X-Git-Url: http://git.megacz.com/?p=ghc-hetmet.git;a=blobdiff_plain;f=compiler%2Ftypecheck%2FTcGenDeriv.lhs;h=4e95ad31b2a0027027be76b86f8caf0da2296b1d;hp=bcf1f07665321f65cf58026069e74fc4c3a82861;hb=7fc01c4671980ea3c66d549c0ece4d82fd3f5ade;hpb=0dcea0d97a4bc0b1d5818faded64944fba5a29ec diff --git a/compiler/typecheck/TcGenDeriv.lhs b/compiler/typecheck/TcGenDeriv.lhs index bcf1f07..4e95ad3 100644 --- a/compiler/typecheck/TcGenDeriv.lhs +++ b/compiler/typecheck/TcGenDeriv.lhs @@ -41,6 +41,7 @@ import Name import HscTypes import PrelInfo +import MkCore ( eRROR_ID ) import PrelNames import PrimOp import SrcLoc @@ -68,6 +69,8 @@ data DerivAuxBind -- Please add these auxiliary top-level bindings = GenCon2Tag TyCon -- The con2Tag for given TyCon | GenTag2Con TyCon -- ...ditto tag2Con | GenMaxTag TyCon -- ...and maxTag + -- All these generate ZERO-BASED tag operations + -- I.e first constructor has tag 0 -- Scrap your boilerplate | MkDataCon DataCon -- For constructor C we get $cC :: Constr @@ -182,10 +185,10 @@ gen_Eq_binds loc tycon aux_binds | no_nullary_cons = [] | otherwise = [GenCon2Tag tycon] - method_binds = listToBag [ - mk_FunBind loc eq_RDR ((map pats_etc nonnullary_cons) ++ rest), - mk_easy_FunBind loc ne_RDR [a_Pat, b_Pat] ( - nlHsApp (nlHsVar not_RDR) (nlHsPar (nlHsVarApps eq_RDR [a_RDR, b_RDR])))] + method_binds = listToBag [eq_bind, ne_bind] + eq_bind = mk_FunBind loc eq_RDR (map pats_etc nonnullary_cons ++ rest) + ne_bind = mk_easy_FunBind loc ne_RDR [a_Pat, b_Pat] ( + nlHsApp (nlHsVar not_RDR) (nlHsPar (nlHsVarApps eq_RDR [a_RDR, b_RDR]))) ------------------------------------------------------------------ pats_etc data_con @@ -214,231 +217,290 @@ gen_Eq_binds loc tycon %* * %************************************************************************ -For a derived @Ord@, we concentrate our attentions on @compare@ -\begin{verbatim} -compare :: a -> a -> Ordering -data Ordering = LT | EQ | GT deriving () -\end{verbatim} - -We will use the same example data type as above: -\begin{verbatim} -data Foo ... = N1 | N2 ... | Nn | O1 a b | O2 Int | O3 Double b b | ... -\end{verbatim} - -\begin{itemize} -\item - We do all the other @Ord@ methods with calls to @compare@: -\begin{verbatim} -instance ... (Ord ) where - a < b = case (compare a b) of { LT -> True; EQ -> False; GT -> False } - a <= b = case (compare a b) of { LT -> True; EQ -> True; GT -> False } - a >= b = case (compare a b) of { LT -> False; EQ -> True; GT -> True } - a > b = case (compare a b) of { LT -> False; EQ -> False; GT -> True } - - max a b = case (compare a b) of { LT -> b; EQ -> a; GT -> a } - min a b = case (compare a b) of { LT -> a; EQ -> b; GT -> b } - - -- compare to come... -\end{verbatim} - -\item - @compare@ always has two parts. First, we use the compared - data-constructors' tags to deal with the case of different - constructors: -\begin{verbatim} -compare a b = case (con2tag_Foo a) of { a# -> - case (con2tag_Foo b) of { b# -> - case (a# ==# b#) of { - True -> cmp_eq a b - False -> case (a# <# b#) of - True -> _LT - False -> _GT - }}} - where - cmp_eq = ... to come ... -\end{verbatim} - -\item - We are only left with the ``help'' function @cmp_eq@, to deal with - comparing data constructors with the same tag. - - For the ordinary constructors (if any), we emit the sorta-obvious - compare-style stuff; for our example: -\begin{verbatim} -cmp_eq (O1 a1 b1) (O1 a2 b2) - = case (compare a1 a2) of { LT -> LT; EQ -> compare b1 b2; GT -> GT } - -cmp_eq (O2 a1) (O2 a2) - = compare a1 a2 - -cmp_eq (O3 a1 b1 c1) (O3 a2 b2 c2) - = case (compare a1 a2) of { - LT -> LT; - GT -> GT; - EQ -> case compare b1 b2 of { - LT -> LT; - GT -> GT; - EQ -> compare c1 c2 - } - } -\end{verbatim} - - Again, we must be careful about unlifted comparisons. For example, - if \tr{a1} and \tr{a2} were \tr{Int#}s in the 2nd example above, we'd need to - generate: - -\begin{verbatim} -cmp_eq lt eq gt (O2 a1) (O2 a2) - = compareInt# a1 a2 - -- or maybe the unfolded equivalent -\end{verbatim} - -\item - For the remaining nullary constructors, we already know that the - tags are equal so: -\begin{verbatim} -cmp_eq _ _ = EQ -\end{verbatim} -\end{itemize} +Note [Generating Ord instances] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Suppose constructors are K1..Kn, and some are nullary. +The general form we generate is: + +* Do case on first argument + case a of + K1 ... -> rhs_1 + K2 ... -> rhs_2 + ... + Kn ... -> rhs_n + _ -> nullary_rhs + +* To make rhs_i + If i = 1, 2, n-1, n, generate a single case. + rhs_2 case b of + K1 {} -> LT + K2 ... -> ...eq_rhs(K2)... + _ -> GT + + Otherwise do a tag compare against the bigger range + (because this is the one most likely to succeed) + rhs_3 case tag b of tb -> + if 3 <# tg then GT + else case b of + K3 ... -> ...eq_rhs(K3).... + _ -> LT + +* To make eq_rhs(K), which knows that + a = K a1 .. av + b = K b1 .. bv + we just want to compare (a1,b1) then (a2,b2) etc. + Take care on the last field to tail-call into comparing av,bv + +* To make nullary_rhs generate this + case con2tag a of a# -> + case con2tag b of -> + a# `compare` b# + +Several special cases: + +* Two or fewer nullary constructors: don't generate nullary_rhs + +* Be careful about unlifted comparisons. When comparing unboxed + values we can't call the overloaded functions. + See function unliftedOrdOp + +Note [Do not rely on compare] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +It's a bad idea to define only 'compare', and build the other binary +comparisions on top of it; see Trac #2130, #4019. Reason: we don't +want to laboriously make a three-way comparison, only to extract a +binary result, something like this: + (>) (I# x) (I# y) = case <# x y of + True -> False + False -> case ==# x y of + True -> False + False -> True -If there is only one constructor in the Data Type we don't need the WildCard Pattern. -JJQC-30-Nov-1997 +So for sufficiently small types (few constructors, or all nullary) +we generate all methods; for large ones we just use 'compare'. \begin{code} +data OrdOp = OrdCompare | OrdLT | OrdLE | OrdGE | OrdGT + +------------ +ordMethRdr :: OrdOp -> RdrName +ordMethRdr op + = case op of + OrdCompare -> compare_RDR + OrdLT -> lt_RDR + OrdLE -> le_RDR + OrdGE -> ge_RDR + OrdGT -> gt_RDR + +------------ +ltResult :: OrdOp -> LHsExpr RdrName +-- Knowing a LHsExpr RdrName +-- Knowing a=b, what is the result for a `op` b? +eqResult OrdCompare = eqTag_Expr +eqResult OrdLT = false_Expr +eqResult OrdLE = true_Expr +eqResult OrdGE = true_Expr +eqResult OrdGT = false_Expr + +------------ +gtResult :: OrdOp -> LHsExpr RdrName +-- Knowing a>b, what is the result for a `op` b? +gtResult OrdCompare = gtTag_Expr +gtResult OrdLT = false_Expr +gtResult OrdLE = false_Expr +gtResult OrdGE = true_Expr +gtResult OrdGT = true_Expr + +------------ gen_Ord_binds :: SrcSpan -> TyCon -> (LHsBinds RdrName, DerivAuxBinds) - gen_Ord_binds loc tycon - | Just (con, prim_tc) <- primWrapperType_maybe tycon - = gen_PrimOrd_binds con prim_tc - + | null tycon_data_cons -- No data-cons => invoke bale-out case + = (unitBag $ mk_FunBind loc compare_RDR [], []) | otherwise - = (unitBag compare, aux_binds) - -- `AndMonoBinds` compare - -- The default declaration in PrelBase handles this + = (unitBag (mkOrdOp OrdCompare) `unionBags` other_ops, aux_binds) where aux_binds | single_con_type = [] | otherwise = [GenCon2Tag tycon] - compare = L loc (mkFunBind (L loc compare_RDR) compare_matches) - compare_matches = [mkMatch [a_Pat, b_Pat] compare_rhs cmp_eq_binds] - cmp_eq_binds = HsValBinds (ValBindsIn (unitBag cmp_eq) []) - - compare_rhs - | single_con_type = cmp_eq_Expr a_Expr b_Expr - | otherwise - = untag_Expr tycon [(a_RDR, ah_RDR), (b_RDR, bh_RDR)] - (cmp_tags_Expr eqInt_RDR ah_RDR bh_RDR - (cmp_eq_Expr a_Expr b_Expr) -- True case - -- False case; they aren't equal - -- So we need to do a less-than comparison on the tags - (cmp_tags_Expr ltInt_RDR ah_RDR bh_RDR - ltTag_Expr gtTag_Expr)) + -- Note [Do not rely on compare] + other_ops | (last_tag - first_tag) <= 2 -- 1-3 constructors + || null non_nullary_cons -- Or it's an enumeration + = listToBag (map mkOrdOp [OrdLT,OrdLE,OrdGE,OrdGT]) + | otherwise + = emptyBag + + get_tag con = dataConTag con - fIRST_TAG + -- We want *zero-based* tags, because that's what + -- con2Tag returns (generated by untag_Expr)! tycon_data_cons = tyConDataCons tycon single_con_type = isSingleton tycon_data_cons - (nullary_cons, nonnullary_cons) - | isNewTyCon tycon = ([], tyConDataCons tycon) - | otherwise = partition isNullarySrcDataCon tycon_data_cons - - cmp_eq = mk_FunBind loc cmp_eq_RDR cmp_eq_match - cmp_eq_match - | isEnumerationTyCon tycon - -- We know the tags are equal, so if it's an - -- enumeration TyCon, - -- then there is nothing left to do - -- Catch this specially to avoid warnings - -- about overlapping patterns from the desugarer, - -- and to avoid unnecessary pattern-matching - = [([nlWildPat,nlWildPat], eqTag_Expr)] - | otherwise - = map pats_etc nonnullary_cons ++ - (if single_con_type then -- Omit wildcards when there's just one - [] -- constructor, to silence desugarer - else - [([nlWildPat, nlWildPat], default_rhs)]) - - default_rhs | null nullary_cons = -- Keep desugarer from complaining about - -- inexhaustive patterns - impossible_Expr - | otherwise = -- Some nullary constructors; - -- Tags are equal, no args => return EQ - eqTag_Expr - pats_etc data_con - = ([con1_pat, con2_pat], - nested_compare_expr tys_needed as_needed bs_needed) - where - con1_pat = nlConVarPat data_con_RDR as_needed - con2_pat = nlConVarPat data_con_RDR bs_needed + (first_con : _) = tycon_data_cons + (last_con : _) = reverse tycon_data_cons + first_tag = get_tag first_con + last_tag = get_tag last_con - data_con_RDR = getRdrName data_con - con_arity = length tys_needed - as_needed = take con_arity as_RDRs - bs_needed = take con_arity bs_RDRs - tys_needed = dataConOrigArgTys data_con + (nullary_cons, non_nullary_cons) = partition isNullarySrcDataCon tycon_data_cons + - nested_compare_expr [ty] [a] [b] - = careful_compare_Case tycon ty eqTag_Expr (nlHsVar a) (nlHsVar b) + mkOrdOp :: OrdOp -> LHsBind RdrName + -- Returns a binding op a b = ... compares a and b according to op .... + mkOrdOp op = mk_easy_FunBind loc (ordMethRdr op) [a_Pat, b_Pat] (mkOrdOpRhs op) - nested_compare_expr (ty:tys) (a:as) (b:bs) - = let eq_expr = nested_compare_expr tys as bs - in careful_compare_Case tycon ty eq_expr (nlHsVar a) (nlHsVar b) + mkOrdOpRhs :: OrdOp -> LHsExpr RdrName + mkOrdOpRhs op -- RHS for comparing 'a' and 'b' according to op + | length nullary_cons <= 2 -- Two nullary or fewer, so use cases + = nlHsCase (nlHsVar a_RDR) $ + map (mkOrdOpAlt op) tycon_data_cons + -- i.e. case a of { C1 x y -> case b of C1 x y -> ....compare x,y... + -- C2 x -> case b of C2 x -> ....comopare x.... } - -- Args always equal length - nested_compare_expr _ _ _ = panic "nested_compare_expr" -\end{code} + | null non_nullary_cons -- All nullary, so go straight to comparing tags + = mkTagCmp op -Note [Comparision of primitive types] -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -The general plan does not work well for data types like - data T = MkT Int# deriving( Ord ) -The general plan defines the 'compare' method, gets (<) etc from it. But -that means we get silly code like: - instance Ord T where - (>) (I# x) (I# y) = case <# x y of - True -> False - False -> case ==# x y of - True -> False - False -> True -We would prefer to use the (>#) primop. See also Trac #2130 - + | otherwise -- Mixed nullary and non-nullary + = nlHsCase (nlHsVar a_RDR) $ + (map (mkOrdOpAlt op) non_nullary_cons + ++ [mkSimpleHsAlt nlWildPat (mkTagCmp op)]) -\begin{code} -gen_PrimOrd_binds :: DataCon -> TyCon -> (LHsBinds RdrName, DerivAuxBinds) --- See Note [Comparison of primitive types] -gen_PrimOrd_binds data_con prim_tc - = (listToBag [mk_op lt_RDR lt_op, mk_op le_RDR le_op, - mk_op ge_RDR ge_op, mk_op gt_RDR gt_op], []) + + mkOrdOpAlt :: OrdOp -> DataCon -> LMatch RdrName + -- Make the alternative (Ki a1 a2 .. av -> + mkOrdOpAlt op data_con + = mkSimpleHsAlt (nlConVarPat data_con_RDR as_needed) (mkInnerRhs op data_con) + where + as_needed = take (dataConSourceArity data_con) as_RDRs + data_con_RDR = getRdrName data_con + + mkInnerRhs op data_con + | single_con_type + = nlHsCase (nlHsVar b_RDR) [ mkInnerEqAlt op data_con ] + + | tag == first_tag + = nlHsCase (nlHsVar b_RDR) [ mkInnerEqAlt op data_con + , mkSimpleHsAlt nlWildPat (ltResult op) ] + | tag == last_tag + = nlHsCase (nlHsVar b_RDR) [ mkInnerEqAlt op data_con + , mkSimpleHsAlt nlWildPat (gtResult op) ] + + | tag == first_tag + 1 + = nlHsCase (nlHsVar b_RDR) [ mkSimpleHsAlt (nlConWildPat first_con) (gtResult op) + , mkInnerEqAlt op data_con + , mkSimpleHsAlt nlWildPat (ltResult op) ] + | tag == last_tag - 1 + = nlHsCase (nlHsVar b_RDR) [ mkSimpleHsAlt (nlConWildPat last_con) (ltResult op) + , mkInnerEqAlt op data_con + , mkSimpleHsAlt nlWildPat (gtResult op) ] + + | tag > last_tag `div` 2 -- lower range is larger + = untag_Expr tycon [(b_RDR, bh_RDR)] $ + nlHsIf (genOpApp (nlHsVar bh_RDR) ltInt_RDR tag_lit) + (gtResult op) $ -- Definitely GT + nlHsCase (nlHsVar b_RDR) [ mkInnerEqAlt op data_con + , mkSimpleHsAlt nlWildPat (ltResult op) ] + + | otherwise -- upper range is larger + = untag_Expr tycon [(b_RDR, bh_RDR)] $ + nlHsIf (genOpApp (nlHsVar bh_RDR) gtInt_RDR tag_lit) + (ltResult op) $ -- Definitely LT + nlHsCase (nlHsVar b_RDR) [ mkInnerEqAlt op data_con + , mkSimpleHsAlt nlWildPat (gtResult op) ] + where + tag = get_tag data_con + tag_lit = noLoc (HsLit (HsIntPrim (toInteger tag))) + + mkInnerEqAlt :: OrdOp -> DataCon -> LMatch RdrName + -- First argument 'a' known to be built with K + -- Returns a case alternative Ki b1 b2 ... bv -> compare (a1,a2,...) with (b1,b2,...) + mkInnerEqAlt op data_con + = mkSimpleHsAlt (nlConVarPat data_con_RDR bs_needed) $ + mkCompareFields tycon op (dataConOrigArgTys data_con) + where + data_con_RDR = getRdrName data_con + bs_needed = take (dataConSourceArity data_con) bs_RDRs + + mkTagCmp :: OrdOp -> LHsExpr RdrName + -- Both constructors known to be nullary + -- genreates (case data2Tag a of a# -> case data2Tag b of b# -> a# `op` b# + mkTagCmp op = untag_Expr tycon [(a_RDR, ah_RDR),(b_RDR, bh_RDR)] $ + unliftedOrdOp tycon intPrimTy op ah_RDR bh_RDR + +mkCompareFields :: TyCon -> OrdOp -> [Type] -> LHsExpr RdrName +-- Generates nested comparisons for (a1,a2...) against (b1,b2,...) +-- where the ai,bi have the given types +mkCompareFields tycon op tys + = go tys as_RDRs bs_RDRs where - mk_op op_RDR op = mk_FunBind (getSrcSpan data_con) op_RDR - [([apat, bpat], genOpApp a_Expr (primOpRdrName op) b_Expr)] - con_RDR = getRdrName data_con - apat = nlConVarPat con_RDR [a_RDR] - bpat = nlConVarPat con_RDR [b_RDR] - - (lt_op, le_op, ge_op, gt_op) - | prim_tc == charPrimTyCon = (CharLtOp, CharLeOp, CharGeOp, CharGtOp) - | prim_tc == intPrimTyCon = (IntLtOp, IntLeOp, IntGeOp, IntGtOp) - | prim_tc == wordPrimTyCon = (WordLtOp, WordLeOp, WordGeOp, WordGtOp) - | prim_tc == addrPrimTyCon = (AddrLtOp, AddrLeOp, AddrGeOp, AddrGtOp) - | prim_tc == floatPrimTyCon = (FloatLtOp, FloatLeOp, FloatGeOp, FloatGtOp) - | prim_tc == doublePrimTyCon = (DoubleLtOp, DoubleLeOp, DoubleGeOp, DoubleGtOp) - | otherwise = pprPanic "Unexpected primitive tycon" (ppr prim_tc) - - -primWrapperType_maybe :: TyCon -> Maybe (DataCon, TyCon) --- True of data types that are wrappers around prmitive types --- data T = MkT Word# --- For these we want to generate all the (<), (<=) etc operations individually -primWrapperType_maybe tc - | [con] <- tyConDataCons tc - , [ty] <- dataConOrigArgTys con - , Just (prim_tc, []) <- tcSplitTyConApp_maybe ty - , isPrimTyCon prim_tc - = Just (con, prim_tc) - | otherwise - = Nothing + go [] _ _ = eqResult op + go [ty] (a:_) (b:_) + | isUnLiftedType ty = unliftedOrdOp tycon ty op a b + | otherwise = genOpApp (nlHsVar a) (ordMethRdr op) (nlHsVar b) + go (ty:tys) (a:as) (b:bs) = mk_compare ty a b + (ltResult op) + (go tys as bs) + (gtResult op) + go _ _ _ = panic "mkCompareFields" + + -- (mk_compare ty a b) generates + -- (case (compare a b) of { LT -> ; EQ -> ; GT -> }) + -- but with suitable special cases for + mk_compare ty a b lt eq gt + | isUnLiftedType ty + = unliftedCompare lt_op eq_op a_expr b_expr lt eq gt + | otherwise + = nlHsCase (nlHsPar (nlHsApp (nlHsApp (nlHsVar compare_RDR) a_expr) b_expr)) + [mkSimpleHsAlt (nlNullaryConPat ltTag_RDR) lt, + mkSimpleHsAlt (nlNullaryConPat eqTag_RDR) eq, + mkSimpleHsAlt (nlNullaryConPat gtTag_RDR) gt] + where + a_expr = nlHsVar a + b_expr = nlHsVar b + (lt_op, _, eq_op, _, _) = primOrdOps "Ord" tycon ty + +unliftedOrdOp :: TyCon -> Type -> OrdOp -> RdrName -> RdrName -> LHsExpr RdrName +unliftedOrdOp tycon ty op a b + = case op of + OrdCompare -> unliftedCompare lt_op eq_op a_expr b_expr + ltTag_Expr eqTag_Expr gtTag_Expr + OrdLT -> wrap lt_op + OrdLE -> wrap le_op + OrdGE -> wrap ge_op + OrdGT -> wrap gt_op + where + (lt_op, le_op, eq_op, ge_op, gt_op) = primOrdOps "Ord" tycon ty + wrap prim_op = genOpApp a_expr (primOpRdrName prim_op) b_expr + a_expr = nlHsVar a + b_expr = nlHsVar b + +unliftedCompare :: PrimOp -> PrimOp + -> LHsExpr RdrName -> LHsExpr RdrName -- What to cmpare + -> LHsExpr RdrName -> LHsExpr RdrName -> LHsExpr RdrName -- Three results + -> LHsExpr RdrName +-- Return (if a < b then lt else if a == b then eq else gt) +unliftedCompare lt_op eq_op a_expr b_expr lt eq gt + = nlHsIf (genOpApp a_expr (primOpRdrName lt_op) b_expr) lt $ + -- Test (<) first, not (==), becuase the latter + -- is true less often, so putting it first would + -- mean more tests (dynamically) + nlHsIf (genOpApp a_expr (primOpRdrName eq_op) b_expr) eq gt + +nlConWildPat :: DataCon -> LPat RdrName +-- The pattern (K {}) +nlConWildPat con = noLoc (ConPatIn (noLoc (getRdrName con)) + (RecCon (HsRecFields { rec_flds = [] + , rec_dotdot = Nothing }))) \end{code} + + %************************************************************************ %* * Enum instances @@ -831,14 +893,23 @@ gen_Read_binds get_fixity loc tycon read_nullary_cons = case nullary_cons of [] -> [] - [con] -> [nlHsDo DoExpr [bindLex (ident_pat (data_con_str con))] - (result_expr con [])] + [con] -> [nlHsDo DoExpr [bindLex (match_con con)] (result_expr con [])] _ -> [nlHsApp (nlHsVar choose_RDR) (nlList (map mk_pair nullary_cons))] - + -- NB For operators the parens around (:=:) are matched by the + -- enclosing "parens" call, so here we must match the naked + -- data_con_str con + + match_con con | isSym con_str = symbol_pat con_str + | otherwise = ident_pat con_str + where + con_str = data_con_str con + -- For nullary constructors we must match Ident s for normal constrs + -- and Symbol s for operators + mk_pair con = mkLHsTupleExpr [nlHsLit (mkHsString (data_con_str con)), result_expr con []] - + read_non_nullary_con data_con | is_infix = mk_parser infix_prec infix_stmts body | is_record = mk_parser record_prec record_stmts body @@ -969,17 +1040,18 @@ gen_Show_binds get_fixity loc tycon show_list = mkHsVarBind loc showList_RDR (nlHsApp (nlHsVar showList___RDR) (nlHsPar (nlHsApp (nlHsVar showsPrec_RDR) (nlHsIntLit 0)))) ----------------------------------------------------------------------- - shows_prec = mk_FunBind loc showsPrec_RDR (map pats_etc (tyConDataCons tycon)) - where - pats_etc data_con - | nullary_con = -- skip the showParen junk... - ASSERT(null bs_needed) - ([nlWildPat, con_pat], mk_showString_app con_str) - | otherwise = - ([a_Pat, con_pat], - showParen_Expr (nlHsPar (genOpApp a_Expr ge_RDR (nlHsLit (HsInt con_prec_plus_one)))) - (nlHsPar (nested_compose_Expr show_thingies))) - where + data_cons = tyConDataCons tycon + shows_prec = mk_FunBind loc showsPrec_RDR (map pats_etc data_cons) + + pats_etc data_con + | nullary_con = -- skip the showParen junk... + ASSERT(null bs_needed) + ([nlWildPat, con_pat], mk_showString_app op_con_str) + | otherwise = + ([a_Pat, con_pat], + showParen_Expr (nlHsPar (genOpApp a_Expr ge_RDR (nlHsLit (HsInt con_prec_plus_one)))) + (nlHsPar (nested_compose_Expr show_thingies))) + where data_con_RDR = getRdrName data_con con_arity = dataConSourceArity data_con bs_needed = take con_arity bs_RDRs @@ -1163,7 +1235,9 @@ gen_Data_binds loc tycon ------------ gfoldl gfoldl_bind = mk_FunBind loc gfoldl_RDR (map gfoldl_eqn data_cons) - gfoldl_eqn con = ([nlVarPat k_RDR, nlVarPat z_RDR, nlConVarPat con_name as_needed], + + gfoldl_eqn con + = ([nlVarPat k_RDR, nlVarPat z_RDR, nlConVarPat con_name as_needed], foldl mk_k_app (nlHsVar z_RDR `nlHsApp` nlHsVar con_name) as_needed) where con_name :: RdrName @@ -1221,18 +1295,21 @@ kind2 = liftedTypeKind `mkArrowKind` kind1 gfoldl_RDR, gunfold_RDR, toConstr_RDR, dataTypeOf_RDR, mkConstr_RDR, mkDataType_RDR, conIndex_RDR, prefix_RDR, infix_RDR, - dataCast1_RDR, dataCast2_RDR, gcast1_RDR, gcast2_RDR :: RdrName -gfoldl_RDR = varQual_RDR gENERICS (fsLit "gfoldl") -gunfold_RDR = varQual_RDR gENERICS (fsLit "gunfold") -toConstr_RDR = varQual_RDR gENERICS (fsLit "toConstr") -dataTypeOf_RDR = varQual_RDR gENERICS (fsLit "dataTypeOf") -dataCast1_RDR = varQual_RDR gENERICS (fsLit "dataCast1") -dataCast2_RDR = varQual_RDR gENERICS (fsLit "dataCast2") -gcast1_RDR = varQual_RDR tYPEABLE (fsLit "gcast1") -gcast2_RDR = varQual_RDR tYPEABLE (fsLit "gcast2") -mkConstr_RDR = varQual_RDR gENERICS (fsLit "mkConstr") -mkDataType_RDR = varQual_RDR gENERICS (fsLit "mkDataType") -conIndex_RDR = varQual_RDR gENERICS (fsLit "constrIndex") + dataCast1_RDR, dataCast2_RDR, gcast1_RDR, gcast2_RDR, + constr_RDR, dataType_RDR :: RdrName +gfoldl_RDR = varQual_RDR gENERICS (fsLit "gfoldl") +gunfold_RDR = varQual_RDR gENERICS (fsLit "gunfold") +toConstr_RDR = varQual_RDR gENERICS (fsLit "toConstr") +dataTypeOf_RDR = varQual_RDR gENERICS (fsLit "dataTypeOf") +dataCast1_RDR = varQual_RDR gENERICS (fsLit "dataCast1") +dataCast2_RDR = varQual_RDR gENERICS (fsLit "dataCast2") +gcast1_RDR = varQual_RDR tYPEABLE (fsLit "gcast1") +gcast2_RDR = varQual_RDR tYPEABLE (fsLit "gcast2") +mkConstr_RDR = varQual_RDR gENERICS (fsLit "mkConstr") +constr_RDR = tcQual_RDR gENERICS (fsLit "Constr") +mkDataType_RDR = varQual_RDR gENERICS (fsLit "mkDataType") +dataType_RDR = tcQual_RDR gENERICS (fsLit "DataType") +conIndex_RDR = varQual_RDR gENERICS (fsLit "constrIndex") prefix_RDR = dataQual_RDR gENERICS (fsLit "Prefix") infix_RDR = dataQual_RDR gENERICS (fsLit "Infix") \end{code} @@ -1312,12 +1389,16 @@ gen_Functor_binds loc tycon = (unitBag fmap_bind, []) where data_cons = tyConDataCons tycon - - fmap_bind = L loc $ mkFunBind (L loc fmap_RDR) (map fmap_eqn data_cons) + fmap_bind = L loc $ mkRdrFunBind (L loc fmap_RDR) eqns + fmap_eqn con = evalState (match_for_con [f_Pat] con parts) bs_RDRs where parts = foldDataConArgs ft_fmap con + eqns | null data_cons = [mkSimpleMatch [nlWildPat, nlWildPat] + (error_Expr "Void fmap")] + | otherwise = map fmap_eqn data_cons + ft_fmap :: FFoldType (LHsExpr RdrName -> State [RdrName] (LHsExpr RdrName)) -- Tricky higher order type; I can't say I fully understand this code :-( ft_fmap = FT { ft_triv = \x -> return x -- fmap f x = x @@ -1478,7 +1559,8 @@ gen_Foldable_binds loc tycon where data_cons = tyConDataCons tycon - foldr_bind = L loc $ mkFunBind (L loc foldable_foldr_RDR) (map foldr_eqn data_cons) + foldr_bind = L loc $ mkRdrFunBind (L loc foldable_foldr_RDR) eqns + eqns = map foldr_eqn data_cons foldr_eqn con = evalState (match_for_con z_Expr [f_Pat,z_Pat] con parts) bs_RDRs where parts = foldDataConArgs ft_foldr con @@ -1529,7 +1611,8 @@ gen_Traversable_binds loc tycon where data_cons = tyConDataCons tycon - traverse_bind = L loc $ mkFunBind (L loc traverse_RDR) (map traverse_eqn data_cons) + traverse_bind = L loc $ mkRdrFunBind (L loc traverse_RDR) eqns + eqns = map traverse_eqn data_cons traverse_eqn con = evalState (match_for_con [f_Pat] con parts) bs_RDRs where parts = foldDataConArgs ft_trav con @@ -1577,69 +1660,70 @@ The `tags' here start at zero, hence the @fIRST_TAG@ (currently one) fiddling around. \begin{code} -genAuxBind :: SrcSpan -> DerivAuxBind -> LHsBind RdrName +genAuxBind :: SrcSpan -> DerivAuxBind -> (LHsBind RdrName, LSig RdrName) genAuxBind loc (GenCon2Tag tycon) - | lots_of_constructors - = mk_FunBind loc rdr_name [([], get_tag_rhs)] - - | otherwise - = mk_FunBind loc rdr_name (map mk_stuff (tyConDataCons tycon)) - + = (mk_FunBind loc rdr_name eqns, + L loc (TypeSig (L loc rdr_name) (L loc sig_ty))) where rdr_name = con2tag_RDR tycon - tvs = map (mkRdrUnqual . getOccName) (tyConTyVars tycon) - -- We can't use gerRdrName because that makes an Exact RdrName - -- and we can't put them in the LocalRdrEnv + sig_ty = HsCoreTy $ + mkForAllTys (tyConTyVars tycon) $ + mkParentType tycon `mkFunTy` intPrimTy - -- Give a signature to the bound variable, so - -- that the case expression generated by getTag is - -- monomorphic. In the push-enter model we get better code. - get_tag_rhs = L loc $ ExprWithTySig - (nlHsLam (mkSimpleHsAlt (nlVarPat a_RDR) - (nlHsApp (nlHsVar getTag_RDR) a_Expr))) - (noLoc (mkExplicitHsForAllTy (map (noLoc.UserTyVar) tvs) (noLoc []) con2tag_ty)) + lots_of_constructors = tyConFamilySize tycon > 8 + -- was: mAX_FAMILY_SIZE_FOR_VEC_RETURNS + -- but we don't do vectored returns any more. - con2tag_ty = nlHsTyConApp (getRdrName tycon) (map nlHsTyVar tvs) - `nlHsFunTy` - nlHsTyVar (getRdrName intPrimTyCon) + eqns | lots_of_constructors = [get_tag_eqn] + | otherwise = map mk_eqn (tyConDataCons tycon) - lots_of_constructors = tyConFamilySize tycon > 8 - -- was: mAX_FAMILY_SIZE_FOR_VEC_RETURNS - -- but we don't do vectored returns any more. + get_tag_eqn = ([nlVarPat a_RDR], nlHsApp (nlHsVar getTag_RDR) a_Expr) - mk_stuff :: DataCon -> ([LPat RdrName], LHsExpr RdrName) - mk_stuff con = ([nlWildConPat con], - nlHsLit (HsIntPrim (toInteger ((dataConTag con) - fIRST_TAG)))) + mk_eqn :: DataCon -> ([LPat RdrName], LHsExpr RdrName) + mk_eqn con = ([nlWildConPat con], + nlHsLit (HsIntPrim (toInteger ((dataConTag con) - fIRST_TAG)))) genAuxBind loc (GenTag2Con tycon) - = mk_FunBind loc rdr_name + = (mk_FunBind loc rdr_name [([nlConVarPat intDataCon_RDR [a_RDR]], - noLoc (ExprWithTySig (nlHsApp (nlHsVar tagToEnum_RDR) a_Expr) - (nlHsTyVar (getRdrName tycon))))] + nlHsApp (nlHsVar tagToEnum_RDR) a_Expr)], + L loc (TypeSig (L loc rdr_name) (L loc sig_ty))) where + sig_ty = HsCoreTy $ mkForAllTys (tyConTyVars tycon) $ + intTy `mkFunTy` mkParentType tycon + rdr_name = tag2con_RDR tycon genAuxBind loc (GenMaxTag tycon) - = mkHsVarBind loc rdr_name - (nlHsApp (nlHsVar intDataCon_RDR) (nlHsLit (HsIntPrim max_tag))) + = (mkHsVarBind loc rdr_name rhs, + L loc (TypeSig (L loc rdr_name) (L loc sig_ty))) where rdr_name = maxtag_RDR tycon + sig_ty = HsCoreTy intTy + rhs = nlHsApp (nlHsVar intDataCon_RDR) (nlHsLit (HsIntPrim max_tag)) max_tag = case (tyConDataCons tycon) of data_cons -> toInteger ((length data_cons) - fIRST_TAG) genAuxBind loc (MkTyCon tycon) -- $dT - = mkHsVarBind loc (mk_data_type_name tycon) - ( nlHsVar mkDataType_RDR - `nlHsApp` nlHsLit (mkHsString (showSDocOneLine (ppr tycon))) - `nlHsApp` nlList constrs ) + = (mkHsVarBind loc rdr_name rhs, + L loc (TypeSig (L loc rdr_name) sig_ty)) where - constrs = [nlHsVar (mk_constr_name con) | con <- tyConDataCons tycon] + rdr_name = mk_data_type_name tycon + sig_ty = nlHsTyVar dataType_RDR + constrs = [nlHsVar (mk_constr_name con) | con <- tyConDataCons tycon] + rhs = nlHsVar mkDataType_RDR + `nlHsApp` nlHsLit (mkHsString (showSDocOneLine (ppr tycon))) + `nlHsApp` nlList constrs genAuxBind loc (MkDataCon dc) -- $cT1 etc - = mkHsVarBind loc (mk_constr_name dc) - (nlHsApps mkConstr_RDR constr_args) + = (mkHsVarBind loc rdr_name rhs, + L loc (TypeSig (L loc rdr_name) sig_ty)) where + rdr_name = mk_constr_name dc + sig_ty = nlHsTyVar constr_RDR + rhs = nlHsApps mkConstr_RDR constr_args + constr_args = [ -- nlHsIntLit (toInteger (dataConTag dc)), -- Tag nlHsVar (mk_data_type_name (dataConTyCon dc)), -- DataType @@ -1659,6 +1743,14 @@ mk_data_type_name tycon = mkAuxBinderName (tyConName tycon) mkDataTOcc mk_constr_name :: DataCon -> RdrName -- "$cC" mk_constr_name con = mkAuxBinderName (dataConName con) mkDataCOcc + +mkParentType :: TyCon -> Type +-- Turn the representation tycon of a family into +-- a use of its family constructor +mkParentType tc + = case tyConFamInst_maybe tc of + Nothing -> mkTyConApp tc (mkTyVarTys (tyConTyVars tc)) + Just (fam_tc,tys) -> mkTyConApp fam_tc tys \end{code} %************************************************************************ @@ -1668,45 +1760,29 @@ mk_constr_name con = mkAuxBinderName (dataConName con) mkDataCOcc %************************************************************************ -ToDo: Better SrcLocs. - \begin{code} -compare_gen_Case :: - LHsExpr RdrName -- What to do for equality - -> LHsExpr RdrName -> LHsExpr RdrName - -> LHsExpr RdrName -careful_compare_Case :: -- checks for primitive types... - TyCon -- The tycon we are deriving for - -> Type - -> LHsExpr RdrName -- What to do for equality - -> LHsExpr RdrName -> LHsExpr RdrName - -> LHsExpr RdrName - -cmp_eq_Expr :: LHsExpr RdrName -> LHsExpr RdrName -> LHsExpr RdrName -cmp_eq_Expr a b = nlHsApp (nlHsApp (nlHsVar cmp_eq_RDR) a) b - -- Was: compare_gen_Case cmp_eq_RDR - -compare_gen_Case (L _ (HsVar eq_tag)) a b | eq_tag == eqTag_RDR - = nlHsApp (nlHsApp (nlHsVar compare_RDR) a) b -- Simple case -compare_gen_Case eq a b -- General case - = nlHsCase (nlHsPar (nlHsApp (nlHsApp (nlHsVar compare_RDR) a) b)) {-of-} - [mkSimpleHsAlt (nlNullaryConPat ltTag_RDR) ltTag_Expr, - mkSimpleHsAlt (nlNullaryConPat eqTag_RDR) eq, - mkSimpleHsAlt (nlNullaryConPat gtTag_RDR) gtTag_Expr] - -careful_compare_Case tycon ty eq a b - | not (isUnLiftedType ty) - = compare_gen_Case eq a b - | otherwise -- We have to do something special for primitive things... - = nlHsIf (genOpApp a relevant_lt_op b) -- Test (<) first, not (==), becuase the latter - ltTag_Expr -- is true less often, so putting it first would - -- mean more tests (dynamically) - (nlHsIf (genOpApp a relevant_eq_op b) eq gtTag_Expr) +mk_FunBind :: SrcSpan -> RdrName + -> [([LPat RdrName], LHsExpr RdrName)] + -> LHsBind RdrName +mk_FunBind loc fun pats_and_exprs + = L loc $ mkRdrFunBind (L loc fun) matches where - relevant_eq_op = primOpRdrName (assoc_ty_id "Ord" tycon eq_op_tbl ty) - relevant_lt_op = primOpRdrName (assoc_ty_id "Ord" tycon lt_op_tbl ty) - + matches = [mkMatch p e emptyLocalBinds | (p,e) <-pats_and_exprs] + +mkRdrFunBind :: Located RdrName -> [LMatch RdrName] -> HsBind RdrName +mkRdrFunBind fun@(L _ fun_rdr) matches + | null matches = mkFunBind fun [mkMatch [] (error_Expr str) emptyLocalBinds] + -- Catch-all eqn looks like + -- fmap = error "Void fmap" + -- It's needed if there no data cons at all, + -- which can happen with -XEmptyDataDecls + -- See Trac #4302 + | otherwise = mkFunBind fun matches + where + str = "Void " ++ occNameString (rdrNameOcc fun_rdr) +\end{code} +\begin{code} box_if_necy :: String -- The class involved -> TyCon -- The tycon involved -> LHsExpr RdrName -- The argument @@ -1718,6 +1794,31 @@ box_if_necy cls_str tycon arg arg_ty where box_con = assoc_ty_id cls_str tycon box_con_tbl arg_ty +--------------------- +primOrdOps :: String -- The class involved + -> TyCon -- The tycon involved + -> Type -- The type + -> (PrimOp, PrimOp, PrimOp, PrimOp, PrimOp) -- (lt,le,eq,ge,gt) +primOrdOps str tycon ty = assoc_ty_id str tycon ord_op_tbl ty + +ord_op_tbl :: [(Type, (PrimOp, PrimOp, PrimOp, PrimOp, PrimOp))] +ord_op_tbl + = [(charPrimTy, (CharLtOp, CharLeOp, CharEqOp, CharGeOp, CharGtOp)) + ,(intPrimTy, (IntLtOp, IntLeOp, IntEqOp, IntGeOp, IntGtOp)) + ,(wordPrimTy, (WordLtOp, WordLeOp, WordEqOp, WordGeOp, WordGtOp)) + ,(addrPrimTy, (AddrLtOp, AddrLeOp, AddrEqOp, AddrGeOp, AddrGtOp)) + ,(floatPrimTy, (FloatLtOp, FloatLeOp, FloatEqOp, FloatGeOp, FloatGtOp)) + ,(doublePrimTy, (DoubleLtOp, DoubleLeOp, DoubleEqOp, DoubleGeOp, DoubleGtOp)) ] + +box_con_tbl :: [(Type, RdrName)] +box_con_tbl = + [(charPrimTy, getRdrName charDataCon) + ,(intPrimTy, getRdrName intDataCon) + ,(wordPrimTy, wordDataCon_RDR) + ,(floatPrimTy, getRdrName floatDataCon) + ,(doublePrimTy, getRdrName doubleDataCon) + ] + assoc_ty_id :: String -- The class involved -> TyCon -- The tycon involved -> [(Type,a)] -- The table @@ -1730,35 +1831,6 @@ assoc_ty_id cls_str _ tbl ty where res = [id | (ty',id) <- tbl, ty `tcEqType` ty'] -eq_op_tbl :: [(Type, PrimOp)] -eq_op_tbl = - [(charPrimTy, CharEqOp) - ,(intPrimTy, IntEqOp) - ,(wordPrimTy, WordEqOp) - ,(addrPrimTy, AddrEqOp) - ,(floatPrimTy, FloatEqOp) - ,(doublePrimTy, DoubleEqOp) - ] - -lt_op_tbl :: [(Type, PrimOp)] -lt_op_tbl = - [(charPrimTy, CharLtOp) - ,(intPrimTy, IntLtOp) - ,(wordPrimTy, WordLtOp) - ,(addrPrimTy, AddrLtOp) - ,(floatPrimTy, FloatLtOp) - ,(doublePrimTy, DoubleLtOp) - ] - -box_con_tbl :: [(Type, RdrName)] -box_con_tbl = - [(charPrimTy, getRdrName charDataCon) - ,(intPrimTy, getRdrName intDataCon) - ,(wordPrimTy, wordDataCon_RDR) - ,(floatPrimTy, getRdrName floatDataCon) - ,(doublePrimTy, getRdrName doubleDataCon) - ] - ----------------------------------------------------------------------- and_Expr :: LHsExpr RdrName -> LHsExpr RdrName -> LHsExpr RdrName @@ -1769,10 +1841,9 @@ and_Expr a b = genOpApp a and_RDR b eq_Expr :: TyCon -> Type -> LHsExpr RdrName -> LHsExpr RdrName -> LHsExpr RdrName eq_Expr tycon ty a b = genOpApp a eq_op b where - eq_op - | not (isUnLiftedType ty) = eq_RDR - | otherwise = primOpRdrName (assoc_ty_id "Eq" tycon eq_op_tbl ty) - -- we have to do something special for primitive things... + eq_op | not (isUnLiftedType ty) = eq_RDR + | otherwise = primOpRdrName prim_eq + (_, _, prim_eq, _, _) = primOrdOps "Eq" tycon ty \end{code} \begin{code} @@ -1782,15 +1853,6 @@ untag_Expr tycon ((untag_this, put_tag_here) : more) expr = nlHsCase (nlHsPar (nlHsVarApps (con2tag_RDR tycon) [untag_this])) {-of-} [mkSimpleHsAlt (nlVarPat put_tag_here) (untag_Expr tycon more expr)] -cmp_tags_Expr :: RdrName -- Comparison op - -> RdrName -> RdrName -- Things to compare - -> LHsExpr RdrName -- What to return if true - -> LHsExpr RdrName -- What to return if false - -> LHsExpr RdrName - -cmp_tags_Expr op a b true_case false_case - = nlHsIf (genOpApp (nlHsVar a) op (nlHsVar b)) true_case false_case - enum_from_to_Expr :: LHsExpr RdrName -> LHsExpr RdrName -> LHsExpr RdrName @@ -1816,8 +1878,8 @@ nested_compose_Expr (e:es) -- impossible_Expr is used in case RHSs that should never happen. -- We generate these to keep the desugarer from complaining that they *might* happen! -impossible_Expr :: LHsExpr RdrName -impossible_Expr = nlHsApp (nlHsVar error_RDR) (nlHsLit (mkHsString "Urk! in TcGenDeriv")) +error_Expr :: String -> LHsExpr RdrName +error_Expr string = nlHsApp (nlHsVar error_RDR) (nlHsLit (mkHsString string)) -- illegal_Expr is used when signalling error conditions in the RHS of a derived -- method. It is currently only used by Enum.{succ,pred} @@ -1856,8 +1918,8 @@ genOpApp e1 op e2 = nlHsPar (nlHsOpApp e1 op e2) \end{code} \begin{code} -a_RDR, b_RDR, c_RDR, d_RDR, f_RDR, k_RDR, z_RDR, ah_RDR, bh_RDR, ch_RDR, dh_RDR, - cmp_eq_RDR :: RdrName +a_RDR, b_RDR, c_RDR, d_RDR, f_RDR, k_RDR, z_RDR, ah_RDR, bh_RDR, ch_RDR, dh_RDR + :: RdrName a_RDR = mkVarUnqual (fsLit "a") b_RDR = mkVarUnqual (fsLit "b") c_RDR = mkVarUnqual (fsLit "c") @@ -1869,17 +1931,16 @@ ah_RDR = mkVarUnqual (fsLit "a#") bh_RDR = mkVarUnqual (fsLit "b#") ch_RDR = mkVarUnqual (fsLit "c#") dh_RDR = mkVarUnqual (fsLit "d#") -cmp_eq_RDR = mkVarUnqual (fsLit "cmp_eq") as_RDRs, bs_RDRs, cs_RDRs :: [RdrName] as_RDRs = [ mkVarUnqual (mkFastString ("a"++show i)) | i <- [(1::Int) .. ] ] bs_RDRs = [ mkVarUnqual (mkFastString ("b"++show i)) | i <- [(1::Int) .. ] ] cs_RDRs = [ mkVarUnqual (mkFastString ("c"++show i)) | i <- [(1::Int) .. ] ] -a_Expr, b_Expr, c_Expr, f_Expr, z_Expr, ltTag_Expr, eqTag_Expr, gtTag_Expr, +a_Expr, c_Expr, f_Expr, z_Expr, ltTag_Expr, eqTag_Expr, gtTag_Expr, false_Expr, true_Expr :: LHsExpr RdrName a_Expr = nlHsVar a_RDR -b_Expr = nlHsVar b_RDR +-- b_Expr = nlHsVar b_RDR c_Expr = nlHsVar c_RDR f_Expr = nlHsVar f_RDR z_Expr = nlHsVar z_RDR @@ -1921,12 +1982,13 @@ PrelNames, so PrelNames can't import PrimOp. primOpRdrName :: PrimOp -> RdrName primOpRdrName op = getRdrName (primOpId op) -minusInt_RDR, eqInt_RDR, ltInt_RDR, geInt_RDR, leInt_RDR, +minusInt_RDR, eqInt_RDR, ltInt_RDR, geInt_RDR, gtInt_RDR, leInt_RDR, tagToEnum_RDR :: RdrName minusInt_RDR = primOpRdrName IntSubOp eqInt_RDR = primOpRdrName IntEqOp ltInt_RDR = primOpRdrName IntLtOp geInt_RDR = primOpRdrName IntGeOp +gtInt_RDR = primOpRdrName IntGtOp leInt_RDR = primOpRdrName IntLeOp tagToEnum_RDR = primOpRdrName TagToEnumOp