X-Git-Url: http://git.megacz.com/?p=ghc-hetmet.git;a=blobdiff_plain;f=compiler%2Fspecialise%2FSpecConstr.lhs;h=621d02ed78082ab6f52c36cf391d00a881bb735d;hp=abf53604db27411b72d9f6e081cb195a9de1e2d4;hb=ad94d40948668032189ad22a0ad741ac1f645f50;hpb=7a327c1297615a9498e7117a0017b09ff2458d53 diff --git a/compiler/specialise/SpecConstr.lhs b/compiler/specialise/SpecConstr.lhs index abf5360..621d02e 100644 --- a/compiler/specialise/SpecConstr.lhs +++ b/compiler/specialise/SpecConstr.lhs @@ -4,6 +4,13 @@ \section[SpecConstr]{Specialise over constructors} \begin{code} +{-# OPTIONS -w #-} +-- The above warning supression flag is a temporary kludge. +-- While working on this module you are encouraged to remove it and fix +-- any warnings in the module. See +-- http://hackage.haskell.org/trac/ghc/wiki/CodingStyle#Warnings +-- for details + module SpecConstr( specConstrProgram ) where @@ -11,8 +18,10 @@ module SpecConstr( #include "HsVersions.h" import CoreSyn +import CoreSubst +import CoreUtils +import CoreUnfold ( couldBeSmallEnoughToInline ) import CoreLint ( showPass, endPass ) -import CoreUtils ( exprType, mkPiTypes ) import CoreFVs ( exprsFreeVars ) import CoreTidy ( tidyRules ) import PprCore ( pprRules ) @@ -20,20 +29,19 @@ import WwLib ( mkWorkerArgs ) import DataCon ( dataConRepArity, dataConUnivTyVars ) import Type ( Type, tyConAppArgs ) import Coercion ( coercionKind ) -import Rules ( matchN ) -import Id ( Id, idName, idType, isDataConWorkId_maybe, +import Id ( Id, idName, idType, isDataConWorkId_maybe, idArity, mkUserLocal, mkSysLocal, idUnfolding, isLocalId ) import Var ( Var ) import VarEnv import VarSet -import Name ( nameOccName, nameSrcLoc ) +import Name import Rules ( addIdSpecialisations, mkLocalRule, rulesOfBinds ) import OccName ( mkSpecOcc ) import ErrUtils ( dumpIfSet_dyn ) -import DynFlags ( DynFlags, DynFlag(..) ) +import DynFlags ( DynFlags(..), DynFlag(..) ) import BasicTypes ( Activation(..) ) import Maybes ( orElse, catMaybes, isJust ) -import Util ( zipWithEqual, lengthAtLeast, notNull ) +import Util import List ( nubBy, partition ) import UniqSupply import Outputable @@ -115,7 +123,7 @@ This happens if Hence the "OR" part of Note [Good arguments] below. -ALTERNATIVE: pass both boxed and unboxed versions. This no longer saves +ALTERNATIVE 2: pass both boxed and unboxed versions. This no longer saves allocation, but does perhaps save evals. In the RULE we'd have something like @@ -125,6 +133,25 @@ If at the call site the (I# x) was an unfolding, then we'd have to rely on CSE to eliminate the duplicate allocation.... This alternative doesn't look attractive enough to pursue. +ALTERNATIVE 3: ignore the reboxing problem. The trouble is that +the conservative reboxing story prevents many useful functions from being +specialised. Example: + foo :: Maybe Int -> Int -> Int + foo (Just m) 0 = 0 + foo x@(Just m) n = foo x (n-m) +Here the use of 'x' will clearly not require boxing in the specialised function. + +The strictness analyser has the same problem, in fact. Example: + f p@(a,b) = ... +If we pass just 'a' and 'b' to the worker, it might need to rebox the +pair to create (a,b). A more sophisticated analysis might figure out +precisely the cases in which this could happen, but the strictness +analyser does no such analysis; it just passes 'a' and 'b', and hopes +for the best. + +So my current choice is to make SpecConstr similarly aggressive, and +ignore the bad potential of reboxing. + Note [Good arguments] ~~~~~~~~~~~~~~~~~~~~~ @@ -406,7 +433,7 @@ specConstrProgram dflags us binds = do showPass dflags "SpecConstr" - let (binds', _) = initUs us (go emptyScEnv binds) + let (binds', _) = initUs us (go (initScEnv dflags) binds) endPass dflags "SpecConstr" Opt_D_dump_spec binds' @@ -429,24 +456,45 @@ specConstrProgram dflags us binds %************************************************************************ \begin{code} -data ScEnv = SCE { scope :: InScopeEnv, - -- Binds all non-top-level variables in scope +data ScEnv = SCE { sc_size :: Int, -- Size threshold + + sc_subst :: Subst, -- Current substitution + + sc_how_bound :: HowBoundEnv, + -- Binds interesting non-top-level variables + -- Domain is OutVars (*after* applying the substitution) - cons :: ConstrEnv + sc_vals :: ValueEnv + -- Domain is OutIds (*after* applying the substitution) + -- Used even for top-level bindings (but not imported ones) } -type InScopeEnv = VarEnv HowBound +--------------------- +-- As we go, we apply a substitution (sc_subst) to the current term +type InExpr = CoreExpr -- *Before* applying the subst + +type OutExpr = CoreExpr -- *After* applying the subst +type OutId = Id +type OutVar = Var -type ConstrEnv = IdEnv ConValue -data ConValue = CV AltCon [CoreArg] - -- Variables known to be bound to a constructor - -- in a particular case alternative +--------------------- +type HowBoundEnv = VarEnv HowBound -- Domain is OutVars +--------------------- +type ValueEnv = IdEnv Value -- Domain is OutIds +data Value = ConVal AltCon [CoreArg] -- *Saturated* constructors + | LambdaVal -- Inlinable lambdas or PAPs -instance Outputable ConValue where - ppr (CV con args) = ppr con <+> interpp'SP args +instance Outputable Value where + ppr (ConVal con args) = ppr con <+> interpp'SP args + ppr LambdaVal = ptext SLIT("") -emptyScEnv = SCE { scope = emptyVarEnv, cons = emptyVarEnv } +--------------------- +initScEnv dflags + = SCE { sc_size = specThreshold dflags, + sc_subst = emptySubst, + sc_how_bound = emptyVarEnv, + sc_vals = emptyVarEnv } data HowBound = RecFun -- These are the recursive functions for which -- we seek interesting call patterns @@ -454,72 +502,83 @@ data HowBound = RecFun -- These are the recursive functions for which | RecArg -- These are those functions' arguments, or their sub-components; -- we gather occurrence information for these - | Other -- We track all others so we know what's in scope - -- This is used in spec_one to check what needs to be - -- passed as a parameter and what is in scope at the - -- function definition site - instance Outputable HowBound where ppr RecFun = text "RecFun" ppr RecArg = text "RecArg" - ppr Other = text "Other" - -lookupScopeEnv env v = lookupVarEnv (scope env) v - -extendBndrs env bndrs = env { scope = extendVarEnvList (scope env) [(b,Other) | b <- bndrs] } -extendBndr env bndr = env { scope = extendVarEnv (scope env) bndr Other } - - -- When we encounter - -- case scrut of b - -- C x y -> ... - -- we want to bind b, and perhaps scrut too, to (C x y) -extendCaseBndrs :: ScEnv -> Id -> CoreExpr -> AltCon -> [Var] -> ScEnv -extendCaseBndrs env case_bndr scrut con alt_bndrs - = case con of - DEFAULT -> env1 - LitAlt lit -> extendCons env1 scrut case_bndr (CV con []) - DataAlt dc -> extend_data_con dc + +lookupHowBound :: ScEnv -> Id -> Maybe HowBound +lookupHowBound env id = lookupVarEnv (sc_how_bound env) id + +scSubstId :: ScEnv -> Id -> CoreExpr +scSubstId env v = lookupIdSubst (sc_subst env) v + +scSubstTy :: ScEnv -> Type -> Type +scSubstTy env ty = substTy (sc_subst env) ty + +zapScSubst :: ScEnv -> ScEnv +zapScSubst env = env { sc_subst = zapSubstEnv (sc_subst env) } + +extendScInScope :: ScEnv -> [Var] -> ScEnv + -- Bring the quantified variables into scope +extendScInScope env qvars = env { sc_subst = extendInScopeList (sc_subst env) qvars } + +extendScSubst :: ScEnv -> [(Var,CoreArg)] -> ScEnv + -- Extend the substitution +extendScSubst env prs = env { sc_subst = extendSubstList (sc_subst env) prs } + +extendHowBound :: ScEnv -> [Var] -> HowBound -> ScEnv +extendHowBound env bndrs how_bound + = env { sc_how_bound = extendVarEnvList (sc_how_bound env) + [(bndr,how_bound) | bndr <- bndrs] } + +extendBndrsWith :: HowBound -> ScEnv -> [Var] -> (ScEnv, [Var]) +extendBndrsWith how_bound env bndrs + = (env { sc_subst = subst', sc_how_bound = hb_env' }, bndrs') where - cur_scope = scope env - env1 = env { scope = extendVarEnvList cur_scope - [(b,how_bound) | b <- case_bndr:alt_bndrs] } - - -- Record RecArg for the components iff the scrutinee is RecArg - -- I think the only reason for this is to keep the usage envt small - -- so is it worth it at all? - -- [This comment looks plain wrong to me, so I'm ignoring it - -- "Also forget if the scrutinee is a RecArg, because we're - -- now in the branch of a case, and we don't want to - -- record a non-scrutinee use of v if we have - -- case v of { (a,b) -> ...(f v)... }" ] - how_bound = get_how scrut - where - get_how (Var v) = lookupVarEnv cur_scope v `orElse` Other - get_how (Cast e _) = get_how e - get_how (Note _ e) = get_how e - get_how other = Other - - extend_data_con data_con = - extendCons env1 scrut case_bndr (CV con vanilla_args) - where - vanilla_args = map Type (tyConAppArgs (idType case_bndr)) ++ - varsToCoreExprs alt_bndrs - -extendCons :: ScEnv -> CoreExpr -> Id -> ConValue -> ScEnv -extendCons env scrut case_bndr val - = case scrut of - Var v -> env { cons = extendVarEnv cons1 v val } - other -> env { cons = cons1 } + (subst', bndrs') = substBndrs (sc_subst env) bndrs + hb_env' = sc_how_bound env `extendVarEnvList` + [(bndr,how_bound) | bndr <- bndrs'] + +extendBndrWith :: HowBound -> ScEnv -> Var -> (ScEnv, Var) +extendBndrWith how_bound env bndr + = (env { sc_subst = subst', sc_how_bound = hb_env' }, bndr') where - cons1 = extendVarEnv (cons env) case_bndr val - - -- When we encounter a recursive function binding - -- f = \x y -> ... - -- we want to extend the scope env with bindings - -- that record that f is a RecFn and x,y are RecArgs -extendRecBndr env fn bndrs - = env { scope = scope env `extendVarEnvList` - ((fn,RecFun): [(bndr,RecArg) | bndr <- bndrs]) } + (subst', bndr') = substBndr (sc_subst env) bndr + hb_env' = extendVarEnv (sc_how_bound env) bndr' how_bound + +extendRecBndrs :: ScEnv -> [Var] -> (ScEnv, [Var]) +extendRecBndrs env bndrs = (env { sc_subst = subst' }, bndrs') + where + (subst', bndrs') = substRecBndrs (sc_subst env) bndrs + +extendBndr :: ScEnv -> Var -> (ScEnv, Var) +extendBndr env bndr = (env { sc_subst = subst' }, bndr') + where + (subst', bndr') = substBndr (sc_subst env) bndr + +extendValEnv :: ScEnv -> Id -> Maybe Value -> ScEnv +extendValEnv env id Nothing = env +extendValEnv env id (Just cv) = env { sc_vals = extendVarEnv (sc_vals env) id cv } + +extendCaseBndrs :: ScEnv -> CoreExpr -> Id -> AltCon -> [Var] -> ScEnv +-- When we encounter +-- case scrut of b +-- C x y -> ... +-- we want to bind b, and perhaps scrut too, to (C x y) +-- NB: Extends only the sc_vals part of the envt +extendCaseBndrs env scrut case_bndr con alt_bndrs + = case scrut of + Var v -> extendValEnv env1 v cval + other -> env1 + where + env1 = extendValEnv env case_bndr cval + cval = case con of + DEFAULT -> Nothing + LitAlt lit -> Just (ConVal con []) + DataAlt dc -> Just (ConVal con vanilla_args) + where + vanilla_args = map Type (tyConAppArgs (idType case_bndr)) ++ + varsToCoreExprs alt_bndrs \end{code} @@ -532,7 +591,7 @@ extendRecBndr env fn bndrs \begin{code} data ScUsage = SCU { - calls :: !(IdEnv ([Call])), -- Calls + calls :: CallEnv, -- Calls -- The functions are a subset of the -- RecFuns in the ScEnv @@ -540,13 +599,17 @@ data ScUsage } -- The variables are a subset of the -- RecArg in the ScEnv -type Call = (ConstrEnv, [CoreArg]) +type CallEnv = IdEnv [Call] +type Call = (ValueEnv, [CoreArg]) -- The arguments of the call, together with the -- env giving the constructor bindings at the call site nullUsage = SCU { calls = emptyVarEnv, occs = emptyVarEnv } -combineUsage u1 u2 = SCU { calls = plusVarEnv_C (++) (calls u1) (calls u2), +combineCalls :: CallEnv -> CallEnv -> CallEnv +combineCalls = plusVarEnv_C (++) + +combineUsage u1 u2 = SCU { calls = combineCalls (calls u1) (calls u2), occs = plusVarEnv_C combineOcc (occs u1) (occs u2) } combineUsages [] = nullUsage @@ -593,15 +656,32 @@ instance Outputable ArgOcc where ppr BothOcc = ptext SLIT("both-occ") ppr NoOcc = ptext SLIT("no-occ") +-- Experimentally, this vesion of combineOcc makes ScrutOcc "win", so +-- that if the thing is scrutinised anywhere then we get to see that +-- in the overall result, even if it's also used in a boxed way +-- This might be too agressive; see Note [Reboxing] Alternative 3 combineOcc NoOcc occ = occ combineOcc occ NoOcc = occ combineOcc (ScrutOcc xs) (ScrutOcc ys) = ScrutOcc (plusUFM_C combineOccs xs ys) +combineOcc occ (ScrutOcc ys) = ScrutOcc ys +combineOcc (ScrutOcc xs) occ = ScrutOcc xs combineOcc UnkOcc UnkOcc = UnkOcc combineOcc _ _ = BothOcc combineOccs :: [ArgOcc] -> [ArgOcc] -> [ArgOcc] combineOccs xs ys = zipWithEqual "combineOccs" combineOcc xs ys +setScrutOcc :: ScEnv -> ScUsage -> CoreExpr -> ArgOcc -> ScUsage +-- *Overwrite* the occurrence info for the scrutinee, if the scrutinee +-- is a variable, and an interesting variable +setScrutOcc env usg (Cast e _) occ = setScrutOcc env usg e occ +setScrutOcc env usg (Note _ e) occ = setScrutOcc env usg e occ +setScrutOcc env usg (Var v) occ + | Just RecArg <- lookupHowBound env v = usg { occs = extendVarEnv (occs usg) v occ } + | otherwise = usg +setScrutOcc env usg other occ -- Catch-all + = usg + conArgOccs :: ArgOcc -> AltCon -> [ArgOcc] -- Find usage of components of data con; returns [UnkOcc...] if unknown -- See Note [ScrutOcc] for the extra UnkOccs in the vanilla datacon case @@ -613,7 +693,6 @@ conArgOccs (ScrutOcc fm) (DataAlt dc) conArgOccs other con = repeat UnkOcc \end{code} - %************************************************************************ %* * \subsection{The main recursive function} @@ -628,110 +707,193 @@ scExpr :: ScEnv -> CoreExpr -> UniqSM (ScUsage, CoreExpr) -- The unique supply is needed when we invent -- a new name for the specialised function and its args -scExpr env e@(Type t) = returnUs (nullUsage, e) -scExpr env e@(Lit l) = returnUs (nullUsage, e) -scExpr env e@(Var v) = returnUs (varUsage env v UnkOcc, e) -scExpr env (Note n e) = scExpr env e `thenUs` \ (usg,e') -> - returnUs (usg, Note n e') -scExpr env (Cast e co)= scExpr env e `thenUs` \ (usg,e') -> - returnUs (usg, Cast e' co) -scExpr env (Lam b e) = scExpr (extendBndr env b) e `thenUs` \ (usg,e') -> - returnUs (usg, Lam b e') - -scExpr env (Case scrut b ty alts) - = do { (alt_usgs, alt_occs, alts') <- mapAndUnzip3Us sc_alt alts - ; let (alt_usg, b_occ) = lookupOcc (combineUsages alt_usgs) b - scrut_occ = foldr combineOcc b_occ alt_occs - -- The combined usage of the scrutinee is given - -- by scrut_occ, which is passed to scScrut, which - -- in turn treats a bare-variable scrutinee specially - ; (scrut_usg, scrut') <- scScrut env scrut scrut_occ - ; return (alt_usg `combineUsage` scrut_usg, - Case scrut' b ty alts') } +scExpr env e = scExpr' env e + + +scExpr' env (Var v) = case scSubstId env v of + Var v' -> returnUs (varUsage env v UnkOcc, Var v') + e' -> scExpr (zapScSubst env) e' + +scExpr' env e@(Type t) = returnUs (nullUsage, Type (scSubstTy env t)) +scExpr' env e@(Lit l) = returnUs (nullUsage, e) +scExpr' env (Note n e) = do { (usg,e') <- scExpr env e + ; return (usg, Note n e') } +scExpr' env (Cast e co) = do { (usg, e') <- scExpr env e + ; return (usg, Cast e' (scSubstTy env co)) } +scExpr' env (Lam b e) = do { let (env', b') = extendBndr env b + ; (usg, e') <- scExpr env' e + ; return (usg, Lam b' e') } + +scExpr' env (Case scrut b ty alts) + = do { (scrut_usg, scrut') <- scExpr env scrut + ; case isValue (sc_vals env) scrut' of + Just (ConVal con args) -> sc_con_app con args scrut' + other -> sc_vanilla scrut_usg scrut' + } where - sc_alt (con,bs,rhs) - = do { let env1 = extendCaseBndrs env b scrut con bs - ; (usg,rhs') <- scExpr env1 rhs + sc_con_app con args scrut' -- Known constructor; simplify + = do { let (_, bs, rhs) = findAlt con alts + alt_env' = extendScSubst env ((b,scrut') : bs `zip` trimConArgs con args) + ; scExpr alt_env' rhs } + + sc_vanilla scrut_usg scrut' -- Normal case + = do { let (alt_env,b') = extendBndrWith RecArg env b + -- Record RecArg for the components + + ; (alt_usgs, alt_occs, alts') + <- mapAndUnzip3Us (sc_alt alt_env scrut' b') alts + + ; let (alt_usg, b_occ) = lookupOcc (combineUsages alt_usgs) b + scrut_occ = foldr combineOcc b_occ alt_occs + scrut_usg' = setScrutOcc env scrut_usg scrut' scrut_occ + -- The combined usage of the scrutinee is given + -- by scrut_occ, which is passed to scScrut, which + -- in turn treats a bare-variable scrutinee specially + + ; return (alt_usg `combineUsage` scrut_usg', + Case scrut' b' (scSubstTy env ty) alts') } + + sc_alt env scrut' b' (con,bs,rhs) + = do { let (env1, bs') = extendBndrsWith RecArg env bs + env2 = extendCaseBndrs env1 scrut' b' con bs' + ; (usg,rhs') <- scExpr env2 rhs ; let (usg', arg_occs) = lookupOccs usg bs scrut_occ = case con of DataAlt dc -> ScrutOcc (unitUFM dc arg_occs) other -> ScrutOcc emptyUFM - ; return (usg', scrut_occ, (con,bs,rhs')) } - -scExpr env (Let bind body) - = scBind env bind `thenUs` \ (env', bind_usg, bind') -> - scExpr env' body `thenUs` \ (body_usg, body') -> - returnUs (bind_usg `combineUsage` body_usg, Let bind' body') - -scExpr env e@(App _ _) + ; return (usg', scrut_occ, (con,bs',rhs')) } + +scExpr' env (Let (NonRec bndr rhs) body) + = do { let (body_env, bndr') = extendBndr env bndr + ; (rhs_usg, rhs_info@(_, args', rhs_body', _)) <- scRecRhs env (bndr',rhs) + + ; if null args' || isEmptyVarEnv (calls rhs_usg) then do + do { -- Vanilla case + let rhs' = mkLams args' rhs_body' + body_env2 = extendValEnv body_env bndr' (isValue (sc_vals env) rhs') + -- Record if the RHS is a value + ; (body_usg, body') <- scExpr body_env2 body + ; return (body_usg `combineUsage` rhs_usg, Let (NonRec bndr' rhs') body') } + else + do { -- Join-point case + let body_env2 = extendHowBound body_env [bndr'] RecFun + -- If the RHS of this 'let' contains calls + -- to recursive functions that we're trying + -- to specialise, then treat this let too + -- as one to specialise + ; (body_usg, body') <- scExpr body_env2 body + + ; (spec_usg, _, specs) <- specialise env (calls body_usg) ([], rhs_info) + + ; return (body_usg { calls = calls body_usg `delVarEnv` bndr' } + `combineUsage` rhs_usg `combineUsage` spec_usg, + mkLets [NonRec b r | (b,r) <- addRules rhs_info specs] body') + } } + +scExpr' env (Let (Rec prs) body) + = do { (env', bind_usg, bind') <- scBind env (Rec prs) + ; (body_usg, body') <- scExpr env' body + ; return (bind_usg `combineUsage` body_usg, Let bind' body') } + +scExpr' env e@(App _ _) = do { let (fn, args) = collectArgs e - ; (fn_usg, fn') <- scScrut env fn (ScrutOcc emptyUFM) + ; (fn_usg, fn') <- scExpr env fn -- Process the function too. It's almost always a variable, -- but not always. In particular, if this pass follows float-in, -- which it may, we can get -- (let f = ...f... in f) arg1 arg2 - -- We use scScrut to record the fact that the function is called - -- Perhpas we should check that it has at least one value arg, + -- Also the substitution may replace a variable by a non-variable + + ; let fn_usg' = setScrutOcc env fn_usg fn' (ScrutOcc emptyUFM) + -- We use setScrutOcc to record the fact that the function is called + -- Perhaps we should check that it has at least one value arg, -- but currently we don't bother ; (arg_usgs, args') <- mapAndUnzipUs (scExpr env) args - ; let call_usg = case fn of - Var f | Just RecFun <- lookupScopeEnv env f - -> SCU { calls = unitVarEnv f [(cons env, args)], + ; let call_usg = case fn' of + Var f | Just RecFun <- lookupHowBound env f + , not (null args) -- Not a proper call! + -> SCU { calls = unitVarEnv f [(sc_vals env, args')], occs = emptyVarEnv } other -> nullUsage - ; return (combineUsages arg_usgs `combineUsage` fn_usg + ; return (combineUsages arg_usgs `combineUsage` fn_usg' `combineUsage` call_usg, mkApps fn' args') } ---------------------- -scScrut :: ScEnv -> CoreExpr -> ArgOcc -> UniqSM (ScUsage, CoreExpr) --- Used for the scrutinee of a case, --- or the function of an application. --- Remember to look through casts -scScrut env e@(Var v) occ = returnUs (varUsage env v occ, e) -scScrut env (Cast e co) occ = do { (usg, e') <- scScrut env e occ - ; returnUs (usg, Cast e' co) } -scScrut env e occ = scExpr env e - - ----------------------- scBind :: ScEnv -> CoreBind -> UniqSM (ScEnv, ScUsage, CoreBind) -scBind env (Rec [(fn,rhs)]) - | notNull val_bndrs - = scExpr env_fn_body body `thenUs` \ (usg, body') -> - specialise env fn bndrs body' usg `thenUs` \ (rules, spec_prs) -> - -- Note body': the specialised copies should be based on the - -- optimised version of the body, in case there were - -- nested functions inside. - let - SCU { calls = calls, occs = occs } = usg - in - returnUs (extendBndr env fn, -- For the body of the letrec, just - -- extend the env with Other to record - -- that it's in scope; no funny RecFun business - SCU { calls = calls `delVarEnv` fn, occs = occs `delVarEnvList` val_bndrs}, - Rec ((fn `addIdSpecialisations` rules, mkLams bndrs body') : spec_prs)) - where - (bndrs,body) = collectBinders rhs - val_bndrs = filter isId bndrs - env_fn_body = extendRecBndr env fn bndrs - scBind env (Rec prs) - = mapAndUnzipUs do_one prs `thenUs` \ (usgs, prs') -> - returnUs (extendBndrs env (map fst prs), combineUsages usgs, Rec prs') + | not (all (couldBeSmallEnoughToInline (sc_size env)) rhss) + -- No specialisation + = do { let (rhs_env,bndrs') = extendRecBndrs env bndrs + ; (rhs_usgs, rhss') <- mapAndUnzipUs (scExpr rhs_env) rhss + ; return (rhs_env, combineUsages rhs_usgs, Rec (bndrs' `zip` rhss')) } + | otherwise -- Do specialisation + = do { let (rhs_env1,bndrs') = extendRecBndrs env bndrs + rhs_env2 = extendHowBound rhs_env1 bndrs' RecFun + + ; (rhs_usgs, rhs_infos) <- mapAndUnzipUs (scRecRhs rhs_env2) (bndrs' `zip` rhss) + ; let rhs_usg = combineUsages rhs_usgs + + ; (spec_usg, specs) <- spec_loop rhs_env2 (calls rhs_usg) + (repeat [] `zip` rhs_infos) + + ; let all_usg = rhs_usg `combineUsage` spec_usg + + ; return (rhs_env1, -- For the body of the letrec, delete the RecFun business + all_usg { calls = calls rhs_usg `delVarEnvList` bndrs' }, + Rec (concat (zipWith addRules rhs_infos specs))) } where - do_one (bndr,rhs) = scExpr env rhs `thenUs` \ (usg, rhs') -> - returnUs (usg, (bndr,rhs')) + (bndrs,rhss) = unzip prs + + spec_loop :: ScEnv + -> CallEnv + -> [([CallPat], RhsInfo)] -- One per binder + -> UniqSM (ScUsage, [[SpecInfo]]) -- One list per binder + spec_loop env all_calls rhs_stuff + = do { (spec_usg_s, new_pats_s, specs) <- mapAndUnzip3Us (specialise env all_calls) rhs_stuff + ; let spec_usg = combineUsages spec_usg_s + ; if all null new_pats_s then + return (spec_usg, specs) else do + { (spec_usg1, specs1) <- spec_loop env (calls spec_usg) + (zipWith add_pats new_pats_s rhs_stuff) + ; return (spec_usg `combineUsage` spec_usg1, zipWith (++) specs specs1) } } + + add_pats :: [CallPat] -> ([CallPat], RhsInfo) -> ([CallPat], RhsInfo) + add_pats new_pats (done_pats, rhs_info) = (done_pats ++ new_pats, rhs_info) scBind env (NonRec bndr rhs) - = scExpr env rhs `thenUs` \ (usg, rhs') -> - returnUs (extendBndr env bndr, usg, NonRec bndr rhs') + = do { (usg, rhs') <- scExpr env rhs + ; let (env1, bndr') = extendBndr env bndr + env2 = extendValEnv env1 bndr' (isValue (sc_vals env) rhs') + ; return (env2, usg, NonRec bndr' rhs') } + +---------------------- +scRecRhs :: ScEnv -> (OutId, InExpr) -> UniqSM (ScUsage, RhsInfo) +scRecRhs env (bndr,rhs) + = do { let (arg_bndrs,body) = collectBinders rhs + (body_env, arg_bndrs') = extendBndrsWith RecArg env arg_bndrs + ; (body_usg, body') <- scExpr body_env body + ; let (rhs_usg, arg_occs) = lookupOccs body_usg arg_bndrs' + ; return (rhs_usg, (bndr, arg_bndrs', body', arg_occs)) } + + -- The arg_occs says how the visible, + -- lambda-bound binders of the RHS are used + -- (including the TyVar binders) + -- Two pats are the same if they match both ways + +---------------------- +addRules :: RhsInfo -> [SpecInfo] -> [(Id,CoreExpr)] +addRules (fn, args, body, _) specs + = [(id,rhs) | (_,id,rhs) <- specs] ++ + [(fn `addIdSpecialisations` rules, mkLams args body)] + where + rules = [r | (r,_,_) <- specs] ---------------------- varUsage env v use - | Just RecArg <- lookupScopeEnv env v = SCU { calls = emptyVarEnv, + | Just RecArg <- lookupHowBound env v = SCU { calls = emptyVarEnv, occs = unitVarEnv v use } | otherwise = nullUsage \end{code} @@ -739,65 +901,54 @@ varUsage env v use %************************************************************************ %* * -\subsection{The specialiser} + The specialiser itself %* * %************************************************************************ \begin{code} -specialise :: ScEnv - -> Id -- Functionn - -> [CoreBndr] -> CoreExpr -- Its RHS - -> ScUsage -- Info on usage - -> UniqSM ([CoreRule], -- Rules - [(Id,CoreExpr)]) -- Bindings - -specialise env fn bndrs body body_usg - = do { let (_, bndr_occs) = lookupOccs body_usg bndrs - - ; mb_calls <- -- pprTrace "specialise" (ppr fn <+> ppr bndrs <+> ppr bndr_occs) $ - mapM (callToPats (scope env) bndr_occs) - (lookupVarEnv (calls body_usg) fn `orElse` []) - - ; let good_calls :: [([Var], [CoreArg])] - good_calls = catMaybes mb_calls - in_scope = mkInScopeSet $ unionVarSets $ - [ exprsFreeVars pats `delVarSetList` vs - | (vs,pats) <- good_calls ] - uniq_calls = nubBy (same_call in_scope) good_calls - ; mapAndUnzipUs (spec_one env fn (mkLams bndrs body)) - (uniq_calls `zip` [1..]) } - where - -- Two calls are the same if they match both ways - same_call in_scope (vs1,as1)(vs2,as2) - = isJust (matchN in_scope vs1 as1 as2) - && isJust (matchN in_scope vs2 as2 as1) - -callToPats :: InScopeEnv -> [ArgOcc] -> Call - -> UniqSM (Maybe ([Var], [CoreExpr])) - -- The VarSet is the variables to quantify over in the rule - -- The [CoreExpr] are the argument patterns for the rule -callToPats in_scope bndr_occs (con_env, args) - | length args < length bndr_occs -- Check saturated - = return Nothing +type RhsInfo = (OutId, [OutVar], OutExpr, [ArgOcc]) + -- Info about the *original* RHS of a binding we are specialising + -- Original binding f = \xs.body + -- Plus info about usage of arguments + +type SpecInfo = (CoreRule, OutId, OutExpr) + -- One specialisation: Rule plus definition + + +specialise + :: ScEnv + -> CallEnv -- Info on calls + -> ([CallPat], RhsInfo) -- Original RHS plus patterns dealt with + -> UniqSM (ScUsage, [CallPat], [SpecInfo]) -- Specialised calls + +-- Note: the rhs here is the optimised version of the original rhs +-- So when we make a specialised copy of the RHS, we're starting +-- from an RHS whose nested functions have been optimised already. + +specialise env bind_calls (done_pats, (fn, arg_bndrs, body, arg_occs)) + | notNull arg_bndrs, -- Only specialise functions + Just all_calls <- lookupVarEnv bind_calls fn + = do { pats <- callsToPats env done_pats arg_occs all_calls +-- ; pprTrace "specialise" (vcat [ppr fn <+> ppr arg_occs, +-- text "calls" <+> ppr all_calls, +-- text "good pats" <+> ppr pats]) $ +-- return () + + ; (spec_usgs, specs) <- mapAndUnzipUs (spec_one env fn arg_bndrs body) + (pats `zip` [length done_pats..]) + + ; return (combineUsages spec_usgs, pats, specs) } | otherwise - = do { prs <- argsToPats in_scope con_env (args `zip` bndr_occs) - ; let (good_pats, pats) = unzip prs - pat_fvs = varSetElems (exprsFreeVars pats) - qvars = filter (not . (`elemVarEnv` in_scope)) pat_fvs - -- Quantify over variables that are not in sccpe - -- See Note [Shadowing] at the top - - ; -- pprTrace "callToPats" (ppr args $$ ppr prs $$ ppr bndr_occs) $ - if or good_pats - then return (Just (qvars, pats)) - else return Nothing } + = return (nullUsage, [], []) -- The boring case + --------------------- spec_one :: ScEnv - -> Id -- Function - -> CoreExpr -- Rhs of the original function + -> OutId -- Function + -> [Var] -- Lambda-binders of RHS; should match patterns + -> CoreExpr -- Body of the original function -> (([Var], [CoreArg]), Int) - -> UniqSM (CoreRule, (Id,CoreExpr)) -- Rule and binding + -> UniqSM (ScUsage, SpecInfo) -- Rule and binding -- spec_one creates a specialised copy of the function, together -- with a rule for using it. I'm very proud of how short this @@ -811,7 +962,8 @@ spec_one :: ScEnv [c::*, v::(b,c) are presumably bound by the (...) part] ==> f_spec = /\ b c \ v::(b,c) hw::[(a,(b,c))] -> - (...entire RHS of f...) (b,c) ((:) (a,(b,c)) (x,v) hw) + (...entire body of f...) [b -> (b,c), + y -> ((:) (a,(b,c)) (x,v) hw)] RULE: forall b::* c::*, -- Note, *not* forall a, x v::(b,c), @@ -820,31 +972,32 @@ spec_one :: ScEnv f (b,c) ((:) (a,(b,c)) (x,v) hw) = f_spec b c v hw -} -spec_one env fn rhs ((vars_to_bind, pats), rule_number) - = getUniqueUs `thenUs` \ spec_uniq -> - let - fn_name = idName fn - fn_loc = nameSrcLoc fn_name - spec_occ = mkSpecOcc (nameOccName fn_name) - - -- Put the type variables first; the type of a term - -- variable may mention a type variable - (tvs, ids) = partition isTyVar vars_to_bind - bndrs = tvs ++ ids - spec_body = mkApps rhs pats - body_ty = exprType spec_body +spec_one env fn arg_bndrs body ((qvars, pats), rule_number) + = do { -- Specialise the body + let spec_env = extendScSubst (extendScInScope env qvars) + (arg_bndrs `zip` pats) + ; (spec_usg, spec_body) <- scExpr spec_env body + +-- ; pprTrace "spec_one" (ppr fn <+> vcat [text "pats" <+> ppr pats, +-- text "calls" <+> (ppr (calls spec_usg))]) +-- (return ()) + + -- And build the results + ; spec_uniq <- getUniqueUs + ; let (spec_lam_args, spec_call_args) = mkWorkerArgs qvars body_ty + -- Usual w/w hack to avoid generating + -- a spec_rhs of unlifted type and no args - (spec_lam_args, spec_call_args) = mkWorkerArgs bndrs body_ty - -- Usual w/w hack to avoid generating - -- a spec_rhs of unlifted type and no args - - rule_name = mkFastString ("SC:" ++ showSDoc (ppr fn <> int rule_number)) - spec_rhs = mkLams spec_lam_args spec_body - spec_id = mkUserLocal spec_occ spec_uniq (mkPiTypes spec_lam_args body_ty) fn_loc - rule_rhs = mkVarApps (Var spec_id) spec_call_args - rule = mkLocalRule rule_name specConstrActivation fn_name bndrs pats rule_rhs - in - returnUs (rule, (spec_id, spec_rhs)) + fn_name = idName fn + fn_loc = nameSrcSpan fn_name + spec_occ = mkSpecOcc (nameOccName fn_name) + rule_name = mkFastString ("SC:" ++ showSDoc (ppr fn <> int rule_number)) + spec_rhs = mkLams spec_lam_args spec_body + spec_id = mkUserLocal spec_occ spec_uniq (mkPiTypes spec_lam_args body_ty) fn_loc + body_ty = exprType spec_body + rule_rhs = mkVarApps (Var spec_id) spec_call_args + rule = mkLocalRule rule_name specConstrActivation fn_name qvars pats rule_rhs + ; return (spec_usg, (rule, spec_id, spec_rhs)) } -- In which phase should the specialise-constructor rules be active? -- Originally I made them always-active, but Manuel found that @@ -869,14 +1022,57 @@ they are constructor applications. \begin{code} +type CallPat = ([Var], [CoreExpr]) -- Quantified variables and arguments + + +callsToPats :: ScEnv -> [CallPat] -> [ArgOcc] -> [Call] -> UniqSM [CallPat] + -- Result has no duplicate patterns, + -- nor ones mentioned in done_pats +callsToPats env done_pats bndr_occs calls + = do { mb_pats <- mapM (callToPats env bndr_occs) calls + + ; let good_pats :: [([Var], [CoreArg])] + good_pats = catMaybes mb_pats + is_done p = any (samePat p) done_pats + + ; return (filterOut is_done (nubBy samePat good_pats)) } + +callToPats :: ScEnv -> [ArgOcc] -> Call -> UniqSM (Maybe CallPat) + -- The [Var] is the variables to quantify over in the rule + -- Type variables come first, since they may scope + -- over the following term variables + -- The [CoreExpr] are the argument patterns for the rule +callToPats env bndr_occs (con_env, args) + | length args < length bndr_occs -- Check saturated + = return Nothing + | otherwise + = do { let in_scope = substInScope (sc_subst env) + ; prs <- argsToPats in_scope con_env (args `zip` bndr_occs) + ; let (good_pats, pats) = unzip prs + pat_fvs = varSetElems (exprsFreeVars pats) + qvars = filterOut (`elemInScopeSet` in_scope) pat_fvs + -- Quantify over variables that are not in sccpe + -- at the call site + -- See Note [Shadowing] at the top + + (tvs, ids) = partition isTyVar qvars + qvars' = tvs ++ ids + -- Put the type variables first; the type of a term + -- variable may mention a type variable + + ; -- pprTrace "callToPats" (ppr args $$ ppr prs $$ ppr bndr_occs) $ + if or good_pats + then return (Just (qvars', pats)) + else return Nothing } + -- argToPat takes an actual argument, and returns an abstracted -- version, consisting of just the "constructor skeleton" of the -- argument, with non-constructor sub-expression replaced by new -- placeholder variables. For example: -- C a (D (f x) (g y)) ==> C p1 (D p2 p3) -argToPat :: InScopeEnv -- What's in scope at the fn defn site - -> ConstrEnv -- ConstrEnv at the call site +argToPat :: InScopeSet -- What's in scope at the fn defn site + -> ValueEnv -- ValueEnv at the call site -> CoreArg -- A call arg (or component thereof) -> ArgOcc -> UniqSM (Bool, CoreArg) @@ -890,36 +1086,35 @@ argToPat :: InScopeEnv -- What's in scope at the fn defn site -- lvl7 --> (True, lvl7) if lvl7 is bound -- somewhere further out -argToPat in_scope con_env arg@(Type ty) arg_occ +argToPat in_scope val_env arg@(Type ty) arg_occ = return (False, arg) -argToPat in_scope con_env (Var v) arg_occ - | not (isLocalId v) || v `elemVarEnv` in_scope - = -- The recursive call passes a variable that - -- is in scope at the function definition site - -- It's worth specialising on this if - -- (a) it's used in an interesting way in the body - -- (b) we know what its value is - if (case arg_occ of { UnkOcc -> False; other -> True }) -- (a) - && isValueUnfolding (idUnfolding v) -- (b) - then return (True, Var v) - else wildCardPat (idType v) - -argToPat in_scope con_env (Let _ arg) arg_occ - = argToPat in_scope con_env arg arg_occ +argToPat in_scope val_env (Note n arg) arg_occ + = argToPat in_scope val_env arg arg_occ + -- Note [Notes in call patterns] + -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + -- Ignore Notes. In particular, we want to ignore any InlineMe notes + -- Perhaps we should not ignore profiling notes, but I'm going to + -- ride roughshod over them all for now. + --- See Note [Notes in RULE matching] in Rules + +argToPat in_scope val_env (Let _ arg) arg_occ + = argToPat in_scope val_env arg arg_occ -- Look through let expressions -- e.g. f (let v = rhs in \y -> ...v...) -- Here we can specialise for f (\y -> ...) -- because the rule-matcher will look through the let. -argToPat in_scope con_env (Cast arg co) arg_occ - = do { (interesting, arg') <- argToPat in_scope con_env arg arg_occ +argToPat in_scope val_env (Cast arg co) arg_occ + = do { (interesting, arg') <- argToPat in_scope val_env arg arg_occ ; if interesting then return (interesting, Cast arg' co) else wildCardPat (snd (coercionKind co)) } -argToPat in_scope con_env arg arg_occ +{- Disabling lambda specialisation for now + It's fragile, and the spec_loop can be infinite +argToPat in_scope val_env arg arg_occ | is_value_lam arg = return (True, arg) where @@ -927,75 +1122,146 @@ argToPat in_scope con_env arg arg_occ | isId v = True -- it is inside a type lambda | otherwise = is_value_lam e is_value_lam other = False +-} -argToPat in_scope con_env arg arg_occ - | Just (CV dc args) <- is_con_app_maybe con_env arg + -- Check for a constructor application + -- NB: this *precedes* the Var case, so that we catch nullary constrs +argToPat in_scope val_env arg arg_occ + | Just (ConVal dc args) <- isValue val_env arg , case arg_occ of ScrutOcc _ -> True -- Used only by case scrutinee - BothOcc -> case arg of -- Used by case scrut - App {} -> True -- ...and elsewhere... + BothOcc -> case arg of -- Used elsewhere + App {} -> True -- see Note [Reboxing] other -> False other -> False -- No point; the arg is not decomposed - = do { args' <- argsToPats in_scope con_env (args `zip` conArgOccs arg_occ dc) + = do { args' <- argsToPats in_scope val_env (args `zip` conArgOccs arg_occ dc) ; return (True, mk_con_app dc (map snd args')) } -argToPat in_scope con_env (Var v) arg_occ - = -- A variable bound inside the function. - -- Don't make a wild-card, because we may usefully share - -- e.g. f a = let x = ... in f (x,x) - -- NB: this case follows the lambda and con-app cases!! - return (False, Var v) - --- The default case: make a wild-card -argToPat in_scope con_env arg arg_occ = wildCardPat (exprType arg) + -- Check if the argument is a variable that + -- is in scope at the function definition site + -- It's worth specialising on this if + -- (a) it's used in an interesting way in the body + -- (b) we know what its value is +argToPat in_scope val_env (Var v) arg_occ + | case arg_occ of { UnkOcc -> False; other -> True }, -- (a) + is_value -- (b) + = return (True, Var v) + where + is_value + | isLocalId v = v `elemInScopeSet` in_scope + && isJust (lookupVarEnv val_env v) + -- Local variables have values in val_env + | otherwise = isValueUnfolding (idUnfolding v) + -- Imports have unfoldings + +-- I'm really not sure what this comment means +-- And by not wild-carding we tend to get forall'd +-- variables that are in soope, which in turn can +-- expose the weakness in let-matching +-- See Note [Matching lets] in Rules + -- Check for a variable bound inside the function. + -- Don't make a wild-card, because we may usefully share + -- e.g. f a = let x = ... in f (x,x) + -- NB: this case follows the lambda and con-app cases!! +argToPat in_scope val_env (Var v) arg_occ + = return (False, Var v) + + -- The default case: make a wild-card +argToPat in_scope val_env arg arg_occ + = wildCardPat (exprType arg) wildCardPat :: Type -> UniqSM (Bool, CoreArg) wildCardPat ty = do { uniq <- getUniqueUs ; let id = mkSysLocal FSLIT("sc") uniq ty ; return (False, Var id) } -argsToPats :: InScopeEnv -> ConstrEnv +argsToPats :: InScopeSet -> ValueEnv -> [(CoreArg, ArgOcc)] -> UniqSM [(Bool, CoreArg)] -argsToPats in_scope con_env args +argsToPats in_scope val_env args = mapUs do_one args where - do_one (arg,occ) = argToPat in_scope con_env arg occ + do_one (arg,occ) = argToPat in_scope val_env arg occ \end{code} \begin{code} -is_con_app_maybe :: ConstrEnv -> CoreExpr -> Maybe ConValue -is_con_app_maybe env (Var v) - = case lookupVarEnv env v of - Just stuff -> Just stuff - -- You might think we could look in the idUnfolding here +isValue :: ValueEnv -> CoreExpr -> Maybe Value +isValue env (Lit lit) + = Just (ConVal (LitAlt lit) []) + +isValue env (Var v) + | Just stuff <- lookupVarEnv env v + = Just stuff -- You might think we could look in the idUnfolding here -- but that doesn't take account of which branch of a -- case we are in, which is the whole point - Nothing | isCheapUnfolding unf - -> is_con_app_maybe env (unfoldingTemplate unf) - where - unf = idUnfolding v - -- However we do want to consult the unfolding - -- as well, for let-bound constructors! + | not (isLocalId v) && isCheapUnfolding unf + = isValue env (unfoldingTemplate unf) + where + unf = idUnfolding v + -- However we do want to consult the unfolding + -- as well, for let-bound constructors! + +isValue env (Lam b e) + | isTyVar b = isValue env e + | otherwise = Just LambdaVal - other -> Nothing +isValue env expr -- Maybe it's a constructor application + | (Var fun, args) <- collectArgs expr + = case isDataConWorkId_maybe fun of -is_con_app_maybe env (Lit lit) - = Just (CV (LitAlt lit) []) + Just con | args `lengthAtLeast` dataConRepArity con + -- Check saturated; might be > because the + -- arity excludes type args + -> Just (ConVal (DataAlt con) args) -is_con_app_maybe env expr - = case collectArgs expr of - (Var fun, args) | Just con <- isDataConWorkId_maybe fun, - args `lengthAtLeast` dataConRepArity con - -- Might be > because the arity excludes type args - -> Just (CV (DataAlt con) args) + other | valArgCount args < idArity fun + -- Under-applied function + -> Just LambdaVal -- Partial application other -> Nothing +isValue env expr = Nothing + mk_con_app :: AltCon -> [CoreArg] -> CoreExpr mk_con_app (LitAlt lit) [] = Lit lit mk_con_app (DataAlt con) args = mkConApp con args mk_con_app other args = panic "SpecConstr.mk_con_app" + +samePat :: CallPat -> CallPat -> Bool +samePat (vs1, as1) (vs2, as2) + = all2 same as1 as2 + where + same (Var v1) (Var v2) + | v1 `elem` vs1 = v2 `elem` vs2 + | v2 `elem` vs2 = False + | otherwise = v1 == v2 + + same (Lit l1) (Lit l2) = l1==l2 + same (App f1 a1) (App f2 a2) = same f1 f2 && same a1 a2 + + same (Type t1) (Type t2) = True -- Note [Ignore type differences] + same (Note _ e1) e2 = same e1 e2 -- Ignore casts and notes + same (Cast e1 _) e2 = same e1 e2 + same e1 (Note _ e2) = same e1 e2 + same e1 (Cast e2 _) = same e1 e2 + + same e1 e2 = WARN( bad e1 || bad e2, ppr e1 $$ ppr e2) + False -- Let, lambda, case should not occur +#ifdef DEBUG + bad (Case {}) = True + bad (Let {}) = True + bad (Lam {}) = True + bad other = False +#endif \end{code} + +Note [Ignore type differences] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +We do not want to generate specialisations where the call patterns +differ only in their type arguments! Not only is it utterly useless, +but it also means that (with polymorphic recursion) we can generate +an infinite number of specialisations. Example is Data.Sequence.adjustTree, +I think. +