X-Git-Url: http://git.megacz.com/?p=ghc-hetmet.git;a=blobdiff_plain;f=compiler%2Ftypecheck%2FTcBinds.lhs;h=b5bbeb1940e47b9cb989922a9c0c96f622df59ad;hp=b1ad0d49669e6972f64499fb20e29842e6ea409a;hb=HEAD;hpb=0edeaa123bbcbcb7c6adad79ba5e888fc4214943 diff --git a/compiler/typecheck/TcBinds.lhs b/compiler/typecheck/TcBinds.lhs index b1ad0d4..b5bbeb1 100644 --- a/compiler/typecheck/TcBinds.lhs +++ b/compiler/typecheck/TcBinds.lhs @@ -7,7 +7,7 @@ \begin{code} module TcBinds ( tcLocalBinds, tcTopBinds, tcHsBootSigs, tcPolyBinds, - PragFun, tcSpecPrags, mkPragFun, + PragFun, tcSpecPrags, tcVectDecls, mkPragFun, TcSigInfo(..), SigFun, mkSigFun, badBootDeclErr ) where @@ -25,7 +25,6 @@ import TcHsType import TcPat import TcMType import TcType -import RnBinds( misplacedSigErr ) import Coercion import TysPrim import Id @@ -33,9 +32,9 @@ import Var import Name import NameSet import NameEnv -import VarSet import SrcLoc import Bag +import ListSetOps import ErrUtils import Digraph import Maybes @@ -44,7 +43,6 @@ import BasicTypes import Outputable import FastString -import Data.List( partition ) import Control.Monad #include "HsVersions.h" @@ -130,14 +128,12 @@ tcLocalBinds (HsValBinds binds) thing_inside tcLocalBinds (HsIPBinds (IPBinds ip_binds _)) thing_inside = do { (given_ips, ip_binds') <- mapAndUnzipM (wrapLocSndM tc_ip_bind) ip_binds - ; let ip_tvs = foldr (unionVarSet . tyVarsOfType . idType) emptyVarSet given_ips -- If the binding binds ?x = E, we must now -- discharge any ?x constraints in expr_lie + -- See Note [Implicit parameter untouchables] ; (ev_binds, result) <- checkConstraints (IPSkol ips) - ip_tvs -- See Note [Implicit parameter untouchables] - [] given_ips $ - thing_inside + [] given_ips thing_inside ; return (HsIPBinds (IPBinds ip_binds' ev_binds), result) } where @@ -164,6 +160,9 @@ doesn't float that solved constraint out (it's not an unsolved wanted. Result disaster: the (Num alpha) is again solved, this time by defaulting. No no no. +However [Oct 10] this is all handled automatically by the +untouchable-range idea. + \begin{code} tcValBinds :: TopLevelFlag -> HsValBinds Name -> TcM thing @@ -324,11 +323,13 @@ tcPolyBinds :: TopLevelFlag -> SigFun -> PragFun tcPolyBinds top_lvl sig_fn prag_fn rec_group rec_tc bind_list = setSrcSpan loc $ recoverM (recoveryCode binder_names sig_fn) $ do - -- Set up main recoer; take advantage of any type sigs + -- Set up main recover; take advantage of any type sigs { traceTc "------------------------------------------------" empty ; traceTc "Bindings for" (ppr binder_names) + -- Instantiate the polytypes of any binders that have signatures + -- (as determined by sig_fn), returning a TcSigInfo for each ; tc_sig_fn <- tcInstSigs sig_fn binder_names ; dflags <- getDOpts @@ -347,9 +348,10 @@ tcPolyBinds top_lvl sig_fn prag_fn rec_group rec_tc bind_list ; return (binds, poly_ids) } where binder_names = collectHsBindListBinders bind_list - loc = getLoc (head bind_list) - -- TODO: location a bit awkward, but the mbinds have been - -- dependency analysed and may no longer be adjacent + loc = foldr1 combineSrcSpans (map getLoc bind_list) + -- The mbinds have been dependency analysed and + -- may no longer be adjacent; so find the narrowest + -- span that includes them all ------------------ tcPolyNoGen @@ -387,18 +389,18 @@ tcPolyCheck :: TcSigInfo -> PragFun -- it binds a single variable, -- it has a signature, tcPolyCheck sig@(TcSigInfo { sig_id = id, sig_tvs = tvs, sig_scoped = scoped - , sig_theta = theta, sig_loc = loc }) + , sig_theta = theta, sig_tau = tau }) prag_fn rec_tc bind_list = do { ev_vars <- newEvVars theta - - ; let skol_info = SigSkol (FunSigCtxt (idName id)) + ; let skol_info = SigSkol (FunSigCtxt (idName id)) (mkPhiTy theta tau) ; (ev_binds, (binds', [mono_info])) - <- checkConstraints skol_info emptyVarSet tvs ev_vars $ + <- checkConstraints skol_info tvs ev_vars $ tcExtendTyVarEnv2 (scoped `zip` mkTyVarTys tvs) $ tcMonoBinds (\_ -> Just sig) LetLclBndr rec_tc bind_list ; export <- mkExport prag_fn tvs theta mono_info + ; loc <- getSrcSpanM ; let (_, poly_id, _, _) = export abs_bind = L loc $ AbsBinds { abs_tvs = tvs @@ -415,19 +417,15 @@ tcPolyInfer -- dependencies based on type signatures -> [LHsBind Name] -> TcM (LHsBinds TcId, [TcId]) -tcPolyInfer top_lvl mono sig_fn prag_fn rec_tc bind_list +tcPolyInfer top_lvl mono tc_sig_fn prag_fn rec_tc bind_list = do { ((binds', mono_infos), wanted) <- captureConstraints $ - tcMonoBinds sig_fn LetLclBndr rec_tc bind_list + tcMonoBinds tc_sig_fn LetLclBndr rec_tc bind_list ; unifyCtxts [sig | (_, Just sig, _) <- mono_infos] - ; let get_tvs | isTopLevel top_lvl = tyVarsOfType - | otherwise = exactTyVarsOfType - -- See Note [Silly type synonym] in TcType - tau_tvs = foldr (unionVarSet . get_tvs . getMonoType) emptyVarSet mono_infos - - ; (qtvs, givens, ev_binds) <- simplifyInfer mono tau_tvs wanted + ; let name_taus = [(name, idType mono_id) | (name, _, mono_id) <- mono_infos] + ; (qtvs, givens, ev_binds) <- simplifyInfer top_lvl mono name_taus wanted ; exports <- mapM (mkExport prag_fn qtvs (map evVarPred givens)) mono_infos @@ -541,47 +539,124 @@ tcSpec poly_id prag@(SpecSig _ hs_ty inl) -- for the selector Id, but the poly_id is something like $cop = addErrCtxt (spec_ctxt prag) $ do { spec_ty <- tcHsSigType sig_ctxt hs_ty - ; checkTc (isOverloadedTy poly_ty) - (ptext (sLit "Discarding pragma for non-overloaded function") <+> quotes (ppr poly_id)) - ; wrap <- tcSubType origin skol_info (idType poly_id) spec_ty + ; warnIf (not (isOverloadedTy poly_ty || isInlinePragma inl)) + (ptext (sLit "SPECIALISE pragma for non-overloaded function") <+> quotes (ppr poly_id)) + -- Note [SPECIALISE pragmas] + ; wrap <- tcSubType origin sig_ctxt (idType poly_id) spec_ty ; return (SpecPrag poly_id wrap inl) } where name = idName poly_id poly_ty = idType poly_id origin = SpecPragOrigin name sig_ctxt = FunSigCtxt name - skol_info = SigSkol sig_ctxt spec_ctxt prag = hang (ptext (sLit "In the SPECIALISE pragma")) 2 (ppr prag) tcSpec _ prag = pprPanic "tcSpec" (ppr prag) -------------- tcImpPrags :: [LSig Name] -> TcM [LTcSpecPrag] +-- SPECIALISE pragamas for imported things tcImpPrags prags = do { this_mod <- getModule - ; let is_imp prag - = case sigName prag of - Nothing -> False - Just name -> not (nameIsLocalOrFrom this_mod name) - (spec_prags, others) = partition isSpecLSig $ - filter is_imp prags - ; mapM_ misplacedSigErr others - -- Messy that this misplaced-sig error comes here - -- but the others come from the renamer - ; mapAndRecoverM (wrapLocM tcImpSpec) spec_prags } - -tcImpSpec :: Sig Name -> TcM TcSpecPrag -tcImpSpec prag@(SpecSig (L _ name) _ _) + ; dflags <- getDOpts + ; if (not_specialising dflags) then + return [] + else + mapAndRecoverM (wrapLocM tcImpSpec) + [L loc (name,prag) | (L loc prag@(SpecSig (L _ name) _ _)) <- prags + , not (nameIsLocalOrFrom this_mod name) ] } + where + -- Ignore SPECIALISE pragmas for imported things + -- when we aren't specialising, or when we aren't generating + -- code. The latter happens when Haddocking the base library; + -- we don't wnat complaints about lack of INLINABLE pragmas + not_specialising dflags + | not (dopt Opt_Specialise dflags) = True + | otherwise = case hscTarget dflags of + HscNothing -> True + HscInterpreted -> True + _other -> False + +tcImpSpec :: (Name, Sig Name) -> TcM TcSpecPrag +tcImpSpec (name, prag) = do { id <- tcLookupId name - ; checkTc (isInlinePragma (idInlinePragma id)) - (impSpecErr name) + ; unless (isAnyInlinePragma (idInlinePragma id)) + (addWarnTc (impSpecErr name)) ; tcSpec id prag } -tcImpSpec p = pprPanic "tcImpSpec" (ppr p) impSpecErr :: Name -> SDoc impSpecErr name = hang (ptext (sLit "You cannot SPECIALISE") <+> quotes (ppr name)) - 2 (ptext (sLit "because its definition has no INLINE/INLINABLE pragma")) + 2 (vcat [ ptext (sLit "because its definition has no INLINE/INLINABLE pragma") + , parens $ sep + [ ptext (sLit "or its defining module") <+> quotes (ppr mod) + , ptext (sLit "was compiled without -O")]]) + where + mod = nameModule name + +-------------- +tcVectDecls :: [LVectDecl Name] -> TcM ([LVectDecl TcId]) +tcVectDecls decls + = do { decls' <- mapM (wrapLocM tcVect) decls + ; let ids = map lvectDeclName decls' + dups = findDupsEq (==) ids + ; mapM_ reportVectDups dups + ; traceTcConstraints "End of tcVectDecls" + ; return decls' + } + where + reportVectDups (first:_second:_more) + = addErrAt (getSrcSpan first) $ + ptext (sLit "Duplicate vectorisation declarations for") <+> ppr first + reportVectDups _ = return () + +-------------- +tcVect :: VectDecl Name -> TcM (VectDecl TcId) +-- We can't typecheck the expression of a vectorisation declaration against the vectorised type +-- of the original definition as this requires internals of the vectoriser not available during +-- type checking. Instead, we infer the type of the expression and leave it to the vectoriser +-- to check the compatibility of the Core types. +tcVect (HsVect name Nothing) + = addErrCtxt (vectCtxt name) $ + do { id <- wrapLocM tcLookupId name + ; return $ HsVect id Nothing + } +tcVect (HsVect name@(L loc _) (Just rhs)) + = addErrCtxt (vectCtxt name) $ + do { _id <- wrapLocM tcLookupId name -- need to ensure that the name is already defined + + -- turn the vectorisation declaration into a single non-recursive binding + ; let bind = L loc $ mkFunBind name [mkSimpleMatch [] rhs] + sigFun = const Nothing + pragFun = mkPragFun [] (unitBag bind) + + -- perform type inference (including generalisation) + ; (binds, [id']) <- tcPolyInfer TopLevel False sigFun pragFun NonRecursive [bind] + + ; traceTc "tcVect inferred type" $ ppr (varType id') + ; traceTc "tcVect bindings" $ ppr binds + + -- add all bindings, including the type variable and dictionary bindings produced by type + -- generalisation to the right-hand side of the vectorisation declaration + ; let [AbsBinds tvs evs _ evBinds actualBinds] = (map unLoc . bagToList) binds + ; let [bind'] = bagToList actualBinds + MatchGroup + [L _ (Match _ _ (GRHSs [L _ (GRHS _ rhs')] _))] + _ = (fun_matches . unLoc) bind' + rhsWrapped = mkHsLams tvs evs (mkHsDictLet evBinds rhs') + + -- We return the type-checked 'Id', to propagate the inferred signature + -- to the vectoriser - see "Note [Typechecked vectorisation pragmas]" in HsDecls + ; return $ HsVect (L loc id') (Just rhsWrapped) + } +tcVect (HsNoVect name) + = addErrCtxt (vectCtxt name) $ + do { id <- wrapLocM tcLookupId name + ; return $ HsNoVect id + } + +vectCtxt :: Located Name -> SDoc +vectCtxt name = ptext (sLit "When checking the vectorisation declaration for") <+> ppr name -------------- -- If typechecking the binds fails, then return with each @@ -601,6 +676,26 @@ forall_a_a :: TcType forall_a_a = mkForAllTy openAlphaTyVar (mkTyVarTy openAlphaTyVar) \end{code} +Note [SPECIALISE pragmas] +~~~~~~~~~~~~~~~~~~~~~~~~~ +There is no point in a SPECIALISE pragma for a non-overloaded function: + reverse :: [a] -> [a] + {-# SPECIALISE reverse :: [Int] -> [Int] #-} + +But SPECIALISE INLINE *can* make sense for GADTS: + data Arr e where + ArrInt :: !Int -> ByteArray# -> Arr Int + ArrPair :: !Int -> Arr e1 -> Arr e2 -> Arr (e1, e2) + + (!:) :: Arr e -> Int -> e + {-# SPECIALISE INLINE (!:) :: Arr Int -> Int -> Int #-} + {-# SPECIALISE INLINE (!:) :: Arr (a, b) -> Int -> (a, b) #-} + (ArrInt _ ba) !: (I# i) = I# (indexIntArray# ba i) + (ArrPair _ a1 a2) !: i = (a1 !: i, a2 !: i) + +When (!:) is specialised it becomes non-recursive, and can usefully +be inlined. Scary! So we only warn for SPECIALISE *without* INLINE +for a non-overloaded function. %************************************************************************ %* * @@ -678,9 +773,6 @@ type MonoBindInfo = (Name, Maybe TcSigInfo, TcId) -- Type signature (if any), and -- the monomorphic bound things -getMonoType :: MonoBindInfo -> TcTauType -getMonoType (_,_,mono_id) = idType mono_id - tcLhs :: TcSigFun -> LetBndrSpec -> HsBind Name -> TcM TcMonoBind tcLhs sig_fn no_gen (FunBind { fun_id = L nm_loc name, fun_infix = inf, fun_matches = matches }) | Just sig <- sig_fn name @@ -779,7 +871,7 @@ unifyCtxts (sig1 : sigs) -- where F is a type function and (F a ~ [a]) -- Then unification might succeed with a coercion. But it's much -- much simpler to require that such signatures have identical contexts - checkTc (all isIdentityCoI cois) + checkTc (all isReflCo cois) (ptext (sLit "Mutually dependent functions have syntactically distinct contexts")) } \end{code} @@ -1027,7 +1119,10 @@ tcInstSig sig_fn use_skols name | Just (scoped_tvs, loc) <- sig_fn name = do { poly_id <- tcLookupId name -- Cannot fail; the poly ids are put into -- scope when starting the binding group - ; (tvs, theta, tau) <- tcInstSigType use_skols name (idType poly_id) + ; let poly_ty = idType poly_id + ; (tvs, theta, tau) <- if use_skols + then tcInstType tcInstSkolTyVars poly_ty + else tcInstType tcInstSigTyVars poly_ty ; let sig = TcSigInfo { sig_id = poly_id , sig_scoped = scoped_tvs , sig_tvs = tvs, sig_theta = theta, sig_tau = tau @@ -1054,6 +1149,7 @@ instance Outputable GeneralisationPlan where decideGeneralisationPlan :: DynFlags -> TopLevelFlag -> [Name] -> [LHsBind Name] -> TcSigFun -> GeneralisationPlan decideGeneralisationPlan dflags top_lvl _bndrs binds sig_fn + | bang_pat_binds = NoGen | mono_pat_binds = NoGen | Just sig <- one_funbind_with_sig binds = if null (sig_tvs sig) && null (sig_theta sig) then NoGen -- Optimise common case @@ -1063,7 +1159,12 @@ decideGeneralisationPlan dflags top_lvl _bndrs binds sig_fn | otherwise = InferGen mono_restriction where - mono_pat_binds = xopt Opt_MonoPatBinds dflags + bang_pat_binds = any (isBangHsBind . unLoc) binds + -- Bang patterns must not be polymorphic, + -- because we are going to force them + -- See Trac #4498 + + mono_pat_binds = xopt Opt_MonoPatBinds dflags && any (is_pat_bind . unLoc) binds mono_restriction = xopt Opt_MonomorphismRestriction dflags @@ -1107,24 +1208,30 @@ checkStrictBinds top_lvl rec_group binds poly_ids ; checkTc (isNonRec rec_group) (strictBindErr "Recursive" unlifted binds) ; checkTc (isSingleton binds) - (strictBindErr "Multiple" unlifted binds) + (strictBindErr "Multiple" unlifted binds) -- This should be a checkTc, not a warnTc, but as of GHC 6.11 -- the versions of alex and happy available have non-conforming -- templates, so the GHC build fails if it's an error: ; warnUnlifted <- doptM Opt_WarnLazyUnliftedBindings - ; warnTc (warnUnlifted && not bang_pat) + ; warnTc (warnUnlifted && not bang_pat && lifted_pat) + -- No outer bang, but it's a compound pattern + -- E.g (I# x#) = blah + -- Warn about this, but not about + -- x# = 4# +# 1# + -- (# a, b #) = ... (unliftedMustBeBang binds) } | otherwise = return () where - unlifted = any is_unlifted poly_ids - bang_pat = any (isBangHsBind . unLoc) binds + unlifted = any is_unlifted poly_ids + bang_pat = any (isBangHsBind . unLoc) binds + lifted_pat = any (isLiftedPatBind . unLoc) binds is_unlifted id = case tcSplitForAllTys (idType id) of (_, rho) -> isUnLiftedType rho unliftedMustBeBang :: [LHsBind Name] -> SDoc unliftedMustBeBang binds - = hang (text "Bindings containing unlifted types should use an outermost bang pattern:") + = hang (text "Pattern bindings containing unlifted types should use an outermost bang pattern:") 2 (pprBindList binds) strictBindErr :: String -> Bool -> [LHsBind Name] -> SDoc