X-Git-Url: http://git.megacz.com/?p=ghc-hetmet.git;a=blobdiff_plain;f=compiler%2FsimplCore%2FSetLevels.lhs;h=d0914c948bfd68c97e57096f04e43729dd5e793c;hp=14c75868f0f6c2eb96783d1c866da504a8947179;hb=b84ba676034763b3082bbd9405794a4fde499d14;hpb=17b297d97d327620ed6bfab942f8992b2446f1bf diff --git a/compiler/simplCore/SetLevels.lhs b/compiler/simplCore/SetLevels.lhs index 14c7586..d0914c9 100644 --- a/compiler/simplCore/SetLevels.lhs +++ b/compiler/simplCore/SetLevels.lhs @@ -42,43 +42,39 @@ the scrutinee of the case, and we can inline it. \begin{code} -{-# OPTIONS_GHC -w #-} --- The above warning supression flag is a temporary kludge. --- While working on this module you are encouraged to remove it and fix --- any warnings in the module. See --- http://hackage.haskell.org/trac/ghc/wiki/WorkingConventions#Warnings --- for details - module SetLevels ( setLevels, Level(..), tOP_LEVEL, LevelledBind, LevelledExpr, - incMinorLvl, ltMajLvl, ltLvl, isTopLvl, isInlineCtxt + incMinorLvl, ltMajLvl, ltLvl, isTopLvl ) where #include "HsVersions.h" import CoreSyn -import DynFlags ( FloatOutSwitches(..) ) -import CoreUtils ( exprType, exprIsTrivial, mkPiTypes ) +import DynFlags ( FloatOutSwitches(..) ) +import CoreUtils ( exprType, mkPiTypes ) +import CoreArity ( exprBotStrictness_maybe ) import CoreFVs -- all of it -import CoreSubst ( Subst, emptySubst, extendInScope, extendIdSubst, - cloneIdBndr, cloneRecIdBndrs ) -import Id ( Id, idType, mkSysLocal, isOneShotLambda, - zapDemandIdInfo, - idSpecialisation, idWorkerInfo, setIdInfo +import CoreSubst ( Subst, emptySubst, extendInScope, extendInScopeList, + extendIdSubst, cloneIdBndr, cloneRecIdBndrs ) +import Id ( idType, mkLocalIdWithInfo, mkSysLocal, isOneShotLambda, + zapDemandIdInfo, transferPolyIdInfo, + idSpecialisation, idUnfolding, setIdInfo, + setIdStrictness, setIdArity ) -import IdInfo ( workerExists, vanillaIdInfo, isEmptySpecInfo ) -import Var ( Var ) +import IdInfo +import Var import VarSet import VarEnv -import Name ( getOccName ) +import Demand ( StrictSig, increaseStrictSigArity ) +import Name ( getOccName, mkSystemVarName ) import OccName ( occNameString ) import Type ( isUnLiftedType, Type ) -import BasicTypes ( TopLevelFlag(..) ) +import BasicTypes ( TopLevelFlag(..), Arity ) import UniqSupply import Util ( sortLe, isSingleton, count ) import Outputable @@ -92,9 +88,7 @@ import FastString %************************************************************************ \begin{code} -data Level = InlineCtxt -- A level that's used only for - -- the context parameter ctxt_lvl - | Level Int -- Level number of enclosing lambdas +data Level = Level Int -- Level number of enclosing lambdas Int -- Number of big-lambda and/or case expressions between -- here and the nearest enclosing lambda \end{code} @@ -126,8 +120,8 @@ allocation becomes static instead of dynamic. We always start with context @Level 0 0@. -InlineCtxt -~~~~~~~~~~ +Note [FloatOut inside INLINE] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @InlineCtxt@ very similar to @Level 0 0@, but is used for one purpose: to say "don't float anything out of here". That's exactly what we want for the body of an INLINE, where we don't want to float anything @@ -157,54 +151,37 @@ the worker at all. type LevelledExpr = TaggedExpr Level type LevelledBind = TaggedBind Level +tOP_LEVEL :: Level tOP_LEVEL = Level 0 0 -iNLINE_CTXT = InlineCtxt incMajorLvl :: Level -> Level --- For InlineCtxt we ignore any inc's; we don't want --- to do any floating at all; see notes above -incMajorLvl InlineCtxt = InlineCtxt -incMajorLvl (Level major minor) = Level (major+1) 0 +incMajorLvl (Level major _) = Level (major + 1) 0 incMinorLvl :: Level -> Level -incMinorLvl InlineCtxt = InlineCtxt incMinorLvl (Level major minor) = Level major (minor+1) maxLvl :: Level -> Level -> Level -maxLvl InlineCtxt l2 = l2 -maxLvl l1 InlineCtxt = l1 maxLvl l1@(Level maj1 min1) l2@(Level maj2 min2) | (maj1 > maj2) || (maj1 == maj2 && min1 > min2) = l1 | otherwise = l2 ltLvl :: Level -> Level -> Bool -ltLvl any_lvl InlineCtxt = False -ltLvl InlineCtxt (Level _ _) = True ltLvl (Level maj1 min1) (Level maj2 min2) = (maj1 < maj2) || (maj1 == maj2 && min1 < min2) ltMajLvl :: Level -> Level -> Bool -- Tells if one level belongs to a difft *lambda* level to another -ltMajLvl any_lvl InlineCtxt = False -ltMajLvl InlineCtxt (Level maj2 _) = 0 < maj2 ltMajLvl (Level maj1 _) (Level maj2 _) = maj1 < maj2 isTopLvl :: Level -> Bool isTopLvl (Level 0 0) = True -isTopLvl other = False - -isInlineCtxt :: Level -> Bool -isInlineCtxt InlineCtxt = True -isInlineCtxt other = False +isTopLvl _ = False instance Outputable Level where - ppr InlineCtxt = text "" ppr (Level maj min) = hcat [ char '<', int maj, char ',', int min, char '>' ] instance Eq Level where - InlineCtxt == InlineCtxt = True - (Level maj1 min1) == (Level maj2 min2) = maj1==maj2 && min1==min2 - l1 == l2 = False + (Level maj1 min1) == (Level maj2 min2) = maj1 == maj2 && min1 == min2 \end{code} @@ -221,21 +198,18 @@ setLevels :: FloatOutSwitches -> [LevelledBind] setLevels float_lams binds us - = initLvl us (do_them binds) + = initLvl us (do_them init_env binds) where - -- "do_them"'s main business is to thread the monad along - -- It gives each top binding the same empty envt, because - -- things unbound in the envt have level number zero implicitly - do_them :: [CoreBind] -> LvlM [LevelledBind] - - do_them [] = returnLvl [] - do_them (b:bs) - = lvlTopBind init_env b `thenLvl` \ (lvld_bind, _) -> - do_them bs `thenLvl` \ lvld_binds -> - returnLvl (lvld_bind : lvld_binds) - init_env = initialEnv float_lams + do_them :: LevelEnv -> [CoreBind] -> LvlM [LevelledBind] + do_them _ [] = return [] + do_them env (b:bs) + = do { (lvld_bind, env') <- lvlTopBind env b + ; lvld_binds <- do_them env' bs + ; return (lvld_bind : lvld_binds) } + +lvlTopBind :: LevelEnv -> Bind Id -> LvlM (LevelledBind, LevelEnv) lvlTopBind env (NonRec binder rhs) = lvlBind TopLevel tOP_LEVEL env (AnnNonRec binder (freeVars rhs)) -- Rhs can have no free vars! @@ -273,33 +247,22 @@ don't want @lvlExpr@ to turn the scrutinee of the @case@ into an MFE If there were another lambda in @r@'s rhs, it would get level-2 as well. \begin{code} -lvlExpr _ _ (_, AnnType ty) = returnLvl (Type ty) -lvlExpr _ env (_, AnnVar v) = returnLvl (lookupVar env v) -lvlExpr _ env (_, AnnLit lit) = returnLvl (Lit lit) - -lvlExpr ctxt_lvl env (_, AnnApp fun arg) - = lvl_fun fun `thenLvl` \ fun' -> - lvlMFE False ctxt_lvl env arg `thenLvl` \ arg' -> - returnLvl (App fun' arg') - where --- gaw 2004 - lvl_fun (_, AnnCase _ _ _ _) = lvlMFE True ctxt_lvl env fun - lvl_fun other = lvlExpr ctxt_lvl env fun - -- We don't do MFE on partial applications generally, - -- but we do if the function is big and hairy, like a case +lvlExpr _ _ ( _, AnnType ty) = return (Type ty) +lvlExpr _ env (_, AnnVar v) = return (lookupVar env v) +lvlExpr _ _ (_, AnnLit lit) = return (Lit lit) -lvlExpr ctxt_lvl env (_, AnnNote InlineMe expr) --- Don't float anything out of an InlineMe; hence the iNLINE_CTXT - = lvlExpr iNLINE_CTXT env expr `thenLvl` \ expr' -> - returnLvl (Note InlineMe expr') +lvlExpr ctxt_lvl env (_, AnnApp fun arg) = do + fun' <- lvlExpr ctxt_lvl env fun -- We don't do MFE on partial applications + arg' <- lvlMFE False ctxt_lvl env arg + return (App fun' arg') -lvlExpr ctxt_lvl env (_, AnnNote note expr) - = lvlExpr ctxt_lvl env expr `thenLvl` \ expr' -> - returnLvl (Note note expr') +lvlExpr ctxt_lvl env (_, AnnNote note expr) = do + expr' <- lvlExpr ctxt_lvl env expr + return (Note note expr') -lvlExpr ctxt_lvl env (_, AnnCast expr co) - = lvlExpr ctxt_lvl env expr `thenLvl` \ expr' -> - returnLvl (Cast expr' co) +lvlExpr ctxt_lvl env (_, AnnCast expr co) = do + expr' <- lvlExpr ctxt_lvl env expr + return (Cast expr' co) -- We don't split adjacent lambdas. That is, given -- \x y -> (x+1,y) @@ -308,9 +271,9 @@ lvlExpr ctxt_lvl env (_, AnnCast expr co) -- Why not? Because partial applications are fairly rare, and splitting -- lambdas makes them more expensive. -lvlExpr ctxt_lvl env expr@(_, AnnLam bndr rhs) - = lvlMFE True new_lvl new_env body `thenLvl` \ new_body -> - returnLvl (mkLams new_bndrs new_body) +lvlExpr ctxt_lvl env expr@(_, AnnLam {}) = do + new_body <- lvlMFE True new_lvl new_env body + return (mkLams new_bndrs new_body) where (bndrs, body) = collectAnnBndrs expr (new_lvl, new_bndrs) = lvlLamBndrs ctxt_lvl bndrs @@ -323,7 +286,7 @@ lvlExpr ctxt_lvl env expr@(_, AnnLam bndr rhs) -- [See SetLevels rev 1.50 for a version with this approach.] lvlExpr ctxt_lvl env (_, AnnLet (AnnNonRec bndr rhs) body) - | isUnLiftedType (idType bndr) + | isUnLiftedType (idType bndr) = do -- Treat unlifted let-bindings (let x = b in e) just like (case b of x -> e) -- That is, leave it exactly where it is -- We used to float unlifted bindings too (e.g. to get a cheap primop @@ -331,47 +294,81 @@ lvlExpr ctxt_lvl env (_, AnnLet (AnnNonRec bndr rhs) body) -- but an unrelated change meant that these unlifed bindings -- could get to the top level which is bad. And there's not much point; -- unlifted bindings are always cheap, and so hardly worth floating. - = lvlExpr ctxt_lvl env rhs `thenLvl` \ rhs' -> - lvlExpr incd_lvl env' body `thenLvl` \ body' -> - returnLvl (Let (NonRec bndr' rhs') body') + rhs' <- lvlExpr ctxt_lvl env rhs + body' <- lvlExpr incd_lvl env' body + return (Let (NonRec bndr' rhs') body') where incd_lvl = incMinorLvl ctxt_lvl bndr' = TB bndr incd_lvl env' = extendLvlEnv env [bndr'] -lvlExpr ctxt_lvl env (_, AnnLet bind body) - = lvlBind NotTopLevel ctxt_lvl env bind `thenLvl` \ (bind', new_env) -> - lvlExpr ctxt_lvl new_env body `thenLvl` \ body' -> - returnLvl (Let bind' body') +lvlExpr ctxt_lvl env (_, AnnLet bind body) = do + (bind', new_env) <- lvlBind NotTopLevel ctxt_lvl env bind + body' <- lvlExpr ctxt_lvl new_env body + return (Let bind' body') -lvlExpr ctxt_lvl env (_, AnnCase expr case_bndr ty alts) - = lvlMFE True ctxt_lvl env expr `thenLvl` \ expr' -> - let - alts_env = extendCaseBndrLvlEnv env expr' case_bndr incd_lvl - in - mapLvl (lvl_alt alts_env) alts `thenLvl` \ alts' -> - returnLvl (Case expr' (TB case_bndr incd_lvl) ty alts') +lvlExpr ctxt_lvl env (_, AnnCase expr case_bndr ty alts) = do + expr' <- lvlMFE True ctxt_lvl env expr + let alts_env = extendCaseBndrLvlEnv env expr' case_bndr incd_lvl + alts' <- mapM (lvl_alt alts_env) alts + return (Case expr' (TB case_bndr incd_lvl) ty alts') where incd_lvl = incMinorLvl ctxt_lvl - lvl_alt alts_env (con, bs, rhs) - = lvlMFE True incd_lvl new_env rhs `thenLvl` \ rhs' -> - returnLvl (con, bs', rhs') - where - bs' = [ TB b incd_lvl | b <- bs ] - new_env = extendLvlEnv alts_env bs' + lvl_alt alts_env (con, bs, rhs) = do + rhs' <- lvlMFE True incd_lvl new_env rhs + return (con, bs', rhs') + where + bs' = [ TB b incd_lvl | b <- bs ] + new_env = extendLvlEnv alts_env bs' \end{code} @lvlMFE@ is just like @lvlExpr@, except that it might let-bind the expression, so that it can itself be floated. -[NOTE: unlifted MFEs] +Note [Unlifted MFEs] +~~~~~~~~~~~~~~~~~~~~ We don't float unlifted MFEs, which potentially loses big opportunites. For example: \x -> f (h y) where h :: Int -> Int# is expensive. We'd like to float the (h y) outside the \x, but we don't because it's unboxed. Possible solution: box it. +Note [Bottoming floats] +~~~~~~~~~~~~~~~~~~~~~~~ +If we see + f = \x. g (error "urk") +we'd like to float the call to error, to get + lvl = error "urk" + f = \x. g lvl +Furthermore, we want to float a bottoming expression even if it has free +variables: + f = \x. g (let v = h x in error ("urk" ++ v)) +Then we'd like to abstact over 'x' can float the whole arg of g: + lvl = \x. let v = h x in error ("urk" ++ v) + f = \x. g (lvl x) +See Maessen's paper 1999 "Bottom extraction: factoring error handling out +of functional programs" (unpublished I think). + +When we do this, we set the strictness and arity of the new bottoming +Id, so that it's properly exposed as such in the interface file, even if +this is all happening after strictness analysis. + +Note [Bottoming floats: eta expansion] c.f Note [Bottoming floats] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Tiresomely, though, the simplifier has an invariant that the manifest +arity of the RHS should be the same as the arity; but we can't call +etaExpand during SetLevels because it works over a decorated form of +CoreExpr. So we do the eta expansion later, in FloatOut. + +Note [Case MFEs] +~~~~~~~~~~~~~~~~ +We don't float a case expression as an MFE from a strict context. Why not? +Because in doing so we share a tiny bit of computation (the switch) but +in exchange we build a thunk, which is bad. This case reduces allocation +by 7% in spectral/puzzle (a rather strange benchmark) and 1.2% in real/fem. +Doesn't change any other allocation at all. + \begin{code} lvlMFE :: Bool -- True <=> strict context [body of case or let] -> Level -- Level of innermost enclosing lambda/tylam @@ -379,27 +376,42 @@ lvlMFE :: Bool -- True <=> strict context [body of case or let] -> CoreExprWithFVs -- input expression -> LvlM LevelledExpr -- Result expression -lvlMFE strict_ctxt ctxt_lvl env (_, AnnType ty) - = returnLvl (Type ty) +lvlMFE _ _ _ (_, AnnType ty) + = return (Type ty) +-- No point in floating out an expression wrapped in a coercion or note +-- If we do we'll transform lvl = e |> co +-- to lvl' = e; lvl = lvl' |> co +-- and then inline lvl. Better just to float out the payload. +lvlMFE strict_ctxt ctxt_lvl env (_, AnnNote n e) + = do { e' <- lvlMFE strict_ctxt ctxt_lvl env e + ; return (Note n e') } + +lvlMFE strict_ctxt ctxt_lvl env (_, AnnCast e co) + = do { e' <- lvlMFE strict_ctxt ctxt_lvl env e + ; return (Cast e' co) } + +-- Note [Case MFEs] +lvlMFE True ctxt_lvl env e@(_, AnnCase {}) + = lvlExpr ctxt_lvl env e -- Don't share cases lvlMFE strict_ctxt ctxt_lvl env ann_expr@(fvs, _) - | isUnLiftedType ty -- Can't let-bind it; see [NOTE: unlifted MFEs] - || isInlineCtxt ctxt_lvl -- Don't float out of an __inline__ context - || exprIsTrivial expr -- Never float if it's trivial + | isUnLiftedType ty -- Can't let-bind it; see Note [Unlifted MFEs] + || notWorthFloating ann_expr abs_vars || not good_destination = -- Don't float it out lvlExpr ctxt_lvl env ann_expr | otherwise -- Float it out! - = lvlFloatRhs abs_vars dest_lvl env ann_expr `thenLvl` \ expr' -> - newLvlVar "lvl" abs_vars ty `thenLvl` \ var -> - returnLvl (Let (NonRec (TB var dest_lvl) expr') - (mkVarApps (Var var) abs_vars)) + = do expr' <- lvlFloatRhs abs_vars dest_lvl env ann_expr + var <- newLvlVar abs_vars ty mb_bot + return (Let (NonRec (TB var dest_lvl) expr') + (mkVarApps (Var var) abs_vars)) where expr = deAnnotate ann_expr ty = exprType expr - dest_lvl = destLevel env fvs (isFunction ann_expr) + mb_bot = exprBotStrictness_maybe expr + dest_lvl = destLevel env fvs (isFunction ann_expr) mb_bot abs_vars = abstractVars dest_lvl env fvs -- A decision to float entails let-binding this thing, and we only do @@ -426,6 +438,42 @@ lvlMFE strict_ctxt ctxt_lvl env ann_expr@(fvs, _) -- concat = /\ a -> lvl a -- lvl = /\ a -> foldr ..a.. (++) [] -- which is pretty stupid. Hence the strict_ctxt test + +annotateBotStr :: Id -> Maybe (Arity, StrictSig) -> Id +annotateBotStr id Nothing = id +annotateBotStr id (Just (arity,sig)) = id `setIdArity` arity + `setIdStrictness` sig + +notWorthFloating :: CoreExprWithFVs -> [Var] -> Bool +-- Returns True if the expression would be replaced by +-- something bigger than it is now. For example: +-- abs_vars = tvars only: return True if e is trivial, +-- but False for anything bigger +-- abs_vars = [x] (an Id): return True for trivial, or an application (f x) +-- but False for (f x x) +-- +-- One big goal is that floating should be idempotent. Eg if +-- we replace e with (lvl79 x y) and then run FloatOut again, don't want +-- to replace (lvl79 x y) with (lvl83 x y)! + +notWorthFloating e abs_vars + = go e (count isId abs_vars) + where + go (_, AnnVar {}) n = n == 0 + go (_, AnnLit {}) n = n == 0 + go (_, AnnCast e _) n = go e n + go (_, AnnApp e arg) n + | (_, AnnType {}) <- arg = go e n + | n==0 = False + | is_triv arg = go e (n-1) + | otherwise = False + go _ _ = False + + is_triv (_, AnnLit {}) = True -- Treat all literals as trivial + is_triv (_, AnnVar {}) = True -- (ie not worth floating) + is_triv (_, AnnCast e _) = is_triv e + is_triv (_, AnnApp e (_, AnnType {})) = is_triv e + is_triv _ = False \end{code} Note [Escaping a value lambda] @@ -488,42 +536,41 @@ lvlBind :: TopLevelFlag -- Used solely to decide whether to clone -> LvlM (LevelledBind, LevelEnv) lvlBind top_lvl ctxt_lvl env (AnnNonRec bndr rhs@(rhs_fvs,_)) - | isInlineCtxt ctxt_lvl -- Don't do anything inside InlineMe - = lvlExpr ctxt_lvl env rhs `thenLvl` \ rhs' -> - returnLvl (NonRec (TB bndr ctxt_lvl) rhs', env) + | isTyVar bndr -- Don't do anything for TyVar binders + -- (simplifier gets rid of them pronto) + = do rhs' <- lvlExpr ctxt_lvl env rhs + return (NonRec (TB bndr ctxt_lvl) rhs', env) | null abs_vars - = -- No type abstraction; clone existing binder - lvlExpr dest_lvl env rhs `thenLvl` \ rhs' -> - cloneVar top_lvl env bndr ctxt_lvl dest_lvl `thenLvl` \ (env', bndr') -> - returnLvl (NonRec (TB bndr' dest_lvl) rhs', env') + = do -- No type abstraction; clone existing binder + rhs' <- lvlExpr dest_lvl env rhs + (env', bndr') <- cloneVar top_lvl env bndr ctxt_lvl dest_lvl + return (NonRec (TB bndr' dest_lvl) rhs', env') | otherwise - = -- Yes, type abstraction; create a new binder, extend substitution, etc - lvlFloatRhs abs_vars dest_lvl env rhs `thenLvl` \ rhs' -> - newPolyBndrs dest_lvl env abs_vars [bndr] `thenLvl` \ (env', [bndr']) -> - returnLvl (NonRec (TB bndr' dest_lvl) rhs', env') + = do -- Yes, type abstraction; create a new binder, extend substitution, etc + rhs' <- lvlFloatRhs abs_vars dest_lvl env rhs + (env', [bndr']) <- newPolyBndrs dest_lvl env abs_vars [bndr_w_str] + return (NonRec (TB bndr' dest_lvl) rhs', env') where - bind_fvs = rhs_fvs `unionVarSet` idFreeVars bndr - abs_vars = abstractVars dest_lvl env bind_fvs - dest_lvl = destLevel env bind_fvs (isFunction rhs) + bind_fvs = rhs_fvs `unionVarSet` idFreeVars bndr + abs_vars = abstractVars dest_lvl env bind_fvs + dest_lvl = destLevel env bind_fvs (isFunction rhs) mb_bot + mb_bot = exprBotStrictness_maybe (deAnnotate rhs) + bndr_w_str = annotateBotStr bndr mb_bot \end{code} \begin{code} lvlBind top_lvl ctxt_lvl env (AnnRec pairs) - | isInlineCtxt ctxt_lvl -- Don't do anything inside InlineMe - = mapLvl (lvlExpr ctxt_lvl env) rhss `thenLvl` \ rhss' -> - returnLvl (Rec ([TB b ctxt_lvl | b <- bndrs] `zip` rhss'), env) - | null abs_vars - = cloneRecVars top_lvl env bndrs ctxt_lvl dest_lvl `thenLvl` \ (new_env, new_bndrs) -> - mapLvl (lvlExpr ctxt_lvl new_env) rhss `thenLvl` \ new_rhss -> - returnLvl (Rec ([TB b dest_lvl | b <- new_bndrs] `zip` new_rhss), new_env) + = do (new_env, new_bndrs) <- cloneRecVars top_lvl env bndrs ctxt_lvl dest_lvl + new_rhss <- mapM (lvlExpr ctxt_lvl new_env) rhss + return (Rec ([TB b dest_lvl | b <- new_bndrs] `zip` new_rhss), new_env) | isSingleton pairs && count isId abs_vars > 1 - = -- Special case for self recursion where there are + = do -- Special case for self recursion where there are -- several variables carried around: build a local loop: -- poly_f = \abs_vars. \lam_vars . letrec f = \lam_vars. rhs in f lam_vars -- This just makes the closures a bit smaller. If we don't do @@ -534,29 +581,27 @@ lvlBind top_lvl ctxt_lvl env (AnnRec pairs) -- -- This all seems a bit ad hoc -- sigh let - (bndr,rhs) = head pairs - (rhs_lvl, abs_vars_w_lvls) = lvlLamBndrs dest_lvl abs_vars - rhs_env = extendLvlEnv env abs_vars_w_lvls - in - cloneVar NotTopLevel rhs_env bndr rhs_lvl rhs_lvl `thenLvl` \ (rhs_env', new_bndr) -> + (bndr,rhs) = head pairs + (rhs_lvl, abs_vars_w_lvls) = lvlLamBndrs dest_lvl abs_vars + rhs_env = extendLvlEnv env abs_vars_w_lvls + (rhs_env', new_bndr) <- cloneVar NotTopLevel rhs_env bndr rhs_lvl rhs_lvl let - (lam_bndrs, rhs_body) = collectAnnBndrs rhs + (lam_bndrs, rhs_body) = collectAnnBndrs rhs (body_lvl, new_lam_bndrs) = lvlLamBndrs rhs_lvl lam_bndrs - body_env = extendLvlEnv rhs_env' new_lam_bndrs - in - lvlExpr body_lvl body_env rhs_body `thenLvl` \ new_rhs_body -> - newPolyBndrs dest_lvl env abs_vars [bndr] `thenLvl` \ (poly_env, [poly_bndr]) -> - returnLvl (Rec [(TB poly_bndr dest_lvl, - mkLams abs_vars_w_lvls $ - mkLams new_lam_bndrs $ - Let (Rec [(TB new_bndr rhs_lvl, mkLams new_lam_bndrs new_rhs_body)]) - (mkVarApps (Var new_bndr) lam_bndrs))], - poly_env) - - | otherwise -- Non-null abs_vars - = newPolyBndrs dest_lvl env abs_vars bndrs `thenLvl` \ (new_env, new_bndrs) -> - mapLvl (lvlFloatRhs abs_vars dest_lvl new_env) rhss `thenLvl` \ new_rhss -> - returnLvl (Rec ([TB b dest_lvl | b <- new_bndrs] `zip` new_rhss), new_env) + body_env = extendLvlEnv rhs_env' new_lam_bndrs + new_rhs_body <- lvlExpr body_lvl body_env rhs_body + (poly_env, [poly_bndr]) <- newPolyBndrs dest_lvl env abs_vars [bndr] + return (Rec [(TB poly_bndr dest_lvl, + mkLams abs_vars_w_lvls $ + mkLams new_lam_bndrs $ + Let (Rec [(TB new_bndr rhs_lvl, mkLams new_lam_bndrs new_rhs_body)]) + (mkVarApps (Var new_bndr) lam_bndrs))], + poly_env) + + | otherwise = do -- Non-null abs_vars + (new_env, new_bndrs) <- newPolyBndrs dest_lvl env abs_vars bndrs + new_rhss <- mapM (lvlFloatRhs abs_vars dest_lvl new_env) rhss + return (Rec ([TB b dest_lvl | b <- new_bndrs] `zip` new_rhss), new_env) where (bndrs,rhss) = unzip pairs @@ -567,15 +612,17 @@ lvlBind top_lvl ctxt_lvl env (AnnRec pairs) `minusVarSet` mkVarSet bndrs - dest_lvl = destLevel env bind_fvs (all isFunction rhss) + dest_lvl = destLevel env bind_fvs (all isFunction rhss) Nothing abs_vars = abstractVars dest_lvl env bind_fvs ---------------------------------------------------- -- Three help functons for the type-abstraction case -lvlFloatRhs abs_vars dest_lvl env rhs - = lvlExpr rhs_lvl rhs_env rhs `thenLvl` \ rhs' -> - returnLvl (mkLams abs_vars_w_lvls rhs') +lvlFloatRhs :: [CoreBndr] -> Level -> LevelEnv -> CoreExprWithFVs + -> UniqSM (Expr (TaggedBndr Level)) +lvlFloatRhs abs_vars dest_lvl env rhs = do + rhs' <- lvlExpr rhs_lvl rhs_env rhs + return (mkLams abs_vars_w_lvls rhs') where (rhs_lvl, abs_vars_w_lvls) = lvlLamBndrs dest_lvl abs_vars rhs_env = extendLvlEnv env abs_vars_w_lvls @@ -602,7 +649,7 @@ lvlLamBndrs lvl bndrs [] bndrs where go old_lvl bumped_major rev_lvld_bndrs (bndr:bndrs) - | isId bndr && -- Go to the next major level if this is a value binder, + | isId bndr && -- Go to the next major level if this is a value binder, not bumped_major && -- and we havn't already gone to the next level (one jump per group) not (isOneShotLambda bndr) -- and it isn't a one-shot lambda = go new_lvl True (TB bndr new_lvl : rev_lvld_bndrs) bndrs @@ -622,12 +669,14 @@ lvlLamBndrs lvl bndrs \begin{code} -- Destintion level is the max Id level of the expression -- (We'll abstract the type variables, if any.) -destLevel :: LevelEnv -> VarSet -> Bool -> Level -destLevel env fvs is_function +destLevel :: LevelEnv -> VarSet -> Bool -> Maybe (Arity, StrictSig) -> Level +destLevel env fvs is_function mb_bot + | Just {} <- mb_bot = tOP_LEVEL -- Send bottoming bindings to the top + -- regardless; see Note [Bottoming floats] | floatLams env - && is_function = tOP_LEVEL -- Send functions to top level; see + && is_function = tOP_LEVEL -- Send functions to top level; see -- the comments with isFunction - | otherwise = maxIdLevel env fvs + | otherwise = maxIdLevel env fvs isFunction :: CoreExprWithFVs -> Bool -- The idea here is that we want to float *functions* to @@ -645,9 +694,9 @@ isFunction :: CoreExprWithFVs -> Bool -- variables. We certainly only want to do it for values, and not for -- constructors. So the simple thing is just to look for lambdas isFunction (_, AnnLam b e) | isId b = True - | otherwise = isFunction e -isFunction (_, AnnNote n e) = isFunction e -isFunction other = False + | otherwise = isFunction e +isFunction (_, AnnNote _ e) = isFunction e +isFunction _ = False \end{code} @@ -669,8 +718,8 @@ type LevelEnv = (FloatOutSwitches, -- We also use these envs when making a variable polymorphic -- because we want to float it out past a big lambda. -- - -- The SubstEnv and IdEnv always implement the same mapping, but the - -- SubstEnv maps to CoreExpr and the IdEnv to LevelledExpr + -- The Subst and IdEnv always implement the same mapping, but the + -- Subst maps to CoreExpr and the IdEnv to LevelledExpr -- Since the range is always a variable or type application, -- there is never any difference between the two, but sadly -- the types differ. The SubstEnv is used when substituting in @@ -688,10 +737,10 @@ initialEnv :: FloatOutSwitches -> LevelEnv initialEnv float_lams = (float_lams, emptyVarEnv, emptySubst, emptyVarEnv) floatLams :: LevelEnv -> Bool -floatLams (FloatOutSw float_lams _, _, _, _) = float_lams +floatLams (fos, _, _, _) = floatOutLambdas fos floatConsts :: LevelEnv -> Bool -floatConsts (FloatOutSw _ float_consts, _, _, _) = float_consts +floatConsts (fos, _, _, _) = floatOutConstants fos extendLvlEnv :: LevelEnv -> [TaggedBndr Level] -> LevelEnv -- Used when *not* cloning @@ -718,35 +767,45 @@ extendLvlEnv (float_lams, lvl_env, subst, id_env) prs -- incorrectly, because the SubstEnv was still lying around. Ouch! -- KSW 2000-07. +extendInScopeEnv :: LevelEnv -> Var -> LevelEnv +extendInScopeEnv (fl, le, subst, ids) v = (fl, le, extendInScope subst v, ids) + +extendInScopeEnvList :: LevelEnv -> [Var] -> LevelEnv +extendInScopeEnvList (fl, le, subst, ids) vs = (fl, le, extendInScopeList subst vs, ids) + -- extendCaseBndrLvlEnv adds the mapping case-bndr->scrut-var if it can -- (see point 4 of the module overview comment) +extendCaseBndrLvlEnv :: LevelEnv -> Expr (TaggedBndr Level) -> Var -> Level + -> LevelEnv extendCaseBndrLvlEnv (float_lams, lvl_env, subst, id_env) (Var scrut_var) case_bndr lvl = (float_lams, extendVarEnv lvl_env case_bndr lvl, extendIdSubst subst case_bndr (Var scrut_var), extendVarEnv id_env case_bndr ([scrut_var], Var scrut_var)) -extendCaseBndrLvlEnv env scrut case_bndr lvl +extendCaseBndrLvlEnv env _scrut case_bndr lvl = extendLvlEnv env [TB case_bndr lvl] +extendPolyLvlEnv :: Level -> LevelEnv -> [Var] -> [(Var, Var)] -> LevelEnv extendPolyLvlEnv dest_lvl (float_lams, lvl_env, subst, id_env) abs_vars bndr_pairs = (float_lams, foldl add_lvl lvl_env bndr_pairs, foldl add_subst subst bndr_pairs, foldl add_id id_env bndr_pairs) where - add_lvl env (v,v') = extendVarEnv env v' dest_lvl - add_subst env (v,v') = extendIdSubst env v (mkVarApps (Var v') abs_vars) - add_id env (v,v') = extendVarEnv env v ((v':abs_vars), mkVarApps (Var v') abs_vars) + add_lvl env (_, v') = extendVarEnv env v' dest_lvl + add_subst env (v, v') = extendIdSubst env v (mkVarApps (Var v') abs_vars) + add_id env (v, v') = extendVarEnv env v ((v':abs_vars), mkVarApps (Var v') abs_vars) +extendCloneLvlEnv :: Level -> LevelEnv -> Subst -> [(Var, Var)] -> LevelEnv extendCloneLvlEnv lvl (float_lams, lvl_env, _, id_env) new_subst bndr_pairs = (float_lams, foldl add_lvl lvl_env bndr_pairs, new_subst, foldl add_id id_env bndr_pairs) where - add_lvl env (v,v') = extendVarEnv env v' lvl - add_id env (v,v') = extendVarEnv env v ([v'], Var v') + add_lvl env (_, v') = extendVarEnv env v' lvl + add_id env (v, v') = extendVarEnv env v ([v'], Var v') maxIdLevel :: LevelEnv -> VarSet -> Level @@ -766,21 +825,28 @@ maxIdLevel (_, lvl_env,_,id_env) var_set lookupVar :: LevelEnv -> Id -> LevelledExpr lookupVar (_, _, _, id_env) v = case lookupVarEnv id_env v of Just (_, expr) -> expr - other -> Var v + _ -> Var v abstractVars :: Level -> LevelEnv -> VarSet -> [Var] -- Find the variables in fvs, free vars of the target expresion, -- whose level is greater than the destination level -- These are the ones we are going to abstract out -abstractVars dest_lvl env fvs - = uniq (sortLe le [var | fv <- varSetElems fvs, var <- absVarsOf dest_lvl env fv]) +abstractVars dest_lvl (_, lvl_env, _, id_env) fvs + = map zap $ uniq $ sortLe le + [var | fv <- varSetElems fvs + , var <- absVarsOf id_env fv + , abstract_me var ] + -- NB: it's important to call abstract_me only on the OutIds the + -- come from absVarsOf (not on fv, which is an InId) where - -- Sort the variables so we don't get - -- mixed-up tyvars and Ids; it's just messy - v1 `le` v2 = case (isId v1, isId v2) of - (True, False) -> False - (False, True) -> True - other -> v1 <= v2 -- Same family + -- Sort the variables so the true type variables come first; + -- the tyvars scope over Ids and coercion vars + v1 `le` v2 = case (is_tv v1, is_tv v2) of + (True, False) -> True + (False, True) -> False + _ -> v1 <= v2 -- Same family + + is_tv v = isTyVar v && not (isCoVar v) uniq :: [Var] -> [Var] -- Remove adjacent duplicates; the sort will have brought them together @@ -788,99 +854,109 @@ abstractVars dest_lvl env fvs | otherwise = v1 : uniq (v2:vs) uniq vs = vs -absVarsOf :: Level -> LevelEnv -> Var -> [Var] - -- If f is free in the expression, and f maps to poly_f a b c in the - -- current substitution, then we must report a b c as candidate type - -- variables -absVarsOf dest_lvl (_, lvl_env, _, id_env) v - | isId v - = [zap av2 | av1 <- lookup_avs v, av2 <- add_tyvars av1, abstract_me av2] - - | otherwise - = if abstract_me v then [v] else [] - - where abstract_me v = case lookupVarEnv lvl_env v of Just lvl -> dest_lvl `ltLvl` lvl Nothing -> False - lookup_avs v = case lookupVarEnv id_env v of - Just (abs_vars, _) -> abs_vars - Nothing -> [v] - - add_tyvars v = v : varSetElems (varTypeTyVars v) - -- We are going to lambda-abstract, so nuke any IdInfo, -- and add the tyvars of the Id (if necessary) - zap v | isId v = WARN( workerExists (idWorkerInfo v) || + zap v | isId v = WARN( isInlineRule (idUnfolding v) || not (isEmptySpecInfo (idSpecialisation v)), text "absVarsOf: discarding info on" <+> ppr v ) setIdInfo v vanillaIdInfo | otherwise = v + +absVarsOf :: IdEnv ([Var], LevelledExpr) -> Var -> [Var] + -- If f is free in the expression, and f maps to poly_f a b c in the + -- current substitution, then we must report a b c as candidate type + -- variables + -- + -- Also, if x::a is an abstracted variable, then so is a; that is, + -- we must look in x's type + -- And similarly if x is a coercion variable. +absVarsOf id_env v + | isId v = [av2 | av1 <- lookup_avs v + , av2 <- add_tyvars av1] + | isCoVar v = add_tyvars v + | otherwise = [v] + + where + lookup_avs v = case lookupVarEnv id_env v of + Just (abs_vars, _) -> abs_vars + Nothing -> [v] + + add_tyvars v = v : varSetElems (varTypeTyVars v) \end{code} \begin{code} type LvlM result = UniqSM result -initLvl = initUs_ -thenLvl = thenUs -returnLvl = returnUs -mapLvl = mapUs +initLvl :: UniqSupply -> UniqSM a -> a +initLvl = initUs_ \end{code} + \begin{code} -newPolyBndrs dest_lvl env abs_vars bndrs - = getUniquesUs `thenLvl` \ uniqs -> - let - new_bndrs = zipWith mk_poly_bndr bndrs uniqs - in - returnLvl (extendPolyLvlEnv dest_lvl env abs_vars (bndrs `zip` new_bndrs), new_bndrs) +newPolyBndrs :: Level -> LevelEnv -> [Var] -> [Id] -> UniqSM (LevelEnv, [Id]) +newPolyBndrs dest_lvl env abs_vars bndrs = do + uniqs <- getUniquesM + let new_bndrs = zipWith mk_poly_bndr bndrs uniqs + return (extendPolyLvlEnv dest_lvl env abs_vars (bndrs `zip` new_bndrs), new_bndrs) where - mk_poly_bndr bndr uniq = mkSysLocal (mkFastString str) uniq poly_ty + mk_poly_bndr bndr uniq = transferPolyIdInfo bndr abs_vars $ -- Note [transferPolyIdInfo] in Id.lhs + mkSysLocal (mkFastString str) uniq poly_ty where str = "poly_" ++ occNameString (getOccName bndr) poly_ty = mkPiTypes abs_vars (idType bndr) - -newLvlVar :: String - -> [CoreBndr] -> Type -- Abstract wrt these bndrs +newLvlVar :: [CoreBndr] -> Type -- Abstract wrt these bndrs + -> Maybe (Arity, StrictSig) -- Note [Bottoming floats] -> LvlM Id -newLvlVar str vars body_ty - = getUniqueUs `thenLvl` \ uniq -> - returnUs (mkSysLocal (mkFastString str) uniq (mkPiTypes vars body_ty)) +newLvlVar vars body_ty mb_bot + = do { uniq <- getUniqueM + ; return (mkLocalIdWithInfo (mk_name uniq) (mkPiTypes vars body_ty) info) } + where + mk_name uniq = mkSystemVarName uniq (mkFastString "lvl") + arity = count isId vars + info = case mb_bot of + Nothing -> vanillaIdInfo + Just (bot_arity, sig) -> vanillaIdInfo + `setArityInfo` (arity + bot_arity) + `setStrictnessInfo` Just (increaseStrictSigArity arity sig) -- The deeply tiresome thing is that we have to apply the substitution -- to the rules inside each Id. Grr. But it matters. cloneVar :: TopLevelFlag -> LevelEnv -> Id -> Level -> Level -> LvlM (LevelEnv, Id) -cloneVar TopLevel env v ctxt_lvl dest_lvl - = returnUs (env, v) -- Don't clone top level things +cloneVar TopLevel env v _ _ + = return (extendInScopeEnv env v, v) -- Don't clone top level things + -- But do extend the in-scope env, to satisfy the in-scope invariant + cloneVar NotTopLevel env@(_,_,subst,_) v ctxt_lvl dest_lvl - = ASSERT( isId v ) - getUs `thenLvl` \ us -> + = ASSERT( isId v ) do + us <- getUniqueSupplyM let (subst', v1) = cloneIdBndr subst us v v2 = zap_demand ctxt_lvl dest_lvl v1 env' = extendCloneLvlEnv dest_lvl env subst' [(v,v2)] - in - returnUs (env', v2) + return (env', v2) cloneRecVars :: TopLevelFlag -> LevelEnv -> [Id] -> Level -> Level -> LvlM (LevelEnv, [Id]) -cloneRecVars TopLevel env vs ctxt_lvl dest_lvl - = returnUs (env, vs) -- Don't clone top level things +cloneRecVars TopLevel env vs _ _ + = return (extendInScopeEnvList env vs, vs) -- Don't clone top level things cloneRecVars NotTopLevel env@(_,_,subst,_) vs ctxt_lvl dest_lvl - = ASSERT( all isId vs ) - getUs `thenLvl` \ us -> + = ASSERT( all isId vs ) do + us <- getUniqueSupplyM let (subst', vs1) = cloneRecIdBndrs subst us vs vs2 = map (zap_demand ctxt_lvl dest_lvl) vs1 env' = extendCloneLvlEnv dest_lvl env subst' (vs `zip` vs2) - in - returnUs (env', vs2) + return (env', vs2) -- VERY IMPORTANT: we must zap the demand info -- if the thing is going to float out past a lambda, -- or if it's going to top level (where things can't be strict) +zap_demand :: Level -> Level -> Id -> Id zap_demand dest_lvl ctxt_lvl id | ctxt_lvl == dest_lvl, not (isTopLvl dest_lvl) = id -- Stays, and not going to top level