X-Git-Url: http://git.megacz.com/?p=ghc-hetmet.git;a=blobdiff_plain;f=compiler%2Fiface%2FBuildTyCl.lhs;h=333d8084ce4a301144cadb1ddcde85b41ef3c47c;hp=05f5f4bc22e7e69d6f6ff21ae73c552367677503;hb=6777144f7522d8db5935737e12fa451ca3211e6d;hpb=80c89b80c355b2aaebcd53330e6c6170c3f05aca diff --git a/compiler/iface/BuildTyCl.lhs b/compiler/iface/BuildTyCl.lhs index 05f5f4b..333d808 100644 --- a/compiler/iface/BuildTyCl.lhs +++ b/compiler/iface/BuildTyCl.lhs @@ -1,4 +1,5 @@ % +% (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % @@ -6,60 +7,57 @@ module BuildTyCl ( buildSynTyCon, buildAlgTyCon, buildDataCon, buildClass, - mkAbstractTyConRhs, mkOpenDataTyConRhs, mkOpenNewTyConRhs, + mkAbstractTyConRhs, mkOpenDataTyConRhs, mkNewTyConRhs, mkDataTyConRhs ) where #include "HsVersions.h" -import IfaceEnv ( newImplicitBinder ) +import IfaceEnv import TcRnMonad -import DataCon ( DataCon, isNullarySrcDataCon, dataConUnivTyVars, - mkDataCon, dataConFieldLabels, dataConInstOrigArgTys, - dataConTyCon ) -import Var ( tyVarKind, TyVar, Id ) -import VarSet ( isEmptyVarSet, intersectVarSet, elemVarSet ) -import TysWiredIn ( unitTy ) -import BasicTypes ( RecFlag, StrictnessMark(..) ) -import Name ( Name ) -import OccName ( mkDataConWrapperOcc, mkDataConWorkerOcc, - mkClassTyConOcc, mkClassDataConOcc, - mkSuperDictSelOcc, mkNewTyCoOcc, mkLocalOcc ) -import MkId ( mkDataConIds, mkRecordSelId, mkDictSelId ) -import Class ( mkClass, Class( classTyCon), FunDep, DefMeth(..) ) -import TyCon ( mkSynTyCon, mkAlgTyCon, visibleDataCons, - tyConStupidTheta, tyConDataCons, isNewTyCon, - mkClassTyCon, TyCon( tyConTyVars ), - isRecursiveTyCon, tyConArity, AlgTyConRhs(..), - SynTyConRhs(..), newTyConRhs, AlgTyConParent(..) ) -import Type ( mkArrowKinds, liftedTypeKind, typeKind, - tyVarsOfType, tyVarsOfTypes, tyVarsOfPred, - splitTyConApp_maybe, splitAppTy_maybe, - getTyVar_maybe, - mkPredTys, mkTyVarTys, ThetaType, Type, Kind, - TyThing(..), - substTyWith, zipTopTvSubst, substTheta, mkForAllTys, - mkTyConApp, mkTyVarTy ) -import Coercion ( mkNewTypeCoercion ) -import Outputable -import List ( nub ) - +import DataCon +import Var +import VarSet +import TysWiredIn +import BasicTypes +import Name +import OccName +import MkId +import Class +import TyCon +import Type +import Coercion + +import Data.List \end{code} \begin{code} ------------------------------------------------------ -buildSynTyCon :: Name -> [TyVar] -> SynTyConRhs -> TyCon -buildSynTyCon name tvs rhs@(OpenSynTyCon rhs_ki) - = mkSynTyCon name kind tvs rhs - where - kind = mkArrowKinds (map tyVarKind tvs) rhs_ki -buildSynTyCon name tvs rhs@(SynonymTyCon rhs_ty) - = mkSynTyCon name kind tvs rhs - where - kind = mkArrowKinds (map tyVarKind tvs) (typeKind rhs_ty) - +buildSynTyCon :: Name -> [TyVar] + -> SynTyConRhs + -> Maybe (TyCon, [Type]) -- family instance if applicable + -> TcRnIf m n TyCon + +buildSynTyCon tc_name tvs rhs@(OpenSynTyCon rhs_ki _) _ + = let + kind = mkArrowKinds (map tyVarKind tvs) rhs_ki + in + return $ mkSynTyCon tc_name kind tvs rhs NoParentTyCon + +buildSynTyCon tc_name tvs rhs@(SynonymTyCon rhs_ty) mb_family + = do { -- We need to tie a knot as the coercion of a data instance depends + -- on the instance representation tycon and vice versa. + ; tycon <- fixM (\ tycon_rec -> do + { parent <- mkParentInfo mb_family tc_name tvs tycon_rec + ; let { tycon = mkSynTyCon tc_name kind tvs rhs parent + ; kind = mkArrowKinds (map tyVarKind tvs) (typeKind rhs_ty) + } + ; return tycon + }) + ; return tycon + } ------------------------------------------------------ buildAlgTyCon :: Name -> [TyVar] @@ -68,37 +66,56 @@ buildAlgTyCon :: Name -> [TyVar] -> RecFlag -> Bool -- True <=> want generics functions -> Bool -- True <=> was declared in GADT syntax - -> Maybe TyCon -- Just family <=> instance of `family' + -> Maybe (TyCon, [Type]) -- family instance if applicable -> TcRnIf m n TyCon buildAlgTyCon tc_name tvs stupid_theta rhs is_rec want_generics gadt_syn mb_family - = do { -- In case of a type instance, we need to invent a new name for the - -- instance type, as `tc_name' is the family name. - ; uniq <- newUnique - ; (final_name, parent) <- - case mb_family of - Nothing -> return (tc_name, NoParentTyCon) - Just family -> - do { final_name <- newImplicitBinder tc_name (mkLocalOcc uniq) - ; return (final_name, FamilyTyCon family) - } - ; let { tycon = mkAlgTyCon final_name kind tvs stupid_theta rhs - fields parent is_rec want_generics gadt_syn - ; kind = mkArrowKinds (map tyVarKind tvs) liftedTypeKind - ; fields = mkTyConSelIds tycon rhs - } - ; return tycon } - + = do { -- We need to tie a knot as the coercion of a data instance depends + -- on the instance representation tycon and vice versa. + ; tycon <- fixM (\ tycon_rec -> do + { parent <- mkParentInfo mb_family tc_name tvs tycon_rec + ; let { tycon = mkAlgTyCon tc_name kind tvs stupid_theta rhs + fields parent is_rec want_generics gadt_syn + ; kind = mkArrowKinds (map tyVarKind tvs) liftedTypeKind + ; fields = mkTyConSelIds tycon rhs + } + ; return tycon + }) + ; return tycon + } + +-- If a family tycon with instance types is given, the current tycon is an +-- instance of that family and we need to +-- +-- (1) create a coercion that identifies the family instance type and the +-- representation type from Step (1); ie, it is of the form +-- `Co tvs :: F ts :=: R tvs', where `Co' is the name of the coercion, +-- `F' the family tycon and `R' the (derived) representation tycon, +-- and +-- (2) produce a `TyConParent' value containing the parent and coercion +-- information. +-- +mkParentInfo :: Maybe (TyCon, [Type]) + -> Name -> [TyVar] + -> TyCon + -> TcRnIf m n TyConParent +mkParentInfo Nothing _ _ _ = + return NoParentTyCon +mkParentInfo (Just (family, instTys)) tc_name tvs rep_tycon = + do { -- Create the coercion + ; co_tycon_name <- newImplicitBinder tc_name mkInstTyCoOcc + ; let co_tycon = mkFamInstCoercion co_tycon_name tvs + family instTys rep_tycon + ; return $ FamilyTyCon family instTys co_tycon + } + ------------------------------------------------------ mkAbstractTyConRhs :: AlgTyConRhs mkAbstractTyConRhs = AbstractTyCon mkOpenDataTyConRhs :: AlgTyConRhs -mkOpenDataTyConRhs = OpenDataTyCon - -mkOpenNewTyConRhs :: AlgTyConRhs -mkOpenNewTyConRhs = OpenNewTyCon +mkOpenDataTyConRhs = OpenTyCon Nothing mkDataTyConRhs :: [DataCon] -> AlgTyConRhs mkDataTyConRhs cons @@ -110,21 +127,20 @@ mkNewTyConRhs :: Name -> TyCon -> DataCon -> TcRnIf m n AlgTyConRhs -- because the latter is part of a knot, whereas the former is not. mkNewTyConRhs tycon_name tycon con = do { co_tycon_name <- newImplicitBinder tycon_name mkNewTyCoOcc - ; let co_tycon = mkNewTypeCoercion co_tycon_name tycon tvs rhs_ty - cocon_maybe - | all_coercions || isRecursiveTyCon tycon - = Just co_tycon - | otherwise - = Nothing - ; return (NewTyCon { data_con = con, - nt_co = cocon_maybe, + ; let co_tycon = mkNewTypeCoercion co_tycon_name tycon etad_tvs etad_rhs + cocon_maybe | all_coercions || isRecursiveTyCon tycon + = Just co_tycon + | otherwise + = Nothing + ; return (NewTyCon { data_con = con, + nt_rhs = rhs_ty, + nt_etad_rhs = (etad_tvs, etad_rhs), + nt_co = cocon_maybe, -- Coreview looks through newtypes with a Nothing -- for nt_co, or uses explicit coercions otherwise - nt_rhs = rhs_ty, - nt_etad_rhs = eta_reduce tvs rhs_ty, nt_rep = mkNewTyConRep tycon rhs_ty }) } where - -- if all_coercions is True then we use coercions for all newtypes + -- If all_coercions is True then we use coercions for all newtypes -- otherwise we use coercions for recursive newtypes and look through -- non-recursive newtypes all_coercions = True @@ -133,18 +149,22 @@ mkNewTyConRhs tycon_name tycon con -- Instantiate the data con with the -- type variables from the tycon - eta_reduce [] ty = ([], ty) - eta_reduce (a:as) ty | null as', - Just (fun, arg) <- splitAppTy_maybe ty', + etad_tvs :: [TyVar] -- Matched lazily, so that mkNewTypeCoercion can + etad_rhs :: Type -- return a TyCon without pulling on rhs_ty + -- See Note [Tricky iface loop] in LoadIface + (etad_tvs, etad_rhs) = eta_reduce (reverse tvs) rhs_ty + + eta_reduce :: [TyVar] -- Reversed + -> Type -- Rhs type + -> ([TyVar], Type) -- Eta-reduced version (tyvars in normal order) + eta_reduce (a:as) ty | Just (fun, arg) <- splitAppTy_maybe ty, Just tv <- getTyVar_maybe arg, tv == a, not (a `elemVarSet` tyVarsOfType fun) - = ([], fun) -- Successful eta reduction - | otherwise - = (a:as', ty') - where - (as', ty') = eta_reduce as ty + = eta_reduce as fun + eta_reduce tvs ty = (reverse tvs, ty) + mkNewTyConRep :: TyCon -- The original type constructor -> Type -- The arg type of its constructor -> Type -- Chosen representation type @@ -190,14 +210,13 @@ buildDataCon :: Name -> Bool -> ThetaType -- Does not include the "stupid theta" -- or the GADT equalities -> [Type] -> TyCon - -> Maybe [Type] -- Just ts <=> type pats of inst type -> TcRnIf m n DataCon -- A wrapper for DataCon.mkDataCon that -- a) makes the worker Id -- b) makes the wrapper Id if necessary, including -- allocating its unique (hence monadic) buildDataCon src_name declared_infix arg_stricts field_lbls - univ_tvs ex_tvs eq_spec ctxt arg_tys tycon mb_typats + univ_tvs ex_tvs eq_spec ctxt arg_tys tycon = do { wrap_name <- newImplicitBinder src_name mkDataConWrapperOcc ; work_name <- newImplicitBinder src_name mkDataConWorkerOcc -- This last one takes the name of the data constructor in the source @@ -209,7 +228,7 @@ buildDataCon src_name declared_infix arg_stricts field_lbls data_con = mkDataCon src_name declared_infix arg_stricts field_lbls univ_tvs ex_tvs eq_spec ctxt - arg_tys tycon mb_typats + arg_tys tycon stupid_ctxt dc_ids dc_ids = mkDataConIds wrap_name work_name data_con @@ -286,7 +305,7 @@ buildClass class_name tvs sc_theta fds ats sig_stuff tc_isrec tvs [{- no existentials -}] [{- No equalities -}] [{-No context-}] dict_component_tys - rec_tycon Nothing + rec_tycon ; rhs <- case dict_component_tys of [rep_ty] -> mkNewTyConRhs tycon_name rec_tycon dict_con @@ -295,7 +314,7 @@ buildClass class_name tvs sc_theta fds ats sig_stuff tc_isrec ; let { clas_kind = mkArrowKinds (map tyVarKind tvs) liftedTypeKind ; tycon = mkClassTyCon tycon_name clas_kind tvs - rhs rec_clas tc_isrec + rhs rec_clas tc_isrec -- A class can be recursive, and in the case of newtypes -- this matters. For example -- class C a where { op :: C b => a -> b -> Int }