X-Git-Url: http://git.megacz.com/?p=ghc-hetmet.git;a=blobdiff_plain;f=compiler%2Fprelude%2FPrimOp.lhs;fp=compiler%2Fprelude%2FPrimOp.lhs;h=a65035228096c09f8408f3a2c8fe8fa8a688547b;hp=0000000000000000000000000000000000000000;hb=0065d5ab628975892cea1ec7303f968c3338cbe1;hpb=28a464a75e14cece5db40f2765a29348273ff2d2 diff --git a/compiler/prelude/PrimOp.lhs b/compiler/prelude/PrimOp.lhs new file mode 100644 index 0000000..a650352 --- /dev/null +++ b/compiler/prelude/PrimOp.lhs @@ -0,0 +1,461 @@ +% +% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 +% +\section[PrimOp]{Primitive operations (machine-level)} + +\begin{code} +module PrimOp ( + PrimOp(..), allThePrimOps, + primOpType, primOpSig, + primOpTag, maxPrimOpTag, primOpOcc, + + primOpOutOfLine, primOpNeedsWrapper, + primOpOkForSpeculation, primOpIsCheap, primOpIsDupable, + + getPrimOpResultInfo, PrimOpResultInfo(..) + ) where + +#include "HsVersions.h" + +import TysPrim +import TysWiredIn + +import NewDemand +import Var ( TyVar ) +import OccName ( OccName, pprOccName, mkVarOccFS ) +import TyCon ( TyCon, isPrimTyCon, tyConPrimRep, PrimRep(..) ) +import Type ( Type, mkForAllTys, mkFunTy, mkFunTys, tyConAppTyCon, + typePrimRep ) +import BasicTypes ( Arity, Boxity(..) ) +import Outputable +import FastTypes +\end{code} + +%************************************************************************ +%* * +\subsection[PrimOp-datatype]{Datatype for @PrimOp@ (an enumeration)} +%* * +%************************************************************************ + +These are in \tr{state-interface.verb} order. + +\begin{code} + +-- supplies: +-- data PrimOp = ... +#include "primop-data-decl.hs-incl" +\end{code} + +Used for the Ord instance + +\begin{code} +primOpTag :: PrimOp -> Int +primOpTag op = iBox (tagOf_PrimOp op) + +-- supplies +-- tagOf_PrimOp :: PrimOp -> FastInt +#include "primop-tag.hs-incl" + + +instance Eq PrimOp where + op1 == op2 = tagOf_PrimOp op1 ==# tagOf_PrimOp op2 + +instance Ord PrimOp where + op1 < op2 = tagOf_PrimOp op1 <# tagOf_PrimOp op2 + op1 <= op2 = tagOf_PrimOp op1 <=# tagOf_PrimOp op2 + op1 >= op2 = tagOf_PrimOp op1 >=# tagOf_PrimOp op2 + op1 > op2 = tagOf_PrimOp op1 ># tagOf_PrimOp op2 + op1 `compare` op2 | op1 < op2 = LT + | op1 == op2 = EQ + | otherwise = GT + +instance Outputable PrimOp where + ppr op = pprPrimOp op + +instance Show PrimOp where + showsPrec p op = showsPrecSDoc p (pprPrimOp op) +\end{code} + +An @Enum@-derived list would be better; meanwhile... (ToDo) + +\begin{code} +allThePrimOps :: [PrimOp] +allThePrimOps = +#include "primop-list.hs-incl" +\end{code} + +%************************************************************************ +%* * +\subsection[PrimOp-info]{The essential info about each @PrimOp@} +%* * +%************************************************************************ + +The @String@ in the @PrimOpInfos@ is the ``base name'' by which the user may +refer to the primitive operation. The conventional \tr{#}-for- +unboxed ops is added on later. + +The reason for the funny characters in the names is so we do not +interfere with the programmer's Haskell name spaces. + +We use @PrimKinds@ for the ``type'' information, because they're +(slightly) more convenient to use than @TyCons@. +\begin{code} +data PrimOpInfo + = Dyadic OccName -- string :: T -> T -> T + Type + | Monadic OccName -- string :: T -> T + Type + | Compare OccName -- string :: T -> T -> Bool + Type + + | GenPrimOp OccName -- string :: \/a1..an . T1 -> .. -> Tk -> T + [TyVar] + [Type] + Type + +mkDyadic str ty = Dyadic (mkVarOccFS str) ty +mkMonadic str ty = Monadic (mkVarOccFS str) ty +mkCompare str ty = Compare (mkVarOccFS str) ty +mkGenPrimOp str tvs tys ty = GenPrimOp (mkVarOccFS str) tvs tys ty +\end{code} + +%************************************************************************ +%* * +\subsubsection{Strictness} +%* * +%************************************************************************ + +Not all primops are strict! + +\begin{code} +primOpStrictness :: PrimOp -> Arity -> StrictSig + -- See Demand.StrictnessInfo for discussion of what the results + -- The arity should be the arity of the primop; that's why + -- this function isn't exported. +#include "primop-strictness.hs-incl" +\end{code} + +%************************************************************************ +%* * +\subsubsection[PrimOp-comparison]{PrimOpInfo basic comparison ops} +%* * +%************************************************************************ + +@primOpInfo@ gives all essential information (from which everything +else, notably a type, can be constructed) for each @PrimOp@. + +\begin{code} +primOpInfo :: PrimOp -> PrimOpInfo +#include "primop-primop-info.hs-incl" +\end{code} + +Here are a load of comments from the old primOp info: + +A @Word#@ is an unsigned @Int#@. + +@decodeFloat#@ is given w/ Integer-stuff (it's similar). + +@decodeDouble#@ is given w/ Integer-stuff (it's similar). + +Decoding of floating-point numbers is sorta Integer-related. Encoding +is done with plain ccalls now (see PrelNumExtra.lhs). + +A @Weak@ Pointer is created by the @mkWeak#@ primitive: + + mkWeak# :: k -> v -> f -> State# RealWorld + -> (# State# RealWorld, Weak# v #) + +In practice, you'll use the higher-level + + data Weak v = Weak# v + mkWeak :: k -> v -> IO () -> IO (Weak v) + +The following operation dereferences a weak pointer. The weak pointer +may have been finalized, so the operation returns a result code which +must be inspected before looking at the dereferenced value. + + deRefWeak# :: Weak# v -> State# RealWorld -> + (# State# RealWorld, v, Int# #) + +Only look at v if the Int# returned is /= 0 !! + +The higher-level op is + + deRefWeak :: Weak v -> IO (Maybe v) + +Weak pointers can be finalized early by using the finalize# operation: + + finalizeWeak# :: Weak# v -> State# RealWorld -> + (# State# RealWorld, Int#, IO () #) + +The Int# returned is either + + 0 if the weak pointer has already been finalized, or it has no + finalizer (the third component is then invalid). + + 1 if the weak pointer is still alive, with the finalizer returned + as the third component. + +A {\em stable name/pointer} is an index into a table of stable name +entries. Since the garbage collector is told about stable pointers, +it is safe to pass a stable pointer to external systems such as C +routines. + +\begin{verbatim} +makeStablePtr# :: a -> State# RealWorld -> (# State# RealWorld, StablePtr# a #) +freeStablePtr :: StablePtr# a -> State# RealWorld -> State# RealWorld +deRefStablePtr# :: StablePtr# a -> State# RealWorld -> (# State# RealWorld, a #) +eqStablePtr# :: StablePtr# a -> StablePtr# a -> Int# +\end{verbatim} + +It may seem a bit surprising that @makeStablePtr#@ is a @IO@ +operation since it doesn't (directly) involve IO operations. The +reason is that if some optimisation pass decided to duplicate calls to +@makeStablePtr#@ and we only pass one of the stable pointers over, a +massive space leak can result. Putting it into the IO monad +prevents this. (Another reason for putting them in a monad is to +ensure correct sequencing wrt the side-effecting @freeStablePtr@ +operation.) + +An important property of stable pointers is that if you call +makeStablePtr# twice on the same object you get the same stable +pointer back. + +Note that we can implement @freeStablePtr#@ using @_ccall_@ (and, +besides, it's not likely to be used from Haskell) so it's not a +primop. + +Question: Why @RealWorld@ - won't any instance of @_ST@ do the job? [ADR] + +Stable Names +~~~~~~~~~~~~ + +A stable name is like a stable pointer, but with three important differences: + + (a) You can't deRef one to get back to the original object. + (b) You can convert one to an Int. + (c) You don't need to 'freeStableName' + +The existence of a stable name doesn't guarantee to keep the object it +points to alive (unlike a stable pointer), hence (a). + +Invariants: + + (a) makeStableName always returns the same value for a given + object (same as stable pointers). + + (b) if two stable names are equal, it implies that the objects + from which they were created were the same. + + (c) stableNameToInt always returns the same Int for a given + stable name. + + +-- HWL: The first 4 Int# in all par... annotations denote: +-- name, granularity info, size of result, degree of parallelism +-- Same structure as _seq_ i.e. returns Int# +-- KSW: v, the second arg in parAt# and parAtForNow#, is used only to determine +-- `the processor containing the expression v'; it is not evaluated + +These primops are pretty wierd. + + dataToTag# :: a -> Int (arg must be an evaluated data type) + tagToEnum# :: Int -> a (result type must be an enumerated type) + +The constraints aren't currently checked by the front end, but the +code generator will fall over if they aren't satisfied. + +\begin{code} +#ifdef DEBUG +primOpInfo op = pprPanic "primOpInfo:" (ppr op) +#endif +\end{code} + +%************************************************************************ +%* * +\subsubsection[PrimOp-ool]{Which PrimOps are out-of-line} +%* * +%************************************************************************ + +Some PrimOps need to be called out-of-line because they either need to +perform a heap check or they block. + + +\begin{code} +primOpOutOfLine :: PrimOp -> Bool +#include "primop-out-of-line.hs-incl" +\end{code} + + +primOpOkForSpeculation +~~~~~~~~~~~~~~~~~~~~~~ +Sometimes we may choose to execute a PrimOp even though it isn't +certain that its result will be required; ie execute them +``speculatively''. The same thing as ``cheap eagerness.'' Usually +this is OK, because PrimOps are usually cheap, but it isn't OK for +(a)~expensive PrimOps and (b)~PrimOps which can fail. + +PrimOps that have side effects also should not be executed speculatively. + +Ok-for-speculation also means that it's ok *not* to execute the +primop. For example + case op a b of + r -> 3 +Here the result is not used, so we can discard the primop. Anything +that has side effects mustn't be dicarded in this way, of course! + +See also @primOpIsCheap@ (below). + + +\begin{code} +primOpOkForSpeculation :: PrimOp -> Bool + -- See comments with CoreUtils.exprOkForSpeculation +primOpOkForSpeculation op + = not (primOpHasSideEffects op || primOpOutOfLine op || primOpCanFail op) +\end{code} + + +primOpIsCheap +~~~~~~~~~~~~~ +@primOpIsCheap@, as used in \tr{SimplUtils.lhs}. For now (HACK +WARNING), we just borrow some other predicates for a +what-should-be-good-enough test. "Cheap" means willing to call it more +than once, and/or push it inside a lambda. The latter could change the +behaviour of 'seq' for primops that can fail, so we don't treat them as cheap. + +\begin{code} +primOpIsCheap :: PrimOp -> Bool +primOpIsCheap op = primOpOkForSpeculation op +-- In March 2001, we changed this to +-- primOpIsCheap op = False +-- thereby making *no* primops seem cheap. But this killed eta +-- expansion on case (x ==# y) of True -> \s -> ... +-- which is bad. In particular a loop like +-- doLoop n = loop 0 +-- where +-- loop i | i == n = return () +-- | otherwise = bar i >> loop (i+1) +-- allocated a closure every time round because it doesn't eta expand. +-- +-- The problem that originally gave rise to the change was +-- let x = a +# b *# c in x +# x +-- were we don't want to inline x. But primopIsCheap doesn't control +-- that (it's exprIsDupable that does) so the problem doesn't occur +-- even if primOpIsCheap sometimes says 'True'. +\end{code} + +primOpIsDupable +~~~~~~~~~~~~~~~ +primOpIsDupable means that the use of the primop is small enough to +duplicate into different case branches. See CoreUtils.exprIsDupable. + +\begin{code} +primOpIsDupable :: PrimOp -> Bool + -- See comments with CoreUtils.exprIsDupable + -- We say it's dupable it isn't implemented by a C call with a wrapper +primOpIsDupable op = not (primOpNeedsWrapper op) +\end{code} + + +\begin{code} +primOpCanFail :: PrimOp -> Bool +#include "primop-can-fail.hs-incl" +\end{code} + +And some primops have side-effects and so, for example, must not be +duplicated. + +\begin{code} +primOpHasSideEffects :: PrimOp -> Bool +#include "primop-has-side-effects.hs-incl" +\end{code} + +Inline primitive operations that perform calls need wrappers to save +any live variables that are stored in caller-saves registers. + +\begin{code} +primOpNeedsWrapper :: PrimOp -> Bool +#include "primop-needs-wrapper.hs-incl" +\end{code} + +\begin{code} +primOpType :: PrimOp -> Type -- you may want to use primOpSig instead +primOpType op + = case (primOpInfo op) of + Dyadic occ ty -> dyadic_fun_ty ty + Monadic occ ty -> monadic_fun_ty ty + Compare occ ty -> compare_fun_ty ty + + GenPrimOp occ tyvars arg_tys res_ty -> + mkForAllTys tyvars (mkFunTys arg_tys res_ty) + +primOpOcc :: PrimOp -> OccName +primOpOcc op = case (primOpInfo op) of + Dyadic occ _ -> occ + Monadic occ _ -> occ + Compare occ _ -> occ + GenPrimOp occ _ _ _ -> occ + +-- primOpSig is like primOpType but gives the result split apart: +-- (type variables, argument types, result type) +-- It also gives arity, strictness info + +primOpSig :: PrimOp -> ([TyVar], [Type], Type, Arity, StrictSig) +primOpSig op + = (tyvars, arg_tys, res_ty, arity, primOpStrictness op arity) + where + arity = length arg_tys + (tyvars, arg_tys, res_ty) + = case (primOpInfo op) of + Monadic occ ty -> ([], [ty], ty ) + Dyadic occ ty -> ([], [ty,ty], ty ) + Compare occ ty -> ([], [ty,ty], boolTy) + GenPrimOp occ tyvars arg_tys res_ty + -> (tyvars, arg_tys, res_ty) +\end{code} + +\begin{code} +data PrimOpResultInfo + = ReturnsPrim PrimRep + | ReturnsAlg TyCon + +-- Some PrimOps need not return a manifest primitive or algebraic value +-- (i.e. they might return a polymorphic value). These PrimOps *must* +-- be out of line, or the code generator won't work. + +getPrimOpResultInfo :: PrimOp -> PrimOpResultInfo +getPrimOpResultInfo op + = case (primOpInfo op) of + Dyadic _ ty -> ReturnsPrim (typePrimRep ty) + Monadic _ ty -> ReturnsPrim (typePrimRep ty) + Compare _ ty -> ReturnsAlg boolTyCon + GenPrimOp _ _ _ ty | isPrimTyCon tc -> ReturnsPrim (tyConPrimRep tc) + | otherwise -> ReturnsAlg tc + where + tc = tyConAppTyCon ty + -- All primops return a tycon-app result + -- The tycon can be an unboxed tuple, though, which + -- gives rise to a ReturnAlg +\end{code} + +The commutable ops are those for which we will try to move constants +to the right hand side for strength reduction. + +\begin{code} +commutableOp :: PrimOp -> Bool +#include "primop-commutable.hs-incl" +\end{code} + +Utils: +\begin{code} +dyadic_fun_ty ty = mkFunTys [ty, ty] ty +monadic_fun_ty ty = mkFunTy ty ty +compare_fun_ty ty = mkFunTys [ty, ty] boolTy +\end{code} + +Output stuff: +\begin{code} +pprPrimOp :: PrimOp -> SDoc +pprPrimOp other_op = pprOccName (primOpOcc other_op) +\end{code} +