[project @ 2003-06-13 08:45:32 by simonmar]
[ghc-hetmet.git] / ghc / docs / users_guide / glasgow_exts.sgml
index 7ccd0a6..b43f6d4 100644 (file)
@@ -635,32 +635,6 @@ This name is not supported by GHC.
 </sect2>
 
 
-<sect2> <title> Infix type constructors </title>
-
-<para>GHC supports infix type constructors, much as it supports infix data constructors.  For example:
-<programlisting>
-  infixl 5 :+:
-
-  data a :+: b = Inl a | Inr b
-
-  f :: a `Either` b -> a :+: b
-  f (Left x) = Inl x
-</programlisting>
-</para>
-<para>The lexical 
-syntax of an infix type constructor is just like that of an infix data constructor: either
-it's an operator beginning with ":", or it is an ordinary (alphabetic) type constructor enclosed in
-back-quotes.</para>
-
-<para>
-When you give a fixity declaration, the fixity applies to both the data constructor and the
-type constructor with the specified name.  You cannot give different fixities to the type constructor T
-and the data constructor T.
-</para>
-
-
-</sect2>
-
    <!-- ===================== PARALLEL LIST COMPREHENSIONS ===================  -->
 
   <sect2 id="parallel-list-comprehensions">
@@ -959,38 +933,19 @@ classes: exploring the design space</ULink > (Simon Peyton Jones, Mark
 Jones, Erik Meijer).
 </para>
 
-<para>
-I'd like to thank people who reported shorcomings in the GHC 3.02
-implementation.  Our default decisions were all conservative ones, and
-the experience of these heroic pioneers has given useful concrete
-examples to support several generalisations.  (These appear below as
-design choices not implemented in 3.02.)
-</para>
-
-<para>
-I've discussed these notes with Mark Jones, and I believe that Hugs
-will migrate towards the same design choices as I outline here.
-Thanks to him, and to many others who have offered very useful
-feedback.
-</para>
 
-<sect3>
+<sect3 id="type-restrictions">
 <title>Types</title>
 
 <para>
-There are the following restrictions on the form of a qualified
-type:
-</para>
-
-<para>
+GHC imposes the following restrictions on the form of a qualified
+type, whether declared in a type signature
+or inferred. Consider the type:
 
 <programlisting>
   forall tv1..tvn (c1, ...,cn) => type
 </programlisting>
 
-</para>
-
-<para>
 (Here, I write the "foralls" explicitly, although the Haskell source
 language omits them; in Haskell 1.4, all the free type variables of an
 explicit source-language type signature are universally quantified,
@@ -1005,11 +960,15 @@ in GHC, you can give the foralls if you want.  See <xref LinkEnd="universal-quan
 
 <para>
  <emphasis>Each universally quantified type variable
-<literal>tvi</literal> must be mentioned (i.e. appear free) in <literal>type</literal></emphasis>.
+<literal>tvi</literal> must be reachable from <literal>type</literal></emphasis>.
 
+A type variable is "reachable" if it it is functionally dependent
+(see <xref linkend="functional-dependencies">)
+on the type variables free in <literal>type</literal>.
 The reason for this is that a value with a type that does not obey
 this restriction could not be used without introducing
-ambiguity. Here, for example, is an illegal type:
+ambiguity. 
+Here, for example, is an illegal type:
 
 
 <programlisting>
@@ -1064,10 +1023,6 @@ territory free in case we need it later.
 
 </para>
 
-<para>
-These restrictions apply to all types, whether declared in a type signature
-or inferred.
-</para>
 
 <para>
 Unlike Haskell 1.4, constraints in types do <emphasis>not</emphasis> have to be of
@@ -1154,56 +1109,14 @@ be acyclic</emphasis>.  So these class declarations are OK:
 
 </para>
 </listitem>
-<listitem>
-
-<para>
- <emphasis>In the signature of a class operation, every constraint
-must mention at least one type variable that is not a class type
-variable</emphasis>.
-
-Thus:
-
-
-<programlisting>
-  class Collection c a where
-    mapC :: Collection c b => (a->b) -> c a -> c b
-</programlisting>
-
-
-is OK because the constraint <literal>(Collection a b)</literal> mentions
-<literal>b</literal>, even though it also mentions the class variable
-<literal>a</literal>.  On the other hand:
-
-
-<programlisting>
-  class C a where
-    op :: Eq a => (a,b) -> (a,b)
-</programlisting>
-
 
-is not OK because the constraint <literal>(Eq a)</literal> mentions on the class
-type variable <literal>a</literal>, but not <literal>b</literal>.  However, any such
-example is easily fixed by moving the offending context up to the
-superclass context:
-
-
-<programlisting>
-  class Eq a => C a where
-    op ::(a,b) -> (a,b)
-</programlisting>
-
-
-A yet more relaxed rule would allow the context of a class-op signature
-to mention only class type variables.  However, that conflicts with
-Rule 1(b) for types above.
-
-</para>
-</listitem>
 <listitem>
 
 <para>
- <emphasis>The type of each class operation must mention <emphasis>all</emphasis> of
-the class type variables</emphasis>.  For example:
+ <emphasis>All of the class type variables must be reachable (in the sense 
+mentioned in <xref linkend="type-restrictions">)
+from the free varibles of each method type
+</emphasis>.  For example:
 
 
 <programlisting>
@@ -1379,63 +1292,8 @@ For example, this is OK:
   instance Stateful (ST s) (MutVar s) where ...
 </programlisting>
 
-
-The "at least one not a type variable" restriction is to ensure that
-context reduction terminates: each reduction step removes one type
-constructor.  For example, the following would make the type checker
-loop if it wasn't excluded:
-
-
-<programlisting>
-  instance C a => C a where ...
-</programlisting>
-
-
-There are two situations in which the rule is a bit of a pain. First,
-if one allows overlapping instance declarations then it's quite
-convenient to have a "default instance" declaration that applies if
-something more specific does not:
-
-
-<programlisting>
-  instance C a where
-    op = ... -- Default
-</programlisting>
-
-
-Second, sometimes you might want to use the following to get the
-effect of a "class synonym":
-
-
-<programlisting>
-  class (C1 a, C2 a, C3 a) => C a where { }
-
-  instance (C1 a, C2 a, C3 a) => C a where { }
-</programlisting>
-
-
-This allows you to write shorter signatures:
-
-
-<programlisting>
-  f :: C a => ...
-</programlisting>
-
-
-instead of
-
-
-<programlisting>
-  f :: (C1 a, C2 a, C3 a) => ...
-</programlisting>
-
-
-I'm on the lookout for a simple rule that preserves decidability while
-allowing these idioms.  The experimental flag
-<option>-fallow-undecidable-instances</option><indexterm><primary>-fallow-undecidable-instances
-option</primary></indexterm> lifts this restriction, allowing all the types in an
-instance head to be type variables.
-
+See <xref linkend="undecidable-instances"> for an experimental
+extension to lift this restriction.
 </para>
 </listitem>
 <listitem>
@@ -1497,16 +1355,10 @@ instance C Int b => Foo b where ...
 </programlisting>
 
 
-is not OK.  Again, the intent here is to make sure that context
-reduction terminates.
+is not OK.  See <xref linkend="undecidable-instances"> for an experimental
+extension to lift this restriction.
+
 
-Voluminous correspondence on the Haskell mailing list has convinced me
-that it's worth experimenting with a more liberal rule.  If you use
-the flag <option>-fallow-undecidable-instances</option> can use arbitrary
-types in an instance context.  Termination is ensured by having a
-fixed-depth recursion stack.  If you exceed the stack depth you get a
-sort of backtrace, and the opportunity to increase the stack depth
-with <option>-fcontext-stack</option><emphasis>N</emphasis>.
 
 </para>
 </listitem>
@@ -1519,6 +1371,80 @@ with <option>-fcontext-stack</option><emphasis>N</emphasis>.
 
 </sect2>
 
+<sect2 id="undecidable-instances">
+<title>Undecidable instances</title>
+
+<para>The rules for instance declarations state that:
+<itemizedlist>
+<listitem><para>At least one of the types in the <emphasis>head</emphasis> of
+an instance declaration <emphasis>must not</emphasis> be a type variable.
+</para></listitem>
+<listitem><para>All of the types in the <emphasis>context</emphasis> of
+an instance declaration <emphasis>must</emphasis> be type variables.
+</para></listitem>
+</itemizedlist>
+These restrictions ensure that 
+context reduction terminates: each reduction step removes one type
+constructor.  For example, the following would make the type checker
+loop if it wasn't excluded:
+<programlisting>
+  instance C a => C a where ...
+</programlisting>
+There are two situations in which the rule is a bit of a pain. First,
+if one allows overlapping instance declarations then it's quite
+convenient to have a "default instance" declaration that applies if
+something more specific does not:
+
+
+<programlisting>
+  instance C a where
+    op = ... -- Default
+</programlisting>
+
+
+Second, sometimes you might want to use the following to get the
+effect of a "class synonym":
+
+
+<programlisting>
+  class (C1 a, C2 a, C3 a) => C a where { }
+
+  instance (C1 a, C2 a, C3 a) => C a where { }
+</programlisting>
+
+
+This allows you to write shorter signatures:
+
+
+<programlisting>
+  f :: C a => ...
+</programlisting>
+
+
+instead of
+
+
+<programlisting>
+  f :: (C1 a, C2 a, C3 a) => ...
+</programlisting>
+
+
+Voluminous correspondence on the Haskell mailing list has convinced me
+that it's worth experimenting with more liberal rules.  If you use
+the experimental flag <option>-fallow-undecidable-instances</option>
+<indexterm><primary>-fallow-undecidable-instances
+option</primary></indexterm>, you can use arbitrary
+types in both an instance context and instance head.  Termination is ensured by having a
+fixed-depth recursion stack.  If you exceed the stack depth you get a
+sort of backtrace, and the opportunity to increase the stack depth
+with <option>-fcontext-stack</option><emphasis>N</emphasis>.
+</para>
+<para>
+I'm on the lookout for a less brutal solution: a simple rule that preserves decidability while
+allowing these idioms interesting idioms.  
+</para>
+</sect2>
+
 <sect2 id="implicit-parameters">
 <title>Implicit parameters
 </title>
@@ -1555,7 +1481,7 @@ implicitly parameterized by a comparison function named <literal>cmp</literal>.
 The dynamic binding constraints are just a new form of predicate in the type class system.
 </para>
 <para>
-An implicit parameter occurs in an exprssion using the special form <literal>?x</literal>, 
+An implicit parameter occurs in an expression using the special form <literal>?x</literal>, 
 where <literal>x</literal> is
 any valid identifier (e.g. <literal>ord ?x</literal> is a valid expression). 
 Use of this construct also introduces a new
@@ -1608,6 +1534,19 @@ Reason: exactly which implicit parameter you pick up depends on exactly where
 you invoke a function. But the ``invocation'' of instance declarations is done
 behind the scenes by the compiler, so it's hard to figure out exactly where it is done.
 Easiest thing is to outlaw the offending types.</para>
+<para>
+Implicit-parameter constraints do not cause ambiguity.  For example, consider:
+<programlisting>
+   f :: (?x :: [a]) => Int -> Int
+   f n = n + length ?x
+
+   g :: (Read a, Show a) => String -> String
+   g s = show (read s)
+</programlisting>
+Here, <literal>g</literal> has an ambiguous type, and is rejected, but <literal>f</literal>
+is fine.  The binding for <literal>?x</literal> at <literal>f</literal>'s call site is 
+quite unambiguous, and fixes the type <literal>a</literal>.
+</para>
 </sect3>
 
 <sect3>
@@ -1847,8 +1786,14 @@ In Proceedings of the 9th European Symposium on Programming,
 ESOP 2000, Berlin, Germany, March 2000, Springer-Verlag LNCS 1782,
 .
 </para>
-
 <para>
+Functional dependencies are introduced by a vertical bar in the syntax of a 
+class declaration;  e.g. 
+<programlisting>
+  class (Monad m) => MonadState s m | m -> s where ...
+
+  class Foo a b c | a b -> c where ...
+</programlisting>
 There should be more documentation, but there isn't (yet).  Yell if you need it.
 </para>
 </sect2>
@@ -2857,49 +2802,6 @@ scope over the methods defined in the <literal>where</literal> part.  For exampl
 </sect3>
 
 <sect3>
-<title>Result type signatures</title>
-
-<para>
-
-<itemizedlist>
-<listitem>
-
-<para>
- The result type of a function can be given a signature,
-thus:
-
-
-<programlisting>
-  f (x::a) :: [a] = [x,x,x]
-</programlisting>
-
-
-The final <literal>:: [a]</literal> after all the patterns gives a signature to the
-result type.  Sometimes this is the only way of naming the type variable
-you want:
-
-
-<programlisting>
-  f :: Int -> [a] -> [a]
-  f n :: ([a] -> [a]) = let g (x::a, y::a) = (y,x)
-                        in \xs -> map g (reverse xs `zip` xs)
-</programlisting>
-
-
-</para>
-</listitem>
-
-</itemizedlist>
-
-</para>
-
-<para>
-Result type signatures are not yet implemented in Hugs.
-</para>
-
-</sect3>
-
-<sect3>
 <title>Where a pattern type signature can occur</title>
 
 <para>
@@ -3012,6 +2914,61 @@ in <literal>f4</literal>'s scope.
 </para>
 
 </sect3>
+
+<sect3>
+<title>Result type signatures</title>
+
+<para>
+The result type of a function can be given a signature, thus:
+
+
+<programlisting>
+  f (x::a) :: [a] = [x,x,x]
+</programlisting>
+
+
+The final <literal>:: [a]</literal> after all the patterns gives a signature to the
+result type.  Sometimes this is the only way of naming the type variable
+you want:
+
+
+<programlisting>
+  f :: Int -> [a] -> [a]
+  f n :: ([a] -> [a]) = let g (x::a, y::a) = (y,x)
+                        in \xs -> map g (reverse xs `zip` xs)
+</programlisting>
+
+</para>
+<para>
+The type variables bound in a result type signature scope over the right hand side
+of the definition. However, consider this corner-case:
+<programlisting>
+  rev1 :: [a] -> [a] = \xs -> reverse xs
+
+  foo ys = rev (ys::[a])
+</programlisting>
+The signature on <literal>rev1</literal> is considered a pattern type signature, not a result
+type signature, and the type variables it binds have the same scope as <literal>rev1</literal>
+itself (i.e. the right-hand side of <literal>rev1</literal> and the rest of the module too).
+In particular, the expression <literal>(ys::[a])</literal> is OK, because the type variable <literal>a</literal>
+is in scope (otherwise it would mean <literal>(ys::forall a.[a])</literal>, which would be rejected).  
+</para>
+<para>
+As mentioned above, <literal>rev1</literal> is made monomorphic by this scoping rule.
+For example, the following program would be rejected, because it claims that <literal>rev1</literal>
+is polymorphic:
+<programlisting>
+  rev1 :: [b] -> [b]
+  rev1 :: [a] -> [a] = \xs -> reverse xs
+</programlisting>
+</para>
+
+<para>
+Result type signatures are not yet implemented in Hugs.
+</para>
+
+</sect3>
+
 </sect2>
 
 <sect2 id="newtype-deriving">
@@ -3140,13 +3097,26 @@ declaration (after expansion of any type synonyms)
   newtype T v1...vn = T' (S t1...tk vk+1...vn) deriving (c1...cm) 
 </programlisting> 
 
-where <literal>S</literal> is a type constructor, <literal>t1...tk</literal> are 
-types,
-<literal>vk+1...vn</literal> are type variables which do not occur in any of
-the <literal>ti</literal>, and the <literal>ci</literal> are partial applications of
-classes of the form <literal>C t1'...tj'</literal>.  The derived instance
-declarations are, for each <literal>ci</literal>,
-
+where 
+ <itemizedlist>
+<listitem><para>
+  <literal>S</literal> is a type constructor, 
+</para></listitem>
+<listitem><para>
+  <literal>t1...tk</literal> are types,
+</para></listitem>
+<listitem><para>
+  <literal>vk+1...vn</literal> are type variables which do not occur in any of
+  the <literal>ti</literal>, and
+</para></listitem>
+<listitem><para>
+  the <literal>ci</literal> are partial applications of
+  classes of the form <literal>C t1'...tj'</literal>, where the arity of <literal>C</literal>
+  is exactly <literal>j+1</literal>.  That is, <literal>C</literal> lacks exactly one type argument.
+</para></listitem>
+</itemizedlist>
+Then, for each <literal>ci</literal>, the derived instance
+declaration is:
 <programlisting> 
   instance ci (S t1...tk vk+1...v) => ci (T v1...vp)
 </programlisting>
@@ -3205,6 +3175,9 @@ Template Meta-programming for Haskell</ulink>", in
 Proc Haskell Workshop 2002.
 </para>
 
+<para> The first example from that paper is set out below as a worked example to help get you started. 
+</para>
+
 <para>
 The documentation here describes the realisation in GHC.  (It's rather sketchy just now;
 Tim Sheard is going to expand it.)
@@ -3272,12 +3245,6 @@ Tim Sheard is going to expand it.)
     </para></listitem>
 
     <listitem><para>
-           If the module contains any top-level splices that must be run, you must use GHC with
-           <literal>--make</literal> or <literal>--interactive</literal> flags.  (Reason: that 
-           means it walks the dependency tree and knows what modules must be linked etc.)
-   </para></listitem>
-
-    <listitem><para>
     You can only run a function at compile time if it is imported from another module.  That is,
            you can't define a function in a module, and call it from within a splice in the same module.
            (It would make sense to do so, but it's hard to implement.)
@@ -3286,8 +3253,86 @@ Tim Sheard is going to expand it.)
     <listitem><para>
            The flag <literal>-ddump-splices</literal> shows the expansion of all top-level splices as they happen.
    </para></listitem>
+    <listitem><para>
+           If you are building GHC from source, you need at least a stage-2 bootstrap compiler to
+             run Template Haskell.  A stage-1 compiler will reject the TH constructs.  Reason: TH
+             compiles and runs a program, and then looks at the result.  So it's important that
+             the program it compiles produces results whose representations are identical to
+             those of the compiler itself.
+   </para></listitem>
 </itemizedlist>
 </para>
+<para> Template Haskell works in any mode (<literal>--make</literal>, <literal>--interactive</literal>,
+       or file-at-a-time).  There used to be a restriction to the former two, but that restriction 
+       has been lifted.
+</para>
+</sect2>
+<sect2>  <title> A Template Haskell Worked Example </title>
+<para>To help you get over the confidence barrier, try out this skeletal worked example.
+  First cut and paste the two modules below into "Main.hs" and "Printf.hs":</para>
+
+<programlisting>
+{- Main.hs -}
+module Main where
+
+-- Import our template "pr"
+import Printf ( pr )
+
+-- The splice operator $ takes the Haskell source code
+-- generated at compile time by "pr" and splices it into
+-- the argument of "putStrLn".
+main = putStrLn ( $(pr "Hello") )
+</programlisting>
+
+<programlisting>
+{- Printf.hs -}
+module Printf where
+
+-- Skeletal printf from the paper.
+-- It needs to be in a separate module to the one where
+-- you intend to use it.
+
+-- Import some Template Haskell syntax
+import Language.Haskell.THSyntax
+
+-- Describe a format string
+data Format = D | S | L String
+
+-- Parse a format string.  This is left largely to you
+-- as we are here interested in building our first ever
+-- Template Haskell program and not in building printf.
+parse :: String -> [Format]
+parse s   = [ L s ]
+
+-- Generate Haskell source code from a parsed representation
+-- of the format string.  This code will be spliced into
+-- the module which calls "pr", at compile time.
+gen :: [Format] -> Expr
+gen [D]   = [| \n -> show n |]
+gen [S]   = [| \s -> s |]
+gen [L s] = string s
+
+-- Here we generate the Haskell code for the splice
+-- from an input format string.
+pr :: String -> Expr
+pr s      = gen (parse s)
+</programlisting>
+
+<para>Now run the compiler (here we are using a "stage three" build of GHC, at a Cygwin prompt on Windows):
+</para>
+<programlisting>
+ghc/compiler/stage3/ghc-inplace --make -fglasgow-exts -package haskell-src main.hs -o main.exe
+</programlisting>
+
+<para>Run "main.exe" and here is your output:
+</para>
+
+<programlisting>
+$ ./main
+Hello
+</programlisting>
+
 </sect2>
  
 </sect1>
@@ -3403,32 +3448,64 @@ Assertion failures can be caught, see the documentation for the
     unrecognised <replaceable>word</replaceable> is (silently)
     ignored.</para>
 
-<sect2 id="inline-pragma">
-<title>INLINE pragma
+    <sect2 id="deprecated-pragma">
+      <title>DEPRECATED pragma</title>
+      <indexterm><primary>DEPRECATED</primary>
+      </indexterm>
 
-<indexterm><primary>INLINE pragma</primary></indexterm>
-<indexterm><primary>pragma, INLINE</primary></indexterm></title>
+      <para>The DEPRECATED pragma lets you specify that a particular
+      function, class, or type, is deprecated.  There are two
+      forms.</para>
 
-<para>
-GHC (with <option>-O</option>, as always) tries to inline (or &ldquo;unfold&rdquo;)
-functions/values that are &ldquo;small enough,&rdquo; thus avoiding the call
-overhead and possibly exposing other more-wonderful optimisations.
-</para>
+      <itemizedlist>
+       <listitem>
+         <para>You can deprecate an entire module thus:</para>
+<programlisting>
+   module Wibble {-# DEPRECATED "Use Wobble instead" #-} where
+     ...
+</programlisting>
+         <para>When you compile any module that import
+          <literal>Wibble</literal>, GHC will print the specified
+          message.</para>
+       </listitem>
 
-<para>
-You will probably see these unfoldings (in Core syntax) in your
-interface files.
-</para>
+       <listitem>
+         <para>You can deprecate a function, class, or type, with the
+         following top-level declaration:</para>
+<programlisting>
+   {-# DEPRECATED f, C, T "Don't use these" #-}
+</programlisting>
+         <para>When you compile any module that imports and uses any
+          of the specifed entities, GHC will print the specified
+          message.</para>
+       </listitem>
+      </itemizedlist>
 
-<para>
-Normally, if GHC decides a function is &ldquo;too expensive&rdquo; to inline, it
-will not do so, nor will it export that unfolding for other modules to
-use.
-</para>
+      <para>You can suppress the warnings with the flag
+      <option>-fno-warn-deprecations</option>.</para>
+    </sect2>
 
-<para>
-The sledgehammer you can bring to bear is the
-<literal>INLINE</literal><indexterm><primary>INLINE pragma</primary></indexterm> pragma, used thusly:
+    <sect2 id="inline-noinline-pragma">
+      <title>INLINE and NOINLINE pragmas</title>
+
+      <para>These pragmas control the inlining of function
+      definitions.</para>
+
+      <sect3 id="inline-pragma">
+       <title>INLINE pragma</title>
+       <indexterm><primary>INLINE</primary></indexterm>
+
+       <para>GHC (with <option>-O</option>, as always) tries to
+        inline (or &ldquo;unfold&rdquo;) functions/values that are
+        &ldquo;small enough,&rdquo; thus avoiding the call overhead
+        and possibly exposing other more-wonderful optimisations.
+        Normally, if GHC decides a function is &ldquo;too
+        expensive&rdquo; to inline, it will not do so, nor will it
+        export that unfolding for other modules to use.</para>
+
+        <para>The sledgehammer you can bring to bear is the
+        <literal>INLINE</literal><indexterm><primary>INLINE
+        pragma</primary></indexterm> pragma, used thusly:</para>
 
 <programlisting>
 key_function :: Int -> String -> (Bool, Double)
@@ -3438,25 +3515,25 @@ key_function :: Int -> String -> (Bool, Double)
 #endif
 </programlisting>
 
-(You don't need to do the C pre-processor carry-on unless you're going
-to stick the code through HBC&mdash;it doesn't like <literal>INLINE</literal> pragmas.)
-</para>
+       <para>(You don't need to do the C pre-processor carry-on
+        unless you're going to stick the code through HBC&mdash;it
+        doesn't like <literal>INLINE</literal> pragmas.)</para>
 
-<para>
-The major effect of an <literal>INLINE</literal> pragma is to declare a function's
-&ldquo;cost&rdquo; to be very low.  The normal unfolding machinery will then be
-very keen to inline it.
-</para>
+        <para>The major effect of an <literal>INLINE</literal> pragma
+        is to declare a function's &ldquo;cost&rdquo; to be very low.
+        The normal unfolding machinery will then be very keen to
+        inline it.</para>
 
-<para>
-An <literal>INLINE</literal> pragma for a function can be put anywhere its type
-signature could be put.
-</para>
+       <para>Syntactially, an <literal>INLINE</literal> pragma for a
+        function can be put anywhere its type signature could be
+        put.</para>
 
-<para>
-<literal>INLINE</literal> pragmas are a particularly good idea for the
-<literal>then</literal>/<literal>return</literal> (or <literal>bind</literal>/<literal>unit</literal>) functions in a monad.
-For example, in GHC's own <literal>UniqueSupply</literal> monad code, we have:
+       <para><literal>INLINE</literal> pragmas are a particularly
+        good idea for the
+        <literal>then</literal>/<literal>return</literal> (or
+        <literal>bind</literal>/<literal>unit</literal>) functions in
+        a monad.  For example, in GHC's own
+        <literal>UniqueSupply</literal> monad code, we have:</para>
 
 <programlisting>
 #ifdef __GLASGOW_HASKELL__
@@ -3465,32 +3542,140 @@ For example, in GHC's own <literal>UniqueSupply</literal> monad code, we have:
 #endif
 </programlisting>
 
-</para>
+       <para>See also the <literal>NOINLINE</literal> pragma (<xref
+        linkend="noinline-pragma">).</para>
+      </sect3>
+
+      <sect3 id="noinline-pragma">
+       <title>NOINLINE pragma</title>
+       
+       <indexterm><primary>NOINLINE</primary></indexterm>
+       <indexterm><primary>NOTINLINE</primary></indexterm>
+
+       <para>The <literal>NOINLINE</literal> pragma does exactly what
+        you'd expect: it stops the named function from being inlined
+        by the compiler.  You shouldn't ever need to do this, unless
+        you're very cautious about code size.</para>
+
+       <para><literal>NOTINLINE</literal> is a synonym for
+        <literal>NOINLINE</literal> (<literal>NOTINLINE</literal> is
+        specified by Haskell 98 as the standard way to disable
+        inlining, so it should be used if you want your code to be
+        portable).</para>
+      </sect3>
+
+      <sect3 id="phase-control">
+       <title>Phase control</title>
+
+       <para> Sometimes you want to control exactly when in GHC's
+        pipeline the INLINE pragma is switched on.  Inlining happens
+        only during runs of the <emphasis>simplifier</emphasis>.  Each
+        run of the simplifier has a different <emphasis>phase
+        number</emphasis>; the phase number decreases towards zero.
+        If you use <option>-dverbose-core2core</option> you'll see the
+        sequence of phase numbers for successive runs of the
+        simpifier.  In an INLINE pragma you can optionally specify a
+        phase number, thus:</para>
 
-</sect2>
+       <itemizedlist>
+         <listitem>
+           <para>You can say "inline <literal>f</literal> in Phase 2
+            and all subsequent phases":
+<programlisting>
+  {-# INLINE [2] f #-}
+</programlisting>
+            </para>
+         </listitem>
 
-<sect2 id="noinline-pragma">
-<title>NOINLINE pragma
-</title>
+         <listitem>
+           <para>You can say "inline <literal>g</literal> in all
+            phases up to, but not including, Phase 3":
+<programlisting>
+  {-# INLINE [~3] g #-}
+</programlisting>
+            </para>
+         </listitem>
 
-<indexterm><primary>NOINLINE pragma</primary></indexterm>
-<indexterm><primary>pragma</primary><secondary>NOINLINE</secondary></indexterm>
-<indexterm><primary>NOTINLINE pragma</primary></indexterm>
-<indexterm><primary>pragma</primary><secondary>NOTINLINE</secondary></indexterm>
+         <listitem>
+           <para>If you omit the phase indicator, you mean "inline in
+            all phases".</para>
+         </listitem>
+       </itemizedlist>
 
-<para>
-The <literal>NOINLINE</literal> pragma does exactly what you'd expect:
-it stops the named function from being inlined by the compiler.  You
-shouldn't ever need to do this, unless you're very cautious about code
-size.
-</para>
+       <para>You can use a phase number on a NOINLINE pragma too:</para>
 
-<para><literal>NOTINLINE</literal> is a synonym for
-<literal>NOINLINE</literal> (<literal>NOTINLINE</literal> is specified
-by Haskell 98 as the standard way to disable inlining, so it should be
-used if you want your code to be portable).</para>
+       <itemizedlist>
+         <listitem>
+           <para>You can say "do not inline <literal>f</literal>
+            until Phase 2; in Phase 2 and subsequently behave as if
+            there was no pragma at all":
+<programlisting>
+  {-# NOINLINE [2] f #-}
+</programlisting>
+            </para>
+         </listitem>
 
-</sect2>
+         <listitem>
+           <para>You can say "do not inline <literal>g</literal> in
+            Phase 3 or any subsequent phase; before that, behave as if
+            there was no pragma":
+<programlisting>
+  {-# NOINLINE [~3] g #-}
+</programlisting>
+            </para>
+         </listitem>
+
+         <listitem>
+           <para>If you omit the phase indicator, you mean "never
+            inline this function".</para>
+         </listitem>
+       </itemizedlist>
+
+       <para>The same phase-numbering control is available for RULES
+       (<xref LinkEnd="rewrite-rules">).</para>
+      </sect3>
+    </sect2>
+
+    <sect2 id="line-pragma">
+      <title>LINE pragma</title>
+
+      <indexterm><primary>LINE</primary><secondary>pragma</secondary></indexterm>
+      <indexterm><primary>pragma</primary><secondary>LINE</secondary></indexterm>
+      <para>This pragma is similar to C's <literal>&num;line</literal>
+      pragma, and is mainly for use in automatically generated Haskell
+      code.  It lets you specify the line number and filename of the
+      original code; for example</para>
+
+<programlisting>
+{-# LINE 42 "Foo.vhs" #-}
+</programlisting>
+
+      <para>if you'd generated the current file from something called
+      <filename>Foo.vhs</filename> and this line corresponds to line
+      42 in the original.  GHC will adjust its error messages to refer
+      to the line/file named in the <literal>LINE</literal>
+      pragma.</para>
+    </sect2>
+
+    <sect2 id="options-pragma">
+      <title>OPTIONS pragma</title>
+      <indexterm><primary>OPTIONS</primary>
+      </indexterm>
+      <indexterm><primary>pragma</primary><secondary>OPTIONS</secondary>
+      </indexterm>
+
+      <para>The <literal>OPTIONS</literal> pragma is used to specify
+      additional options that are given to the compiler when compiling
+      this source file.  See <xref linkend="source-file-options"> for
+      details.</para>
+    </sect2>
+
+    <sect2 id="rules">
+      <title>RULES pragma</title>
+
+      <para>The RULES pragma lets you specify rewrite rules.  It is
+      described in <xref LinkEnd="rewrite-rules">.</para>
+    </sect2>
 
     <sect2 id="specialize-pragma">
       <title>SPECIALIZE pragma</title>
@@ -3516,11 +3701,14 @@ hammeredLookup :: Ord key => [(key, value)] -> key -> value
 {-# SPECIALIZE hammeredLookup :: [(Widget, value)] -> Widget -> value #-}
 </programlisting>
 
+      <para>A <literal>SPECIALIZE</literal> pragma for a function can
+      be put anywhere its type signature could be put.</para>
+
       <para>To get very fancy, you can also specify a named function
       to use for the specialised value, as in:</para>
 
 <programlisting>
-{-# RULES hammeredLookup = blah #-}
+{-# RULES "hammeredLookup" hammeredLookup = blah #-}
 </programlisting>
 
       <para>where <literal>blah</literal> is an implementation of
@@ -3543,7 +3731,7 @@ hammeredLookup :: Ord key => [(key, value)] -> key -> value
 toDouble :: Real a => a -> Double
 toDouble = fromRational . toRational
 
-{-# SPECIALIZE toDouble :: Int -> Double = i2d #-}
+{-# RULES "toDouble/Int" toDouble = i2d #-}
 i2d (I# i) = D# (int2Double# i) -- uses Glasgow prim-op directly
 </programlisting>
 
@@ -3552,9 +3740,6 @@ i2d (I# i) = D# (int2Double# i) -- uses Glasgow prim-op directly
       <literal>Rational</literal>&mdash;is obscenely expensive by
       comparison.</para>
 
-      <para>A <literal>SPECIALIZE</literal> pragma for a function can
-      be put anywhere its type signature could be put.</para>
-
     </sect2>
 
 <sect2 id="specialize-instance-pragma">
@@ -3582,83 +3767,7 @@ of the pragma.
 
 </sect2>
 
-<sect2 id="line-pragma">
-<title>LINE pragma
-</title>
-
-<para>
-<indexterm><primary>LINE pragma</primary></indexterm>
-<indexterm><primary>pragma, LINE</primary></indexterm>
-</para>
-
-<para>
-This pragma is similar to C's <literal>&num;line</literal> pragma, and is mainly for use in
-automatically generated Haskell code.  It lets you specify the line
-number and filename of the original code; for example
-</para>
-
-<para>
-
-<programlisting>
-{-# LINE 42 "Foo.vhs" #-}
-</programlisting>
-
-</para>
-
-<para>
-if you'd generated the current file from something called <filename>Foo.vhs</filename>
-and this line corresponds to line 42 in the original.  GHC will adjust
-its error messages to refer to the line/file named in the <literal>LINE</literal>
-pragma.
-</para>
-
-</sect2>
-
-<sect2 id="rules">
-<title>RULES pragma</title>
 
-<para>
-The RULES pragma lets you specify rewrite rules.  It is described in
-<xref LinkEnd="rewrite-rules">.
-</para>
-
-</sect2>
-
-<sect2 id="deprecated-pragma">
-<title>DEPRECATED pragma</title>
-
-<para>
-The DEPRECATED pragma lets you specify that a particular function, class, or type, is deprecated.  
-There are two forms.  
-</para>
-<itemizedlist>
-<listitem><para>
-You can deprecate an entire module thus:</para>
-<programlisting>
-   module Wibble {-# DEPRECATED "Use Wobble instead" #-} where
-     ...
-</programlisting>
-<para>
-When you compile any module that import <literal>Wibble</literal>, GHC will print
-the specified message.</para>
-</listitem>
-
-<listitem>
-<para>
-You can deprecate a function, class, or type, with the following top-level declaration:
-</para>
-<programlisting>
-   {-# DEPRECATED f, C, T "Don't use these" #-}
-</programlisting>
-<para>
-When you compile any module that imports and uses any of the specifed entities, 
-GHC will print the specified message.
-</para>
-</listitem>
-</itemizedlist>
-<para>You can suppress the warnings with the flag <option>-fno-warn-deprecations</option>.</para>
-
-</sect2>
 
 </sect1>
 
@@ -3697,16 +3806,34 @@ From a syntactic point of view:
 <listitem>
 
 <para>
+ There may be zero or more rules in a <literal>RULES</literal> pragma.
+</para>
+</listitem>
+
+<listitem>
+
+<para>
  Each rule has a name, enclosed in double quotes.  The name itself has
 no significance at all.  It is only used when reporting how many times the rule fired.
 </para>
 </listitem>
-<listitem>
 
+<listitem>
 <para>
- There may be zero or more rules in a <literal>RULES</literal> pragma.
+A rule may optionally have a phase-control number (see <xref LinkEnd="phase-control">),
+immediately after the name of the rule.  Thus:
+<programlisting>
+  {-# RULES
+        "map/map" [2]  forall f g xs. map f (map g xs) = map (f.g) xs
+  #-}
+</programlisting>
+The "[2]" means that the rule is active in Phase 2 and subsequent phases.  The inverse
+notation "[~2]" is also accepted, meaning that the rule is active up to, but not including,
+Phase 2.
 </para>
 </listitem>
+
+
 <listitem>
 
 <para>
@@ -3715,6 +3842,7 @@ is set, so you must lay out your rules starting in the same column as the
 enclosing definitions.
 </para>
 </listitem>
+
 <listitem>
 
 <para>
@@ -4190,7 +4318,7 @@ If you add <option>-dppr-debug</option> you get a more detailed listing.
 <listitem>
 
 <para>
- The defintion of (say) <function>build</function> in <FileName>PrelBase.lhs</FileName> looks llike this:
+ The defintion of (say) <function>build</function> in <FileName>GHC/Base.lhs</FileName> looks llike this:
 
 <programlisting>
         build   :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
@@ -4208,9 +4336,9 @@ in the RHS of the <literal>INLINE</literal> thing.  I regret the delicacy of thi
 <listitem>
 
 <para>
- In <filename>ghc/lib/std/PrelBase.lhs</filename> look at the rules for <function>map</function> to
+ In <filename>libraries/base/GHC/Base.lhs</filename> look at the rules for <function>map</function> to
 see how to write rules that will do fusion and yet give an efficient
-program even if fusion doesn't happen.  More rules in <filename>PrelList.lhs</filename>.
+program even if fusion doesn't happen.  More rules in <filename>GHC/List.lhs</filename>.
 </para>
 </listitem>
 
@@ -4220,6 +4348,69 @@ program even if fusion doesn't happen.  More rules in <filename>PrelList.lhs</fi
 
 </sect2>
 
+<sect2 id="core-pragma">
+  <title>CORE pragma</title>
+
+  <indexterm><primary>CORE pragma</primary></indexterm>
+  <indexterm><primary>pragma, CORE</primary></indexterm>
+  <indexterm><primary>core, annotation</primary></indexterm>
+
+<para>
+  The external core format supports <quote>Note</quote> annotations;
+  the <literal>CORE</literal> pragma gives a way to specify what these
+  should be in your Haskell source code.  Syntactically, core
+  annotations are attached to expressions and take a Haskell string
+  literal as an argument.  The following function definition shows an
+  example:
+
+<programlisting>
+f x = ({-# CORE "foo" #-} show) ({-# CORE "bar" #-} x)
+</programlisting>
+
+  Sematically, this is equivalent to:
+
+<programlisting>
+g x = show x
+</programlisting>
+</para>
+
+<para>
+  However, when external for is generated (via
+  <option>-fext-core</option>), there will be Notes attached to the
+  expressions <function>show</function> and <VarName>x</VarName>.
+  The core function declaration for <function>f</function> is:
+</para>
+
+<programlisting>
+  f :: %forall a . GHCziShow.ZCTShow a ->
+                   a -> GHCziBase.ZMZN GHCziBase.Char =
+    \ @ a (zddShow::GHCziShow.ZCTShow a) (eta::a) ->
+        (%note "foo"
+         %case zddShow %of (tpl::GHCziShow.ZCTShow a)
+           {GHCziShow.ZCDShow
+            (tpl1::GHCziBase.Int ->
+                   a ->
+                   GHCziBase.ZMZN GHCziBase.Char -> GHCziBase.ZMZN GHCziBase.Cha
+r)
+            (tpl2::a -> GHCziBase.ZMZN GHCziBase.Char)
+            (tpl3::GHCziBase.ZMZN a ->
+                   GHCziBase.ZMZN GHCziBase.Char -> GHCziBase.ZMZN GHCziBase.Cha
+r) ->
+              tpl2})
+        (%note "foo"
+         eta);
+</programlisting>
+
+<para>
+  Here, we can see that the function <function>show</function> (which
+  has been expanded out to a case expression over the Show dictionary)
+  has a <literal>%note</literal> attached to it, as does the
+  expression <VarName>eta</VarName> (which used to be called
+  <VarName>x</VarName>).
+</para>
+
+</sect2>
+
 </sect1>
 
 <sect1 id="generic-classes">
@@ -4268,7 +4459,7 @@ Now you can make a data type into an instance of Bin like this:
   instance (Bin a, Bin b) => Bin (a,b)
   instance Bin a => Bin [a]
 </programlisting>
-That is, just leave off the "where" clasuse.  Of course, you can put in the
+That is, just leave off the "where" clause.  Of course, you can put in the
 where clause and over-ride whichever methods you please.
 </para>