fix allocated blocks calculation, and add more sanity checks
[ghc-hetmet.git] / rts / sm / Storage.c
index 68dfb19..b76fcf4 100644 (file)
@@ -1,6 +1,6 @@
 /* -----------------------------------------------------------------------------
  *
- * (c) The GHC Team, 1998-2006
+ * (c) The GHC Team, 1998-2008
  *
  * Storage manager front end
  *
@@ -29,6 +29,8 @@
 #include "RetainerProfile.h"   // for counting memory blocks (memInventory)
 #include "OSMem.h"
 #include "Trace.h"
+#include "GC.h"
+#include "Evac.h"
 
 #include <stdlib.h>
 #include <string.h>
@@ -49,6 +51,9 @@ generation *g0                = NULL; /* generation 0, for convenience */
 generation *oldest_gen  = NULL; /* oldest generation, for convenience */
 step *g0s0             = NULL; /* generation 0, step 0, for convenience */
 
+nat total_steps         = 0;
+step *all_steps         = NULL; /* single array of steps */
+
 ullong total_allocated = 0;    /* total memory allocated during run */
 
 nat n_nurseries         = 0;    /* == RtsFlags.ParFlags.nNodes, convenience */
@@ -78,26 +83,26 @@ static void
 initStep (step *stp, int g, int s)
 {
     stp->no = s;
+    stp->abs_no = RtsFlags.GcFlags.steps * g + s;
     stp->blocks = NULL;
     stp->n_blocks = 0;
+    stp->n_words = 0;
     stp->old_blocks = NULL;
     stp->n_old_blocks = 0;
     stp->gen = &generations[g];
     stp->gen_no = g;
-    stp->hp = NULL;
-    stp->hpLim = NULL;
-    stp->hp_bd = NULL;
-    stp->scavd_hp = NULL;
-    stp->scavd_hpLim = NULL;
-    stp->scan = NULL;
-    stp->scan_bd = NULL;
     stp->large_objects = NULL;
     stp->n_large_blocks = 0;
-    stp->new_large_objects = NULL;
     stp->scavenged_large_objects = NULL;
     stp->n_scavenged_large_blocks = 0;
     stp->is_compacted = 0;
     stp->bitmap = NULL;
+#ifdef THREADED_RTS
+    initSpinLock(&stp->sync_todo);
+    initSpinLock(&stp->sync_large_objects);
+#endif
+    stp->threads = END_TSO_QUEUE;
+    stp->old_threads = END_TSO_QUEUE;
 }
 
 void
@@ -116,7 +121,8 @@ initStorage( void )
   /* Sanity check to make sure the LOOKS_LIKE_ macros appear to be
    * doing something reasonable.
    */
-  ASSERT(LOOKS_LIKE_INFO_PTR(&stg_BLACKHOLE_info));
+  /* We use the NOT_NULL variant or gcc warns that the test is always true */
+  ASSERT(LOOKS_LIKE_INFO_PTR_NOT_NULL(&stg_BLACKHOLE_info));
   ASSERT(LOOKS_LIKE_CLOSURE_PTR(&stg_dummy_ret_closure));
   ASSERT(!HEAP_ALLOCED(&stg_dummy_ret_closure));
   
@@ -147,12 +153,21 @@ initStorage( void )
                                             * sizeof(struct generation_),
                                             "initStorage: gens");
 
+  /* allocate all the steps into an array.  It is important that we do
+     it this way, because we need the invariant that two step pointers
+     can be directly compared to see which is the oldest.
+     Remember that the last generation has only one step. */
+  total_steps = 1 + (RtsFlags.GcFlags.generations - 1) * RtsFlags.GcFlags.steps;
+  all_steps   = stgMallocBytes(total_steps * sizeof(struct step_),
+                               "initStorage: steps");
+
   /* Initialise all generations */
   for(g = 0; g < RtsFlags.GcFlags.generations; g++) {
     gen = &generations[g];
     gen->no = g;
     gen->mut_list = allocBlock();
     gen->collections = 0;
+    gen->par_collections = 0;
     gen->failed_promotions = 0;
     gen->max_blocks = 0;
   }
@@ -167,21 +182,19 @@ initStorage( void )
 
     /* Oldest generation: one step */
     oldest_gen->n_steps = 1;
-    oldest_gen->steps = 
-      stgMallocBytes(1 * sizeof(struct step_), "initStorage: last step");
+    oldest_gen->steps   = all_steps + (RtsFlags.GcFlags.generations - 1)
+                                     * RtsFlags.GcFlags.steps;
 
     /* set up all except the oldest generation with 2 steps */
     for(g = 0; g < RtsFlags.GcFlags.generations-1; g++) {
       generations[g].n_steps = RtsFlags.GcFlags.steps;
-      generations[g].steps  = 
-       stgMallocBytes (RtsFlags.GcFlags.steps * sizeof(struct step_),
-                       "initStorage: steps");
+      generations[g].steps   = all_steps + g * RtsFlags.GcFlags.steps;
     }
     
   } else {
     /* single generation, i.e. a two-space collector */
     g0->n_steps = 1;
-    g0->steps = stgMallocBytes (sizeof(struct step_), "initStorage: steps");
+    g0->steps   = all_steps;
   }
 
 #ifdef THREADED_RTS
@@ -247,6 +260,12 @@ initStorage( void )
   /* Tell GNU multi-precision pkg about our custom alloc functions */
   mp_set_memory_functions(stgAllocForGMP, stgReallocForGMP, stgDeallocForGMP);
 
+#ifdef THREADED_RTS
+  initSpinLock(&gc_alloc_block_sync);
+  initSpinLock(&recordMutableGen_sync);
+  whitehole_spin = 0;
+#endif
+
   IF_DEBUG(gc, statDescribeGens());
 
   RELEASE_SM_LOCK;
@@ -261,10 +280,7 @@ exitStorage (void)
 void
 freeStorage (void)
 {
-    nat g;
-
-    for(g = 0; g < RtsFlags.GcFlags.generations; g++)
-      stgFree(generations[g].steps);
+    stgFree(g0s0); // frees all the steps
     stgFree(generations);
     freeAllMBlocks();
 #if defined(THREADED_RTS)
@@ -537,6 +553,22 @@ resizeNurseries (nat blocks)
     resizeNurseriesFixed(blocks / n_nurseries);
 }
 
+
+/* -----------------------------------------------------------------------------
+   move_TSO is called to update the TSO structure after it has been
+   moved from one place to another.
+   -------------------------------------------------------------------------- */
+
+void
+move_TSO (StgTSO *src, StgTSO *dest)
+{
+    ptrdiff_t diff;
+
+    // relocate the stack pointer... 
+    diff = (StgPtr)dest - (StgPtr)src; // In *words* 
+    dest->sp = (StgPtr)dest->sp + diff;
+}
+
 /* -----------------------------------------------------------------------------
    The allocate() interface
 
@@ -625,6 +657,34 @@ allocatedBytes( void )
     return allocated;
 }
 
+// split N blocks off the start of the given bdescr, returning the 
+// remainder as a new block group.  We treat the remainder as if it
+// had been freshly allocated in generation 0.
+bdescr *
+splitLargeBlock (bdescr *bd, nat blocks)
+{
+    bdescr *new_bd;
+
+    // subtract the original number of blocks from the counter first
+    bd->step->n_large_blocks -= bd->blocks;
+
+    new_bd = splitBlockGroup (bd, blocks);
+
+    dbl_link_onto(new_bd, &g0s0->large_objects);
+    g0s0->n_large_blocks += new_bd->blocks;
+    new_bd->gen_no  = g0s0->no;
+    new_bd->step    = g0s0;
+    new_bd->flags   = BF_LARGE;
+    new_bd->free    = bd->free;
+
+    // add the new number of blocks to the counter.  Due to the gaps
+    // for block descriptor, new_bd->blocks + bd->blocks might not be
+    // equal to the original bd->blocks, which is why we do it this way.
+    bd->step->n_large_blocks += bd->blocks;
+
+    return new_bd;
+}    
+
 /* -----------------------------------------------------------------------------
    allocateLocal()
 
@@ -780,6 +840,35 @@ dirty_MUT_VAR(StgRegTable *reg, StgClosure *p)
     }
 }
 
+// Setting a TSO's link field with a write barrier.
+// It is *not* necessary to call this function when
+//    * setting the link field to END_TSO_QUEUE
+//    * putting a TSO on the blackhole_queue
+//    * setting the link field of the currently running TSO, as it
+//      will already be dirty.
+void
+setTSOLink (Capability *cap, StgTSO *tso, StgTSO *target)
+{
+    bdescr *bd;
+    if ((tso->flags & (TSO_DIRTY|TSO_LINK_DIRTY)) == 0) {
+        tso->flags |= TSO_LINK_DIRTY;
+       bd = Bdescr((StgPtr)tso);
+       if (bd->gen_no > 0) recordMutableCap((StgClosure*)tso,cap,bd->gen_no);
+    }
+    tso->_link = target;
+}
+
+void
+dirty_TSO (Capability *cap, StgTSO *tso)
+{
+    bdescr *bd;
+    if ((tso->flags & (TSO_DIRTY|TSO_LINK_DIRTY)) == 0) {
+       bd = Bdescr((StgPtr)tso);
+       if (bd->gen_no > 0) recordMutableCap((StgClosure*)tso,cap,bd->gen_no);
+    }
+    tso->flags |= TSO_DIRTY;
+}
+
 /*
    This is the write barrier for MVARs.  An MVAR_CLEAN objects is not
    on the mutable list; a MVAR_DIRTY is.  When written to, a
@@ -910,15 +999,15 @@ calcAllocated( void )
 /* Approximate the amount of live data in the heap.  To be called just
  * after garbage collection (see GarbageCollect()).
  */
-extern lnat 
-calcLive(void)
+lnat 
+calcLiveBlocks(void)
 {
   nat g, s;
   lnat live = 0;
   step *stp;
 
   if (RtsFlags.GcFlags.generations == 1) {
-      return (g0s0->n_large_blocks + g0s0->n_blocks) * BLOCK_SIZE_W;
+      return g0s0->n_large_blocks + g0s0->n_blocks;
   }
 
   for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
@@ -930,12 +1019,48 @@ calcLive(void)
          continue; 
       }
       stp = &generations[g].steps[s];
-      live += (stp->n_large_blocks + stp->n_blocks) * BLOCK_SIZE_W;
+      live += stp->n_large_blocks + stp->n_blocks;
     }
   }
   return live;
 }
 
+lnat
+countOccupied(bdescr *bd)
+{
+    lnat words;
+
+    words = 0;
+    for (; bd != NULL; bd = bd->link) {
+        words += bd->free - bd->start;
+    }
+    return words;
+}
+
+// Return an accurate count of the live data in the heap, excluding
+// generation 0.
+lnat
+calcLiveWords(void)
+{
+    nat g, s;
+    lnat live;
+    step *stp;
+    
+    if (RtsFlags.GcFlags.generations == 1) {
+        return g0s0->n_words + countOccupied(g0s0->large_objects);
+    }
+    
+    live = 0;
+    for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
+        for (s = 0; s < generations[g].n_steps; s++) {
+            if (g == 0 && s == 0) continue; 
+            stp = &generations[g].steps[s];
+            live += stp->n_words + countOccupied(stp->large_objects);
+        } 
+    }
+    return live;
+}
+
 /* Approximate the number of blocks that will be needed at the next
  * garbage collection.
  *
@@ -954,13 +1079,14 @@ calcNeeded(void)
        for (s = 0; s < generations[g].n_steps; s++) {
            if (g == 0 && s == 0) { continue; }
            stp = &generations[g].steps[s];
-           if (generations[g].steps[0].n_blocks +
-               generations[g].steps[0].n_large_blocks 
-               > generations[g].max_blocks
-               && stp->is_compacted == 0) {
-               needed += 2 * stp->n_blocks;
+           if (g == 0 || // always collect gen 0
+                (generations[g].steps[0].n_blocks +
+                 generations[g].steps[0].n_large_blocks 
+                 > generations[g].max_blocks
+                 && stp->is_compacted == 0)) {
+               needed += 2 * stp->n_blocks + stp->n_large_blocks;
            } else {
-               needed += stp->n_blocks;
+               needed += stp->n_blocks + stp->n_large_blocks;
            }
        }
     }
@@ -1072,6 +1198,21 @@ void freeExec (void *addr)
 
 #ifdef DEBUG
 
+// Useful for finding partially full blocks in gdb
+void findSlop(bdescr *bd);
+void findSlop(bdescr *bd)
+{
+    lnat slop;
+
+    for (; bd != NULL; bd = bd->link) {
+        slop = (bd->blocks * BLOCK_SIZE_W) - (bd->free - bd->start);
+        if (slop > (1024/sizeof(W_))) {
+            debugBelch("block at %p (bdescr %p) has %ldKB slop\n",
+                       bd->start, bd, slop / (1024/sizeof(W_)));
+        }
+    }
+}
+
 nat
 countBlocks(bdescr *bd)
 {
@@ -1112,7 +1253,7 @@ stepBlocks (step *stp)
 }
 
 void
-memInventory(void)
+memInventory (rtsBool show)
 {
   nat g, s, i;
   step *stp;
@@ -1120,6 +1261,7 @@ memInventory(void)
   lnat nursery_blocks, retainer_blocks,
        arena_blocks, exec_blocks;
   lnat live_blocks = 0, free_blocks = 0;
+  rtsBool leak;
 
   // count the blocks we current have
 
@@ -1163,20 +1305,39 @@ memInventory(void)
   live_blocks += nursery_blocks + 
                + retainer_blocks + arena_blocks + exec_blocks;
 
-  if (live_blocks + free_blocks != mblocks_allocated * BLOCKS_PER_MBLOCK)
+#define MB(n) (((n) * BLOCK_SIZE_W) / ((1024*1024)/sizeof(W_)))
+
+  leak = live_blocks + free_blocks != mblocks_allocated * BLOCKS_PER_MBLOCK;
+
+  ASSERT(n_alloc_blocks == live_blocks);
+
+  if (show || leak)
   {
-      debugBelch("Memory leak detected\n");
+      if (leak) { 
+          debugBelch("Memory leak detected:\n");
+      } else {
+          debugBelch("Memory inventory:\n");
+      }
       for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
-         debugBelch("  gen %d blocks : %4lu\n", g, gen_blocks[g]);
+         debugBelch("  gen %d blocks : %5lu blocks (%lu MB)\n", g, 
+                     gen_blocks[g], MB(gen_blocks[g]));
+      }
+      debugBelch("  nursery      : %5lu blocks (%lu MB)\n", 
+                 nursery_blocks, MB(nursery_blocks));
+      debugBelch("  retainer     : %5lu blocks (%lu MB)\n", 
+                 retainer_blocks, MB(retainer_blocks));
+      debugBelch("  arena blocks : %5lu blocks (%lu MB)\n", 
+                 arena_blocks, MB(arena_blocks));
+      debugBelch("  exec         : %5lu blocks (%lu MB)\n", 
+                 exec_blocks, MB(exec_blocks));
+      debugBelch("  free         : %5lu blocks (%lu MB)\n", 
+                 free_blocks, MB(free_blocks));
+      debugBelch("  total        : %5lu blocks (%lu MB)\n",
+                 live_blocks + free_blocks, MB(live_blocks+free_blocks));
+      if (leak) {
+          debugBelch("\n  in system    : %5lu blocks (%lu MB)\n", 
+                     mblocks_allocated * BLOCKS_PER_MBLOCK, mblocks_allocated);
       }
-      debugBelch("  nursery      : %4lu\n", nursery_blocks);
-      debugBelch("  retainer     : %4lu\n", retainer_blocks);
-      debugBelch("  arena blocks : %4lu\n", arena_blocks);
-      debugBelch("  exec         : %4lu\n", exec_blocks);
-      debugBelch("  free         : %4lu\n", free_blocks);
-      debugBelch("  total        : %4lu\n\n", live_blocks + free_blocks);
-      debugBelch("  in system    : %4lu\n", mblocks_allocated * BLOCKS_PER_MBLOCK);
-      ASSERT(0);
   }
 }