X-Git-Url: http://git.megacz.com/?p=ghc-hetmet.git;a=blobdiff_plain;f=compiler%2FsimplCore%2FSimplify.lhs;h=f9cbc0af3eece5dbc288d8135544466dd6cf7964;hp=d733589a69a02c00ed467de2ae408dbd0171d205;hb=a263737bbf44050a7b5ecbe267ddf85d410b73e5;hpb=562ce83f582f73526c169544dd29b76f3791677f diff --git a/compiler/simplCore/Simplify.lhs b/compiler/simplCore/Simplify.lhs index d733589..f9cbc0a 100644 --- a/compiler/simplCore/Simplify.lhs +++ b/compiler/simplCore/Simplify.lhs @@ -13,26 +13,30 @@ import SimplMonad import Type hiding ( substTy, extendTvSubst ) import SimplEnv import SimplUtils -import Literal ( mkStringLit ) -import MkId ( rUNTIME_ERROR_ID ) +import FamInstEnv ( FamInstEnv ) import Id +import MkId ( mkImpossibleExpr, seqId ) import Var import IdInfo import Coercion import FamInstEnv ( topNormaliseType ) -import DataCon ( dataConRepStrictness, dataConUnivTyVars ) +import DataCon ( DataCon, dataConWorkId, dataConRepStrictness ) import CoreSyn -import NewDemand ( isStrictDmd ) +import NewDemand ( isStrictDmd, splitStrictSig ) import PprCore ( pprParendExpr, pprCoreExpr ) -import CoreUnfold ( mkUnfolding, callSiteInline, CallCtxt(..) ) +import CoreUnfold ( mkUnfolding, mkCoreUnfolding, mkInlineRule, + exprIsConApp_maybe, callSiteInline, CallCtxt(..) ) import CoreUtils -import Rules ( lookupRule ) -import BasicTypes ( isMarkedStrict ) -import CostCentre ( currentCCS ) +import qualified CoreSubst +import CoreArity ( exprArity ) +import Rules ( lookupRule, getRules ) +import BasicTypes ( isMarkedStrict, Arity ) +import CostCentre ( currentCCS, pushCCisNop ) import TysPrim ( realWorldStatePrimTy ) import PrelInfo ( realWorldPrimId ) import BasicTypes ( TopLevelFlag(..), isTopLevel, RecFlag(..), isNonRuleLoopBreaker ) +import MonadUtils ( foldlM ) import Maybes ( orElse ) import Data.List ( mapAccumL ) import Outputable @@ -200,7 +204,7 @@ expansion at a let RHS can concentrate solely on the PAP case. %************************************************************************ \begin{code} -simplTopBinds :: SimplEnv -> [InBind] -> SimplM [OutBind] +simplTopBinds :: SimplEnv -> [InBind] -> SimplM SimplEnv simplTopBinds env0 binds0 = do { -- Put all the top-level binders into scope at the start @@ -213,7 +217,7 @@ simplTopBinds env0 binds0 dopt Opt_D_dump_rule_firings dflags ; env2 <- simpl_binds dump_flag env1 binds0 ; freeTick SimplifierDone - ; return (getFloats env2) } + ; return env2 } where -- We need to track the zapped top-level binders, because -- they should have their fragile IdInfo zapped (notably occurrence info) @@ -255,7 +259,7 @@ simplRecBind env0 top_lvl pairs0 ; env1 <- go (zapFloats env_with_info) triples ; return (env0 `addRecFloats` env1) } -- addFloats adds the floats from env1, - -- *and* updates env0 with the in-scope set from env1 + -- _and_ updates env0 with the in-scope set from env1 where add_rules :: SimplEnv -> (InBndr,InExpr) -> (SimplEnv, (InBndr, OutBndr, InExpr)) -- Add the (substituted) rules to the binder @@ -339,7 +343,7 @@ simplLazyBind env top_lvl is_rec bndr bndr1 rhs rhs_se ; (env', rhs') <- if not (doFloatFromRhs top_lvl is_rec False body2 body_env2) then -- No floating, just wrap up! - do { rhs' <- mkLam tvs' (wrapFloats body_env2 body2) + do { rhs' <- mkLam env tvs' (wrapFloats body_env2 body2) ; return (env, rhs') } else if null tvs then -- Simple floating @@ -349,8 +353,8 @@ simplLazyBind env top_lvl is_rec bndr bndr1 rhs rhs_se else -- Do type-abstraction first do { tick LetFloatFromLet ; (poly_binds, body3) <- abstractFloats tvs' body_env2 body2 - ; rhs' <- mkLam tvs' body3 - ; let env' = foldl (addPolyBind top_lvl) env poly_binds + ; rhs' <- mkLam env tvs' body3 + ; env' <- foldlM (addPolyBind top_lvl) env poly_binds ; return (env', rhs') } ; completeBind env' top_lvl bndr bndr1 rhs' } @@ -366,6 +370,9 @@ simplNonRecX :: SimplEnv -> SimplM SimplEnv simplNonRecX env bndr new_rhs + | isDeadBinder bndr -- Not uncommon; e.g. case (a,b) of b { (p,q) -> p } + = return env -- Here b is dead, and we avoid creating + | otherwise -- the binding b = (a,b) = do { (env', bndr') <- simplBinder env bndr ; completeNonRecX env' (isStrictId bndr) bndr bndr' new_rhs } @@ -457,7 +464,8 @@ prepareRhs env0 rhs0 where is_val = n_val_args > 0 -- There is at least one arg -- ...and the fun a constructor or PAP - && (isDataConWorkId fun || n_val_args < idArity fun) + && (isConLikeId fun || n_val_args < idArity fun) + -- See Note [CONLIKE pragma] in BasicTypes go _ env other = return (False, env, other) \end{code} @@ -511,7 +519,18 @@ makeTrivial env expr | otherwise -- See Note [Take care] below = do { var <- newId (fsLit "a") (exprType expr) ; env' <- completeNonRecX env False var var expr - ; return (env', substExpr env' (Var var)) } +-- pprTrace "makeTrivial" (vcat [ppr var <+> ppr (exprArity (substExpr env' (Var var))) +-- , ppr expr +-- , ppr (substExpr env' (Var var)) +-- , ppr (idArity (fromJust (lookupInScope (seInScope env') var))) ]) $ + ; return (env', substExpr env' (Var var)) } + -- The substitution is needed becase we're constructing a new binding + -- a = rhs + -- And if rhs is of form (rhs1 |> co), then we might get + -- a1 = rhs1 + -- a = a1 |> co + -- and now a's RHS is trivial and can be substituted out, and that + -- is what completeNonRecX will do \end{code} @@ -551,26 +570,23 @@ completeBind :: SimplEnv -- * or by adding to the floats in the envt completeBind env top_lvl old_bndr new_bndr new_rhs - | postInlineUnconditionally env top_lvl new_bndr occ_info new_rhs unfolding - -- Inline and discard the binding - = do { tick (PostInlineUnconditionally old_bndr) - ; -- pprTrace "postInlineUnconditionally" (ppr old_bndr <+> ppr new_bndr <+> ppr new_rhs) $ - return (extendIdSubst env old_bndr (DoneEx new_rhs)) } - -- Use the substitution to make quite, quite sure that the - -- substitution will happen, since we are going to discard the binding + = do { let old_info = idInfo old_bndr + old_unf = unfoldingInfo old_info + occ_info = occInfo old_info - | otherwise - = return (addNonRecWithUnf env new_bndr new_rhs unfolding wkr) - where - unfolding | omit_unfolding = NoUnfolding - | otherwise = mkUnfolding (isTopLevel top_lvl) new_rhs - old_info = idInfo old_bndr - occ_info = occInfo old_info - wkr = substWorker env (workerInfo old_info) - omit_unfolding = isNonRuleLoopBreaker occ_info || not (activeInline env old_bndr) - ------------------ -addPolyBind :: TopLevelFlag -> SimplEnv -> OutBind -> SimplEnv + ; new_unfolding <- simplUnfolding env top_lvl old_bndr occ_info new_rhs old_unf + + ; if postInlineUnconditionally env top_lvl new_bndr occ_info new_rhs new_unfolding + -- Inline and discard the binding + then do { tick (PostInlineUnconditionally old_bndr) + ; return (extendIdSubst env old_bndr (DoneEx new_rhs)) } + -- Use the substitution to make quite, quite sure that the + -- substitution will happen, since we are going to discard the binding + + else return (addNonRecWithUnf env new_bndr new_rhs new_unfolding) } + +------------------------------ +addPolyBind :: TopLevelFlag -> SimplEnv -> OutBind -> SimplM SimplEnv -- Add a new binding to the environment, complete with its unfolding -- but *do not* do postInlineUnconditionally, because we have already -- processed some of the scope of the binding @@ -583,64 +599,130 @@ addPolyBind :: TopLevelFlag -> SimplEnv -> OutBind -> SimplEnv -- opportunity to inline 'y' too. addPolyBind top_lvl env (NonRec poly_id rhs) - = addNonRecWithUnf env poly_id rhs unfolding NoWorker - where - unfolding | not (activeInline env poly_id) = NoUnfolding - | otherwise = mkUnfolding (isTopLevel top_lvl) rhs - -- addNonRecWithInfo adds the new binding in the - -- proper way (ie complete with unfolding etc), - -- and extends the in-scope set + = do { unfolding <- simplUnfolding env top_lvl poly_id NoOccInfo rhs noUnfolding + -- Assumes that poly_id did not have an INLINE prag + -- which is perhaps wrong. ToDo: think about this + ; return (addNonRecWithUnf env poly_id rhs unfolding) } -addPolyBind _ env bind@(Rec _) = extendFloats env bind +addPolyBind _ env bind@(Rec _) = return (extendFloats env bind) -- Hack: letrecs are more awkward, so we extend "by steam" -- without adding unfoldings etc. At worst this leads to -- more simplifier iterations ------------------ +------------------------------ addNonRecWithUnf :: SimplEnv - -> OutId -> OutExpr -- New binder and RHS - -> Unfolding -> WorkerInfo -- and unfolding - -> SimplEnv --- Add suitable IdInfo to the Id, add the binding to the floats, and extend the in-scope set -addNonRecWithUnf env new_bndr rhs unfolding wkr - = final_id `seq` -- This seq forces the Id, and hence its IdInfo, - -- and hence any inner substitutions - addNonRec env final_id rhs - -- The addNonRec adds it to the in-scope set too - where - -- Arity info - new_bndr_info = idInfo new_bndr `setArityInfo` exprArity rhs - - -- Unfolding info - -- Add the unfolding *only* for non-loop-breakers - -- Making loop breakers not have an unfolding at all - -- means that we can avoid tests in exprIsConApp, for example. - -- This is important: if exprIsConApp says 'yes' for a recursive - -- thing, then we can get into an infinite loop - - -- Demand info - -- If the unfolding is a value, the demand info may - -- go pear-shaped, so we nuke it. Example: - -- let x = (a,b) in - -- case x of (p,q) -> h p q x - -- Here x is certainly demanded. But after we've nuked - -- the case, we'll get just - -- let x = (a,b) in h a b x - -- and now x is not demanded (I'm assuming h is lazy) - -- This really happens. Similarly - -- let f = \x -> e in ...f..f... - -- After inlining f at some of its call sites the original binding may - -- (for example) be no longer strictly demanded. - -- The solution here is a bit ad hoc... - info_w_unf = new_bndr_info `setUnfoldingInfo` unfolding - `setWorkerInfo` wkr - - final_info | isEvaldUnfolding unfolding = zapDemandInfo info_w_unf `orElse` info_w_unf - | otherwise = info_w_unf + -> OutId -> OutExpr -- New binder and RHS + -> Unfolding -- New unfolding + -> SimplEnv +addNonRecWithUnf env new_bndr new_rhs new_unfolding + = let new_arity = exprArity new_rhs + old_arity = idArity new_bndr + info1 = idInfo new_bndr `setArityInfo` new_arity - final_id = new_bndr `setIdInfo` final_info + -- Unfolding info: Note [Setting the new unfolding] + info2 = info1 `setUnfoldingInfo` new_unfolding + + -- Demand info: Note [Setting the demand info] + info3 | isEvaldUnfolding new_unfolding = zapDemandInfo info2 `orElse` info2 + | otherwise = info2 + + final_id = new_bndr `setIdInfo` info3 + dmd_arity = length $ fst $ splitStrictSig $ idNewStrictness new_bndr + in + ASSERT( isId new_bndr ) + WARN( new_arity < old_arity || new_arity < dmd_arity, + (ptext (sLit "Arity decrease:") <+> ppr final_id <+> ppr old_arity + <+> ppr new_arity <+> ppr dmd_arity) ) + -- Note [Arity decrease] + + final_id `seq` -- This seq forces the Id, and hence its IdInfo, + -- and hence any inner substitutions + -- pprTrace "Binding" (ppr final_id <+> ppr unfolding) $ + addNonRec env final_id new_rhs + -- The addNonRec adds it to the in-scope set too + +------------------------------ +simplUnfolding :: SimplEnv-> TopLevelFlag + -> Id -- Debug output only + -> OccInfo -> OutExpr + -> Unfolding -> SimplM Unfolding +-- Note [Setting the new unfolding] +simplUnfolding env _ _ _ _ (DFunUnfolding con ops) + = return (DFunUnfolding con ops') + where + ops' = map (CoreSubst.substExpr (mkCoreSubst env)) ops + +simplUnfolding env top_lvl _ _ _ + (CoreUnfolding { uf_tmpl = expr, uf_arity = arity + , uf_guidance = guide@(InlineRule {}) }) + = do { expr' <- simplExpr (setMode SimplGently env) expr + -- See Note [Simplifying gently inside InlineRules] in SimplUtils + ; let mb_wkr' = CoreSubst.substInlineRuleInfo (mkCoreSubst env) (ir_info guide) + ; return (mkCoreUnfolding (isTopLevel top_lvl) expr' arity + (guide { ir_info = mb_wkr' })) } + -- See Note [Top-level flag on inline rules] in CoreUnfold + +simplUnfolding _ top_lvl _ occ_info new_rhs _ + | omit_unfolding = return NoUnfolding + | otherwise = return (mkUnfolding (isTopLevel top_lvl) new_rhs) + where + omit_unfolding = isNonRuleLoopBreaker occ_info \end{code} +Note [Arity decrease] +~~~~~~~~~~~~~~~~~~~~~ +Generally speaking the arity of a binding should not decrease. But it *can* +legitimately happen becuase of RULES. Eg + f = g Int +where g has arity 2, will have arity 2. But if there's a rewrite rule + g Int --> h +where h has arity 1, then f's arity will decrease. Here's a real-life example, +which is in the output of Specialise: + + Rec { + $dm {Arity 2} = \d.\x. op d + {-# RULES forall d. $dm Int d = $s$dm #-} + + dInt = MkD .... opInt ... + opInt {Arity 1} = $dm dInt + + $s$dm {Arity 0} = \x. op dInt } + +Here opInt has arity 1; but when we apply the rule its arity drops to 0. +That's why Specialise goes to a little trouble to pin the right arity +on specialised functions too. + +Note [Setting the new unfolding] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +* If there's an INLINE pragma, we simplify the RHS gently. Maybe we + should do nothing at all, but simplifying gently might get rid of + more crap. + +* If not, we make an unfolding from the new RHS. But *only* for + non-loop-breakers. Making loop breakers not have an unfolding at all + means that we can avoid tests in exprIsConApp, for example. This is + important: if exprIsConApp says 'yes' for a recursive thing, then we + can get into an infinite loop + +If there's an InlineRule on a loop breaker, we hang on to the inlining. +It's pretty dodgy, but the user did say 'INLINE'. May need to revisit +this choice. + +Note [Setting the demand info] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +If the unfolding is a value, the demand info may +go pear-shaped, so we nuke it. Example: + let x = (a,b) in + case x of (p,q) -> h p q x +Here x is certainly demanded. But after we've nuked +the case, we'll get just + let x = (a,b) in h a b x +and now x is not demanded (I'm assuming h is lazy) +This really happens. Similarly + let f = \x -> e in ...f..f... +After inlining f at some of its call sites the original binding may +(for example) be no longer strictly demanded. +The solution here is a bit ad hoc... %************************************************************************ @@ -738,7 +820,7 @@ simplExprF' env expr@(Lam _ _) cont simplExprF' env (Type ty) cont = ASSERT( contIsRhsOrArg cont ) - do { ty' <- simplType env ty + do { ty' <- simplCoercion env ty ; rebuild env (Type ty') cont } simplExprF' env (Case scrut bndr _ alts) cont @@ -773,6 +855,14 @@ simplType env ty seqType new_ty `seq` return new_ty where new_ty = substTy env ty + +--------------------------------- +simplCoercion :: SimplEnv -> InType -> SimplM OutType +-- The InType isn't *necessarily* a coercion, but it might be +-- (in a type application, say) and optCoercion is a no-op on types +simplCoercion env co + = do { co' <- simplType env co + ; return (optCoercion co') } \end{code} @@ -810,7 +900,7 @@ rebuild env expr cont0 simplCast :: SimplEnv -> InExpr -> Coercion -> SimplCont -> SimplM (SimplEnv, OutExpr) simplCast env body co0 cont0 - = do { co1 <- simplType env co0 + = do { co1 <- simplCoercion env co0 ; simplExprF env body (addCoerce co1 cont0) } where addCoerce co cont = add_coerce co (coercionKind co) cont @@ -820,10 +910,10 @@ simplCast env body co0 cont0 add_coerce co1 (s1, _k2) (CoerceIt co2 cont) | (_l1, t1) <- coercionKind co2 - -- coerce T1 S1 (coerce S1 K1 e) + -- e |> (g1 :: S1~L) |> (g2 :: L~T1) -- ==> - -- e, if T1=K1 - -- coerce T1 K1 e, otherwise + -- e, if S1=T1 + -- e |> (g1 . g2 :: S1~T1) otherwise -- -- For example, in the initial form of a worker -- we may find (coerce T (coerce S (\x.e))) y @@ -833,7 +923,7 @@ simplCast env body co0 cont0 | otherwise = CoerceIt (mkTransCoercion co1 co2) cont add_coerce co (s1s2, _t1t2) (ApplyTo dup (Type arg_ty) arg_se cont) - -- (f `cast` g) ty ---> (f ty) `cast` (g @ ty) + -- (f |> g) ty ---> (f ty) |> (g @ ty) -- This implements the PushT rule from the paper | Just (tyvar,_) <- splitForAllTy_maybe s1s2 , not (isCoVar tyvar) @@ -846,12 +936,12 @@ simplCast env body co0 cont0 add_coerce co (s1s2, _t1t2) (ApplyTo dup arg arg_se cont) | not (isTypeArg arg) -- This implements the Push rule from the paper , isFunTy s1s2 -- t1t2 must be a function type, becuase it's applied - -- co : s1s2 :=: t1t2 - -- (coerce (T1->T2) (S1->S2) F) E + -- (e |> (g :: s1s2 ~ t1->t2)) f -- ===> - -- coerce T2 S2 (F (coerce S1 T1 E)) + -- (e (f |> (arg g :: t1~s1)) + -- |> (res g :: s2->t2) -- - -- t1t2 must be a function type, T1->T2, because it's applied + -- t1t2 must be a function type, t1->t2, because it's applied -- to something but s1s2 might conceivably not be -- -- When we build the ApplyTo we can't mix the out-types @@ -862,9 +952,9 @@ simplCast env body co0 cont0 -- Example of use: Trac #995 = ApplyTo dup new_arg (zapSubstEnv env) (addCoerce co2 cont) where - -- we split coercion t1->t2 :=: s1->s2 into t1 :=: s1 and - -- t2 :=: s2 with left and right on the curried form: - -- (->) t1 t2 :=: (->) s1 s2 + -- we split coercion t1->t2 ~ s1->s2 into t1 ~ s1 and + -- t2 ~ s2 with left and right on the curried form: + -- (->) t1 t2 ~ (->) s1 s2 [co1, co2] = decomposeCo 2 co new_arg = mkCoerce (mkSymCoercion co1) arg' arg' = substExpr (arg_se `setInScope` env) arg @@ -894,12 +984,12 @@ simplLam env (bndr:bndrs) body (ApplyTo _ arg arg_se cont) simplLam env bndrs body cont = do { (env', bndrs') <- simplLamBndrs env bndrs ; body' <- simplExpr env' body - ; new_lam <- mkLam bndrs' body' + ; new_lam <- mkLam env' bndrs' body' ; rebuild env' new_lam cont } ------------------ simplNonRecE :: SimplEnv - -> InId -- The binder + -> InBndr -- The binder -> (InExpr, SimplEnv) -- Rhs of binding (or arg of lambda) -> ([InBndr], InExpr) -- Body of the let/lambda -- \xs.e @@ -935,7 +1025,8 @@ simplNonRecE env bndr (rhs, rhs_se) (bndrs, body) cont (StrictBind bndr bndrs body env cont) } | otherwise - = do { (env1, bndr1) <- simplNonRecBndr env bndr + = ASSERT( not (isTyVar bndr) ) + do { (env1, bndr1) <- simplNonRecBndr env bndr ; let (env2, bndr2) = addBndrRules env1 bndr bndr1 ; env3 <- simplLazyBind env2 NotTopLevel NonRecursive bndr bndr2 rhs rhs_se ; simplLam env3 bndrs body cont } @@ -954,24 +1045,15 @@ simplNonRecE env bndr (rhs, rhs_se) (bndrs, body) cont simplNote :: SimplEnv -> Note -> CoreExpr -> SimplCont -> SimplM (SimplEnv, OutExpr) simplNote env (SCC cc) e cont + | pushCCisNop cc (getEnclosingCC env) -- scc "f" (...(scc "f" e)...) + = simplExprF env e cont -- ==> scc "f" (...e...) + | otherwise = do { e' <- simplExpr (setEnclosingCC env currentCCS) e ; rebuild env (mkSCC cc e') cont } --- See notes with SimplMonad.inlineMode -simplNote env InlineMe e cont - | Just (inside, outside) <- splitInlineCont cont -- Boring boring continuation; see notes above - = do { -- Don't inline inside an INLINE expression - e' <- simplExprC (setMode inlineMode env) e inside - ; rebuild env (mkInlineMe e') outside } - - | otherwise -- Dissolve the InlineMe note if there's - -- an interesting context of any kind to combine with - -- (even a type application -- anything except Stop) - = simplExprF env e cont - -simplNote env (CoreNote s) e cont = do - e' <- simplExpr env e - rebuild env (Note (CoreNote s) e') cont +simplNote env (CoreNote s) e cont + = do { e' <- simplExpr env e + ; rebuild env (Note (CoreNote s) e') cont } \end{code} @@ -1003,8 +1085,7 @@ simplVar env var cont completeCall :: SimplEnv -> Id -> SimplCont -> SimplM (SimplEnv, OutExpr) completeCall env var cont - = do { dflags <- getDOptsSmpl - ; let (args,call_cont) = contArgs cont + = do { let (args,call_cont) = contArgs cont -- The args are OutExprs, obtained by *lazily* substituting -- in the args found in cont. These args are only examined -- to limited depth (unless a rule fires). But we must do @@ -1020,44 +1101,20 @@ completeCall env var cont -- We used to use the black-listing mechanism to ensure that inlining of -- the wrapper didn't occur for things that have specialisations till a -- later phase, so but now we just try RULES first - -- - -- Note [Rules for recursive functions] - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -- You might think that we shouldn't apply rules for a loop breaker: - -- doing so might give rise to an infinite loop, because a RULE is - -- rather like an extra equation for the function: - -- RULE: f (g x) y = x+y - -- Eqn: f a y = a-y - -- - -- But it's too drastic to disable rules for loop breakers. - -- Even the foldr/build rule would be disabled, because foldr - -- is recursive, and hence a loop breaker: - -- foldr k z (build g) = g k z - -- So it's up to the programmer: rules can cause divergence - ; rules <- getRules - ; let in_scope = getInScope env - maybe_rule = case activeRule dflags env of - Nothing -> Nothing -- No rules apply - Just act_fn -> lookupRule act_fn in_scope - rules var args - ; case maybe_rule of { - Just (rule, rule_rhs) -> do - tick (RuleFired (ru_name rule)) - (if dopt Opt_D_dump_rule_firings dflags then - pprTrace "Rule fired" (vcat [ - text "Rule:" <+> ftext (ru_name rule), - text "Before:" <+> ppr var <+> sep (map pprParendExpr args), - text "After: " <+> pprCoreExpr rule_rhs, - text "Cont: " <+> ppr call_cont]) - else - id) $ - simplExprF env rule_rhs (dropArgs (ruleArity rule) cont) + -- + -- See also Note [Rules for recursive functions] + ; rule_base <- getSimplRules + ; let rules = getRules rule_base var + ; mb_rule <- tryRules env var rules args call_cont + ; case mb_rule of { + Just (n_args, rule_rhs) -> simplExprF env rule_rhs (dropArgs n_args cont) ; -- The ruleArity says how many args the rule consumed + ; Nothing -> do -- No rules - ; Nothing -> do -- No rules ------------- Next try inlining ---------------- - { let arg_infos = [interestingArg arg | arg <- args, isValArg arg] + { dflags <- getDOptsSmpl + ; let arg_infos = [interestingArg arg | arg <- args, isValArg arg] n_val_args = length arg_infos interesting_cont = interestingCallContext call_cont active_inline = activeInline env var @@ -1067,7 +1124,7 @@ completeCall env var cont Just unfolding -- There is an inlining! -> do { tick (UnfoldingDone var) ; (if dopt Opt_D_dump_inlinings dflags then - pprTrace ("Inlining done" ++ showSDoc (ppr var)) (vcat [ + pprTrace ("Inlining done: " ++ showSDoc (ppr var)) (vcat [ text "Before:" <+> ppr var <+> sep (map pprParendExpr args), text "Inlined fn: " <+> nest 2 (ppr unfolding), text "Cont: " <+> ppr call_cont]) @@ -1081,7 +1138,8 @@ completeCall env var cont -- Next, look for rules or specialisations that match -- rebuildCall env (Var var) - (mkArgInfo var n_val_args call_cont) cont + (mkArgInfo var rules n_val_args call_cont) + cont }}}} rebuildCall :: SimplEnv @@ -1110,7 +1168,7 @@ rebuildCall env fun (ArgInfo { ai_strs = [] }) cont | otherwise = mkCoerce co expr rebuildCall env fun info (ApplyTo _ (Type arg_ty) se cont) - = do { ty' <- simplType (se `setInScope` env) arg_ty + = do { ty' <- simplCoercion (se `setInScope` env) arg_ty ; rebuildCall env (fun `App` Type ty') info cont } rebuildCall env fun @@ -1163,38 +1221,188 @@ to get the effect that finding (error "foo") in a strict arg position will discard the entire application and replace it with (error "foo"). Getting all this at once is TOO HARD! + +%************************************************************************ +%* * + Rewrite rules +%* * +%************************************************************************ + +\begin{code} +tryRules :: SimplEnv + -> Id -> [CoreRule] -> [OutExpr] -> SimplCont + -> SimplM (Maybe (Arity, CoreExpr)) -- The arity is the number of + -- args consumed by the rule +tryRules env fn rules args call_cont + | null rules + = return Nothing + | otherwise + = do { dflags <- getDOptsSmpl + ; case activeRule dflags env of { + Nothing -> return Nothing ; -- No rules apply + Just act_fn -> + + case lookupRule act_fn (getInScope env) fn args rules of { + Nothing -> return Nothing ; -- No rule matches + Just (rule, rule_rhs) -> + + do { tick (RuleFired (ru_name rule)) + ; (if dopt Opt_D_dump_rule_firings dflags then + pprTrace "Rule fired" (vcat [ + text "Rule:" <+> ftext (ru_name rule), + text "Before:" <+> ppr fn <+> sep (map pprParendExpr args), + text "After: " <+> pprCoreExpr rule_rhs, + text "Cont: " <+> ppr call_cont]) + else + id) $ + return (Just (ruleArity rule, rule_rhs)) }}}} +\end{code} + +Note [Rules for recursive functions] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +You might think that we shouldn't apply rules for a loop breaker: +doing so might give rise to an infinite loop, because a RULE is +rather like an extra equation for the function: + RULE: f (g x) y = x+y + Eqn: f a y = a-y + +But it's too drastic to disable rules for loop breakers. +Even the foldr/build rule would be disabled, because foldr +is recursive, and hence a loop breaker: + foldr k z (build g) = g k z +So it's up to the programmer: rules can cause divergence + + %************************************************************************ %* * Rebuilding a cse expression %* * %************************************************************************ -Blob of helper functions for the "case-of-something-else" situation. +Note [Case elimination] +~~~~~~~~~~~~~~~~~~~~~~~ +The case-elimination transformation discards redundant case expressions. +Start with a simple situation: + + case x# of ===> e[x#/y#] + y# -> e + +(when x#, y# are of primitive type, of course). We can't (in general) +do this for algebraic cases, because we might turn bottom into +non-bottom! + +The code in SimplUtils.prepareAlts has the effect of generalise this +idea to look for a case where we're scrutinising a variable, and we +know that only the default case can match. For example: + + case x of + 0# -> ... + DEFAULT -> ...(case x of + 0# -> ... + DEFAULT -> ...) ... + +Here the inner case is first trimmed to have only one alternative, the +DEFAULT, after which it's an instance of the previous case. This +really only shows up in eliminating error-checking code. + +We also make sure that we deal with this very common case: + + case e of + x -> ...x... + +Here we are using the case as a strict let; if x is used only once +then we want to inline it. We have to be careful that this doesn't +make the program terminate when it would have diverged before, so we +check that + - e is already evaluated (it may so if e is a variable) + - x is used strictly, or + +Lastly, the code in SimplUtils.mkCase combines identical RHSs. So + + case e of ===> case e of DEFAULT -> r + True -> r + False -> r + +Now again the case may be elminated by the CaseElim transformation. + + +Further notes about case elimination +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Consider: test :: Integer -> IO () + test = print + +Turns out that this compiles to: + Print.test + = \ eta :: Integer + eta1 :: State# RealWorld -> + case PrelNum.< eta PrelNum.zeroInteger of wild { __DEFAULT -> + case hPutStr stdout + (PrelNum.jtos eta ($w[] @ Char)) + eta1 + of wild1 { (# new_s, a4 #) -> PrelIO.lvl23 new_s }} + +Notice the strange '<' which has no effect at all. This is a funny one. +It started like this: + +f x y = if x < 0 then jtos x + else if y==0 then "" else jtos x + +At a particular call site we have (f v 1). So we inline to get + + if v < 0 then jtos x + else if 1==0 then "" else jtos x + +Now simplify the 1==0 conditional: + + if v<0 then jtos v else jtos v + +Now common-up the two branches of the case: + + case (v<0) of DEFAULT -> jtos v + +Why don't we drop the case? Because it's strict in v. It's technically +wrong to drop even unnecessary evaluations, and in practice they +may be a result of 'seq' so we *definitely* don't want to drop those. +I don't really know how to improve this situation. \begin{code} --------------------------------------------------------- -- Eliminate the case if possible -rebuildCase :: SimplEnv - -> OutExpr -- Scrutinee - -> InId -- Case binder - -> [InAlt] -- Alternatives (inceasing order) - -> SimplCont - -> SimplM (SimplEnv, OutExpr) +rebuildCase, reallyRebuildCase + :: SimplEnv + -> OutExpr -- Scrutinee + -> InId -- Case binder + -> [InAlt] -- Alternatives (inceasing order) + -> SimplCont + -> SimplM (SimplEnv, OutExpr) -------------------------------------------------- -- 1. Eliminate the case if there's a known constructor -------------------------------------------------- rebuildCase env scrut case_bndr alts cont - | Just (con,args) <- exprIsConApp_maybe scrut - -- Works when the scrutinee is a variable with a known unfolding - -- as well as when it's an explicit constructor application - = knownCon env scrut (DataAlt con) args case_bndr alts cont - | Lit lit <- scrut -- No need for same treatment as constructors -- because literals are inlined more vigorously - = knownCon env scrut (LitAlt lit) [] case_bndr alts cont + = do { tick (KnownBranch case_bndr) + ; case findAlt (LitAlt lit) alts of + Nothing -> missingAlt env case_bndr alts cont + Just (_, bs, rhs) -> simple_rhs bs rhs } + + | Just (con, ty_args, other_args) <- exprIsConApp_maybe scrut + -- Works when the scrutinee is a variable with a known unfolding + -- as well as when it's an explicit constructor application + = do { tick (KnownBranch case_bndr) + ; case findAlt (DataAlt con) alts of + Nothing -> missingAlt env case_bndr alts cont + Just (DEFAULT, bs, rhs) -> simple_rhs bs rhs + Just (_, bs, rhs) -> knownCon env scrut con ty_args other_args + case_bndr bs rhs cont + } + where + simple_rhs bs rhs = ASSERT( null bs ) + do { env' <- simplNonRecX env case_bndr scrut + ; simplExprF env' rhs cont } -------------------------------------------------- @@ -1203,7 +1411,7 @@ rebuildCase env scrut case_bndr alts cont rebuildCase env scrut case_bndr [(_, bndrs, rhs)] cont -- See if we can get rid of the case altogether - -- See the extensive notes on case-elimination above + -- See Note [Case eliminiation] -- mkCase made sure that if all the alternatives are equal, -- then there is now only one (DEFAULT) rhs | all isDeadBinder bndrs -- bndrs are [InId] @@ -1241,12 +1449,31 @@ rebuildCase env scrut case_bndr [(_, bndrs, rhs)] cont -- exprOkForSpeculation was intended for. var_demanded_later _ = False +rebuildCase env scrut case_bndr alts@[(_, bndrs, rhs)] cont + | all isDeadBinder (case_bndr : bndrs) -- So this is just 'seq' + = -- For this case, see Note [User-defined RULES for seq] in MkId + do { let rhs' = substExpr env rhs + out_args = [Type (substTy env (idType case_bndr)), + Type (exprType rhs'), scrut, rhs'] + -- Lazily evaluated, so we don't do most of this + + ; rule_base <- getSimplRules + ; let rules = getRules rule_base seqId + ; mb_rule <- tryRules env seqId rules out_args cont + ; case mb_rule of + Just (n_args, res) -> simplExprF (zapSubstEnv env) + (mkApps res (drop n_args out_args)) + cont + Nothing -> reallyRebuildCase env scrut case_bndr alts cont } + +rebuildCase env scrut case_bndr alts cont + = reallyRebuildCase env scrut case_bndr alts cont -------------------------------------------------- -- 3. Catch-all case -------------------------------------------------- -rebuildCase env scrut case_bndr alts cont +reallyRebuildCase env scrut case_bndr alts cont = do { -- Prepare the continuation; -- The new subst_env is in place (env', dup_cont, nodup_cont) <- prepareCaseCont env alts cont @@ -1255,17 +1482,7 @@ rebuildCase env scrut case_bndr alts cont ; (scrut', case_bndr', alts') <- simplAlts env' scrut case_bndr alts dup_cont -- Check for empty alternatives - ; if null alts' then - -- This isn't strictly an error, although it is unusual. - -- It's possible that the simplifer might "see" that - -- an inner case has no accessible alternatives before - -- it "sees" that the entire branch of an outer case is - -- inaccessible. So we simply put an error case here instead. - pprTrace "mkCase: null alts" (ppr case_bndr <+> ppr scrut) $ - let res_ty' = contResultType env' (substTy env' (coreAltsType alts)) dup_cont - lit = Lit (mkStringLit "Impossible alternative") - in return (env', mkApps (Var rUNTIME_ERROR_ID) [Type res_ty', lit]) - + ; if null alts' then missingAlt env case_bndr alts cont else do { case_expr <- mkCase scrut' case_bndr' alts' @@ -1279,78 +1496,15 @@ try to eliminate uses of v in the RHSs in favour of case_bndr; that way, there's a chance that v will now only be used once, and hence inlined. -Note [no-case-of-case] -~~~~~~~~~~~~~~~~~~~~~~ -We *used* to suppress the binder-swap in case expressoins when --fno-case-of-case is on. Old remarks: - "This happens in the first simplifier pass, - and enhances full laziness. Here's the bad case: - f = \ y -> ...(case x of I# v -> ...(case x of ...) ... ) - If we eliminate the inner case, we trap it inside the I# v -> arm, - which might prevent some full laziness happening. I've seen this - in action in spectral/cichelli/Prog.hs: - [(m,n) | m <- [1..max], n <- [1..max]] - Hence the check for NoCaseOfCase." -However, now the full-laziness pass itself reverses the binder-swap, so this -check is no longer necessary. - -Note [Suppressing the case binder-swap] -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -There is another situation when it might make sense to suppress the -case-expression binde-swap. If we have - - case x of w1 { DEFAULT -> case x of w2 { A -> e1; B -> e2 } - ...other cases .... } - -We'll perform the binder-swap for the outer case, giving - - case x of w1 { DEFAULT -> case w1 of w2 { A -> e1; B -> e2 } - ...other cases .... } - -But there is no point in doing it for the inner case, because w1 can't -be inlined anyway. Furthermore, doing the case-swapping involves -zapping w2's occurrence info (see paragraphs that follow), and that -forces us to bind w2 when doing case merging. So we get - - case x of w1 { A -> let w2 = w1 in e1 - B -> let w2 = w1 in e2 - ...other cases .... } - -This is plain silly in the common case where w2 is dead. - -Even so, I can't see a good way to implement this idea. I tried -not doing the binder-swap if the scrutinee was already evaluated -but that failed big-time: - - data T = MkT !Int - - case v of w { MkT x -> - case x of x1 { I# y1 -> - case x of x2 { I# y2 -> ... - -Notice that because MkT is strict, x is marked "evaluated". But to -eliminate the last case, we must either make sure that x (as well as -x1) has unfolding MkT y1. THe straightforward thing to do is to do -the binder-swap. So this whole note is a no-op. +Historical note: we use to do the "case binder swap" in the Simplifier +so there were additional complications if the scrutinee was a variable. +Now the binder-swap stuff is done in the occurrence analyer; see +OccurAnal Note [Binder swap]. Note [zapOccInfo] ~~~~~~~~~~~~~~~~~ -If we replace the scrutinee, v, by tbe case binder, then we have to nuke -any occurrence info (eg IAmDead) in the case binder, because the -case-binder now effectively occurs whenever v does. AND we have to do -the same for the pattern-bound variables! Example: - - (case x of { (a,b) -> a }) (case x of { (p,q) -> q }) - -Here, b and p are dead. But when we move the argment inside the first -case RHS, and eliminate the second case, we get - - case x of { (a,b) -> a b } - -Urk! b is alive! Reason: the scrutinee was a variable, and case elimination -happened. - -Indeed, this can happen anytime the case binder isn't dead: +If the case binder is not dead, then neither are the pattern bound +variables: case of x { (a,b) -> case x of { (p,q) -> p } } Here (a,b) both look dead, but come alive after the inner case is eliminated. @@ -1359,9 +1513,13 @@ The point is that we bring into the envt a binding after the outer case, and that makes (a,b) alive. At least we do unless the case binder is guaranteed dead. +In practice, the scrutinee is almost always a variable, so we pretty +much always zap the OccInfo of the binders. It doesn't matter much though. + + Note [Case of cast] ~~~~~~~~~~~~~~~~~~~ -Consider case (v `cast` co) of x { I# -> +Consider case (v `cast` co) of x { I# y -> ... (case (v `cast` co) of {...}) ... We'd like to eliminate the inner case. We can get this neatly by arranging that inside the outer case we add the unfolding @@ -1382,10 +1540,31 @@ where x::F Int. Then we'd like to rewrite (F Int) to Int, getting I# x# -> let x = x' `cast` sym co in rhs -so that 'rhs' can take advantage of the form of x'. Notice that Note -[Case of cast] may then apply to the result. - -This showed up in Roman's experiments. Example: +so that 'rhs' can take advantage of the form of x'. + +Notice that Note [Case of cast] may then apply to the result. + +Nota Bene: We only do the [Improving seq] transformation if the +case binder 'x' is actually used in the rhs; that is, if the case +is *not* a *pure* seq. + a) There is no point in adding the cast to a pure seq. + b) There is a good reason not to: doing so would interfere + with seq rules (Note [Built-in RULES for seq] in MkId). + In particular, this [Improving seq] thing *adds* a cast + while [Built-in RULES for seq] *removes* one, so they + just flip-flop. + +You might worry about + case v of x { __DEFAULT -> + ... case (v `cast` co) of y { I# -> ... }} +This is a pure seq (since x is unused), so [Improving seq] won't happen. +But it's ok: the simplifier will replace 'v' by 'x' in the rhs to get + case v of x { __DEFAULT -> + ... case (x `cast` co) of y { I# -> ... }} +Now the outer case is not a pure seq, so [Improving seq] will happen, +and then the inner case will disappear. + +The need for [Improving seq] showed up in Roman's experiments. Example: foo :: F Int -> Int -> Int foo t n = t `seq` bar n where @@ -1394,125 +1573,28 @@ This showed up in Roman's experiments. Example: Here we'd like to avoid repeated evaluating t inside the loop, by taking advantage of the `seq`. -At one point I did transformation in LiberateCase, but it's more robust here. -(Otherwise, there's a danger that we'll simply drop the 'seq' altogether, before -LiberateCase gets to see it.) - -Note [Case elimination] -~~~~~~~~~~~~~~~~~~~~~~~ -The case-elimination transformation discards redundant case expressions. -Start with a simple situation: - - case x# of ===> e[x#/y#] - y# -> e - -(when x#, y# are of primitive type, of course). We can't (in general) -do this for algebraic cases, because we might turn bottom into -non-bottom! - -The code in SimplUtils.prepareAlts has the effect of generalise this -idea to look for a case where we're scrutinising a variable, and we -know that only the default case can match. For example: - - case x of - 0# -> ... - DEFAULT -> ...(case x of - 0# -> ... - DEFAULT -> ...) ... - -Here the inner case is first trimmed to have only one alternative, the -DEFAULT, after which it's an instance of the previous case. This -really only shows up in eliminating error-checking code. - -We also make sure that we deal with this very common case: - - case e of - x -> ...x... - -Here we are using the case as a strict let; if x is used only once -then we want to inline it. We have to be careful that this doesn't -make the program terminate when it would have diverged before, so we -check that - - e is already evaluated (it may so if e is a variable) - - x is used strictly, or - -Lastly, the code in SimplUtils.mkCase combines identical RHSs. So - - case e of ===> case e of DEFAULT -> r - True -> r - False -> r - -Now again the case may be elminated by the CaseElim transformation. - - -Further notes about case elimination -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Consider: test :: Integer -> IO () - test = print - -Turns out that this compiles to: - Print.test - = \ eta :: Integer - eta1 :: State# RealWorld -> - case PrelNum.< eta PrelNum.zeroInteger of wild { __DEFAULT -> - case hPutStr stdout - (PrelNum.jtos eta ($w[] @ Char)) - eta1 - of wild1 { (# new_s, a4 #) -> PrelIO.lvl23 new_s }} - -Notice the strange '<' which has no effect at all. This is a funny one. -It started like this: - -f x y = if x < 0 then jtos x - else if y==0 then "" else jtos x - -At a particular call site we have (f v 1). So we inline to get - - if v < 0 then jtos x - else if 1==0 then "" else jtos x - -Now simplify the 1==0 conditional: - - if v<0 then jtos v else jtos v - -Now common-up the two branches of the case: - - case (v<0) of DEFAULT -> jtos v - -Why don't we drop the case? Because it's strict in v. It's technically -wrong to drop even unnecessary evaluations, and in practice they -may be a result of 'seq' so we *definitely* don't want to drop those. -I don't really know how to improve this situation. +At one point I did transformation in LiberateCase, but it's more +robust here. (Otherwise, there's a danger that we'll simply drop the +'seq' altogether, before LiberateCase gets to see it.) \begin{code} -simplCaseBinder :: SimplEnv -> OutExpr -> OutId -> [InAlt] - -> SimplM (SimplEnv, OutExpr, OutId) -simplCaseBinder env0 scrut0 case_bndr0 alts - = do { (env1, case_bndr1) <- simplBinder env0 case_bndr0 - - ; fam_envs <- getFamEnvs - ; (env2, scrut2, case_bndr2) <- improve_seq fam_envs env1 scrut0 - case_bndr0 case_bndr1 alts - -- Note [Improving seq] - - ; let (env3, case_bndr3) = improve_case_bndr env2 scrut2 case_bndr2 - -- Note [Case of cast] - - ; return (env3, scrut2, case_bndr3) } - where - - improve_seq fam_envs env scrut case_bndr case_bndr1 [(DEFAULT,_,_)] - | Just (co, ty2) <- topNormaliseType fam_envs (idType case_bndr1) - = do { case_bndr2 <- newId (fsLit "nt") ty2 - ; let rhs = DoneEx (Var case_bndr2 `Cast` mkSymCoercion co) - env2 = extendIdSubst env case_bndr rhs - ; return (env2, scrut `Cast` co, case_bndr2) } - - improve_seq _ env scrut _ case_bndr1 _ - = return (env, scrut, case_bndr1) - - +improveSeq :: (FamInstEnv, FamInstEnv) -> SimplEnv + -> OutExpr -> InId -> OutId -> [InAlt] + -> SimplM (SimplEnv, OutExpr, OutId) +-- Note [Improving seq] +improveSeq fam_envs env scrut case_bndr case_bndr1 [(DEFAULT,_,_)] + | not (isDeadBinder case_bndr) -- Not a pure seq! See the Note! + , Just (co, ty2) <- topNormaliseType fam_envs (idType case_bndr1) + = do { case_bndr2 <- newId (fsLit "nt") ty2 + ; let rhs = DoneEx (Var case_bndr2 `Cast` mkSymCoercion co) + env2 = extendIdSubst env case_bndr rhs + ; return (env2, scrut `Cast` co, case_bndr2) } + +improveSeq _ env scrut _ case_bndr1 _ + = return (env, scrut, case_bndr1) + +{- improve_case_bndr env scrut case_bndr -- See Note [no-case-of-case] -- | switchIsOn (getSwitchChecker env) NoCaseOfCase @@ -1533,12 +1615,9 @@ simplCaseBinder env0 scrut0 case_bndr0 alts _ -> (env, case_bndr) where - case_bndr' = zapOccInfo case_bndr + case_bndr' = zapIdOccInfo case_bndr env1 = modifyInScope env case_bndr case_bndr' - - -zapOccInfo :: InId -> InId -- See Note [zapOccInfo] -zapOccInfo b = b `setIdOccInfo` NoOccInfo +-} \end{code} @@ -1594,10 +1673,15 @@ simplAlts :: SimplEnv simplAlts env scrut case_bndr alts cont' = -- pprTrace "simplAlts" (ppr alts $$ ppr (seIdSubst env)) $ - do { let alt_env = zapFloats env - ; (alt_env', scrut', case_bndr') <- simplCaseBinder alt_env scrut case_bndr alts + do { let env0 = zapFloats env - ; (imposs_deflt_cons, in_alts) <- prepareAlts alt_env' scrut case_bndr' alts + ; (env1, case_bndr1) <- simplBinder env0 case_bndr + + ; fam_envs <- getFamEnvs + ; (alt_env', scrut', case_bndr') <- improveSeq fam_envs env1 scrut + case_bndr case_bndr1 alts + + ; (imposs_deflt_cons, in_alts) <- prepareAlts alt_env' scrut' case_bndr' alts ; alts' <- mapM (simplAlt alt_env' imposs_deflt_cons case_bndr' cont') in_alts ; return (scrut', case_bndr', alts') } @@ -1663,6 +1747,7 @@ simplAlt env _ case_bndr' cont' (DataAlt con, vs, rhs) evald_v = zapped_v `setIdUnfolding` evaldUnfolding go _ _ = pprPanic "cat_evals" (ppr con $$ ppr vs $$ ppr the_strs) + -- See Note [zapOccInfo] -- zap_occ_info: if the case binder is alive, then we add the unfolding -- case_bndr = C vs -- to the envt; so vs are now very much alive @@ -1670,16 +1755,23 @@ simplAlt env _ case_bndr' cont' (DataAlt con, vs, rhs) -- case e of t { (a,b) -> ...(case t of (p,q) -> p)... } -- ==> case e of t { (a,b) -> ...(a)... } -- Look, Ma, a is alive now. - zap_occ_info | isDeadBinder case_bndr' = \ident -> ident - | otherwise = zapOccInfo + zap_occ_info = zapCasePatIdOcc case_bndr' addBinderUnfolding :: SimplEnv -> Id -> CoreExpr -> SimplEnv addBinderUnfolding env bndr rhs - = modifyInScope env bndr (bndr `setIdUnfolding` mkUnfolding False rhs) + = modifyInScope env (bndr `setIdUnfolding` mkUnfolding False rhs) addBinderOtherCon :: SimplEnv -> Id -> [AltCon] -> SimplEnv addBinderOtherCon env bndr cons - = modifyInScope env bndr (bndr `setIdUnfolding` mkOtherCon cons) + = modifyInScope env (bndr `setIdUnfolding` mkOtherCon cons) + +zapCasePatIdOcc :: Id -> Id -> Id +-- Consider case e of b { (a,b) -> ... } +-- Then if we bind b to (a,b) in "...", and b is not dead, +-- then we must zap the deadness info on a,b +zapCasePatIdOcc case_bndr + | isDeadBinder case_bndr = \ pat_id -> pat_id + | otherwise = \ pat_id -> zapIdOccInfo pat_id \end{code} @@ -1703,35 +1795,15 @@ and then All this should happen in one sweep. \begin{code} -knownCon :: SimplEnv -> OutExpr -> AltCon - -> [OutExpr] -- Args *including* the universal args - -> InId -> [InAlt] -> SimplCont - -> SimplM (SimplEnv, OutExpr) - -knownCon env scrut con args bndr alts cont - = do { tick (KnownBranch bndr) - ; knownAlt env scrut args bndr (findAlt con alts) cont } - -knownAlt :: SimplEnv -> OutExpr -> [OutExpr] - -> InId -> (AltCon, [CoreBndr], InExpr) -> SimplCont +knownCon :: SimplEnv + -> OutExpr -- The scrutinee + -> DataCon -> [OutType] -> [OutExpr] -- The scrutinee (in pieces) + -> InId -> [InBndr] -> InExpr -- The alternative + -> SimplCont -> SimplM (SimplEnv, OutExpr) -knownAlt env scrut _ bndr (DEFAULT, bs, rhs) cont - = ASSERT( null bs ) - do { env' <- simplNonRecX env bndr scrut - -- This might give rise to a binding with non-atomic args - -- like x = Node (f x) (g x) - -- but simplNonRecX will atomic-ify it - ; simplExprF env' rhs cont } -knownAlt env scrut _ bndr (LitAlt _, bs, rhs) cont - = ASSERT( null bs ) - do { env' <- simplNonRecX env bndr scrut - ; simplExprF env' rhs cont } - -knownAlt env scrut the_args bndr (DataAlt dc, bs, rhs) cont - = do { let dead_bndr = isDeadBinder bndr -- bndr is an InId - n_drop_tys = length (dataConUnivTyVars dc) - ; env' <- bind_args env dead_bndr bs (drop n_drop_tys the_args) +knownCon env scrut dc dc_ty_args dc_args bndr bs rhs cont + = do { env' <- bind_args env bs dc_args ; let -- It's useful to bind bndr to scrut, rather than to a fresh -- binding x = Con arg1 .. argn @@ -1740,38 +1812,52 @@ knownAlt env scrut the_args bndr (DataAlt dc, bs, rhs) cont -- BUT, if scrut is a not a variable, we must be careful -- about duplicating the arg redexes; in that case, make -- a new con-app from the args - bndr_rhs = case scrut of - Var _ -> scrut - _ -> con_app - con_app = mkConApp dc (take n_drop_tys the_args ++ con_args) - con_args = [substExpr env' (varToCoreExpr b) | b <- bs] - -- args are aready OutExprs, but bs are InIds + bndr_rhs | exprIsTrivial scrut = scrut + | otherwise = con_app + con_app = Var (dataConWorkId dc) + `mkTyApps` dc_ty_args + `mkApps` [substExpr env' (varToCoreExpr b) | b <- bs] + -- dc_ty_args are aready OutTypes, but bs are InBndrs ; env'' <- simplNonRecX env' bndr bndr_rhs - ; -- pprTrace "knownCon2" (ppr bs $$ ppr rhs $$ ppr (seIdSubst env'')) $ - simplExprF env'' rhs cont } + ; simplExprF env'' rhs cont } where - -- Ugh! - bind_args env' _ [] _ = return env' + zap_occ = zapCasePatIdOcc bndr -- bndr is an InId + + -- Ugh! + bind_args env' [] _ = return env' - bind_args env' dead_bndr (b:bs') (Type ty : args) + bind_args env' (b:bs') (Type ty : args) = ASSERT( isTyVar b ) - bind_args (extendTvSubst env' b ty) dead_bndr bs' args + bind_args (extendTvSubst env' b ty) bs' args - bind_args env' dead_bndr (b:bs') (arg : args) + bind_args env' (b:bs') (arg : args) = ASSERT( isId b ) - do { let b' = if dead_bndr then b else zapOccInfo b + do { let b' = zap_occ b -- Note that the binder might be "dead", because it doesn't -- occur in the RHS; and simplNonRecX may therefore discard -- it via postInlineUnconditionally. -- Nevertheless we must keep it if the case-binder is alive, -- because it may be used in the con_app. See Note [zapOccInfo] ; env'' <- simplNonRecX env' b' arg - ; bind_args env'' dead_bndr bs' args } + ; bind_args env'' bs' args } - bind_args _ _ _ _ = - pprPanic "bind_args" $ ppr dc $$ ppr bs $$ ppr the_args $$ + bind_args _ _ _ = + pprPanic "bind_args" $ ppr dc $$ ppr bs $$ ppr dc_args $$ text "scrut:" <+> ppr scrut + +------------------- +missingAlt :: SimplEnv -> Id -> [InAlt] -> SimplCont -> SimplM (SimplEnv, OutExpr) + -- This isn't strictly an error, although it is unusual. + -- It's possible that the simplifer might "see" that + -- an inner case has no accessible alternatives before + -- it "sees" that the entire branch of an outer case is + -- inaccessible. So we simply put an error case here instead. +missingAlt env case_bndr alts cont + = WARN( True, ptext (sLit "missingAlt") <+> ppr case_bndr ) + return (env, mkImpossibleExpr res_ty) + where + res_ty = contResultType env (substTy env (coreAltsType alts)) cont \end{code} @@ -1810,11 +1896,20 @@ mkDupableCont env (CoerceIt ty cont) mkDupableCont env cont@(StrictBind {}) = return (env, mkBoringStop, cont) - -- See Note [Duplicating strict continuations] + -- See Note [Duplicating StrictBind] -mkDupableCont env cont@(StrictArg {}) - = return (env, mkBoringStop, cont) - -- See Note [Duplicating strict continuations] +mkDupableCont env (StrictArg fun cci ai cont) + -- See Note [Duplicating StrictArg] + = do { (env', dup, nodup) <- mkDupableCont env cont + ; (env'', fun') <- mk_dupable_call env' fun + ; return (env'', StrictArg fun' cci ai dup, nodup) } + where + mk_dupable_call env (Var v) = return (env, Var v) + mk_dupable_call env (App fun arg) = do { (env', fun') <- mk_dupable_call env fun + ; (env'', arg') <- makeTrivial env' arg + ; return (env'', fun' `App` arg') } + mk_dupable_call _ other = pprPanic "mk_dupable_call" (ppr other) + -- The invariant of StrictArg is that the first arg is always an App chain mkDupableCont env (ApplyTo _ arg se cont) = -- e.g. [...hole...] (...arg...) @@ -1824,14 +1919,16 @@ mkDupableCont env (ApplyTo _ arg se cont) do { (env', dup_cont, nodup_cont) <- mkDupableCont env cont ; arg' <- simplExpr (se `setInScope` env') arg ; (env'', arg'') <- makeTrivial env' arg' - ; let app_cont = ApplyTo OkToDup arg'' (zapSubstEnv env') dup_cont + ; let app_cont = ApplyTo OkToDup arg'' (zapSubstEnv env'') dup_cont ; return (env'', app_cont, nodup_cont) } -mkDupableCont env cont@(Select _ _ [(_, bs, _rhs)] _ _) +mkDupableCont env cont@(Select _ case_bndr [(_, bs, _rhs)] _ _) -- See Note [Single-alternative case] -- | not (exprIsDupable rhs && contIsDupable case_cont) -- | not (isDeadBinder case_bndr) - | all isDeadBinder bs -- InIds + | all isDeadBinder bs -- InIds + && not (isUnLiftedType (idType case_bndr)) + -- Note [Single-alternative-unlifted] = return (env, mkBoringStop, cont) mkDupableCont env (Select _ case_bndr alts se cont) @@ -1881,12 +1978,31 @@ mkDupableAlts env case_bndr' the_alts mkDupableAlt :: SimplEnv -> OutId -> (AltCon, [CoreBndr], CoreExpr) -> SimplM (SimplEnv, (AltCon, [CoreBndr], CoreExpr)) -mkDupableAlt env case_bndr' (con, bndrs', rhs') +mkDupableAlt env case_bndr (con, bndrs', rhs') | exprIsDupable rhs' -- Note [Small alternative rhs] = return (env, (con, bndrs', rhs')) | otherwise - = do { let rhs_ty' = exprType rhs' - used_bndrs' = filter abstract_over (case_bndr' : bndrs') + = do { let rhs_ty' = exprType rhs' + scrut_ty = idType case_bndr + case_bndr_w_unf + = case con of + DEFAULT -> case_bndr + DataAlt dc -> setIdUnfolding case_bndr unf + where + -- See Note [Case binders and join points] + unf = mkInlineRule InlSat rhs 0 + rhs = mkConApp dc (map Type (tyConAppArgs scrut_ty) + ++ varsToCoreExprs bndrs') + + LitAlt {} -> WARN( True, ptext (sLit "mkDupableAlt") + <+> ppr case_bndr <+> ppr con ) + case_bndr + -- The case binder is alive but trivial, so why has + -- it not been substituted away? + + used_bndrs' | isDeadBinder case_bndr = filter abstract_over bndrs' + | otherwise = bndrs' ++ [case_bndr_w_unf] + abstract_over bndr | isTyVar bndr = True -- Abstract over all type variables just in case | otherwise = not (isDeadBinder bndr) @@ -1911,10 +2027,42 @@ mkDupableAlt env case_bndr' (con, bndrs', rhs') join_rhs = mkLams really_final_bndrs rhs' join_call = mkApps (Var join_bndr) final_args - ; return (addPolyBind NotTopLevel env (NonRec join_bndr join_rhs), (con, bndrs', join_call)) } + ; env' <- addPolyBind NotTopLevel env (NonRec join_bndr join_rhs) + ; return (env', (con, bndrs', join_call)) } -- See Note [Duplicated env] \end{code} +Note [Case binders and join points] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Consider this + case (case .. ) of c { + I# c# -> ....c.... + +If we make a join point with c but not c# we get + $j = \c -> ....c.... + +But if later inlining scrutines the c, thus + + $j = \c -> ... case c of { I# y -> ... } ... + +we won't see that 'c' has already been scrutinised. This actually +happens in the 'tabulate' function in wave4main, and makes a significant +difference to allocation. + +An alternative plan is this: + + $j = \c# -> let c = I# c# in ...c.... + +but that is bad if 'c' is *not* later scrutinised. + +So instead we do both: we pass 'c' and 'c#' , and record in c's inlining +that it's really I# c#, thus + + $j = \c# -> \c[=I# c#] -> ...c.... + +Absence analysis may later discard 'c'. + + Note [Duplicated env] ~~~~~~~~~~~~~~~~~~~~~ Some of the alternatives are simplified, but have not been turned into a join point @@ -1924,7 +2072,7 @@ we'd lose that when zapping the subst-env. We could have a per-alt subst-env, but zapping it (as we do in mkDupableCont, the Select case) is safe, and at worst delays the join-point inlining. -Note [Small alterantive rhs] +Note [Small alternative rhs] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It is worth checking for a small RHS because otherwise we get extra let bindings that may cause an extra iteration of the simplifier to @@ -1993,32 +2141,71 @@ It's a bit silly to add the realWorld dummy arg in this case, making True -> $j s (the \v alone is enough to make CPR happy) but I think it's rare -Note [Duplicating strict continuations] -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Do *not* duplicate StrictBind and StritArg continuations. We gain -nothing by propagating them into the expressions, and we do lose a -lot. Here's an example: - && (case x of { T -> F; F -> T }) E +Note [Duplicating StrictArg] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +The original plan had (where E is a big argument) +e.g. f E [..hole..] + ==> let $j = \a -> f E a + in $j [..hole..] + +But this is terrible! Here's an example: + && E (case x of { T -> F; F -> T }) Now, && is strict so we end up simplifying the case with an ArgOf continuation. If we let-bind it, we get - - let $j = \v -> && v E + let $j = \v -> && E v in simplExpr (case x of { T -> F; F -> T }) (ArgOf (\r -> $j r) And after simplifying more we get - - let $j = \v -> && v E + let $j = \v -> && E v in case x of { T -> $j F; F -> $j T } Which is a Very Bad Thing +What we do now is this + f E [..hole..] + ==> let a = E + in f a [..hole..] +Now if the thing in the hole is a case expression (which is when +we'll call mkDupableCont), we'll push the function call into the +branches, which is what we want. Now RULES for f may fire, and +call-pattern specialisation. Here's an example from Trac #3116 + go (n+1) (case l of + 1 -> bs' + _ -> Chunk p fpc (o+1) (l-1) bs') +If we can push the call for 'go' inside the case, we get +call-pattern specialisation for 'go', which is *crucial* for +this program. + +Here is the (&&) example: + && E (case x of { T -> F; F -> T }) + ==> let a = E in + case x of { T -> && a F; F -> && a T } +Much better! + +Notice that + * Arguments to f *after* the strict one are handled by + the ApplyTo case of mkDupableCont. Eg + f [..hole..] E + + * We can only do the let-binding of E because the function + part of a StrictArg continuation is an explicit syntax + tree. In earlier versions we represented it as a function + (CoreExpr -> CoreEpxr) which we couldn't take apart. + +Do *not* duplicate StrictBind and StritArg continuations. We gain +nothing by propagating them into the expressions, and we do lose a +lot. + +The desire not to duplicate is the entire reason that +mkDupableCont returns a pair of continuations. + +Note [Duplicating StrictBind] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Unlike StrictArg, there doesn't seem anything to gain from +duplicating a StrictBind continuation, so we don't. + The desire not to duplicate is the entire reason that mkDupableCont returns a pair of continuations. -The original plan had: -e.g. (...strict-fn...) [...hole...] - ==> - let $j = \a -> ...strict-fn... - in $j [...hole...] Note [Single-alternative cases] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -2080,3 +2267,37 @@ Other choices: When x is inlined into its full context, we find that it was a bad idea to have pushed the outer case inside the (...) case. +Note [Single-alternative-unlifted] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Here's another single-alternative where we really want to do case-of-case: + +data Mk1 = Mk1 Int# +data Mk1 = Mk2 Int# + +M1.f = + \r [x_s74 y_s6X] + case + case y_s6X of tpl_s7m { + M1.Mk1 ipv_s70 -> ipv_s70; + M1.Mk2 ipv_s72 -> ipv_s72; + } + of + wild_s7c + { __DEFAULT -> + case + case x_s74 of tpl_s7n { + M1.Mk1 ipv_s77 -> ipv_s77; + M1.Mk2 ipv_s79 -> ipv_s79; + } + of + wild1_s7b + { __DEFAULT -> ==# [wild1_s7b wild_s7c]; + }; + }; + +So the outer case is doing *nothing at all*, other than serving as a +join-point. In this case we really want to do case-of-case and decide +whether to use a real join point or just duplicate the continuation. + +Hence: check whether the case binder's type is unlifted, because then +the outer case is *not* a seq.