X-Git-Url: http://git.megacz.com/?p=ghc-hetmet.git;a=blobdiff_plain;f=compiler%2FcoreSyn%2FCoreUtils.lhs;h=637f66a17e0f648f21ffbc84e6102ccc09808e8d;hp=da6367d737e1b7b85431f632ae073d395819a42f;hb=9da4639011348fb6c318e3cba4b08622f811d9c4;hpb=116e4e364defd4b453d0457d1b0385c1c15c2d5f diff --git a/compiler/coreSyn/CoreUtils.lhs b/compiler/coreSyn/CoreUtils.lhs index da6367d..637f66a 100644 --- a/compiler/coreSyn/CoreUtils.lhs +++ b/compiler/coreSyn/CoreUtils.lhs @@ -6,7 +6,7 @@ \begin{code} module CoreUtils ( -- Construction - mkInlineMe, mkSCC, mkCoerce, mkCoerce2, + mkInlineMe, mkSCC, mkCoerce, bindNonRec, needsCaseBinding, mkIfThenElse, mkAltExpr, mkPiType, mkPiTypes, @@ -31,7 +31,9 @@ module CoreUtils ( hashExpr, -- Equality - cheapEqExpr, tcEqExpr, tcEqExprX, applyTypeToArgs, applyTypeToArg + cheapEqExpr, tcEqExpr, tcEqExprX, applyTypeToArgs, applyTypeToArg, + + dataConOrigInstPat, dataConRepInstPat, dataConRepFSInstPat ) where #include "HsVersions.h" @@ -42,21 +44,26 @@ import GLAEXTS -- For `xori` import CoreSyn import CoreFVs ( exprFreeVars ) import PprCore ( pprCoreExpr ) -import Var ( Var ) +import Var ( Var, TyVar, CoVar, tyVarKind, mkCoVar, mkTyVar ) +import OccName ( mkVarOccFS ) +import SrcLoc ( noSrcLoc ) import VarSet ( unionVarSet ) import VarEnv -import Name ( hashName ) +import Name ( hashName, mkSysTvName ) #if mingw32_TARGET_OS import Packages ( isDllName ) #endif import Literal ( hashLiteral, literalType, litIsDupable, litIsTrivial, isZeroLit, Literal( MachLabel ) ) -import DataCon ( DataCon, dataConRepArity, dataConInstArgTys, - isVanillaDataCon, dataConTyCon ) +import DataCon ( DataCon, dataConRepArity, eqSpecPreds, + dataConTyCon, dataConRepArgTys, + dataConUnivTyVars, dataConExTyVars, dataConEqSpec, + dataConOrigArgTys, dataConTheta ) import PrimOp ( PrimOp(..), primOpOkForSpeculation, primOpIsCheap ) import Id ( Id, idType, globalIdDetails, idNewStrictness, mkWildId, idArity, idName, idUnfolding, idInfo, - isOneShotBndr, isStateHackType, isDataConWorkId_maybe, mkSysLocal, + isOneShotBndr, isStateHackType, + isDataConWorkId_maybe, mkSysLocal, mkUserLocal, isDataConWorkId, isBottomingId, isDictId ) import IdInfo ( GlobalIdDetails(..), megaSeqIdInfo ) @@ -64,9 +71,13 @@ import NewDemand ( appIsBottom ) import Type ( Type, mkFunTy, mkForAllTy, splitFunTy_maybe, splitFunTy, tcEqTypeX, applyTys, isUnLiftedType, seqType, mkTyVarTy, - splitForAllTy_maybe, isForAllTy, splitRecNewType_maybe, - splitTyConApp_maybe, coreEqType, funResultTy, applyTy + splitForAllTy_maybe, isForAllTy, + splitTyConApp_maybe, splitTyConApp, coreEqType, funResultTy, applyTy, + substTyWith, mkPredTy, zipOpenTvSubst, substTy, substTyVar ) +import Coercion ( Coercion, mkTransCoercion, coercionKind, + splitNewTypeRepCo_maybe, mkSymCoercion, + decomposeCo, coercionKindPredTy ) import TyCon ( tyConArity ) import TysWiredIn ( boolTy, trueDataCon, falseDataCon ) import CostCentre ( CostCentre ) @@ -77,6 +88,7 @@ import Outputable import DynFlags ( DynFlags, DynFlag(Opt_DictsCheap), dopt ) import TysPrim ( alphaTy ) -- Debugging only import Util ( equalLength, lengthAtLeast, foldl2 ) +import FastString ( FastString ) \end{code} @@ -93,7 +105,8 @@ exprType (Var var) = idType var exprType (Lit lit) = literalType lit exprType (Let _ body) = exprType body exprType (Case _ _ ty alts) = ty -exprType (Note (Coerce ty _) e) = ty -- **! should take usage from e +exprType (Cast e co) + = let (_, ty) = coercionKind co in ty exprType (Note other_note e) = exprType e exprType (Lam binder expr) = mkPiType binder (exprType expr) exprType e@(App _ _) @@ -145,7 +158,7 @@ applyTypeToArgs e op_ty (Type ty : args) applyTypeToArgs e op_ty (other_arg : args) = case (splitFunTy_maybe op_ty) of Just (_, res_ty) -> applyTypeToArgs e res_ty args - Nothing -> pprPanic "applyTypeToArgs" (pprCoreExpr e) + Nothing -> pprPanic "applyTypeToArgs" (pprCoreExpr e $$ ppr op_ty) \end{code} @@ -161,7 +174,6 @@ mkNote removes redundant coercions, and SCCs where possible \begin{code} #ifdef UNUSED mkNote :: Note -> CoreExpr -> CoreExpr -mkNote (Coerce to_ty from_ty) expr = mkCoerce2 to_ty from_ty expr mkNote (SCC cc) expr = mkSCC cc expr mkNote InlineMe expr = mkInlineMe expr mkNote note expr = Note note expr @@ -197,18 +209,20 @@ mkInlineMe e = Note InlineMe e \begin{code} -mkCoerce :: Type -> CoreExpr -> CoreExpr -mkCoerce to_ty expr = mkCoerce2 to_ty (exprType expr) expr - -mkCoerce2 :: Type -> Type -> CoreExpr -> CoreExpr -mkCoerce2 to_ty from_ty (Note (Coerce to_ty2 from_ty2) expr) - = ASSERT( from_ty `coreEqType` to_ty2 ) - mkCoerce2 to_ty from_ty2 expr - -mkCoerce2 to_ty from_ty expr - | to_ty `coreEqType` from_ty = expr - | otherwise = ASSERT( from_ty `coreEqType` exprType expr ) - Note (Coerce to_ty from_ty) expr +mkCoerce :: Coercion -> CoreExpr -> CoreExpr +mkCoerce co (Cast expr co2) + = ASSERT(let { (from_ty, _to_ty) = coercionKind co; + (_from_ty2, to_ty2) = coercionKind co2} in + from_ty `coreEqType` to_ty2 ) + mkCoerce (mkTransCoercion co2 co) expr + +mkCoerce co expr + = let (from_ty, to_ty) = coercionKind co in +-- if to_ty `coreEqType` from_ty +-- then expr +-- else + ASSERT2(from_ty `coreEqType` (exprType expr), text "Trying to coerce" <+> text "(" <> ppr expr $$ text "::" <+> ppr (exprType expr) <> text ")" $$ ppr co $$ ppr (coercionKindPredTy co)) + (Cast expr co) \end{code} \begin{code} @@ -219,6 +233,7 @@ mkSCC cc (Lit lit) = Lit lit mkSCC cc (Lam x e) = Lam x (mkSCC cc e) -- Move _scc_ inside lambda mkSCC cc (Note (SCC cc') e) = Note (SCC cc) (Note (SCC cc') e) mkSCC cc (Note n e) = Note n (mkSCC cc e) -- Move _scc_ inside notes +mkSCC cc (Cast e co) = Cast (mkSCC cc e) co -- Move _scc_ inside cast mkSCC cc expr = Note (SCC cc) expr \end{code} @@ -256,7 +271,7 @@ mkAltExpr :: AltCon -> [CoreBndr] -> [Type] -> CoreExpr -- This guy constructs the value that the scrutinee must have -- when you are in one particular branch of a case mkAltExpr (DataAlt con) args inst_tys - = mkConApp con (map Type inst_tys ++ map varToCoreExpr args) + = mkConApp con (map Type inst_tys ++ varsToCoreExprs args) mkAltExpr (LitAlt lit) [] [] = Lit lit @@ -353,6 +368,7 @@ exprIsTrivial (Lit lit) = litIsTrivial lit exprIsTrivial (App e arg) = not (isRuntimeArg arg) && exprIsTrivial e exprIsTrivial (Note (SCC _) e) = False -- See notes above exprIsTrivial (Note _ e) = exprIsTrivial e +exprIsTrivial (Cast e co) = exprIsTrivial e exprIsTrivial (Lam b body) = not (isRuntimeVar b) && exprIsTrivial body exprIsTrivial other = False \end{code} @@ -375,6 +391,7 @@ exprIsDupable (Var v) = True exprIsDupable (Lit lit) = litIsDupable lit exprIsDupable (Note InlineMe e) = True exprIsDupable (Note _ e) = exprIsDupable e +exprIsDupable (Cast e co) = exprIsDupable e exprIsDupable expr = go expr 0 where @@ -423,6 +440,7 @@ exprIsCheap (Type _) = True exprIsCheap (Var _) = True exprIsCheap (Note InlineMe e) = True exprIsCheap (Note _ e) = exprIsCheap e +exprIsCheap (Cast e co) = exprIsCheap e exprIsCheap (Lam x e) = isRuntimeVar x || exprIsCheap e exprIsCheap (Case e _ _ alts) = exprIsCheap e && and [exprIsCheap rhs | (_,_,rhs) <- alts] @@ -513,10 +531,11 @@ side effects, and can't diverge or raise an exception. \begin{code} exprOkForSpeculation :: CoreExpr -> Bool -exprOkForSpeculation (Lit _) = True -exprOkForSpeculation (Type _) = True -exprOkForSpeculation (Var v) = isUnLiftedType (idType v) -exprOkForSpeculation (Note _ e) = exprOkForSpeculation e +exprOkForSpeculation (Lit _) = True +exprOkForSpeculation (Type _) = True +exprOkForSpeculation (Var v) = isUnLiftedType (idType v) +exprOkForSpeculation (Note _ e) = exprOkForSpeculation e +exprOkForSpeculation (Cast e co) = exprOkForSpeculation e exprOkForSpeculation other_expr = case collectArgs other_expr of (Var f, args) -> spec_ok (globalIdDetails f) args @@ -567,6 +586,7 @@ exprIsBottom e = go 0 e where -- n is the number of args go n (Note _ e) = go n e + go n (Cast e co) = go n e go n (Let _ e) = go n e go n (Case e _ _ _) = go 0 e -- Just check the scrut go n (App e _) = go (n+1) e @@ -618,6 +638,7 @@ exprIsHNF (Type ty) = True -- Types are honorary Values; -- we don't mind copying them exprIsHNF (Lam b e) = isRuntimeVar b || exprIsHNF e exprIsHNF (Note _ e) = exprIsHNF e +exprIsHNF (Cast e co) = exprIsHNF e exprIsHNF (App e (Type _)) = exprIsHNF e exprIsHNF (App e a) = app_is_value e [a] exprIsHNF other = False @@ -643,38 +664,157 @@ check_args fun_ty (arg : args) \end{code} \begin{code} +-- These InstPat functions go here to avoid circularity between DataCon and Id +dataConRepInstPat = dataConInstPat dataConRepArgTys (repeat (FSLIT("ipv"))) +dataConRepFSInstPat = dataConInstPat dataConRepArgTys +dataConOrigInstPat = dataConInstPat dc_arg_tys (repeat (FSLIT("ipv"))) + where + dc_arg_tys dc = map mkPredTy (dataConTheta dc) ++ dataConOrigArgTys dc + -- Remember to include the existential dictionaries + +dataConInstPat :: (DataCon -> [Type]) -- function used to find arg tys + -> [FastString] -- A long enough list of FSs to use for names + -> [Unique] -- An equally long list of uniques, at least one for each binder + -> DataCon + -> [Type] -- Types to instantiate the universally quantified tyvars + -> ([TyVar], [CoVar], [Id]) -- Return instantiated variables +-- dataConInstPat arg_fun fss us con inst_tys returns a triple +-- (ex_tvs, co_tvs, arg_ids), +-- +-- ex_tvs are intended to be used as binders for existential type args +-- +-- co_tvs are intended to be used as binders for coercion args and the kinds +-- of these vars have been instantiated by the inst_tys and the ex_tys +-- +-- arg_ids are indended to be used as binders for value arguments, including +-- dicts, and their types have been instantiated with inst_tys and ex_tys +-- +-- Example. +-- The following constructor T1 +-- +-- data T a where +-- T1 :: forall b. Int -> b -> T(a,b) +-- ... +-- +-- has representation type +-- forall a. forall a1. forall b. (a :=: (a1,b)) => +-- Int -> b -> T a +-- +-- dataConInstPat fss us T1 (a1',b') will return +-- +-- ([a1'', b''], [c :: (a1', b'):=:(a1'', b'')], [x :: Int, y :: b'']) +-- +-- where the double-primed variables are created with the FastStrings and +-- Uniques given as fss and us +dataConInstPat arg_fun fss uniqs con inst_tys + = (ex_bndrs, co_bndrs, id_bndrs) + where + univ_tvs = dataConUnivTyVars con + ex_tvs = dataConExTyVars con + arg_tys = arg_fun con + eq_spec = dataConEqSpec con + eq_preds = eqSpecPreds eq_spec + + n_ex = length ex_tvs + n_co = length eq_spec + + -- split the Uniques and FastStrings + (ex_uniqs, uniqs') = splitAt n_ex uniqs + (co_uniqs, id_uniqs) = splitAt n_co uniqs' + + (ex_fss, fss') = splitAt n_ex fss + (co_fss, id_fss) = splitAt n_co fss' + + -- Make existential type variables + ex_bndrs = zipWith3 mk_ex_var ex_uniqs ex_fss ex_tvs + mk_ex_var uniq fs var = mkTyVar new_name kind + where + new_name = mkSysTvName uniq fs + kind = tyVarKind var + + -- Make the instantiating substitution + subst = zipOpenTvSubst (univ_tvs ++ ex_tvs) (inst_tys ++ map mkTyVarTy ex_bndrs) + + -- Make new coercion vars, instantiating kind + co_bndrs = zipWith3 mk_co_var co_uniqs co_fss eq_preds + mk_co_var uniq fs eq_pred = mkCoVar new_name co_kind + where + new_name = mkSysTvName uniq fs + co_kind = substTy subst (mkPredTy eq_pred) + + -- make value vars, instantiating types + mk_id_var uniq fs ty = mkUserLocal (mkVarOccFS fs) uniq (substTy subst ty) noSrcLoc + id_bndrs = zipWith3 mk_id_var id_uniqs id_fss arg_tys + exprIsConApp_maybe :: CoreExpr -> Maybe (DataCon, [CoreExpr]) -exprIsConApp_maybe (Note (Coerce to_ty from_ty) expr) - = -- Maybe this is over the top, but here we try to turn - -- coerce (S,T) ( x, y ) - -- effectively into - -- ( coerce S x, coerce T y ) - -- This happens in anger in PrelArrExts which has a coerce - -- case coerce memcpy a b of - -- (# r, s #) -> ... - -- where the memcpy is in the IO monad, but the call is in - -- the (ST s) monad +-- Returns (Just (dc, [x1..xn])) if the argument expression is +-- a constructor application of the form (dc x1 .. xn) +exprIsConApp_maybe (Cast expr co) + = -- Here we do the PushC reduction rule as described in the FC paper case exprIsConApp_maybe expr of { - Nothing -> Nothing ; - Just (dc, args) -> - + Nothing -> Nothing ; + Just (dc, dc_args) -> + + -- The transformation applies iff we have + -- (C e1 ... en) `cast` co + -- where co :: (T t1 .. tn) :=: (T s1 ..sn) + -- That is, with a T at the top of both sides + -- The left-hand one must be a T, because exprIsConApp returned True + -- but the right-hand one might not be. (Though it usually will.) + + let (from_ty, to_ty) = coercionKind co + (from_tc, from_tc_arg_tys) = splitTyConApp from_ty + -- The inner one must be a TyConApp + in case splitTyConApp_maybe to_ty of { Nothing -> Nothing ; - Just (tc, tc_arg_tys) | tc /= dataConTyCon dc -> Nothing - | not (isVanillaDataCon dc) -> Nothing - | otherwise -> - -- Type constructor must match - -- We knock out existentials to keep matters simple(r) + Just (to_tc, to_tc_arg_tys) + | from_tc /= to_tc -> Nothing + -- These two Nothing cases are possible; we might see + -- (C x y) `cast` (g :: T a ~ S [a]), + -- where S is a type function. In fact, exprIsConApp + -- will probably not be called in such circumstances, + -- but there't nothing wrong with it + + | otherwise -> let - arity = tyConArity tc - val_args = drop arity args - to_arg_tys = dataConInstArgTys dc tc_arg_tys - mk_coerce ty arg = mkCoerce ty arg - new_val_args = zipWith mk_coerce to_arg_tys val_args + tc_arity = tyConArity from_tc + + (univ_args, rest1) = splitAt tc_arity dc_args + (ex_args, rest2) = splitAt n_ex_tvs rest1 + (co_args, val_args) = splitAt n_cos rest2 + + arg_tys = dataConRepArgTys dc + dc_univ_tyvars = dataConUnivTyVars dc + dc_ex_tyvars = dataConExTyVars dc + dc_eq_spec = dataConEqSpec dc + dc_tyvars = dc_univ_tyvars ++ dc_ex_tyvars + n_ex_tvs = length dc_ex_tyvars + n_cos = length dc_eq_spec + + -- Make the "theta" from Fig 3 of the paper + gammas = decomposeCo tc_arity co + new_tys = gammas ++ map (\ (Type t) -> t) ex_args + theta = zipOpenTvSubst dc_tyvars new_tys + + -- First we cast the existential coercion arguments + cast_co (tv,ty) (Type co) = Type $ mkSymCoercion (substTyVar theta tv) + `mkTransCoercion` co + `mkTransCoercion` (substTy theta ty) + new_co_args = zipWith cast_co dc_eq_spec co_args + + -- ...and now value arguments + new_val_args = zipWith cast_arg arg_tys val_args + cast_arg arg_ty arg = mkCoerce (substTy theta arg_ty) arg + in - ASSERT( all isTypeArg (take arity args) ) - ASSERT( equalLength val_args to_arg_tys ) - Just (dc, map Type tc_arg_tys ++ new_val_args) + ASSERT( length univ_args == tc_arity ) + ASSERT( from_tc == dataConTyCon dc ) + ASSERT( and (zipWith coreEqType [t | Type t <- univ_args] from_tc_arg_tys) ) + ASSERT( all isTypeArg (univ_args ++ ex_args) ) + ASSERT2( equalLength val_args arg_tys, ppr dc $$ ppr dc_tyvars $$ ppr dc_ex_tyvars $$ ppr arg_tys $$ ppr dc_args $$ ppr univ_args $$ ppr ex_args $$ ppr val_args $$ ppr arg_tys ) + + Just (dc, map Type to_tc_arg_tys ++ ex_args ++ new_co_args ++ new_val_args) }} exprIsConApp_maybe (Note _ expr) @@ -823,6 +963,8 @@ arityType dflags (Note n e) = arityType dflags e -- | ok_note n = arityType dflags e -- | otherwise = ATop +arityType dflags (Cast e co) = arityType dflags e + arityType dflags (Var v) = mk (idArity v) (arg_tys (idType v)) where @@ -933,7 +1075,8 @@ etaExpand :: Arity -- Result should have this number of value args etaExpand n us expr ty | manifestArity expr >= n = expr -- The no-op case - | otherwise = eta_expand n us expr ty + | otherwise + = eta_expand n us expr ty where -- manifestArity sees how many leading value lambdas there are @@ -941,6 +1084,7 @@ manifestArity :: CoreExpr -> Arity manifestArity (Lam v e) | isId v = 1 + manifestArity e | otherwise = manifestArity e manifestArity (Note _ e) = manifestArity e +manifestArity (Cast e _) = manifestArity e manifestArity e = 0 -- etaExpand deals with for-alls. For example: @@ -987,9 +1131,14 @@ eta_expand n us (Lam v body) ty -- and round we go eta_expand n us expr ty - = case splitForAllTy_maybe ty of { - Just (tv,ty') -> Lam tv (eta_expand n us (App expr (Type (mkTyVarTy tv))) ty') - + = ASSERT2 (exprType expr `coreEqType` ty, ppr (exprType expr) $$ ppr ty) + case splitForAllTy_maybe ty of { + Just (tv,ty') -> + + Lam lam_tv (eta_expand n us2 (App expr (Type (mkTyVarTy lam_tv))) (substTyWith [tv] [mkTyVarTy lam_tv] ty')) + where + lam_tv = mkTyVar (mkSysTvName uniq FSLIT("etaT")) (tyVarKind tv) + (uniq:us2) = us ; Nothing -> case splitFunTy_maybe ty of { @@ -1006,11 +1155,10 @@ eta_expand n us expr ty -- eta_expand 1 e T -- We want to get -- coerce T (\x::[T] -> (coerce ([T]->Int) e) x) - -- Only try this for recursive newtypes; the non-recursive kind - -- are transparent anyway - case splitRecNewType_maybe ty of { - Just ty' -> mkCoerce2 ty ty' (eta_expand n us (mkCoerce2 ty' ty expr) ty') ; + case splitNewTypeRepCo_maybe ty of { + Just(ty1,co) -> + mkCoerce (mkSymCoercion co) (eta_expand n us (mkCoerce co expr) ty1) ; Nothing -> -- We have an expression of arity > 0, but its type isn't a function @@ -1053,6 +1201,7 @@ exprArity e = go e go (Lam x e) | isId x = go e + 1 | otherwise = go e go (Note n e) = go e + go (Cast e _) = go e go (App e (Type t)) = go e go (App f a) | exprIsCheap a = (go f - 1) `max` 0 -- NB: exprIsCheap a! @@ -1129,13 +1278,13 @@ tcEqExprX env (Case e1 v1 t1 a1) env' = rnBndr2 env v1 v2 tcEqExprX env (Note n1 e1) (Note n2 e2) = eq_note env n1 n2 && tcEqExprX env e1 e2 +tcEqExprX env (Cast e1 co1) (Cast e2 co2) = tcEqTypeX env co1 co2 && tcEqExprX env e1 e2 tcEqExprX env (Type t1) (Type t2) = tcEqTypeX env t1 t2 tcEqExprX env e1 e2 = False eq_alt env (c1,vs1,r1) (c2,vs2,r2) = c1==c2 && tcEqExprX (rnBndrs2 env vs1 vs2) r1 r2 eq_note env (SCC cc1) (SCC cc2) = cc1 == cc2 -eq_note env (Coerce t1 f1) (Coerce t2 f2) = tcEqTypeX env t1 t2 && tcEqTypeX env f1 f2 eq_note env (CoreNote s1) (CoreNote s2) = s1 == s2 eq_note env other1 other2 = False \end{code} @@ -1160,11 +1309,11 @@ exprSize (App f a) = exprSize f + exprSize a exprSize (Lam b e) = varSize b + exprSize e exprSize (Let b e) = bindSize b + exprSize e exprSize (Case e b t as) = seqType t `seq` exprSize e + varSize b + 1 + foldr ((+) . altSize) 0 as +exprSize (Cast e co) = (seqType co `seq` 1) + exprSize e exprSize (Note n e) = noteSize n + exprSize e exprSize (Type t) = seqType t `seq` 1 noteSize (SCC cc) = cc `seq` 1 -noteSize (Coerce t1 t2) = seqType t1 `seq` seqType t2 `seq` 1 noteSize InlineMe = 1 noteSize (CoreNote s) = s `seq` 1 -- hdaume: core annotations @@ -1193,12 +1342,21 @@ altSize (c,bs,e) = c `seq` varsSize bs + exprSize e \begin{code} hashExpr :: CoreExpr -> Int +-- Two expressions that hash to the same Int may be equal (but may not be) +-- Two expressions that hash to the different Ints are definitely unequal +-- +-- But "unequal" here means "not identical"; two alpha-equivalent +-- expressions may hash to the different Ints +-- +-- The emphasis is on a crude, fast hash, rather than on high precision + hashExpr e | hash < 0 = 77 -- Just in case we hit -maxInt | otherwise = hash where hash = abs (hash_expr e) -- Negative numbers kill UniqFM hash_expr (Note _ e) = hash_expr e +hash_expr (Cast e co) = hash_expr e hash_expr (Let (NonRec b r) e) = hashId b hash_expr (Let (Rec ((b,r):_)) e) = hashId b hash_expr (Case _ b _ _) = hashId b @@ -1304,6 +1462,7 @@ rhsIsStatic this_pkg rhs = is_static False rhs is_static in_arg (Note (SCC _) e) = False is_static in_arg (Note _ e) = is_static in_arg e + is_static in_arg (Cast e co) = is_static in_arg e is_static in_arg (Lit lit) = case lit of @@ -1346,6 +1505,7 @@ rhsIsStatic this_pkg rhs = is_static False rhs go (Note (SCC _) f) n_val_args = False go (Note _ f) n_val_args = go f n_val_args + go (Cast e co) n_val_args = go e n_val_args go other n_val_args = False