Add ASSERTs to all calls of nameModule
[ghc-hetmet.git] / rts / Capability.c
index e384e1e..4d5748c 100644 (file)
@@ -40,6 +40,9 @@ Capability *capabilities = NULL;
 // locking, so we don't do that.
 Capability *last_free_capability;
 
+/* GC indicator, in scope for the scheduler, init'ed to false */
+volatile StgWord waiting_for_gc = 0;
+
 #if defined(THREADED_RTS)
 STATIC_INLINE rtsBool
 globalWorkToDo (void)
@@ -153,10 +156,12 @@ initCapability( Capability *cap, nat i )
        cap->mut_lists[g] = NULL;
     }
 
-    cap->free_tvar_wait_queues = END_STM_WAIT_QUEUE;
+    cap->free_tvar_watch_queues = END_STM_WATCH_QUEUE;
+    cap->free_invariant_check_queues = END_INVARIANT_CHECK_QUEUE;
     cap->free_trec_chunks = END_STM_CHUNK_LIST;
     cap->free_trec_headers = NO_TREC;
     cap->transaction_tokens = 0;
+    cap->context_switch = 0;
 }
 
 /* ---------------------------------------------------------------------------
@@ -214,6 +219,19 @@ initCapabilities( void )
 }
 
 /* ----------------------------------------------------------------------------
+ * setContextSwitches: cause all capabilities to context switch as
+ * soon as possible.
+ * ------------------------------------------------------------------------- */
+
+void setContextSwitches(void)
+{
+  nat i;
+  for (i=0; i < n_capabilities; i++) {
+    capabilities[i].context_switch = 1;
+  }
+}
+
+/* ----------------------------------------------------------------------------
  * Give a Capability to a Task.  The task must currently be sleeping
  * on its condition variable.
  *
@@ -275,6 +293,21 @@ releaseCapability_ (Capability* cap)
        return;
     }
 
+    /* if waiting_for_gc was the reason to release the cap: thread
+       comes from yieldCap->releaseAndQueueWorker. Unconditionally set
+       cap. free and return (see default after the if-protected other
+       special cases). Thread will wait on cond.var and re-acquire the
+       same cap after GC (GC-triggering cap. calls releaseCap and
+       enters the spare_workers case)
+    */
+    if (waiting_for_gc) {
+      last_free_capability = cap; // needed?
+      trace(TRACE_sched | DEBUG_sched, 
+           "GC pending, set capability %d free", cap->no);
+      return;
+    } 
+
+
     // If the next thread on the run queue is a bound thread,
     // give this Capability to the appropriate Task.
     if (!emptyRunQueue(cap) && cap->run_queue_hd->bound) {
@@ -452,7 +485,14 @@ yieldCapability (Capability** pCap, Task *task)
 
     // The fast path has no locking, if we don't enter this while loop
 
-    while ( cap->returning_tasks_hd != NULL || !anyWorkForMe(cap,task) ) {
+    while ( waiting_for_gc
+           /* i.e. another capability triggered HeapOverflow, is busy
+              getting capabilities (stopping their owning tasks) */
+           || cap->returning_tasks_hd != NULL 
+               /* cap reserved for another task */
+           || !anyWorkForMe(cap,task) 
+               /* cap/task have no work */
+           ) {
        debugTrace(DEBUG_sched, "giving up capability %d", cap->no);
 
        // We must now release the capability and wait to be woken up
@@ -514,57 +554,41 @@ yieldCapability (Capability** pCap, Task *task)
  * ------------------------------------------------------------------------- */
 
 void
-wakeupThreadOnCapability (Capability *cap, StgTSO *tso)
+wakeupThreadOnCapability (Capability *my_cap, 
+                          Capability *other_cap, 
+                          StgTSO *tso)
 {
-    ASSERT(tso->cap == cap);
-    ASSERT(tso->bound ? tso->bound->cap == cap : 1);
-    ASSERT_LOCK_HELD(&cap->lock);
+    ACQUIRE_LOCK(&other_cap->lock);
 
-    tso->cap = cap;
+    // ASSUMES: cap->lock is held (asserted in wakeupThreadOnCapability)
+    if (tso->bound) {
+       ASSERT(tso->bound->cap == tso->cap);
+       tso->bound->cap = other_cap;
+    }
+    tso->cap = other_cap;
+
+    ASSERT(tso->bound ? tso->bound->cap == other_cap : 1);
 
-    if (cap->running_task == NULL) {
+    if (other_cap->running_task == NULL) {
        // nobody is running this Capability, we can add our thread
        // directly onto the run queue and start up a Task to run it.
-       appendToRunQueue(cap,tso);
 
-       // start it up
-       cap->running_task = myTask(); // precond for releaseCapability_()
-       trace(TRACE_sched, "resuming capability %d", cap->no);
-       releaseCapability_(cap);
+       other_cap->running_task = myTask(); 
+            // precond for releaseCapability_() and appendToRunQueue()
+
+       appendToRunQueue(other_cap,tso);
+
+       trace(TRACE_sched, "resuming capability %d", other_cap->no);
+       releaseCapability_(other_cap);
     } else {
-       appendToWakeupQueue(cap,tso);
+       appendToWakeupQueue(my_cap,other_cap,tso);
+        other_cap->context_switch = 1;
        // someone is running on this Capability, so it cannot be
        // freed without first checking the wakeup queue (see
        // releaseCapability_).
     }
-}
 
-void
-wakeupThreadOnCapability_lock (Capability *cap, StgTSO *tso)
-{
-    ACQUIRE_LOCK(&cap->lock);
-    migrateThreadToCapability (cap, tso);
-    RELEASE_LOCK(&cap->lock);
-}
-
-void
-migrateThreadToCapability (Capability *cap, StgTSO *tso)
-{
-    // ASSUMES: cap->lock is held (asserted in wakeupThreadOnCapability)
-    if (tso->bound) {
-       ASSERT(tso->bound->cap == tso->cap);
-       tso->bound->cap = cap;
-    }
-    tso->cap = cap;
-    wakeupThreadOnCapability(cap,tso);
-}
-
-void
-migrateThreadToCapability_lock (Capability *cap, StgTSO *tso)
-{
-    ACQUIRE_LOCK(&cap->lock);
-    migrateThreadToCapability (cap, tso);
-    RELEASE_LOCK(&cap->lock);
+    RELEASE_LOCK(&other_cap->lock);
 }
 
 /* ----------------------------------------------------------------------------
@@ -638,7 +662,7 @@ prodOneCapability (void)
  * ------------------------------------------------------------------------- */
 
 void
-shutdownCapability (Capability *cap, Task *task)
+shutdownCapability (Capability *cap, Task *task, rtsBool safe)
 {
     nat i;
 
@@ -646,7 +670,13 @@ shutdownCapability (Capability *cap, Task *task)
 
     task->cap = cap;
 
-    for (i = 0; i < 50; i++) {
+    // Loop indefinitely until all the workers have exited and there
+    // are no Haskell threads left.  We used to bail out after 50
+    // iterations of this loop, but that occasionally left a worker
+    // running which caused problems later (the closeMutex() below
+    // isn't safe, for one thing).
+
+    for (i = 0; /* i < 50 */; i++) {
        debugTrace(DEBUG_sched, 
                   "shutting down capability %d, attempt %d", cap->no, i);
        ACQUIRE_LOCK(&cap->lock);
@@ -657,6 +687,30 @@ shutdownCapability (Capability *cap, Task *task)
            continue;
        }
        cap->running_task = task;
+
+        if (cap->spare_workers) {
+            // Look for workers that have died without removing
+            // themselves from the list; this could happen if the OS
+            // summarily killed the thread, for example.  This
+            // actually happens on Windows when the system is
+            // terminating the program, and the RTS is running in a
+            // DLL.
+            Task *t, *prev;
+            prev = NULL;
+            for (t = cap->spare_workers; t != NULL; t = t->next) {
+                if (!osThreadIsAlive(t->id)) {
+                    debugTrace(DEBUG_sched, 
+                               "worker thread %p has died unexpectedly", (void *)t->id);
+                        if (!prev) {
+                            cap->spare_workers = t->next;
+                        } else {
+                            prev->next = t->next;
+                        }
+                        prev = t;
+                }
+            }
+        }
+
        if (!emptyRunQueue(cap) || cap->spare_workers) {
            debugTrace(DEBUG_sched, 
                       "runnable threads or workers still alive, yielding");
@@ -665,15 +719,34 @@ shutdownCapability (Capability *cap, Task *task)
            yieldThread();
            continue;
        }
+
+        // If "safe", then busy-wait for any threads currently doing
+        // foreign calls.  If we're about to unload this DLL, for
+        // example, we need to be sure that there are no OS threads
+        // that will try to return to code that has been unloaded.
+        // We can be a bit more relaxed when this is a standalone
+        // program that is about to terminate, and let safe=false.
+        if (cap->suspended_ccalling_tasks && safe) {
+           debugTrace(DEBUG_sched, 
+                      "thread(s) are involved in foreign calls, yielding");
+            cap->running_task = NULL;
+           RELEASE_LOCK(&cap->lock);
+            yieldThread();
+            continue;
+        }
+            
        debugTrace(DEBUG_sched, "capability %d is stopped.", cap->no);
+        freeCapability(cap);
        RELEASE_LOCK(&cap->lock);
        break;
     }
     // we now have the Capability, its run queue and spare workers
     // list are both empty.
 
-    // We end up here only in THREADED_RTS
-    closeMutex(&cap->lock);
+    // ToDo: we can't drop this mutex, because there might still be
+    // threads performing foreign calls that will eventually try to 
+    // return via resumeThread() and attempt to grab cap->lock.
+    // closeMutex(&cap->lock);
 }
 
 /* ----------------------------------------------------------------------------
@@ -701,4 +774,75 @@ tryGrabCapability (Capability *cap, Task *task)
 
 #endif /* THREADED_RTS */
 
+void
+freeCapability (Capability *cap) {
+    stgFree(cap->mut_lists);
+#if defined(THREADED_RTS) || defined(PARALLEL_HASKELL)
+    freeSparkPool(&cap->r.rSparks);
+#endif
+}
+
+/* ---------------------------------------------------------------------------
+   Mark everything directly reachable from the Capabilities.  When
+   using multiple GC threads, each GC thread marks all Capabilities
+   for which (c `mod` n == 0), for Capability c and thread n.
+   ------------------------------------------------------------------------ */
+
+void
+markSomeCapabilities (evac_fn evac, void *user, nat i0, nat delta)
+{
+    nat i;
+    Capability *cap;
+    Task *task;
+
+    // Each GC thread is responsible for following roots from the
+    // Capability of the same number.  There will usually be the same
+    // or fewer Capabilities as GC threads, but just in case there
+    // are more, we mark every Capability whose number is the GC
+    // thread's index plus a multiple of the number of GC threads.
+    for (i = i0; i < n_capabilities; i += delta) {
+       cap = &capabilities[i];
+       evac(user, (StgClosure **)(void *)&cap->run_queue_hd);
+       evac(user, (StgClosure **)(void *)&cap->run_queue_tl);
+#if defined(THREADED_RTS)
+       evac(user, (StgClosure **)(void *)&cap->wakeup_queue_hd);
+       evac(user, (StgClosure **)(void *)&cap->wakeup_queue_tl);
+#endif
+       for (task = cap->suspended_ccalling_tasks; task != NULL; 
+            task=task->next) {
+           debugTrace(DEBUG_sched,
+                      "evac'ing suspended TSO %lu", (unsigned long)task->suspended_tso->id);
+           evac(user, (StgClosure **)(void *)&task->suspended_tso);
+       }
 
+#if defined(THREADED_RTS)
+        traverseSparkQueue (evac, user, cap);
+#endif
+    }
+
+#if !defined(THREADED_RTS)
+    evac(user, (StgClosure **)(void *)&blocked_queue_hd);
+    evac(user, (StgClosure **)(void *)&blocked_queue_tl);
+    evac(user, (StgClosure **)(void *)&sleeping_queue);
+#endif 
+}
+
+// This function is used by the compacting GC to thread all the
+// pointers from spark queues.
+void
+traverseSparkQueues (evac_fn evac USED_IF_THREADS, void *user USED_IF_THREADS)
+{
+#if defined(THREADED_RTS)
+    nat i;
+    for (i = 0; i < n_capabilities; i++) {
+        traverseSparkQueue (evac, user, &capabilities[i]);
+    }
+#endif // THREADED_RTS
+
+}
+
+void
+markCapabilities (evac_fn evac, void *user)
+{
+    markSomeCapabilities(evac, user, 0, 1);
+}