2 id="linear-implicit-parameters">
+<title>Linear implicit parameters
+</title>
 <para>
-In a <literal>data</literal> or <literal>newtype</literal> declaration one can quantify
-the types of the constructor arguments.  Here are several examples:
+Linear implicit parameters are an idea developed by Koen Claessen,
+Mark Shields, and Simon PJ.  They address the long-standing
+problem that monads seem over-kill for certain sorts of problem, notably:
 </para>
+<itemizedlist>
+<listitem> <para> distributing a supply of unique names </para> </listitem>
+<listitem> <para> distributing a suppply of random numbers </para> </listitem>
+<listitem> <para> distributing an oracle (as in QuickCheck) </para> </listitem>
+</itemizedlist>
 
 <para>
-
+Linear implicit parameters are just like ordinary implicit parameters,
+except that they are "linear" -- that is, they cannot be copied, and
+must be explicitly "split" instead.  Linear implicit parameters are
+written '<literal>%x</literal>' instead of '<literal>?x</literal>'.  
+(The '/' in the '%' suggests the split!)
+</para>
+<para>
+For example:
 <programlisting>
-data T a = T1 (forall b. b -> b -> b) a
+    import GHC.Exts( Splittable )
 
-data MonadT m = MkMonad { return :: forall a. a -> m a,
-                          bind   :: forall a b. m a -> (a -> m b) -> m b
-                        }
+    data NameSupply = ...
+    
+    splitNS :: NameSupply -> (NameSupply, NameSupply)
+    newName :: NameSupply -> Name
 
-newtype Swizzle = MkSwizzle (Ord a => [a] -> [a])
-</programlisting>
+    instance Splittable NameSupply where
+       split = splitNS
 
-</para>
 
-<para>
-The constructors now have so-called <emphasis>rank 2</emphasis> polymorphic
-types, in which there is a for-all in the argument types.:
+    f :: (%ns :: NameSupply) => Env -> Expr -> Expr
+    f env (Lam x e) = Lam x' (f env e)
+                   where
+                     x'   = newName %ns
+                     env' = extend env x x'
+    ...more equations for f...
+</programlisting>
+Notice that the implicit parameter %ns is consumed 
+<itemizedlist>
+<listitem> <para> once by the call to <literal>newName</literal> </para> </listitem>
+<listitem> <para> once by the recursive call to <literal>f</literal> </para></listitem>
+</itemizedlist>
 </para>
-
 <para>
-
+So the translation done by the type checker makes
+the parameter explicit:
 <programlisting>
-T1 :: forall a. (forall b. b -> b -> b) -> a -> T a
-MkMonad :: forall m. (forall a. a -> m a)
-                  -> (forall a b. m a -> (a -> m b) -> m b)
-                  -> MonadT m
-MkSwizzle :: (Ord a => [a] -> [a]) -> Swizzle
+    f :: NameSupply -> Env -> Expr -> Expr
+    f ns env (Lam x e) = Lam x' (f ns1 env e)
+                      where
+                        (ns1,ns2) = splitNS ns
+                        x' = newName ns2
+                        env = extend env x x'
 </programlisting>
-
+Notice the call to 'split' introduced by the type checker.
+How did it know to use 'splitNS'?  Because what it really did
+was to introduce a call to the overloaded function 'split',
+defined by the class <literal>Splittable</literal>:
+<programlisting>
+       class Splittable a where
+         split :: a -> (a,a)
+</programlisting>
+The instance for <literal>Splittable NameSupply</literal> tells GHC how to implement
+split for name supplies.  But we can simply write
+<programlisting>
+       g x = (x, %ns, %ns)
+</programlisting>
+and GHC will infer
+<programlisting>
+       g :: (Splittable a, %ns :: a) => b -> (b,a,a)
+</programlisting>
+The <literal>Splittable</literal> class is built into GHC.  It's exported by module 
+<literal>GHC.Exts</literal>.
 </para>
-
 <para>
-Notice that you don't need to use a <literal>forall</literal> if there's an
-explicit context.  For example in the first argument of the
-constructor <function>MkSwizzle</function>, an implicit "<literal>forall a.</literal>" is
-prefixed to the argument type.  The implicit <literal>forall</literal>
-quantifies all type variables that are not already in scope, and are
-mentioned in the type quantified over.
+Other points:
+<itemizedlist>
+<listitem> <para> '<literal>?x</literal>' and '<literal>%x</literal>' 
+are entirely distinct implicit parameters: you 
+  can use them together and they won't intefere with each other. </para>
+</listitem>
+
+<listitem> <para> You can bind linear implicit parameters in 'with' clauses. </para> </listitem>
+
+<listitem> <para>You cannot have implicit parameters (whether linear or not)
+  in the context of a class or instance declaration. </para></listitem>
+</itemizedlist>
 </para>
 
-<para>
-As for type signatures, implicit quantification happens for non-overloaded
-types too.  So if you write this:
+<sect3><title>Warnings</title>
 
+<para>
+The monomorphism restriction is even more important than usual.
+Consider the example above:
 <programlisting>
-  data T a = MkT (Either a b) (b -> b)
+    f :: (%ns :: NameSupply) => Env -> Expr -> Expr
+    f env (Lam x e) = Lam x' (f env e)
+                   where
+                     x'   = newName %ns
+                     env' = extend env x x'
 </programlisting>
+If we replaced the two occurrences of x' by (newName %ns), which is
+usually a harmless thing to do, we get:
+<programlisting>
+    f :: (%ns :: NameSupply) => Env -> Expr -> Expr
+    f env (Lam x e) = Lam (newName %ns) (f env e)
+                   where
+                     env' = extend env x (newName %ns)
+</programlisting>
+But now the name supply is consumed in <emphasis>three</emphasis> places
+(the two calls to newName,and the recursive call to f), so
+the result is utterly different.  Urk!  We don't even have 
+the beta rule.
+</para>
+<para>
+Well, this is an experimental change.  With implicit
+parameters we have already lost beta reduction anyway, and
+(as John Launchbury puts it) we can't sensibly reason about
+Haskell programs without knowing their typing.
+</para>
 
-it's just as if you had written this:
+</sect3>
 
+<sect3><title>Recursive functions</title>
+<para>Linear implicit parameters can be particularly tricky when you have a recursive function
+Consider
 <programlisting>
-  data T a = MkT (forall b. Either a b) (forall b. b -> b)
+        foo :: %x::T => Int -> [Int]
+        foo 0 = []
+        foo n = %x : foo (n-1)
 </programlisting>
-
-That is, since the type variable <literal>b</literal> isn't in scope, it's
-implicitly universally quantified.  (Arguably, it would be better
-to <emphasis>require</emphasis> explicit quantification on constructor arguments
-where that is what is wanted.  Feedback welcomed.)
+where T is some type in class Splittable.</para>
+<para>
+Do you get a list of all the same T's or all different T's
+(assuming that split gives two distinct T's back)?
+</para><para>
+If you supply the type signature, taking advantage of polymorphic
+recursion, you get what you'd probably expect.  Here's the
+translated term, where the implicit param is made explicit:
+<programlisting>
+        foo x 0 = []
+        foo x n = let (x1,x2) = split x
+                  in x1 : foo x2 (n-1)
+</programlisting>
+But if you don't supply a type signature, GHC uses the Hindley
+Milner trick of using a single monomorphic instance of the function
+for the recursive calls. That is what makes Hindley Milner type inference
+work.  So the translation becomes
+<programlisting>
+        foo x = let
+                  foom 0 = []
+                  foom n = x : foom (n-1)
+                in
+                foom
+</programlisting>
+Result: 'x' is not split, and you get a list of identical T's.  So the
+semantics of the program depends on whether or not foo has a type signature.
+Yikes!
+</para><para>
+You may say that this is a good reason to dislike linear implicit parameters
+and you'd be right.  That is why they are an experimental feature. 
 </para>
+</sect3>
 
 </sect2>
 
-<sect2>
-<title>Construction </title>
+<sect2 id="functional-dependencies">
+<title>Functional dependencies
+</title>
 
+<para> Functional dependencies are implemented as described by Mark Jones
+in &ldquo;<ulink url="http://www.cse.ogi.edu/~mpj/pubs/fundeps.html">Type Classes with Functional Dependencies</ulink>&rdquo;, Mark P. Jones, 
+In Proceedings of the 9th European Symposium on Programming, 
+ESOP 2000, Berlin, Germany, March 2000, Springer-Verlag LNCS 1782,
+.
+</para>
 <para>
-You construct values of types <literal>T1, MonadT, Swizzle</literal> by applying
-the constructor to suitable values, just as usual.  For example,
+Functional dependencies are introduced by a vertical bar in the syntax of a 
+class declaration;  e.g. 
+<programlisting>
+  class (Monad m) => MonadState s m | m -> s where ...
+
+  class Foo a b c | a b -> c where ...
+</programlisting>
+There should be more documentation, but there isn't (yet).  Yell if you need it.
 </para>
+</sect2>
+
+
+<sect2 id="universal-quantification">
+<title>Arbitrary-rank polymorphism
+</title>
 
 <para>
+Haskell type signatures are implicitly quantified.  The new keyword <literal>forall</literal>
+allows us to say exactly what this means.  For example:
+</para>
+<para>
+<programlisting>
+        g :: b -> b
+</programlisting>
+means this:
+<programlisting>
+        g :: forall b. (b -> b)
+</programlisting>
+The two are treated identically.
+</para>
 
+<para>
+However, GHC's type system supports <emphasis>arbitrary-rank</emphasis> 
+explicit universal quantification in
+types. 
+For example, all the following types are legal:
 <programlisting>
-(T1 (\xy->x) 3) :: T Int
+    f1 :: forall a b. a -> b -> a
+    g1 :: forall a b. (Ord a, Eq  b) => a -> b -> a
 
-(MkSwizzle sort)    :: Swizzle
-(MkSwizzle reverse) :: Swizzle
+    f2 :: (forall a. a->a) -> Int -> Int
+    g2 :: (forall a. Eq a => [a] -> a -> Bool) -> Int -> Int
 
-(let r x = Just x
-     b m k = case m of
-                Just y -> k y
-                Nothing -> Nothing
-  in
-  MkMonad r b) :: MonadT Maybe
+    f3 :: ((forall a. a->a) -> Int) -> Bool -> Bool
 </programlisting>
-
+Here, <literal>f1</literal> and <literal>g1</literal> are rank-1 types, and
+can be written in standard Haskell (e.g. <literal>f1 :: a->b->a</literal>).
+The <literal>forall</literal> makes explicit the universal quantification that
+is implicitly added by Haskell.
 </para>
-
 <para>
-The type of the argument can, as usual, be more general than the type
-required, as <literal>(MkSwizzle reverse)</literal> shows.  (<function>reverse</function>
-does not need the <literal>Ord</literal> constraint.)
+The functions <literal>f2</literal> and <literal>g2</literal> have rank-2 types;
+the <literal>forall</literal> is on the left of a function arrrow.  As <literal>g2</literal>
+shows, the polymorphic type on the left of the function arrow can be overloaded.
+</para>
+<para>
+The functions <literal>f3</literal> and <literal>g3</literal> have rank-3 types;
+they have rank-2 types on the left of a function arrow.
+</para>
+<para>
+GHC allows types of arbitrary rank; you can nest <literal>forall</literal>s
+arbitrarily deep in function arrows.   (GHC used to be restricted to rank 2, but
+that restriction has now been lifted.)
+In particular, a forall-type (also called a "type scheme"),
+including an operational type class context, is legal:
+<itemizedlist>
+<listitem> <para> On the left of a function arrow </para> </listitem>
+<listitem> <para> On the right of a function arrow (see <xref linkend="hoist">) </para> </listitem>
+<listitem> <para> As the argument of a constructor, or type of a field, in a data type declaration. For
+example, any of the <literal>f1,f2,f3,g1,g2,g3</literal> above would be valid
+field type signatures.</para> </listitem>
+<listitem> <para> As the type of an implicit parameter </para> </listitem>
+<listitem> <para> In a pattern type signature (see <xref linkend="scoped-type-variables">) </para> </listitem>
+</itemizedlist>
+There is one place you cannot put a <literal>forall</literal>:
+you cannot instantiate a type variable with a forall-type.  So you cannot 
+make a forall-type the argument of a type constructor.  So these types are illegal:
+<programlisting>
+    x1 :: [forall a. a->a]
+    x2 :: (forall a. a->a, Int)
+    x3 :: Maybe (forall a. a->a)
+</programlisting>
+Of course <literal>forall</literal> becomes a keyword; you can't use <literal>forall</literal> as
+a type variable any more!
 </para>
 
-</sect2>
 
-<sect2>
-<title>Pattern matching</title>
+<sect3 id="univ">
+<title>Examples
+</title>
 
 <para>
-When you use pattern matching, the bound variables may now have
-polymorphic types.  For example:
+In a <literal>data</literal> or <literal>newtype</literal> declaration one can quantify
+the types of the constructor arguments.  Here are several examples:
 </para>
 
 <para>
 
 <programlisting>
-        f :: T a -> a -> (a, Char)
-        f (T1 f k) x = (f k x, f 'c' 'd')
+data T a = T1 (forall b. b -> b -> b) a
 
-        g :: (Ord a, Ord b) => Swizzle -> [a] -> (a -> b) -> [b]
-        g (MkSwizzle s) xs f = s (map f (s xs))
+data MonadT m = MkMonad { return :: forall a. a -> m a,
+                          bind   :: forall a b. m a -> (a -> m b) -> m b
+                        }
 
-        h :: MonadT m -> [m a] -> m [a]
-        h m [] = return m []
-        h m (x:xs) = bind m x           $ \y ->
-                      bind m (h m xs)   $ \ys ->
-                      return m (y:ys)
+newtype Swizzle = MkSwizzle (Ord a => [a] -> [a])
 </programlisting>
 
 </para>
 
 <para>
-In the function <function>h</function> we use the record selectors <literal>return</literal>
-and <literal>bind</literal> to extract the polymorphic bind and return functions
-from the <literal>MonadT</literal> data structure, rather than using pattern
-matching.
+The constructors have rank-2 types:
 </para>
 
 <para>
-You cannot pattern-match against an argument that is polymorphic.
-For example:
 
 <programlisting>
-        newtype TIM s a = TIM (ST s (Maybe a))
-
-        runTIM :: (forall s. TIM s a) -> Maybe a
-        runTIM (TIM m) = runST m
+T1 :: forall a. (forall b. b -> b -> b) -> a -> T a
+MkMonad :: forall m. (forall a. a -> m a)
+                  -> (forall a b. m a -> (a -> m b) -> m b)
+                  -> MonadT m
+MkSwizzle :: (Ord a => [a] -> [a]) -> Swizzle
 </programlisting>
 
 </para>
 
 <para>
-Here the pattern-match fails, because you can't pattern-match against
-an argument of type <literal>(forall s. TIM s a)</literal>.  Instead you
-must bind the variable and pattern match in the right hand side:
+Notice that you don't need to use a <literal>forall</literal> if there's an
+explicit context.  For example in the first argument of the
+constructor <function>MkSwizzle</function>, an implicit "<literal>forall a.</literal>" is
+prefixed to the argument type.  The implicit <literal>forall</literal>
+quantifies all type variables that are not already in scope, and are
+mentioned in the type quantified over.
+</para>
+
+<para>
+As for type signatures, implicit quantification happens for non-overloaded
+types too.  So if you write this:
 
 <programlisting>
-        runTIM :: (forall s. TIM s a) -> Maybe a
-        runTIM tm = case tm of { TIM m -> runST m }
+  data T a = MkT (Either a b) (b -> b)
 </programlisting>
 
-The <literal>tm</literal> on the right hand side is (invisibly) instantiated, like
-any polymorphic value at its occurrence site, and now you can pattern-match
-against it.
-</para>
+it's just as if you had written this:
 
-</sect2>
+<programlisting>
+  data T a = MkT (forall b. Either a b) (forall b. b -> b)
+</programlisting>
 
-<sect2>
-<title>The partial-application restriction</title>
+That is, since the type variable <literal>b</literal> isn't in scope, it's
+implicitly universally quantified.  (Arguably, it would be better
+to <emphasis>require</emphasis> explicit quantification on constructor arguments
+where that is what is wanted.  Feedback welcomed.)
+</para>
 
 <para>
-There is really only one way in which data structures with polymorphic
-components might surprise you: you must not partially apply them.
-For example, this is illegal:
+You construct values of types <literal>T1, MonadT, Swizzle</literal> by applying
+the constructor to suitable values, just as usual.  For example,
 </para>
 
 <para>
 
 <programlisting>
-        map MkSwizzle [sort, reverse]
+    a1 :: T Int
+    a1 = T1 (\xy->x) 3
+    
+    a2, a3 :: Swizzle
+    a2 = MkSwizzle sort
+    a3 = MkSwizzle reverse
+    
+    a4 :: MonadT Maybe
+    a4 = let r x = Just x
+            b m k = case m of
+                      Just y -> k y
+                      Nothing -> Nothing
+         in
+         MkMonad r b
+
+    mkTs :: (forall b. b -> b -> b) -> a -> [T a]
+    mkTs f x y = [T1 f x, T1 f y]
 </programlisting>
 
 </para>
 
 <para>
-The restriction is this: <emphasis>every subexpression of the program must
-have a type that has no for-alls, except that in a function
-application (f e1&hellip;en) the partial applications are not subject to
-this rule</emphasis>.  The restriction makes type inference feasible.
+The type of the argument can, as usual, be more general than the type
+required, as <literal>(MkSwizzle reverse)</literal> shows.  (<function>reverse</function>
+does not need the <literal>Ord</literal> constraint.)
 </para>
 
 <para>
-In the illegal example, the sub-expression <literal>MkSwizzle</literal> has the
-polymorphic type <literal>(Ord b => [b] -> [b]) -> Swizzle</literal> and is not
-a sub-expression of an enclosing application.  On the other hand, this
-expression is OK:
+When you use pattern matching, the bound variables may now have
+polymorphic types.  For example:
 </para>
 
 <para>
 
 <programlisting>
-        map (T1 (\a b -> a)) [1,2,3]
+    f :: T a -> a -> (a, Char)
+    f (T1 w k) x = (w k x, w 'c' 'd')
+
+    g :: (Ord a, Ord b) => Swizzle -> [a] -> (a -> b) -> [b]
+    g (MkSwizzle s) xs f = s (map f (s xs))
+
+    h :: MonadT m -> [m a] -> m [a]
+    h m [] = return m []
+    h m (x:xs) = bind m x          $ \y ->
+                 bind m (h m xs)   $ \ys ->
+                 return m (y:ys)
 </programlisting>
 
 </para>
 
 <para>
-even though it involves a partial application of <function>T1</function>, because
-the sub-expression <literal>T1 (\a b -> a)</literal> has type <literal>Int -> T
-Int</literal>.
+In the function <function>h</function> we use the record selectors <literal>return</literal>
+and <literal>bind</literal> to extract the polymorphic bind and return functions
+from the <literal>MonadT</literal> data structure, rather than using pattern
+matching.
 </para>
+</sect3>
 
-</sect2>
-
-<sect2 id="sigs">
-<title>Type signatures
-</title>
+<sect3>
+<title>Type inference</title>
 
 <para>
-Once you have data constructors with universally-quantified fields, or
-constants such as <Constant>runST</Constant> that have rank-2 types, it isn't long
-before you discover that you need more!  Consider:
+In general, type inference for arbitrary-rank types is undecideable.
+GHC uses an algorithm proposed by Odersky and Laufer ("Putting type annotations to work", POPL'96)
+to get a decidable algorithm by requiring some help from the programmer.
+We do not yet have a formal specification of "some help" but the rule is this:
 </para>
-
 <para>
-
+<emphasis>For a lambda-bound or case-bound variable, x, either the programmer
+provides an explicit polymorphic type for x, or GHC's type inference will assume
+that x's type has no foralls in it</emphasis>.
+</para>
+<para>
+What does it mean to "provide" an explicit type for x?  You can do that by 
+giving a type signature for x directly, using a pattern type signature
+(<xref linkend="scoped-type-variables">), thus:
 <programlisting>
-  mkTs f x y = [T1 f x, T1 f y]
+     \ f :: (forall a. a->a) -> (f True, f 'c')
 </programlisting>
-
+Alternatively, you can give a type signature to the enclosing
+context, which GHC can "push down" to find the type for the variable:
+<programlisting>
+     (\ f -> (f True, f 'c')) :: (forall a. a->a) -> (Bool,Char)
+</programlisting>
+Here the type signature on the expression can be pushed inwards
+to give a type signature for f.  Similarly, and more commonly,
+one can give a type signature for the function itself:
+<programlisting>
+     h :: (forall a. a->a) -> (Bool,Char)
+     h f = (f True, f 'c')
+</programlisting>
+You don't need to give a type signature if the lambda bound variable
+is a constructor argument.  Here is an example we saw earlier:
+<programlisting>
+    f :: T a -> a -> (a, Char)
+    f (T1 w k) x = (w k x, w 'c' 'd')
+</programlisting>
+Here we do not need to give a type signature to <literal>w</literal>, because
+it is an argument of constructor <literal>T1</literal> and that tells GHC all
+it needs to know.
 </para>
 
-<para>
-<function>mkTs</function> is a fuction that constructs some values of type
-<literal>T</literal>, using some pieces passed to it.  The trouble is that since
-<literal>f</literal> is a function argument, Haskell assumes that it is
-monomorphic, so we'll get a type error when applying <function>T1</function> to
-it.  This is a rather silly example, but the problem really bites in
-practice.  Lots of people trip over the fact that you can't make
-"wrappers functions" for <Constant>runST</Constant> for exactly the same reason.
-In short, it is impossible to build abstractions around functions with
-rank-2 types.
-</para>
+</sect3>
 
-<para>
-The solution is fairly clear.  We provide the ability to give a rank-2
-type signature for <emphasis>ordinary</emphasis> functions (not only data
-constructors), thus:
-</para>
 
-<para>
+<sect3 id="implicit-quant">
+<title>Implicit quantification</title>
 
+<para>
+GHC performs implicit quantification as follows.  <emphasis>At the top level (only) of 
+user-written types, if and only if there is no explicit <literal>forall</literal>,
+GHC finds all the type variables mentioned in the type that are not already
+in scope, and universally quantifies them.</emphasis>  For example, the following pairs are 
+equivalent:
 <programlisting>
-  mkTs :: (forall b. b -> b -> b) -> a -> [T a]
-  mkTs f x y = [T1 f x, T1 f y]
-</programlisting>
+  f :: a -> a
+  f :: forall a. a -> a
 
+  g (x::a) = let
+                h :: a -> b -> b
+                h x y = y
+             in ...
+  g (x::a) = let
+                h :: forall b. a -> b -> b
+                h x y = y
+             in ...
+</programlisting>
 </para>
-
 <para>
-This type signature tells the compiler to attribute <literal>f</literal> with
-the polymorphic type <literal>(forall b. b -> b -> b)</literal> when type
-checking the body of <function>mkTs</function>, so now the application of
-<function>T1</function> is fine.
-</para>
+Notice that GHC does <emphasis>not</emphasis> find the innermost possible quantification
+point.  For example:
+<programlisting>
+  f :: (a -> a) -> Int
+           -- MEANS
+  f :: forall a. (a -> a) -> Int
+           -- NOT
+  f :: (forall a. a -> a) -> Int
 
-<para>
-There are two restrictions:
-</para>
 
-<para>
+  g :: (Ord a => a -> a) -> Int
+           -- MEANS the illegal type
+  g :: forall a. (Ord a => a -> a) -> Int
+           -- NOT
+  g :: (forall a. Ord a => a -> a) -> Int
+</programlisting>
+The latter produces an illegal type, which you might think is silly,
+but at least the rule is simple.  If you want the latter type, you
+can write your for-alls explicitly.  Indeed, doing so is strongly advised
+for rank-2 types.
+</para>
+</sect3>
+</sect2>
 
-<itemizedlist>
-<listitem>
+<sect2 id="type-synonyms">
+<title>Liberalised type synonyms 
+</title>
 
 <para>
- You can only define a rank 2 type, specified by the following
-grammar:
-
-
+Type synonmys are like macros at the type level, and
+GHC does validity checking on types <emphasis>only after expanding type synonyms</emphasis>.
+That means that GHC can be very much more liberal about type synonyms than Haskell 98:
+<itemizedlist>
+<listitem> <para>You can write a <literal>forall</literal> (including overloading)
+in a type synonym, thus:
 <programlisting>
-rank2type ::= [forall tyvars .] [context =>] funty
-funty     ::= ([forall tyvars .] [context =>] ty) -> funty
-            | ty
-ty        ::= ...current Haskell monotype syntax...
-</programlisting>
-
+  type Discard a = forall b. Show b => a -> b -> (a, String)
 
-Informally, the universal quantification must all be right at the beginning,
-or at the top level of a function argument.
+  f :: Discard a
+  f x y = (x, show y)
 
+  g :: Discard Int -> (Int,Bool)    -- A rank-2 type
+  g f = f Int True
+</programlisting>
 </para>
 </listitem>
-<listitem>
 
-<para>
- There is a restriction on the definition of a function whose
-type signature is a rank-2 type: the polymorphic arguments must be
-matched on the left hand side of the "<literal>=</literal>" sign.  You can't
-define <function>mkTs</function> like this:
+<listitem><para>
+You can write an unboxed tuple in a type synonym:
+<programlisting>
+  type Pr = (# Int, Int #)
 
+  h :: Int -> Pr
+  h x = (# x, x #)
+</programlisting>
+</para></listitem>
 
+<listitem><para>
+You can apply a type synonym to a forall type:
 <programlisting>
-mkTs :: (forall b. b -> b -> b) -> a -> [T a]
-mkTs = \ f x y -> [T1 f x, T1 f y]
+  type Foo a = a -> a -> Bool
+  f :: Foo (forall b. b->b)
 </programlisting>
+After expanding the synonym, <literal>f</literal> has the legal (in GHC) type:
+<programlisting>
+  f :: (forall b. b->b) -> (forall b. b->b) -> Bool
+</programlisting>
+</para></listitem>
 
+<listitem><para>
+You can apply a type synonym to a partially applied type synonym:
+<programlisting>
+  type Generic i o = forall x. i x -> o x
+  type Id x = x
+  
+  foo :: Generic Id []
+</programlisting>
+After epxanding the synonym, <literal>foo</literal> has the legal (in GHC) type:
+<programlisting>
+  foo :: forall x. x -> [x]
+</programlisting>
+</para></listitem>
 
-
-The same partial-application rule applies to ordinary functions with
-rank-2 types as applied to data constructors.
-
+</itemizedlist>
 </para>
-</listitem>
 
+<para>
+GHC currently does kind checking before expanding synonyms (though even that
+could be changed.)
+</para>
+<para>
+After expanding type synonyms, GHC does validity checking on types, looking for
+the following mal-formedness which isn't detected simply by kind checking:
+<itemizedlist>
+<listitem><para>
+Type constructor applied to a type involving for-alls.
+</para></listitem>
+<listitem><para>
+Unboxed tuple on left of an arrow.
+</para></listitem>
+<listitem><para>
+Partially-applied type synonym.
+</para></listitem>
 </itemizedlist>
+So, for example,
+this will be rejected:
+<programlisting>
+  type Pr = (# Int, Int #)
 
+  h :: Pr -> Int
+  h x = ...
+</programlisting>
+because GHC does not allow  unboxed tuples on the left of a function arrow.
 </para>
-
 </sect2>
 
-
 <sect2 id="hoist">
-<title>Type synonyms and hoisting
-</title>
-
+<title>For-all hoisting</title>
 <para>
-GHC also allows you to write a <literal>forall</literal> in a type synonym, thus:
-<programlisting>
-  type Discard a = forall b. a -> b -> a
-
-  f :: Discard a
-  f x y = x
-</programlisting>
-However, it is often convenient to use these sort of synonyms at the right hand
+It is often convenient to use generalised type synonyms at the right hand
 end of an arrow, thus:
 <programlisting>
   type Discard a = forall b. a -> b -> a
@@ -1636,9 +2228,9 @@ In general, the rule is this: <emphasis>to determine the type specified by any e
 user-written type (e.g. in a type signature), GHC expands type synonyms and then repeatedly
 performs the transformation:</emphasis>
 <programlisting>
-  <emphasis>type1</emphasis> -> forall a. <emphasis>type2</emphasis>
+  <emphasis>type1</emphasis> -> forall a1..an. <emphasis>context2</emphasis> => <emphasis>type2</emphasis>
 ==>
-  forall a. <emphasis>type1</emphasis> -> <emphasis>type2</emphasis>
+  forall a1..an. <emphasis>context2</emphasis> => <emphasis>type1</emphasis> -> <emphasis>type2</emphasis>
 </programlisting>
 (In fact, GHC tries to retain as much synonym information as possible for use in
 error messages, but that is a usability issue.)  This rule applies, of course, whether
@@ -1648,11 +2240,22 @@ valid way to write <literal>g</literal>'s type signature:
   g :: Int -> Int -> forall b. b -> Int
 </programlisting>
 </para>
+<para>
+When doing this hoisting operation, GHC eliminates duplicate constraints.  For
+example:
+<programlisting>
+  type Foo a = (?x::Int) => Bool -> a
+  g :: Foo (Foo Int)
+</programlisting>
+means
+<programlisting>
+  g :: (?x::Int) => Bool -> Bool -> Int
+</programlisting>
+</para>
 </sect2>
 
-</sect1>
 
-<sect1 id="existential-quantification">
+<sect2 id="existential-quantification">
 <title>Existentially quantified data constructors
 </title>
 
@@ -1742,7 +2345,7 @@ that collection of packages in a uniform manner.  You can express
 quite a bit of object-oriented-like programming this way.
 </para>
 
-<sect2 id="existential">
+<sect3 id="existential">
 <title>Why existential?
 </title>
 
@@ -1765,9 +2368,9 @@ But Haskell programmers can safely think of the ordinary
 adding a new existential quantification construct.
 </para>
 
-</sect2>
+</sect3>
 
-<sect2>
+<sect3>
 <title>Type classes</title>
 
 <para>
@@ -1810,7 +2413,7 @@ So this program is legal:
   f :: Baz -> String
   f (Baz1 p q) | p == q    = "Yes"
                | otherwise = "No"
-  f (Baz1 v fn)            = show (fn v)
+  f (Baz2 v fn)            = show (fn v)
 </programlisting>
 
 </para>
@@ -1827,9 +2430,9 @@ Notice the way that the syntax fits smoothly with that used for
 universal quantification earlier.
 </para>
 
-</sect2>
+</sect3>
 
-<sect2>
+<sect3>
 <title>Restrictions</title>
 
 <para>
@@ -1900,8 +2503,13 @@ bindings. So this is illegal:
   f3 x = a==b where { Baz1 a b = x }
 </programlisting>
 
+Instead, use a <literal>case</literal> expression:
+
+<programlisting>
+  f3 x = case x of Baz1 a b -> a==b
+</programlisting>
 
-You can only pattern-match
+In general, you can only pattern-match
 on an existentially-quantified constructor in a <literal>case</literal> expression or
 in the patterns of a function definition.
 
@@ -1973,118 +2581,40 @@ declarations.  Define your own instances!
 
 </para>
 
-</sect2>
+</sect3>
 
-</sect1>
+</sect2>
 
-<sect1 id="sec-assertions">
-<title>Assertions
-<indexterm><primary>Assertions</primary></indexterm>
+<sect2 id="scoped-type-variables">
+<title>Scoped type variables
 </title>
 
 <para>
-If you want to make use of assertions in your standard Haskell code, you
-could define a function like the following:
+A <emphasis>pattern type signature</emphasis> can introduce a <emphasis>scoped type
+variable</emphasis>.  For example
 </para>
 
 <para>
 
 <programlisting>
-assert :: Bool -> a -> a
-assert False x = error "assertion failed!"
-assert _     x = x
+f (xs::[a]) = ys ++ ys
+           where
+              ys :: [a]
+              ys = reverse xs
 </programlisting>
 
 </para>
 
 <para>
-which works, but gives you back a less than useful error message --
-an assertion failed, but which and where?
-</para>
-
-<para>
-One way out is to define an extended <function>assert</function> function which also
-takes a descriptive string to include in the error message and
-perhaps combine this with the use of a pre-processor which inserts
-the source location where <function>assert</function> was used.
-</para>
-
-<para>
-Ghc offers a helping hand here, doing all of this for you. For every
-use of <function>assert</function> in the user's source:
-</para>
-
-<para>
-
-<programlisting>
-kelvinToC :: Double -> Double
-kelvinToC k = assert (k &gt;= 0.0) (k+273.15)
-</programlisting>
-
-</para>
-
-<para>
-Ghc will rewrite this to also include the source location where the
-assertion was made,
-</para>
-
-<para>
-
-<programlisting>
-assert pred val ==> assertError "Main.hs|15" pred val
-</programlisting>
-
-</para>
-
-<para>
-The rewrite is only performed by the compiler when it spots
-applications of <function>Exception.assert</function>, so you can still define and
-use your own versions of <function>assert</function>, should you so wish. If not,
-import <literal>Exception</literal> to make use <function>assert</function> in your code.
-</para>
-
-<para>
-To have the compiler ignore uses of assert, use the compiler option
-<option>-fignore-asserts</option>. <indexterm><primary>-fignore-asserts option</primary></indexterm> That is,
-expressions of the form <literal>assert pred e</literal> will be rewritten to <literal>e</literal>.
-</para>
-
-<para>
-Assertion failures can be caught, see the documentation for the
-<literal>Exception</literal> library (<xref linkend="sec-Exception">)
-for the details.
-</para>
-
-</sect1>
-
-<sect1 id="scoped-type-variables">
-<title>Scoped Type Variables
-</title>
-
-<para>
-A <emphasis>pattern type signature</emphasis> can introduce a <emphasis>scoped type
-variable</emphasis>.  For example
-</para>
-
-<para>
-
-<programlisting>
-f (xs::[a]) = ys ++ ys
-           where
-              ys :: [a]
-              ys = reverse xs
-</programlisting>
-
-</para>
-
-<para>
-The pattern <literal>(xs::[a])</literal> includes a type signature for <VarName>xs</VarName>.
-This brings the type variable <literal>a</literal> into scope; it scopes over
-all the patterns and right hand sides for this equation for <function>f</function>.
-In particular, it is in scope at the type signature for <VarName>y</VarName>.
+The pattern <literal>(xs::[a])</literal> includes a type signature for <VarName>xs</VarName>.
+This brings the type variable <literal>a</literal> into scope; it scopes over
+all the patterns and right hand sides for this equation for <function>f</function>.
+In particular, it is in scope at the type signature for <VarName>y</VarName>.
 </para>
 
 <para>
+ Pattern type signatures are completely orthogonal to ordinary, separate
+type signatures.  The two can be used independently or together.
 At ordinary type signatures, such as that for <VarName>ys</VarName>, any type variables
 mentioned in the type signature <emphasis>that are not in scope</emphasis> are
 implicitly universally quantified.  (If there are no type variables in
@@ -2106,7 +2636,47 @@ are noted.
 So much for the basic idea.  Here are the details.
 </para>
 
-<sect2>
+<sect3>
+<title>What a pattern type signature means</title>
+<para>
+A type variable brought into scope by a pattern type signature is simply
+the name for a type.   The restriction they express is that all occurrences
+of the same name mean the same type.  For example:
+<programlisting>
+  f :: [Int] -> Int -> Int
+  f (xs::[a]) (y::a) = (head xs + y) :: a
+</programlisting>
+The pattern type signatures on the left hand side of
+<literal>f</literal> express the fact that <literal>xs</literal>
+must be a list of things of some type <literal>a</literal>; and that <literal>y</literal>
+must have this same type.  The type signature on the expression <literal>(head xs)</literal>
+specifies that this expression must have the same type <literal>a</literal>.
+<emphasis>There is no requirement that the type named by "<literal>a</literal>" is
+in fact a type variable</emphasis>.  Indeed, in this case, the type named by "<literal>a</literal>" is
+<literal>Int</literal>.  (This is a slight liberalisation from the original rather complex
+rules, which specified that a pattern-bound type variable should be universally quantified.)
+For example, all of these are legal:</para>
+
+<programlisting>
+  t (x::a) (y::a) = x+y*2
+
+  f (x::a) (y::b) = [x,y]       -- a unifies with b
+
+  g (x::a) = x + 1::Int         -- a unifies with Int
+
+  h x = let k (y::a) = [x,y]    -- a is free in the
+        in k x                  -- environment
+
+  k (x::a) True    = ...        -- a unifies with Int
+  k (x::Int) False = ...
+
+  w :: [b] -> [b]
+  w (x::a) = x                  -- a unifies with [b]
+</programlisting>
+
+</sect3>
+
+<sect3>
 <title>Scope and implicit quantification</title>
 
 <para>
@@ -2115,60 +2685,104 @@ So much for the basic idea.  Here are the details.
 <listitem>
 
 <para>
- All the type variables mentioned in the patterns for a single
-function definition equation, that are not already in scope,
-are brought into scope by the patterns.  We describe this set as
-the <emphasis>type variables bound by the equation</emphasis>.
-
+All the type variables mentioned in a pattern,
+that are not already in scope,
+are brought into scope by the pattern.  We describe this set as
+the <emphasis>type variables bound by the pattern</emphasis>.
+For example:
+<programlisting>
+  f (x::a) = let g (y::(a,b)) = fst y
+             in
+             g (x,True)
+</programlisting>
+The pattern <literal>(x::a)</literal> brings the type variable
+<literal>a</literal> into scope, as well as the term 
+variable <literal>x</literal>.  The pattern <literal>(y::(a,b))</literal>
+contains an occurrence of the already-in-scope type variable <literal>a</literal>,
+and brings into scope the type variable <literal>b</literal>.
 </para>
 </listitem>
+
 <listitem>
+<para>
+The type variable(s) bound by the pattern have the same scope
+as the term variable(s) bound by the pattern.  For example:
+<programlisting>
+  let
+    f (x::a) = <...rhs of f...>
+    (p::b, q::b) = (1,2)
+  in <...body of let...>
+</programlisting>
+Here, the type variable <literal>a</literal> scopes over the right hand side of <literal>f</literal>,
+just like <literal>x</literal> does; while the type variable <literal>b</literal> scopes over the
+body of the <literal>let</literal>, and all the other definitions in the <literal>let</literal>,
+just like <literal>p</literal> and <literal>q</literal> do.
+Indeed, the newly bound type variables also scope over any ordinary, separate
+type signatures in the <literal>let</literal> group.
+</para>
+</listitem>
+
 
+<listitem>
 <para>
- The type variables thus brought into scope may be mentioned
-in ordinary type signatures or pattern type signatures anywhere within
-their scope.
+The type variables bound by the pattern may be 
+mentioned in ordinary type signatures or pattern 
+type signatures anywhere within their scope.
 
 </para>
 </listitem>
-<listitem>
 
+<listitem>
 <para>
  In ordinary type signatures, any type variable mentioned in the
 signature that is in scope is <emphasis>not</emphasis> universally quantified.
 
 </para>
 </listitem>
+
 <listitem>
 
 <para>
  Ordinary type signatures do not bring any new type variables
 into scope (except in the type signature itself!). So this is illegal:
 
-
 <programlisting>
   f :: a -> a
   f x = x::a
 </programlisting>
 
-
 It's illegal because <VarName>a</VarName> is not in scope in the body of <function>f</function>,
 so the ordinary signature <literal>x::a</literal> is equivalent to <literal>x::forall a.a</literal>;
 and that is an incorrect typing.
 
 </para>
 </listitem>
-<listitem>
 
+<listitem>
 <para>
- There is no implicit universal quantification on pattern type
-signatures, nor may one write an explicit <literal>forall</literal> type in a pattern
-type signature.  The pattern type signature is a monotype.
-
+The pattern type signature is a monotype:
 </para>
+
+<itemizedlist>
+<listitem> <para> 
+A pattern type signature cannot contain any explicit <literal>forall</literal> quantification.
+</para> </listitem>
+
+<listitem>  <para> 
+The type variables bound by a pattern type signature can only be instantiated to monotypes,
+not to type schemes.
+</para> </listitem>
+
+<listitem>  <para> 
+There is no implicit universal quantification on pattern type signatures (in contrast to
+ordinary type signatures).
+</para> </listitem>
+
+</itemizedlist>
+
 </listitem>
-<listitem>
 
+<listitem>
 <para>
 
 The type variables in the head of a <literal>class</literal> or <literal>instance</literal> declaration
@@ -2194,25 +2808,23 @@ scope over the methods defined in the <literal>where</literal> part.  For exampl
 
 </para>
 
-</sect2>
+</sect3>
 
-<sect2>
-<title>Polymorphism</title>
+<sect3>
+<title>Where a pattern type signature can occur</title>
 
 <para>
-
+A pattern type signature can occur in any pattern.  For example:
 <itemizedlist>
-<listitem>
 
+<listitem>
 <para>
- Pattern type signatures are completely orthogonal to ordinary, separate
-type signatures.  The two can be used independently or together.  There is
-no scoping associated with the names of the type variables in a separate type signature.
+A pattern type signature can be on an arbitrary sub-pattern, not
+ust on a variable:
 
 
 <programlisting>
-   f :: [a] -> [a]
-   f (xs::[b]) = reverse xs
+  f ((x,y)::(a,b)) = (y,x) :: (b,a)
 </programlisting>
 
 
@@ -2221,89 +2833,102 @@ no scoping associated with the names of the type variables in a separate type si
 <listitem>
 
 <para>
- The function must be polymorphic in the type variables
-bound by all its equations.  Operationally, the type variables bound
-by one equation must not:
-
-
-<itemizedlist>
-<listitem>
+ Pattern type signatures, including the result part, can be used
+in lambda abstractions:
 
-<para>
- Be unified with a type (such as <literal>Int</literal>, or <literal>[a]</literal>).
+<programlisting>
+  (\ (x::a, y) :: a -> x)
+</programlisting>
 </para>
 </listitem>
 <listitem>
 
 <para>
- Be unified with a type variable free in the environment.
+ Pattern type signatures, including the result part, can be used
+in <literal>case</literal> expressions:
+
+
+<programlisting>
+  case e of { (x::a, y) :: a -> x }
+</programlisting>
+
 </para>
 </listitem>
-<listitem>
 
+<listitem>
 <para>
- Be unified with each other.  (They may unify with the type variables
-bound by another equation for the same function, of course.)
-</para>
-</listitem>
+To avoid ambiguity, the type after the &ldquo;<literal>::</literal>&rdquo; in a result
+pattern signature on a lambda or <literal>case</literal> must be atomic (i.e. a single
+token or a parenthesised type of some sort).  To see why,
+consider how one would parse this:
 
-</itemizedlist>
 
+<programlisting>
+  \ x :: a -> b -> x
+</programlisting>
 
-For example, the following all fail to type check:
 
+</para>
+</listitem>
 
-<programlisting>
-  f (x::a) (y::b) = [x,y]       -- a unifies with b
+<listitem>
 
-  g (x::a) = x + 1::Int         -- a unifies with Int
+<para>
+ Pattern type signatures can bind existential type variables.
+For example:
 
-  h x = let k (y::a) = [x,y]    -- a is free in the
-        in k x                  -- environment
 
-  k (x::a) True    = ...        -- a unifies with Int
-  k (x::Int) False = ...
+<programlisting>
+  data T = forall a. MkT [a]
 
-  w :: [b] -> [b]
-  w (x::a) = x                  -- a unifies with [b]
+  f :: T -> T
+  f (MkT [t::a]) = MkT t3
+                 where
+                   t3::[a] = [t,t,t]
 </programlisting>
 
 
 </para>
 </listitem>
+
+
 <listitem>
 
 <para>
- The pattern-bound type variable may, however, be constrained
-by the context of the principal type, thus:
-
+Pattern type signatures 
+can be used in pattern bindings:
 
 <programlisting>
-  f (x::a) (y::a) = x+y*2
+  f x = let (y, z::a) = x in ...
+  f1 x                = let (y, z::Int) = x in ...
+  f2 (x::(Int,a))     = let (y, z::a)   = x in ...
+  f3 :: (b->b)        = \x -> x
 </programlisting>
 
+In all such cases, the binding is not generalised over the pattern-bound
+type variables.  Thus <literal>f3</literal> is monomorphic; <literal>f3</literal>
+has type <literal>b -&gt; b</literal> for some type <literal>b</literal>, 
+and <emphasis>not</emphasis> <literal>forall b. b -&gt; b</literal>.
+In contrast, the binding
+<programlisting>
+  f4 :: b->b
+  f4 = \x -> x
+</programlisting>
+makes a polymorphic function, but <literal>b</literal> is not in scope anywhere
+in <literal>f4</literal>'s scope.
 
-gets the inferred type: <literal>forall a. Num a =&gt; a -&gt; a -&gt; a</literal>.
 </para>
 </listitem>
-
 </itemizedlist>
-
 </para>
 
-</sect2>
+</sect3>
 
-<sect2>
+<sect3>
 <title>Result type signatures</title>
 
 <para>
-
-<itemizedlist>
-<listitem>
-
-<para>
- The result type of a function can be given a signature,
-thus:
+The result type of a function can be given a signature, thus:
 
 
 <programlisting>
@@ -2322,248 +2947,1025 @@ you want:
                         in \xs -> map g (reverse xs `zip` xs)
 </programlisting>
 
-
 </para>
-</listitem>
-
-</itemizedlist>
+<para>
+The type variables bound in a result type signature scope over the right hand side
+of the definition. However, consider this corner-case:
+<programlisting>
+  rev1 :: [a] -> [a] = \xs -> reverse xs
 
+  foo ys = rev (ys::[a])
+</programlisting>
+The signature on <literal>rev1</literal> is considered a pattern type signature, not a result
+type signature, and the type variables it binds have the same scope as <literal>rev1</literal>
+itself (i.e. the right-hand side of <literal>rev1</literal> and the rest of the module too).
+In particular, the expression <literal>(ys::[a])</literal> is OK, because the type variable <literal>a</literal>
+is in scope (otherwise it would mean <literal>(ys::forall a.[a])</literal>, which would be rejected).  
+</para>
+<para>
+As mentioned above, <literal>rev1</literal> is made monomorphic by this scoping rule.
+For example, the following program would be rejected, because it claims that <literal>rev1</literal>
+is polymorphic:
+<programlisting>
+  rev1 :: [b] -> [b]
+  rev1 :: [a] -> [a] = \xs -> reverse xs
+</programlisting>
 </para>
 
 <para>
 Result type signatures are not yet implemented in Hugs.
 </para>
 
+</sect3>
+
 </sect2>
 
-<sect2>
-<title>Pattern signatures on other constructs</title>
+<sect2 id="newtype-deriving">
+<title>Generalised derived instances for newtypes</title>
 
 <para>
+When you define an abstract type using <literal>newtype</literal>, you may want
+the new type to inherit some instances from its representation. In
+Haskell 98, you can inherit instances of <literal>Eq</literal>, <literal>Ord</literal>,
+<literal>Enum</literal> and <literal>Bounded</literal> by deriving them, but for any
+other classes you have to write an explicit instance declaration. For
+example, if you define
+
+<programlisting> 
+  newtype Dollars = Dollars Int 
+</programlisting> 
+
+and you want to use arithmetic on <literal>Dollars</literal>, you have to
+explicitly define an instance of <literal>Num</literal>:
+
+<programlisting> 
+  instance Num Dollars where
+    Dollars a + Dollars b = Dollars (a+b)
+    ...
+</programlisting>
+All the instance does is apply and remove the <literal>newtype</literal>
+constructor. It is particularly galling that, since the constructor
+doesn't appear at run-time, this instance declaration defines a
+dictionary which is <emphasis>wholly equivalent</emphasis> to the <literal>Int</literal>
+dictionary, only slower!
+</para>
 
-<itemizedlist>
-<listitem>
 
+<sect3> <title> Generalising the deriving clause </title>
 <para>
- A pattern type signature can be on an arbitrary sub-pattern, not
-just on a variable:
+GHC now permits such instances to be derived instead, so one can write 
+<programlisting> 
+  newtype Dollars = Dollars Int deriving (Eq,Show,Num)
+</programlisting> 
 
+and the implementation uses the <emphasis>same</emphasis> <literal>Num</literal> dictionary
+for <literal>Dollars</literal> as for <literal>Int</literal>. Notionally, the compiler
+derives an instance declaration of the form
 
-<programlisting>
-  f ((x,y)::(a,b)) = (y,x) :: (b,a)
+<programlisting> 
+  instance Num Int => Num Dollars
+</programlisting> 
+
+which just adds or removes the <literal>newtype</literal> constructor according to the type.
+</para>
+<para>
+
+We can also derive instances of constructor classes in a similar
+way. For example, suppose we have implemented state and failure monad
+transformers, such that
+
+<programlisting> 
+  instance Monad m => Monad (State s m) 
+  instance Monad m => Monad (Failure m)
+</programlisting> 
+In Haskell 98, we can define a parsing monad by 
+<programlisting> 
+  type Parser tok m a = State [tok] (Failure m) a
+</programlisting> 
+
+which is automatically a monad thanks to the instance declarations
+above. With the extension, we can make the parser type abstract,
+without needing to write an instance of class <literal>Monad</literal>, via
+
+<programlisting> 
+  newtype Parser tok m a = Parser (State [tok] (Failure m) a)
+                         deriving Monad
+</programlisting>
+In this case the derived instance declaration is of the form 
+<programlisting> 
+  instance Monad (State [tok] (Failure m)) => Monad (Parser tok m) 
+</programlisting> 
+
+Notice that, since <literal>Monad</literal> is a constructor class, the
+instance is a <emphasis>partial application</emphasis> of the new type, not the
+entire left hand side. We can imagine that the type declaration is
+``eta-converted'' to generate the context of the instance
+declaration.
+</para>
+<para>
+
+We can even derive instances of multi-parameter classes, provided the
+newtype is the last class parameter. In this case, a ``partial
+application'' of the class appears in the <literal>deriving</literal>
+clause. For example, given the class
+
+<programlisting> 
+  class StateMonad s m | m -> s where ... 
+  instance Monad m => StateMonad s (State s m) where ... 
+</programlisting> 
+then we can derive an instance of <literal>StateMonad</literal> for <literal>Parser</literal>s by 
+<programlisting> 
+  newtype Parser tok m a = Parser (State [tok] (Failure m) a)
+                         deriving (Monad, StateMonad [tok])
 </programlisting>
 
+The derived instance is obtained by completing the application of the
+class to the new type:
 
+<programlisting> 
+  instance StateMonad [tok] (State [tok] (Failure m)) =>
+           StateMonad [tok] (Parser tok m)
+</programlisting>
 </para>
-</listitem>
-<listitem>
+<para>
 
+As a result of this extension, all derived instances in newtype
+declarations are treated uniformly (and implemented just by reusing
+the dictionary for the representation type), <emphasis>except</emphasis>
+<literal>Show</literal> and <literal>Read</literal>, which really behave differently for
+the newtype and its representation.
+</para>
+</sect3>
+
+<sect3> <title> A more precise specification </title>
 <para>
- Pattern type signatures, including the result part, can be used
-in lambda abstractions:
+Derived instance declarations are constructed as follows. Consider the
+declaration (after expansion of any type synonyms)
 
+<programlisting> 
+  newtype T v1...vn = T' (S t1...tk vk+1...vn) deriving (c1...cm) 
+</programlisting> 
 
-<programlisting>
-  (\ (x::a, y) :: a -> x)
+where 
+ <itemizedlist>
+<listitem><para>
+  <literal>S</literal> is a type constructor, 
+</para></listitem>
+<listitem><para>
+  <literal>t1...tk</literal> are types,
+</para></listitem>
+<listitem><para>
+  <literal>vk+1...vn</literal> are type variables which do not occur in any of
+  the <literal>ti</literal>, and
+</para></listitem>
+<listitem><para>
+  the <literal>ci</literal> are partial applications of
+  classes of the form <literal>C t1'...tj'</literal>, where the arity of <literal>C</literal>
+  is exactly <literal>j+1</literal>.  That is, <literal>C</literal> lacks exactly one type argument.
+</para></listitem>
+</itemizedlist>
+Then, for each <literal>ci</literal>, the derived instance
+declaration is:
+<programlisting> 
+  instance ci (S t1...tk vk+1...v) => ci (T v1...vp)
 </programlisting>
+where <literal>p</literal> is chosen so that <literal>T v1...vp</literal> is of the 
+right <emphasis>kind</emphasis> for the last parameter of class <literal>Ci</literal>.
+</para>
+<para>
 
+As an example which does <emphasis>not</emphasis> work, consider 
+<programlisting> 
+  newtype NonMonad m s = NonMonad (State s m s) deriving Monad 
+</programlisting> 
+Here we cannot derive the instance 
+<programlisting> 
+  instance Monad (State s m) => Monad (NonMonad m) 
+</programlisting> 
 
-Type variables bound by these patterns must be polymorphic in
-the sense defined above.
-For example:
+because the type variable <literal>s</literal> occurs in <literal>State s m</literal>,
+and so cannot be "eta-converted" away. It is a good thing that this
+<literal>deriving</literal> clause is rejected, because <literal>NonMonad m</literal> is
+not, in fact, a monad --- for the same reason. Try defining
+<literal>>>=</literal> with the correct type: you won't be able to.
+</para>
+<para>
 
+Notice also that the <emphasis>order</emphasis> of class parameters becomes
+important, since we can only derive instances for the last one. If the
+<literal>StateMonad</literal> class above were instead defined as
 
-<programlisting>
-  f1 (x::c) = f1 x      -- ok
-  f2 = \(x::c) -> f2 x  -- not ok
+<programlisting> 
+  class StateMonad m s | m -> s where ... 
 </programlisting>
 
+then we would not have been able to derive an instance for the
+<literal>Parser</literal> type above. We hypothesise that multi-parameter
+classes usually have one "main" parameter for which deriving new
+instances is most interesting.
+</para>
+</sect3>
 
-Here, <function>f1</function> is OK, but <function>f2</function> is not, because <VarName>c</VarName> gets unified
-with a type variable free in the environment, in this
-case, the type of <function>f2</function>, which is in the environment when
-the lambda abstraction is checked.
+</sect2>
+
+
+</sect1>
+<!-- ==================== End of type system extensions =================  -->
+  
+<!-- ====================== TEMPLATE HASKELL =======================  -->
 
+<sect1 id="template-haskell">
+<title>Template Haskell</title>
+
+<para>Template Haskell allows you to do compile-time meta-programming in Haskell.  The background 
+the main technical innovations are discussed in "<ulink
+url="http://research.microsoft.com/~simonpj/papers/meta-haskell">
+Template Meta-programming for Haskell</ulink>", in 
+Proc Haskell Workshop 2002.
+</para>
+
+<para> The first example from that paper is set out below as a worked example to help get you started. 
 </para>
-</listitem>
-<listitem>
 
 <para>
- Pattern type signatures, including the result part, can be used
-in <literal>case</literal> expressions:
+The documentation here describes the realisation in GHC.  (It's rather sketchy just now;
+Tim Sheard is going to expand it.)
+</para>
 
+<sect2>  <title> Syntax </title>
+<para>
+    Template Haskell has the following new syntactic constructions.  You need to use the flag  
+               <literal>-fglasgow-exts</literal> to switch these syntactic extensions on.
+
+       <itemizedlist>
+             <listitem><para>
+                 A splice is written <literal>$x</literal>, where <literal>x</literal> is an
+                 identifier, or <literal>$(...)</literal>, where the "..." is an arbitrary expression.
+                 There must be no space between the "$" and the identifier or parenthesis.  This use
+                 of "$" overrides its meaning as an infix operator, just as "M.x" overrides the meaning
+                 of "." as an infix operator.  If you want the infix operator, put spaces around it.
+                 </para>
+             <para> A splice can occur in place of 
+                 <itemizedlist>
+                   <listitem><para> an expression; the spliced expression must have type <literal>Expr</literal></para></listitem>
+                   <listitem><para> a list of top-level declarations; ; the spliced expression must have type <literal>Q [Dec]</literal></para></listitem>
+                   <listitem><para> a type; the spliced expression must have type <literal>Type</literal>.</para></listitem>
+                   </itemizedlist>
+          (Note that the syntax for a declaration splice uses "<literal>$</literal>" not "<literal>splice</literal>" as in
+       the paper. Also the type of the enclosed expression must be  <literal>Q [Dec]</literal>, not  <literal>[Q Dec]</literal>
+       as in the paper.)
+               </para></listitem>
+
+
+             <listitem><para>
+                 A expression quotation is written in Oxford brackets, thus:
+                 <itemizedlist>
+                   <listitem><para> <literal>[| ... |]</literal>, where the "..." is an expression; 
+                             the quotation has type <literal>Expr</literal>.</para></listitem>
+                   <listitem><para> <literal>[d| ... |]</literal>, where the "..." is a list of top-level declarations;
+                             the quotation has type <literal>Q [Dec]</literal>.</para></listitem>
+                   <listitem><para> <literal>[t| ... |]</literal>, where the "..." is a type; 
+                             the quotation has type <literal>Type</literal>.</para></listitem>
+                 </itemizedlist></para></listitem>
+
+             <listitem><para>
+                 Reification is written thus:
+                 <itemizedlist>
+                   <listitem><para> <literal>reifyDecl T</literal>, where <literal>T</literal> is a type constructor; this expression
+                     has type <literal>Dec</literal>. </para></listitem>
+                   <listitem><para> <literal>reifyDecl C</literal>, where <literal>C</literal> is a class; has type <literal>Dec</literal>.</para></listitem>
+                   <listitem><para> <literal>reifyType f</literal>, where <literal>f</literal> is an identifier; has type <literal>Typ</literal>.</para></listitem>
+                   <listitem><para> Still to come: fixities </para></listitem>
+                   
+                 </itemizedlist></para>
+               </listitem>
+
+                 
+       </itemizedlist>
+</para>
+</sect2>
+
+<sect2>  <title> Using Template Haskell </title>
+<para>
+<itemizedlist>
+    <listitem><para>
+    The data types and monadic constructor functions for Template Haskell are in the library
+    <literal>Language.Haskell.THSyntax</literal>.
+    </para></listitem>
+
+    <listitem><para>
+    You can only run a function at compile time if it is imported from another module.  That is,
+           you can't define a function in a module, and call it from within a splice in the same module.
+           (It would make sense to do so, but it's hard to implement.)
+   </para></listitem>
+
+    <listitem><para>
+           The flag <literal>-ddump-splices</literal> shows the expansion of all top-level splices as they happen.
+   </para></listitem>
+    <listitem><para>
+           If you are building GHC from source, you need at least a stage-2 bootstrap compiler to
+             run Template Haskell.  A stage-1 compiler will reject the TH constructs.  Reason: TH
+             compiles and runs a program, and then looks at the result.  So it's important that
+             the program it compiles produces results whose representations are identical to
+             those of the compiler itself.
+   </para></listitem>
+</itemizedlist>
+</para>
+<para> Template Haskell works in any mode (<literal>--make</literal>, <literal>--interactive</literal>,
+       or file-at-a-time).  There used to be a restriction to the former two, but that restriction 
+       has been lifted.
+</para>
+</sect2>
+<sect2>  <title> A Template Haskell Worked Example </title>
+<para>To help you get over the confidence barrier, try out this skeletal worked example.
+  First cut and paste the two modules below into "Main.hs" and "Printf.hs":</para>
 
 <programlisting>
-  case e of { (x::a, y) :: a -> x }
+{- Main.hs -}
+module Main where
+
+-- Import our template "pr"
+import Printf ( pr )
+
+-- The splice operator $ takes the Haskell source code
+-- generated at compile time by "pr" and splices it into
+-- the argument of "putStrLn".
+main = putStrLn ( $(pr "Hello") )
 </programlisting>
 
+<programlisting>
+{- Printf.hs -}
+module Printf where
 
-The pattern-bound type variables must, as usual,
-be polymorphic in the following sense: each case alternative,
-considered as a lambda abstraction, must be polymorphic.
-Thus this is OK:
+-- Skeletal printf from the paper.
+-- It needs to be in a separate module to the one where
+-- you intend to use it.
 
+-- Import some Template Haskell syntax
+import Language.Haskell.THSyntax
 
-<programlisting>
-  case (True,False) of { (x::a, y) -> x }
-</programlisting>
+-- Describe a format string
+data Format = D | S | L String
 
+-- Parse a format string.  This is left largely to you
+-- as we are here interested in building our first ever
+-- Template Haskell program and not in building printf.
+parse :: String -> [Format]
+parse s   = [ L s ]
 
-Even though the context is that of a pair of booleans,
-the alternative itself is polymorphic.  Of course, it is
-also OK to say:
+-- Generate Haskell source code from a parsed representation
+-- of the format string.  This code will be spliced into
+-- the module which calls "pr", at compile time.
+gen :: [Format] -> Expr
+gen [D]   = [| \n -> show n |]
+gen [S]   = [| \s -> s |]
+gen [L s] = string s
 
+-- Here we generate the Haskell code for the splice
+-- from an input format string.
+pr :: String -> Expr
+pr s      = gen (parse s)
+</programlisting>
 
+<para>Now run the compiler (here we are using a "stage three" build of GHC, at a Cygwin prompt on Windows):
+</para>
 <programlisting>
-  case (True,False) of { (x::Bool, y) -> x }
+ghc/compiler/stage3/ghc-inplace --make -fglasgow-exts -package haskell-src main.hs -o main.exe
 </programlisting>
 
+<para>Run "main.exe" and here is your output:
+</para>
+
+<programlisting>
+$ ./main
+Hello
+</programlisting>
+
+</sect2>
+</sect1>
+
+<!-- ===================== Arrow notation ===================  -->
+
+<sect1 id="arrow-notation">
+<title>Arrow notation
+</title>
+
+<para>Arrows are a generalization of monads introduced by John Hughes.
+For more details, see
+<itemizedlist>
+
+<listitem>
+<para>
+&ldquo;Generalising Monads to Arrows&rdquo;,
+John Hughes, in <citetitle>Science of Computer Programming</citetitle> 37,
+pp67&ndash;111, May 2000.
+</para>
+</listitem>
+
+<listitem>
+<para>
+&ldquo;<ulink url="http://www.soi.city.ac.uk/~ross/papers/notation.html">A New Notation for Arrows</ulink>&rdquo;,
+Ross Paterson, in <citetitle>ICFP</citetitle>, Sep 2001.
+</para>
+</listitem>
+
+<listitem>
+<para>
+&ldquo;<ulink url="http://www.soi.city.ac.uk/~ross/papers/fop.html">Arrows and Computation</ulink>&rdquo;,
+Ross Paterson, in <citetitle>The Fun of Programming</citetitle>,
+Palgrave, 2003.
+</para>
+</listitem>
+
+</itemizedlist>
+and the arrows web page at
+<ulink url="http://www.haskell.org/arrows/"><literal>http://www.haskell.org/arrows/</literal></ulink>.
+With the <option>-farrows</option> flag, GHC supports the arrow
+notation described in the second of these papers.
+What follows is a brief introduction to the notation;
+it won't make much sense unless you've read Hughes's paper.
+This notation is translated to ordinary Haskell,
+using combinators from the
+<ulink url="../base/Control.Arrow.html"><literal>Control.Arrow</literal></ulink>
+module.
+</para>
+
+<para>The extension adds a new kind of expression for defining arrows,
+of the form <literal>proc pat -> cmd</literal>,
+where <literal>proc</literal> is a new keyword.
+The variables of the pattern are bound in the body of the 
+<literal>proc</literal>-expression,
+which is a new sort of thing called a <firstterm>command</firstterm>.
+The syntax of commands is as follows:
+<screen>
+cmd   ::= exp1 -&lt;  exp2
+       |  exp1 -&lt;&lt; exp2
+       |  do { cstmt1 .. cstmtn ; cmd }
+       |  let decls in cmd
+       |  if exp then cmd1 else cmd2
+       |  case exp of { calts }
+       |  cmd1 qop cmd2
+       |  (| exp |) cmd1 .. cmdn
+       |  \ pat1 .. patn -> cmd
+       |  ( cmd )
+
+cstmt ::= let decls
+       |  pat &lt;- cmd
+       |  rec { cstmt1 .. cstmtn }
+       |  cmd
+</screen>
+Commands produce values, but (like monadic computations)
+may yield more than one value,
+or none, and may do other things as well.
+For the most part, familiarity with monadic notation is a good guide to
+using commands.
+However the values of expressions, even monadic ones,
+are determined by the values of the variables they contain;
+this is not necessarily the case for commands.
+</para>
+
+<para>
+A simple example of the new notation is the expression
+<screen>
+proc x -> f -&lt; x+1
+</screen>
+We call this a <firstterm>procedure</firstterm> or
+<firstterm>arrow abstraction</firstterm>.
+As with a lambda expression, the variable <literal>x</literal>
+is a new variable bound within the <literal>proc</literal>-expression.
+It refers to the input to the arrow.
+In the above example, <literal>-&lt;</literal> is not an identifier but an
+new reserved symbol used for building commands from an expression of arrow
+type and an expression to be fed as input to that arrow.
+(The weird look will make more sense later.)
+It may be read as analogue of application for arrows.
+The above example is equivalent to the Haskell expression
+<screen>
+arr (\ x -> x+1) >>> f
+</screen>
+That would make no sense if the expression to the left of
+<literal>-&lt;</literal> involves the bound variable <literal>x</literal>.
+More generally, the expression to the left of <literal>-&lt;</literal>
+may not involve any <firstterm>local variable</firstterm>,
+i.e. a variable bound in the current arrow abstraction.
+For such a situation there is a variant <literal>-&lt;&lt;</literal>, as in
+<screen>
+proc x -> f x -&lt;&lt; x+1
+</screen>
+which is equivalent to
+<screen>
+arr (\ x -> (f, x+1)) >>> app
+</screen>
+so in this case the arrow must belong to the <literal>ArrowApply</literal>
+class.
+Such an arrow is equivalent to a monad, so if you're using this form
+you may find a monadic formulation more convenient.
+</para>
+
+<sect2>
+<title>do-notation for commands</title>
+
+<para>
+Another form of command is a form of <literal>do</literal>-notation.
+For example, you can write
+<screen>
+proc x -> do
+        y &lt;- f -&lt; x+1
+        g -&lt; 2*y
+        let z = x+y
+        t &lt;- h -&lt; x*z
+        returnA -&lt; t+z
+</screen>
+You can read this much like ordinary <literal>do</literal>-notation,
+but with commands in place of monadic expressions.
+The first line sends the value of <literal>x+1</literal> as an input to
+the arrow <literal>f</literal>, and matches its output against
+<literal>y</literal>.
+In the next line, the output is discarded.
+The arrow <literal>returnA</literal> is defined in the
+<ulink url="../base/Control.Arrow.html"><literal>Control.Arrow</literal></ulink>
+module as <literal>arr id</literal>.
+The above example is treated as an abbreviation for
+<screen>
+arr (\ x -> (x, x)) >>>
+        first (arr (\ x -> x+1) >>> f) >>>
+        arr (\ (y, x) -> (y, (x, y))) >>>
+        first (arr (\ y -> 2*y) >>> g) >>>
+        arr snd >>>
+        arr (\ (x, y) -> let z = x+y in ((x, z), z)) >>>
+        first (arr (\ (x, z) -> x*z) >>> h) >>>
+        arr (\ (t, z) -> t+z) >>>
+        returnA
+</screen>
+Note that variables not used later in the composition are projected out.
+After simplification using rewrite rules (see <xref linkEnd="rewrite-rules">)
+defined in the
+<ulink url="../base/Control.Arrow.html"><literal>Control.Arrow</literal></ulink>
+module, this reduces to
+<screen>
+arr (\ x -> (x+1, x)) >>>
+        first f >>>
+        arr (\ (y, x) -> (2*y, (x, y))) >>>
+        first g >>>
+        arr (\ (_, (x, y)) -> let z = x+y in (x*z, z)) >>>
+        first h >>>
+        arr (\ (t, z) -> t+z)
+</screen>
+which is what you might have written by hand.
+With arrow notation, GHC keeps track of all those tuples of variables for you.
+</para>
+
+<para>
+Note that although the above translation suggests that
+<literal>let</literal>-bound variables like <literal>z</literal> must be
+monomorphic, the actual translation produces Core,
+so polymorphic variables are allowed.
+</para>
+
+<para>
+It's also possible to have mutually recursive bindings,
+using the new <literal>rec</literal> keyword, as in the following example:
+<screen>
+counter :: ArrowCircuit a => a Bool Int
+counter = proc reset -> do
+        rec     output &lt;- returnA -&lt; if reset then 0 else next
+                next &lt;- delay 0 -&lt; output+1
+        returnA -&lt; output
+</screen>
+The translation of such forms uses the <literal>loop</literal> combinator,
+so the arrow concerned must belong to the <literal>ArrowLoop</literal> class.
+</para>
+
+</sect2>
+
+<sect2>
+<title>Conditional commands</title>
+
+<para>
+In the previous example, we used a conditional expression to construct the
+input for an arrow.
+Sometimes we want to conditionally execute different commands, as in
+<screen>
+proc (x,y) ->
+        if f x y
+        then g -&lt; x+1
+        else h -&lt; y+2
+</screen>
+which is translated to
+<screen>
+arr (\ (x,y) -> if f x y then Left x else Right y) >>>
+        (arr (\x -> x+1) >>> f) ||| (arr (\y -> y+2) >>> g)
+</screen>
+Since the translation uses <literal>|||</literal>,
+the arrow concerned must belong to the <literal>ArrowChoice</literal> class.
+</para>
+
+<para>
+There are also <literal>case</literal> commands, like
+<screen>
+case input of
+    [] -> f -&lt; ()
+    [x] -> g -&lt; x+1
+    x1:x2:xs -> do
+        y &lt;- h -&lt; (x1, x2)
+        ys &lt;- k -&lt; xs
+        returnA -&lt; y:ys
+</screen>
+The syntax is the same as for <literal>case</literal> expressions,
+except that the bodies of the alternatives are commands rather than expressions.
+The translation is similar to that of <literal>if</literal> commands.
+</para>
+
+</sect2>
+
+<sect2>
+<title>Defining your own control structures</title>
+
+<para>
+As we're seen, arrow notation provides constructs,
+modelled on those for expressions,
+for sequencing, value recursion and conditionals.
+But suitable combinators,
+which you can define in ordinary Haskell,
+may also be used to build new commands out of existing ones.
+The basic idea is that a command defines an arrow from environments to values.
+These environments assign values to the free local variables of the command.
+Thus combinators that produce arrows from arrows
+may also be used to build commands from commands.
+For example, the <literal>ArrowChoice</literal> class includes a combinator
+<programlisting>
+ArrowChoice a => (&lt;+>) :: a e c -> a e c -> a e c
+</programlisting>
+so we can use it to build commands:
+<programlisting>
+expr' = proc x ->
+                returnA -&lt; x
+        &lt;+> do
+                symbol Plus -&lt; ()
+                y &lt;- term -&lt; ()
+                expr' -&lt; x + y
+        &lt;+> do
+                symbol Minus -&lt; ()
+                y &lt;- term -&lt; ()
+                expr' -&lt; x - y
+</programlisting>
+This is equivalent to
+<programlisting>
+expr' = (proc x -> returnA -&lt; x)
+        &lt;+> (proc x -> do
+                symbol Plus -&lt; ()
+                y &lt;- term -&lt; ()
+                expr' -&lt; x + y)
+        &lt;+> (proc x -> do
+                symbol Minus -&lt; ()
+                y &lt;- term -&lt; ()
+                expr' -&lt; x - y)
+</programlisting>
+It is essential that this operator be polymorphic in <literal>e</literal>
+(representing the environment input to the command
+and thence to its subcommands)
+and satisfy the corresponding naturality property
+<screen>
+arr k >>> (f &lt;+> g) = (arr k >>> f) &lt;+> (arr k >>> g)
+</screen>
+at least for strict <literal>k</literal>.
+(This should be automatic if you're not using <literal>seq</literal>.)
+This ensures that environments seen by the subcommands are environments
+of the whole command,
+and also allows the translation to safely trim these environments.
+The operator must also not use any variable defined within the current
+arrow abstraction.
+</para>
+
+<para>
+We could define our own operator
+<programlisting>
+untilA :: ArrowChoice a => a e () -> a e Bool -> a e ()
+untilA body cond = proc x ->
+        if cond x then returnA -&lt; ()
+        else do
+                body -&lt; x
+                untilA body cond -&lt; x
+</programlisting>
+and use it in the same way.
+Of course this infix syntax only makes sense for binary operators;
+there is also a more general syntax involving special brackets:
+<screen>
+proc x -> do
+        y &lt;- f -&lt; x+1
+        (|untilA|) (increment -&lt; x+y) (within 0.5 -&lt; x)
+</screen>
+</para>
+
+<para>
+Some operators will need to pass additional inputs to their subcommands.
+For example, in an arrow type supporting exceptions,
+the operator that attaches an exception handler will wish to pass the
+exception that occurred to the handler.
+Such an operator might have a type
+<screen>
+handleA :: ... => a e c -> a (e,Ex) c -> a e c
+</screen>
+where <literal>Ex</literal> is the type of exceptions handled.
+You could then use this with arrow notation by writing a command
+<screen>
+body `handleA` \ ex -> handler
+</screen>
+so that if an exception is raised in the command <literal>body</literal>,
+the variable <literal>ex</literal> is bound to the value of the exception
+and the command <literal>handler</literal>,
+which typically refers to <literal>ex</literal>, is entered.
+Though the syntax here looks like a functional lambda,
+we are talking about commands, and something different is going on.
+The input to the arrow represented by a command consists of values for
+the free local variables in the command, plus a stack of anonymous values.
+In all the prior examples, this stack was empty.
+In the second argument to <literal>handleA</literal>,
+this stack consists of one value, the value of the exception.
+The command form of lambda merely gives this value a name.
+</para>
+
+<para>
+More concretely,
+the values on the stack are paired to the right of the environment.
+So when designing operators like <literal>handleA</literal> that pass
+extra inputs to their subcommands,
+More precisely, the type of each argument of the operator (and its result)
+should have the form
+<screen>
+a (...(e,t1), ... tn) t
+</screen>
+where <replaceable>e</replaceable> is the polymorphic variable
+(representing the environment)
+and <replaceable>ti</replaceable> are the types of the values on the stack,
+with <replaceable>t1</replaceable> being the <quote>top</quote>.
+The polymorphic variable <replaceable>e</replaceable> must not occur in
+<replaceable>a</replaceable>, <replaceable>ti</replaceable> or
+<replaceable>t</replaceable>.
+However the arrows involved need not be the same.
+Here are some more examples of suitable operators:
+<screen>
+bracketA :: ... => a e b -> a (e,b) c -> a (e,c) d -> a e d
+runReader :: ... => a e c -> a' (e,State) c
+runState :: ... => a e c -> a' (e,State) (c,State)
+</screen>
+How can we supply the extra input required by the last two?
+We can define yet another operator, a counterpart of the monadic
+<literal>>>=</literal> operator:
+<programlisting>
+bind :: Arrow a => a e b -> a (e,b) c -> a e c
+u `bind` f = returnA &&& u >>> f
+</programlisting>
+and then build commands like
+<screen>
+proc x ->
+        (mkState -< x) `bind` (|runReader|) (do { ... })
+</screen>
+which uses the arrow <literal>mkState</literal> to create a state,
+and then provides this as an extra input to the command built using
+<literal>runReader</literal>.
+</para>
+
+</sect2>
+
+<sect2>
+<title>Differences with the paper</title>
+
+<itemizedlist>
+
+<listitem>
+<para>Instead of a single form of arrow application (arrow tail) with two
+translations, the implementation provides two forms
+<quote><literal>-&lt;</literal></quote> (first-order)
+and <quote><literal>-&lt;&lt;</literal></quote> (higher-order).
+</para>
+</listitem>
+
+<listitem>
+<para>User-defined operators are flagged with banana brackets instead of
+a new <literal>form</literal> keyword.
+</para>
+</listitem>
+
+</itemizedlist>
+
+</sect2>
+
+<sect2>
+<title>Portability</title>
+
+<para>
+Although only GHC implements arrow notation directly,
+there is also a preprocessor
+(available from the 
+<ulink url="http://www.haskell.org/arrows/">arrows web page></ulink>)
+that translates arrow notation into Haskell 98
+for use with other Haskell systems.
+You would still want to check arrow programs with GHC;
+tracing type errors in the preprocessor output is not easy.
+Modules intended for both GHC and the preprocessor must observe some
+additional restrictions:
+<itemizedlist>
 
+<listitem>
+<para>
+The module must import
+<ulink url="../base/Control.Arrow.html"><literal>Control.Arrow</literal></ulink>.
 </para>
 </listitem>
+
 <listitem>
+<para>
+The preprocessor cannot cope with other Haskell extensions.
+These would have to go in separate modules.
+</para>
+</listitem>
 
+<listitem>
 <para>
-To avoid ambiguity, the type after the &ldquo;<literal>::</literal>&rdquo; in a result
-pattern signature on a lambda or <literal>case</literal> must be atomic (i.e. a single
-token or a parenthesised type of some sort).  To see why,
-consider how one would parse this:
+Because the preprocessor targets Haskell (rather than Core),
+<literal>let</literal>-bound variables are monomorphic.
+</para>
+</listitem>
+
+</itemizedlist>
+</para>
 
+</sect2>
 
-<programlisting>
-  \ x :: a -> b -> x
-</programlisting>
+</sect1>
 
+<!-- ==================== ASSERTIONS =================  -->
 
-</para>
-</listitem>
-<listitem>
+<sect1 id="sec-assertions">
+<title>Assertions
+<indexterm><primary>Assertions</primary></indexterm>
+</title>
 
 <para>
- Pattern type signatures that bind new type variables
-may not be used in pattern bindings at all.
-So this is illegal:
+If you want to make use of assertions in your standard Haskell code, you
+could define a function like the following:
+</para>
 
+<para>
 
 <programlisting>
-  f x = let (y, z::a) = x in ...
+assert :: Bool -> a -> a
+assert False x = error "assertion failed!"
+assert _     x = x
 </programlisting>
 
+</para>
 
-But these are OK, because they do not bind fresh type variables:
-
-
-<programlisting>
-  f1 x            = let (y, z::Int) = x in ...
-  f2 (x::(Int,a)) = let (y, z::a)   = x in ...
-</programlisting>
+<para>
+which works, but gives you back a less than useful error message --
+an assertion failed, but which and where?
+</para>
 
+<para>
+One way out is to define an extended <function>assert</function> function which also
+takes a descriptive string to include in the error message and
+perhaps combine this with the use of a pre-processor which inserts
+the source location where <function>assert</function> was used.
+</para>
 
-However a single variable is considered a degenerate function binding,
-rather than a degerate pattern binding, so this is permitted, even
-though it binds a type variable:
+<para>
+Ghc offers a helping hand here, doing all of this for you. For every
+use of <function>assert</function> in the user's source:
+</para>
 
+<para>
 
 <programlisting>
-  f :: (b->b) = \(x::b) -> x
+kelvinToC :: Double -> Double
+kelvinToC k = assert (k &gt;= 0.0) (k+273.15)
 </programlisting>
 
-
 </para>
-</listitem>
-
-</itemizedlist>
 
-Such degnerate function bindings do not fall under the monomorphism
-restriction.  Thus:
+<para>
+Ghc will rewrite this to also include the source location where the
+assertion was made,
 </para>
 
 <para>
 
 <programlisting>
-  g :: a -> a -> Bool = \x y. x==y
+assert pred val ==> assertError "Main.hs|15" pred val
 </programlisting>
 
 </para>
 
 <para>
-Here <function>g</function> has type <literal>forall a. Eq a =&gt; a -&gt; a -&gt; Bool</literal>, just as if
-<function>g</function> had a separate type signature.  Lacking a type signature, <function>g</function>
-would get a monomorphic type.
+The rewrite is only performed by the compiler when it spots
+applications of <function>Control.Exception.assert</function>, so you
+can still define and use your own versions of
+<function>assert</function>, should you so wish. If not, import
+<literal>Control.Exception</literal> to make use
+<function>assert</function> in your code.
 </para>
 
-</sect2>
-
-<sect2>
-<title>Existentials</title>
+<para>
+To have the compiler ignore uses of assert, use the compiler option
+<option>-fignore-asserts</option>. <indexterm><primary>-fignore-asserts
+option</primary></indexterm> That is, expressions of the form
+<literal>assert pred e</literal> will be rewritten to
+<literal>e</literal>.
+</para>
 
 <para>
+Assertion failures can be caught, see the documentation for the
+<literal>Control.Exception</literal> library for the details.
+</para>
 
-<itemizedlist>
-<listitem>
+</sect1>
 
-<para>
- Pattern type signatures can bind existential type variables.
-For example:
 
+<!-- =============================== PRAGMAS ===========================  -->
 
-<programlisting>
-  data T = forall a. MkT [a]
+  <sect1 id="pragmas">
+    <title>Pragmas</title>
 
-  f :: T -> T
-  f (MkT [t::a]) = MkT t3
-                 where
-                   t3::[a] = [t,t,t]
-</programlisting>
+    <indexterm><primary>pragma</primary></indexterm>
 
+    <para>GHC supports several pragmas, or instructions to the
+    compiler placed in the source code.  Pragmas don't normally affect
+    the meaning of the program, but they might affect the efficiency
+    of the generated code.</para>
 
-</para>
-</listitem>
+    <para>Pragmas all take the form
 
-</itemizedlist>
+<literal>{-# <replaceable>word</replaceable> ... #-}</literal>  
 
-</para>
+    where <replaceable>word</replaceable> indicates the type of
+    pragma, and is followed optionally by information specific to that
+    type of pragma.  Case is ignored in
+    <replaceable>word</replaceable>.  The various values for
+    <replaceable>word</replaceable> that GHC understands are described
+    in the following sections; any pragma encountered with an
+    unrecognised <replaceable>word</replaceable> is (silently)
+    ignored.</para>
 
-</sect2>
+    <sect2 id="deprecated-pragma">
+      <title>DEPRECATED pragma</title>
+      <indexterm><primary>DEPRECATED</primary>
+      </indexterm>
 
-</sect1>
+      <para>The DEPRECATED pragma lets you specify that a particular
+      function, class, or type, is deprecated.  There are two
+      forms.</para>
 
-<sect1 id="pragmas">
-<title>Pragmas
-</title>
+      <itemizedlist>
+       <listitem>
+         <para>You can deprecate an entire module thus:</para>
+<programlisting>
+   module Wibble {-# DEPRECATED "Use Wobble instead" #-} where
+     ...
+</programlisting>
+         <para>When you compile any module that import
+          <literal>Wibble</literal>, GHC will print the specified
+          message.</para>
+       </listitem>
 
-<para>
-GHC supports several pragmas, or instructions to the compiler placed
-in the source code.  Pragmas don't affect the meaning of the program,
-but they might affect the efficiency of the generated code.
-</para>
+       <listitem>
+         <para>You can deprecate a function, class, or type, with the
+         following top-level declaration:</para>
+<programlisting>
+   {-# DEPRECATED f, C, T "Don't use these" #-}
+</programlisting>
+         <para>When you compile any module that imports and uses any
+          of the specifed entities, GHC will print the specified
+          message.</para>
+       </listitem>
+      </itemizedlist>
 
-<sect2 id="inline-pragma">
-<title>INLINE pragma
+      <para>You can suppress the warnings with the flag
+      <option>-fno-warn-deprecations</option>.</para>
+    </sect2>
 
-<indexterm><primary>INLINE pragma</primary></indexterm>
-<indexterm><primary>pragma, INLINE</primary></indexterm></title>
+    <sect2 id="inline-noinline-pragma">
+      <title>INLINE and NOINLINE pragmas</title>
 
-<para>
-GHC (with <option>-O</option>, as always) tries to inline (or &ldquo;unfold&rdquo;)
-functions/values that are &ldquo;small enough,&rdquo; thus avoiding the call
-overhead and possibly exposing other more-wonderful optimisations.
-</para>
+      <para>These pragmas control the inlining of function
+      definitions.</para>
 
-<para>
-You will probably see these unfoldings (in Core syntax) in your
-interface files.
-</para>
+      <sect3 id="inline-pragma">
+       <title>INLINE pragma</title>
+       <indexterm><primary>INLINE</primary></indexterm>
 
-<para>
-Normally, if GHC decides a function is &ldquo;too expensive&rdquo; to inline, it
-will not do so, nor will it export that unfolding for other modules to
-use.
-</para>
+       <para>GHC (with <option>-O</option>, as always) tries to
+        inline (or &ldquo;unfold&rdquo;) functions/values that are
+        &ldquo;small enough,&rdquo; thus avoiding the call overhead
+        and possibly exposing other more-wonderful optimisations.
+        Normally, if GHC decides a function is &ldquo;too
+        expensive&rdquo; to inline, it will not do so, nor will it
+        export that unfolding for other modules to use.</para>
 
-<para>
-The sledgehammer you can bring to bear is the
-<literal>INLINE</literal><indexterm><primary>INLINE pragma</primary></indexterm> pragma, used thusly:
+        <para>The sledgehammer you can bring to bear is the
+        <literal>INLINE</literal><indexterm><primary>INLINE
+        pragma</primary></indexterm> pragma, used thusly:</para>
 
 <programlisting>
 key_function :: Int -> String -> (Bool, Double)
@@ -2573,25 +3975,25 @@ key_function :: Int -> String -> (Bool, Double)
 #endif
 </programlisting>
 
-(You don't need to do the C pre-processor carry-on unless you're going
-to stick the code through HBC&mdash;it doesn't like <literal>INLINE</literal> pragmas.)
-</para>
+       <para>(You don't need to do the C pre-processor carry-on
+        unless you're going to stick the code through HBC&mdash;it
+        doesn't like <literal>INLINE</literal> pragmas.)</para>
 
-<para>
-The major effect of an <literal>INLINE</literal> pragma is to declare a function's
-&ldquo;cost&rdquo; to be very low.  The normal unfolding machinery will then be
-very keen to inline it.
-</para>
+        <para>The major effect of an <literal>INLINE</literal> pragma
+        is to declare a function's &ldquo;cost&rdquo; to be very low.
+        The normal unfolding machinery will then be very keen to
+        inline it.</para>
 
-<para>
-An <literal>INLINE</literal> pragma for a function can be put anywhere its type
-signature could be put.
-</para>
+       <para>Syntactially, an <literal>INLINE</literal> pragma for a
+        function can be put anywhere its type signature could be
+        put.</para>
 
-<para>
-<literal>INLINE</literal> pragmas are a particularly good idea for the
-<literal>then</literal>/<literal>return</literal> (or <literal>bind</literal>/<literal>unit</literal>) functions in a monad.
-For example, in GHC's own <literal>UniqueSupply</literal> monad code, we have:
+       <para><literal>INLINE</literal> pragmas are a particularly
+        good idea for the
+        <literal>then</literal>/<literal>return</literal> (or
+        <literal>bind</literal>/<literal>unit</literal>) functions in
+        a monad.  For example, in GHC's own
+        <literal>UniqueSupply</literal> monad code, we have:</para>
 
 <programlisting>
 #ifdef __GLASGOW_HASKELL__
@@ -2600,26 +4002,140 @@ For example, in GHC's own <literal>UniqueSupply</literal> monad code, we have:
 #endif
 </programlisting>
 
-</para>
+       <para>See also the <literal>NOINLINE</literal> pragma (<xref
+        linkend="noinline-pragma">).</para>
+      </sect3>
+
+      <sect3 id="noinline-pragma">
+       <title>NOINLINE pragma</title>
+       
+       <indexterm><primary>NOINLINE</primary></indexterm>
+       <indexterm><primary>NOTINLINE</primary></indexterm>
+
+       <para>The <literal>NOINLINE</literal> pragma does exactly what
+        you'd expect: it stops the named function from being inlined
+        by the compiler.  You shouldn't ever need to do this, unless
+        you're very cautious about code size.</para>
+
+       <para><literal>NOTINLINE</literal> is a synonym for
+        <literal>NOINLINE</literal> (<literal>NOTINLINE</literal> is
+        specified by Haskell 98 as the standard way to disable
+        inlining, so it should be used if you want your code to be
+        portable).</para>
+      </sect3>
+
+      <sect3 id="phase-control">
+       <title>Phase control</title>
+
+       <para> Sometimes you want to control exactly when in GHC's
+        pipeline the INLINE pragma is switched on.  Inlining happens
+        only during runs of the <emphasis>simplifier</emphasis>.  Each
+        run of the simplifier has a different <emphasis>phase
+        number</emphasis>; the phase number decreases towards zero.
+        If you use <option>-dverbose-core2core</option> you'll see the
+        sequence of phase numbers for successive runs of the
+        simpifier.  In an INLINE pragma you can optionally specify a
+        phase number, thus:</para>
 
-</sect2>
+       <itemizedlist>
+         <listitem>
+           <para>You can say "inline <literal>f</literal> in Phase 2
+            and all subsequent phases":
+<programlisting>
+  {-# INLINE [2] f #-}
+</programlisting>
+            </para>
+         </listitem>
 
-<sect2 id="noinline-pragma">
-<title>NOINLINE pragma
-</title>
+         <listitem>
+           <para>You can say "inline <literal>g</literal> in all
+            phases up to, but not including, Phase 3":
+<programlisting>
+  {-# INLINE [~3] g #-}
+</programlisting>
+            </para>
+         </listitem>
 
-<para>
-<indexterm><primary>NOINLINE pragma</primary></indexterm>
-<indexterm><primary>pragma, NOINLINE</primary></indexterm>
-</para>
+         <listitem>
+           <para>If you omit the phase indicator, you mean "inline in
+            all phases".</para>
+         </listitem>
+       </itemizedlist>
 
-<para>
-The <literal>NOINLINE</literal> pragma does exactly what you'd expect: it stops the
-named function from being inlined by the compiler.  You shouldn't ever
-need to do this, unless you're very cautious about code size.
-</para>
+       <para>You can use a phase number on a NOINLINE pragma too:</para>
 
-</sect2>
+       <itemizedlist>
+         <listitem>
+           <para>You can say "do not inline <literal>f</literal>
+            until Phase 2; in Phase 2 and subsequently behave as if
+            there was no pragma at all":
+<programlisting>
+  {-# NOINLINE [2] f #-}
+</programlisting>
+            </para>
+         </listitem>
+
+         <listitem>
+           <para>You can say "do not inline <literal>g</literal> in
+            Phase 3 or any subsequent phase; before that, behave as if
+            there was no pragma":
+<programlisting>
+  {-# NOINLINE [~3] g #-}
+</programlisting>
+            </para>
+         </listitem>
+
+         <listitem>
+           <para>If you omit the phase indicator, you mean "never
+            inline this function".</para>
+         </listitem>
+       </itemizedlist>
+
+       <para>The same phase-numbering control is available for RULES
+       (<xref LinkEnd="rewrite-rules">).</para>
+      </sect3>
+    </sect2>
+
+    <sect2 id="line-pragma">
+      <title>LINE pragma</title>
+
+      <indexterm><primary>LINE</primary><secondary>pragma</secondary></indexterm>
+      <indexterm><primary>pragma</primary><secondary>LINE</secondary></indexterm>
+      <para>This pragma is similar to C's <literal>&num;line</literal>
+      pragma, and is mainly for use in automatically generated Haskell
+      code.  It lets you specify the line number and filename of the
+      original code; for example</para>
+
+<programlisting>
+{-# LINE 42 "Foo.vhs" #-}
+</programlisting>
+
+      <para>if you'd generated the current file from something called
+      <filename>Foo.vhs</filename> and this line corresponds to line
+      42 in the original.  GHC will adjust its error messages to refer
+      to the line/file named in the <literal>LINE</literal>
+      pragma.</para>
+    </sect2>
+
+    <sect2 id="options-pragma">
+      <title>OPTIONS pragma</title>
+      <indexterm><primary>OPTIONS</primary>
+      </indexterm>
+      <indexterm><primary>pragma</primary><secondary>OPTIONS</secondary>
+      </indexterm>
+
+      <para>The <literal>OPTIONS</literal> pragma is used to specify
+      additional options that are given to the compiler when compiling
+      this source file.  See <xref linkend="source-file-options"> for
+      details.</para>
+    </sect2>
+
+    <sect2 id="rules">
+      <title>RULES pragma</title>
+
+      <para>The RULES pragma lets you specify rewrite rules.  It is
+      described in <xref LinkEnd="rewrite-rules">.</para>
+    </sect2>
 
     <sect2 id="specialize-pragma">
       <title>SPECIALIZE pragma</title>
@@ -2645,11 +4161,14 @@ hammeredLookup :: Ord key => [(key, value)] -> key -> value
 {-# SPECIALIZE hammeredLookup :: [(Widget, value)] -> Widget -> value #-}
 </programlisting>
 
+      <para>A <literal>SPECIALIZE</literal> pragma for a function can
+      be put anywhere its type signature could be put.</para>
+
       <para>To get very fancy, you can also specify a named function
       to use for the specialised value, as in:</para>
 
 <programlisting>
-{-# RULES hammeredLookup = blah #-}
+{-# RULES "hammeredLookup" hammeredLookup = blah #-}
 </programlisting>
 
       <para>where <literal>blah</literal> is an implementation of
@@ -2672,7 +4191,7 @@ hammeredLookup :: Ord key => [(key, value)] -> key -> value
 toDouble :: Real a => a -> Double
 toDouble = fromRational . toRational
 
-{-# SPECIALIZE toDouble :: Int -> Double = i2d #-}
+{-# RULES "toDouble/Int" toDouble = i2d #-}
 i2d (I# i) = D# (int2Double# i) -- uses Glasgow prim-op directly
 </programlisting>
 
@@ -2681,9 +4200,6 @@ i2d (I# i) = D# (int2Double# i) -- uses Glasgow prim-op directly
       <literal>Rational</literal>&mdash;is obscenely expensive by
       comparison.</para>
 
-      <para>A <literal>SPECIALIZE</literal> pragma for a function can
-      be put anywhere its type signature could be put.</para>
-
     </sect2>
 
 <sect2 id="specialize-instance-pragma">
@@ -2696,60 +4212,27 @@ i2d (I# i) = D# (int2Double# i) -- uses Glasgow prim-op directly
 Same idea, except for instance declarations.  For example:
 
 <programlisting>
-instance (Eq a) => Eq (Foo a) where { ... usual stuff ... }
-
-{-# SPECIALIZE instance Eq (Foo [(Int, Bar)] #-}
-</programlisting>
-
-Compatible with HBC, by the way.
-</para>
-
-</sect2>
-
-<sect2 id="line-pragma">
-<title>LINE pragma
-</title>
-
-<para>
-<indexterm><primary>LINE pragma</primary></indexterm>
-<indexterm><primary>pragma, LINE</primary></indexterm>
-</para>
-
-<para>
-This pragma is similar to C's <literal>&num;line</literal> pragma, and is mainly for use in
-automatically generated Haskell code.  It lets you specify the line
-number and filename of the original code; for example
-</para>
-
-<para>
-
-<programlisting>
-{-# LINE 42 "Foo.vhs" #-}
+instance (Eq a) => Eq (Foo a) where { 
+   {-# SPECIALIZE instance Eq (Foo [(Int, Bar)]) #-}
+   ... usual stuff ...
+ }
 </programlisting>
-
+The pragma must occur inside the <literal>where</literal> part
+of the instance declaration.
 </para>
-
 <para>
-if you'd generated the current file from something called <filename>Foo.vhs</filename>
-and this line corresponds to line 42 in the original.  GHC will adjust
-its error messages to refer to the line/file named in the <literal>LINE</literal>
-pragma.
+Compatible with HBC, by the way, except perhaps in the placement
+of the pragma.
 </para>
 
 </sect2>
 
-<sect2 id="rules">
-<title>RULES pragma</title>
-
-<para>
-The RULES pragma lets you specify rewrite rules.  It is described in
-<xref LinkEnd="rewrite-rules">.
-</para>
 
-</sect2>
 
 </sect1>
 
+<!--  ======================= REWRITE RULES ======================== -->
+
 <sect1 id="rewrite-rules">
 <title>Rewrite rules
 
@@ -2783,16 +4266,34 @@ From a syntactic point of view:
 <listitem>
 
 <para>
+ There may be zero or more rules in a <literal>RULES</literal> pragma.
+</para>
+</listitem>
+
+<listitem>
+
+<para>
  Each rule has a name, enclosed in double quotes.  The name itself has
 no significance at all.  It is only used when reporting how many times the rule fired.
 </para>
 </listitem>
-<listitem>
 
+<listitem>
 <para>
- There may be zero or more rules in a <literal>RULES</literal> pragma.
+A rule may optionally have a phase-control number (see <xref LinkEnd="phase-control">),
+immediately after the name of the rule.  Thus:
+<programlisting>
+  {-# RULES
+        "map/map" [2]  forall f g xs. map f (map g xs) = map (f.g) xs
+  #-}
+</programlisting>
+The "[2]" means that the rule is active in Phase 2 and subsequent phases.  The inverse
+notation "[~2]" is also accepted, meaning that the rule is active up to, but not including,
+Phase 2.
 </para>
 </listitem>
+
+
 <listitem>
 
 <para>
@@ -2801,6 +4302,7 @@ is set, so you must lay out your rules starting in the same column as the
 enclosing definitions.
 </para>
 </listitem>
+
 <listitem>
 
 <para>
@@ -3053,14 +4555,14 @@ The following are good producers:
  <function>++</function>
 </para>
 </listitem>
-<listitem>
 
+<listitem>
 <para>
  <function>map</function>
 </para>
 </listitem>
-<listitem>
 
+<listitem>
 <para>
  <function>filter</function>
 </para>
@@ -3110,8 +4612,14 @@ The following are good consumers:
  <function>++</function> (on its first argument)
 </para>
 </listitem>
+
 <listitem>
+<para>
+ <function>foldr</function>
+</para>
+</listitem>
 
+<listitem>
 <para>
  <function>map</function>
 </para>
@@ -3270,7 +4778,7 @@ If you add <option>-dppr-debug</option> you get a more detailed listing.
 <listitem>
 
 <para>
- The defintion of (say) <function>build</function> in <FileName>PrelBase.lhs</FileName> looks llike this:
+ The defintion of (say) <function>build</function> in <FileName>GHC/Base.lhs</FileName> looks llike this:
 
 <programlisting>
         build   :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
@@ -3288,9 +4796,9 @@ in the RHS of the <literal>INLINE</literal> thing.  I regret the delicacy of thi
 <listitem>
 
 <para>
- In <filename>ghc/lib/std/PrelBase.lhs</filename> look at the rules for <function>map</function> to
+ In <filename>libraries/base/GHC/Base.lhs</filename> look at the rules for <function>map</function> to
 see how to write rules that will do fusion and yet give an efficient
-program even if fusion doesn't happen.  More rules in <filename>PrelList.lhs</filename>.
+program even if fusion doesn't happen.  More rules in <filename>GHC/List.lhs</filename>.
 </para>
 </listitem>
 
@@ -3300,11 +4808,77 @@ program even if fusion doesn't happen.  More rules in <filename>PrelList.lhs</fi
 
 </sect2>
 
+<sect2 id="core-pragma">
+  <title>CORE pragma</title>
+
+  <indexterm><primary>CORE pragma</primary></indexterm>
+  <indexterm><primary>pragma, CORE</primary></indexterm>
+  <indexterm><primary>core, annotation</primary></indexterm>
+
+<para>
+  The external core format supports <quote>Note</quote> annotations;
+  the <literal>CORE</literal> pragma gives a way to specify what these
+  should be in your Haskell source code.  Syntactically, core
+  annotations are attached to expressions and take a Haskell string
+  literal as an argument.  The following function definition shows an
+  example:
+
+<programlisting>
+f x = ({-# CORE "foo" #-} show) ({-# CORE "bar" #-} x)
+</programlisting>
+
+  Sematically, this is equivalent to:
+
+<programlisting>
+g x = show x
+</programlisting>
+</para>
+
+<para>
+  However, when external for is generated (via
+  <option>-fext-core</option>), there will be Notes attached to the
+  expressions <function>show</function> and <VarName>x</VarName>.
+  The core function declaration for <function>f</function> is:
+</para>
+
+<programlisting>
+  f :: %forall a . GHCziShow.ZCTShow a ->
+                   a -> GHCziBase.ZMZN GHCziBase.Char =
+    \ @ a (zddShow::GHCziShow.ZCTShow a) (eta::a) ->
+        (%note "foo"
+         %case zddShow %of (tpl::GHCziShow.ZCTShow a)
+           {GHCziShow.ZCDShow
+            (tpl1::GHCziBase.Int ->
+                   a ->
+                   GHCziBase.ZMZN GHCziBase.Char -> GHCziBase.ZMZN GHCziBase.Cha
+r)
+            (tpl2::a -> GHCziBase.ZMZN GHCziBase.Char)
+            (tpl3::GHCziBase.ZMZN a ->
+                   GHCziBase.ZMZN GHCziBase.Char -> GHCziBase.ZMZN GHCziBase.Cha
+r) ->
+              tpl2})
+        (%note "foo"
+         eta);
+</programlisting>
+
+<para>
+  Here, we can see that the function <function>show</function> (which
+  has been expanded out to a case expression over the Show dictionary)
+  has a <literal>%note</literal> attached to it, as does the
+  expression <VarName>eta</VarName> (which used to be called
+  <VarName>x</VarName>).
+</para>
+
+</sect2>
+
 </sect1>
 
 <sect1 id="generic-classes">
 <title>Generic classes</title>
 
+    <para>(Note: support for generic classes is currently broken in
+    GHC 5.02).</para>
+
 <para>
 The ideas behind this extension are described in detail in "Derivable type classes",
 Ralf Hinze and Simon Peyton Jones, Haskell Workshop, Montreal Sept 2000, pp94-105.
@@ -3345,7 +4919,7 @@ Now you can make a data type into an instance of Bin like this:
   instance (Bin a, Bin b) => Bin (a,b)
   instance Bin a => Bin [a]
 </programlisting>
-That is, just leave off the "where" clasuse.  Of course, you can put in the
+That is, just leave off the "where" clause.  Of course, you can put in the
 where clause and over-ride whichever methods you please.
 </para>
 
@@ -3354,7 +4928,10 @@ where clause and over-ride whichever methods you please.
       <para>To use generics you need to</para>
       <itemizedlist>
        <listitem>
-         <para>Use the <option>-fgenerics</option> flag.</para>
+         <para>Use the flags <option>-fglasgow-exts</option> (to enable the extra syntax), 
+                <option>-fgenerics</option> (to generate extra per-data-type code),
+                and <option>-package lang</option> (to make the <literal>Generics</literal> library
+                available.  </para>
        </listitem>
        <listitem>
          <para>Import the module <literal>Generics</literal> from the
@@ -3375,7 +4952,7 @@ can be written infix (indeed, you can now use
 any operator starting in a colon as an infix type constructor).  Also note that
 the type constructors are not exactly as in the paper (Unit instead of 1, etc).
 Finally, note that the syntax of the type patterns in the class declaration
-uses "<literal>{|</literal>" and "<literal>{|</literal>" brackets; curly braces
+uses "<literal>{|</literal>" and "<literal>|}</literal>" brackets; curly braces
 alone would ambiguous when they appear on right hand sides (an extension we 
 anticipate wanting).
 </para>
@@ -3457,10 +5034,10 @@ So this too is illegal:
 <programlisting>
   class Foo a where
     op1 :: a -> Bool
-    op {| a :*: b |} (Inl x) = True
+    op1 {| a :*: b |} (x :*: y) = True
 
     op2 :: a -> Bool
-    op {| p :*: q |} (Inr y) = False
+    op2 {| p :*: q |} (x :*: y) = False
 </programlisting>
 (The reason for this restriction is that we gather all the equations for a particular type consructor
 into a single generic instance declaration.)
@@ -3552,6 +5129,8 @@ Just to finish with, here's another example I rather like:
 </sect2>
 </sect1>
 
+
+
 <!-- Emacs stuff:
      ;;; Local Variables: ***
      ;;; mode: sgml ***