X-Git-Url: http://git.megacz.com/?p=ghc-hetmet.git;a=blobdiff_plain;f=compiler%2Ftypecheck%2FTcHsType.lhs;h=3a8326fee9450f74c3946a0fdefb1022da0361e1;hp=3d365ab3d670503ea916e51d8c3bfb22f7b74ad2;hb=9319fbaf14f420cbbd9e670093cc86c5f04b7800;hpb=ab22f4e6456820c1b5169d75f5975a94e61f54ce diff --git a/compiler/typecheck/TcHsType.lhs b/compiler/typecheck/TcHsType.lhs index 3d365ab..3a8326f 100644 --- a/compiler/typecheck/TcHsType.lhs +++ b/compiler/typecheck/TcHsType.lhs @@ -6,7 +6,8 @@ \begin{code} module TcHsType ( - tcHsSigType, tcHsDeriv, + tcHsSigType, tcHsDeriv, + tcHsInstHead, tcHsQuantifiedType, UserTypeCtxt(..), -- Kind checking @@ -45,6 +46,9 @@ import BasicTypes import SrcLoc import UniqSupply import Outputable +import FastString + +import Control.Monad \end{code} @@ -141,16 +145,36 @@ tcHsSigType ctxt hs_ty do { kinded_ty <- kcTypeType hs_ty ; ty <- tcHsKindedType kinded_ty ; checkValidType ctxt ty - ; returnM ty } + ; return ty } + +tcHsInstHead :: LHsType Name -> TcM ([TyVar], ThetaType, Type) +-- Typecheck an instance head. We can't use +-- tcHsSigType, because it's not a valid user type. +tcHsInstHead hs_ty + = do { kinded_ty <- kcHsSigType hs_ty + ; poly_ty <- tcHsKindedType kinded_ty + ; return (tcSplitSigmaTy poly_ty) } + +tcHsQuantifiedType :: [LHsTyVarBndr Name] -> LHsType Name -> TcM ([TyVar], Type) +-- Behave very like type-checking (HsForAllTy sig_tvs hs_ty), +-- except that we want to keep the tvs separate +tcHsQuantifiedType tv_names hs_ty + = kcHsTyVars tv_names $ \ tv_names' -> + do { kc_ty <- kcHsSigType hs_ty + ; tcTyVarBndrs tv_names' $ \ tvs -> + do { ty <- dsHsType kc_ty + ; return (tvs, ty) } } -- Used for the deriving(...) items -tcHsDeriv :: LHsType Name -> TcM ([TyVar], Class, [Type]) -tcHsDeriv = addLocM (tc_hs_deriv []) +tcHsDeriv :: HsType Name -> TcM ([TyVar], Class, [Type]) +tcHsDeriv = tc_hs_deriv [] +tc_hs_deriv :: [LHsTyVarBndr Name] -> HsType Name + -> TcM ([TyVar], Class, [Type]) tc_hs_deriv tv_names (HsPredTy (HsClassP cls_name hs_tys)) = kcHsTyVars tv_names $ \ tv_names' -> do { cls_kind <- kcClass cls_name - ; (tys, res_kind) <- kcApps cls_kind (ppr cls_name) hs_tys + ; (tys, _res_kind) <- kcApps cls_kind (ppr cls_name) hs_tys ; tcTyVarBndrs tv_names' $ \ tyvars -> do { arg_tys <- dsHsTypes tys ; cls <- tcLookupClass cls_name @@ -163,7 +187,7 @@ tc_hs_deriv tv_names1 (HsForAllTy _ tv_names2 (L _ []) (L _ ty)) tc_hs_deriv (tv_names1 ++ tv_names2) ty tc_hs_deriv _ other - = failWithTc (ptext SLIT("Illegal deriving item") <+> ppr other) + = failWithTc (ptext (sLit "Illegal deriving item") <+> ppr other) \end{code} These functions are used during knot-tying in @@ -185,13 +209,13 @@ tcHsKindedType hs_ty = dsHsType hs_ty tcHsBangType :: LHsType Name -> TcM Type -- Permit a bang, but discard it -tcHsBangType (L span (HsBangTy b ty)) = tcHsKindedType ty -tcHsBangType ty = tcHsKindedType ty +tcHsBangType (L _ (HsBangTy _ ty)) = tcHsKindedType ty +tcHsBangType ty = tcHsKindedType ty tcHsKindedContext :: LHsContext Name -> TcM ThetaType -- Used when we are expecting a ClassContext (i.e. no implicit params) -- Does not do validity checking, like tcHsKindedType -tcHsKindedContext hs_theta = addLocM (mappM dsHsLPred) hs_theta +tcHsKindedContext hs_theta = addLocM (mapM dsHsLPred) hs_theta \end{code} @@ -231,7 +255,7 @@ kcCheckHsType (L span ty) exp_kind ; return (L span ty') } where -- Wrap a context around only if we want to show that contexts. - add_ctxt (HsPredTy p) thing = thing + add_ctxt (HsPredTy _) thing = thing -- Omit invisble ones and ones user's won't grok (HsPred p). add_ctxt (HsForAllTy _ _ (L _ []) _) thing = thing -- Omit wrapping if the theta-part is empty @@ -265,64 +289,69 @@ kcHsType ty = wrapLocFstM kc_hs_type ty -- -- The translated type has explicitly-kinded type-variable binders -kc_hs_type (HsParTy ty) - = kcHsType ty `thenM` \ (ty', kind) -> - returnM (HsParTy ty', kind) +kc_hs_type :: HsType Name -> TcM (HsType Name, TcKind) +kc_hs_type (HsParTy ty) = do + (ty', kind) <- kcHsType ty + return (HsParTy ty', kind) -kc_hs_type (HsTyVar name) - = kcTyVar name `thenM` \ kind -> - returnM (HsTyVar name, kind) +kc_hs_type (HsTyVar name) = do + kind <- kcTyVar name + return (HsTyVar name, kind) -kc_hs_type (HsListTy ty) - = kcLiftedType ty `thenM` \ ty' -> - returnM (HsListTy ty', liftedTypeKind) +kc_hs_type (HsListTy ty) = do + ty' <- kcLiftedType ty + return (HsListTy ty', liftedTypeKind) -kc_hs_type (HsPArrTy ty) - = kcLiftedType ty `thenM` \ ty' -> - returnM (HsPArrTy ty', liftedTypeKind) +kc_hs_type (HsPArrTy ty) = do + ty' <- kcLiftedType ty + return (HsPArrTy ty', liftedTypeKind) kc_hs_type (HsNumTy n) - = returnM (HsNumTy n, liftedTypeKind) - -kc_hs_type (HsKindSig ty k) - = kcCheckHsType ty k `thenM` \ ty' -> - returnM (HsKindSig ty' k, k) - -kc_hs_type (HsTupleTy Boxed tys) - = mappM kcLiftedType tys `thenM` \ tys' -> - returnM (HsTupleTy Boxed tys', liftedTypeKind) - -kc_hs_type (HsTupleTy Unboxed tys) - = mappM kcTypeType tys `thenM` \ tys' -> - returnM (HsTupleTy Unboxed tys', ubxTupleKind) - -kc_hs_type (HsFunTy ty1 ty2) - = kcCheckHsType ty1 argTypeKind `thenM` \ ty1' -> - kcTypeType ty2 `thenM` \ ty2' -> - returnM (HsFunTy ty1' ty2', liftedTypeKind) - -kc_hs_type ty@(HsOpTy ty1 op ty2) - = addLocM kcTyVar op `thenM` \ op_kind -> - kcApps op_kind (ppr op) [ty1,ty2] `thenM` \ ([ty1',ty2'], res_kind) -> - returnM (HsOpTy ty1' op ty2', res_kind) - -kc_hs_type ty@(HsAppTy ty1 ty2) - = kcHsType fun_ty `thenM` \ (fun_ty', fun_kind) -> - kcApps fun_kind (ppr fun_ty) arg_tys `thenM` \ ((arg_ty':arg_tys'), res_kind) -> - returnM (foldl mk_app (HsAppTy fun_ty' arg_ty') arg_tys', res_kind) + = return (HsNumTy n, liftedTypeKind) + +kc_hs_type (HsKindSig ty k) = do + ty' <- kcCheckHsType ty k + return (HsKindSig ty' k, k) + +kc_hs_type (HsTupleTy Boxed tys) = do + tys' <- mapM kcLiftedType tys + return (HsTupleTy Boxed tys', liftedTypeKind) + +kc_hs_type (HsTupleTy Unboxed tys) = do + tys' <- mapM kcTypeType tys + return (HsTupleTy Unboxed tys', ubxTupleKind) + +kc_hs_type (HsFunTy ty1 ty2) = do + ty1' <- kcCheckHsType ty1 argTypeKind + ty2' <- kcTypeType ty2 + return (HsFunTy ty1' ty2', liftedTypeKind) + +kc_hs_type (HsOpTy ty1 op ty2) = do + op_kind <- addLocM kcTyVar op + ([ty1',ty2'], res_kind) <- kcApps op_kind (ppr op) [ty1,ty2] + return (HsOpTy ty1' op ty2', res_kind) + +kc_hs_type (HsAppTy ty1 ty2) = do + (fun_ty', fun_kind) <- kcHsType fun_ty + ((arg_ty':arg_tys'), res_kind) <- kcApps fun_kind (ppr fun_ty) arg_tys + return (foldl mk_app (HsAppTy fun_ty' arg_ty') arg_tys', res_kind) where (fun_ty, arg_tys) = split ty1 [ty2] split (L _ (HsAppTy f a)) as = split f (a:as) split f as = (f,as) mk_app fun arg = HsAppTy (noLoc fun) arg -- Add noLocs for inner nodes of - -- the application; they are never used - -kc_hs_type (HsPredTy pred) - = kcHsPred pred `thenM` \ pred' -> - returnM (HsPredTy pred', liftedTypeKind) + -- the application; they are + -- never used + +kc_hs_type (HsPredTy (HsEqualP _ _)) + = wrongEqualityErr + +kc_hs_type (HsPredTy pred) = do + pred' <- kcHsPred pred + return (HsPredTy pred', liftedTypeKind) kc_hs_type (HsForAllTy exp tv_names context ty) - = kcHsTyVars tv_names $ \ tv_names' -> + = kcHsTyVars tv_names $ \ tv_names' -> do { ctxt' <- kcHsContext context ; ty' <- kcLiftedType ty -- The body of a forall is usually a type, but in principle @@ -336,12 +365,12 @@ kc_hs_type (HsForAllTy exp tv_names context ty) ; return (HsForAllTy exp tv_names' ctxt' ty', liftedTypeKind) } -kc_hs_type (HsBangTy b ty) - = do { (ty', kind) <- kcHsType ty - ; return (HsBangTy b ty', kind) } +kc_hs_type (HsBangTy b ty) = do + (ty', kind) <- kcHsType ty + return (HsBangTy b ty', kind) kc_hs_type ty@(HsSpliceTy _) - = failWithTc (ptext SLIT("Unexpected type splice:") <+> ppr ty) + = failWithTc (ptext (sLit "Unexpected type splice:") <+> ppr ty) -- remove the doc nodes here, no need to worry about the location since -- its the same for a doc node and it's child type node @@ -353,68 +382,77 @@ kcApps :: TcKind -- Function kind -> SDoc -- Function -> [LHsType Name] -- Arg types -> TcM ([LHsType Name], TcKind) -- Kind-checked args -kcApps fun_kind ppr_fun args - = split_fk fun_kind (length args) `thenM` \ (arg_kinds, res_kind) -> - zipWithM kc_arg args arg_kinds `thenM` \ args' -> - returnM (args', res_kind) +kcApps fun_kind ppr_fun args = do + (arg_kinds, res_kind) <- split_fk fun_kind (length args) + args' <- zipWithM kc_arg args arg_kinds + return (args', res_kind) where - split_fk fk 0 = returnM ([], fk) - split_fk fk n = unifyFunKind fk `thenM` \ mb_fk -> - case mb_fk of - Nothing -> failWithTc too_many_args - Just (ak,fk') -> split_fk fk' (n-1) `thenM` \ (aks, rk) -> - returnM (ak:aks, rk) + split_fk fk 0 = return ([], fk) + split_fk fk n = do mb_fk <- unifyFunKind fk + case mb_fk of + Nothing -> failWithTc too_many_args + Just (ak,fk') -> do (aks, rk) <- split_fk fk' (n-1) + return (ak:aks, rk) kc_arg arg arg_kind = kcCheckHsType arg arg_kind - too_many_args = ptext SLIT("Kind error:") <+> quotes ppr_fun <+> - ptext SLIT("is applied to too many type arguments") + too_many_args = ptext (sLit "Kind error:") <+> quotes ppr_fun <+> + ptext (sLit "is applied to too many type arguments") --------------------------- kcHsContext :: LHsContext Name -> TcM (LHsContext Name) -kcHsContext ctxt = wrapLocM (mappM kcHsLPred) ctxt +kcHsContext ctxt = wrapLocM (mapM kcHsLPred) ctxt kcHsLPred :: LHsPred Name -> TcM (LHsPred Name) kcHsLPred = wrapLocM kcHsPred kcHsPred :: HsPred Name -> TcM (HsPred Name) -kcHsPred pred -- Checks that the result is of kind liftedType - = kc_pred pred `thenM` \ (pred', kind) -> - checkExpectedKind pred kind liftedTypeKind `thenM_` - returnM pred' +kcHsPred pred = do -- Checks that the result is of kind liftedType + (pred', kind) <- kc_pred pred + checkExpectedKind pred kind liftedTypeKind + return pred' --------------------------- kc_pred :: HsPred Name -> TcM (HsPred Name, TcKind) -- Does *not* check for a saturated -- application (reason: used from TcDeriv) -kc_pred pred@(HsIParam name ty) - = kcHsType ty `thenM` \ (ty', kind) -> - returnM (HsIParam name ty', kind) - -kc_pred pred@(HsClassP cls tys) - = kcClass cls `thenM` \ kind -> - kcApps kind (ppr cls) tys `thenM` \ (tys', res_kind) -> - returnM (HsClassP cls tys', res_kind) +kc_pred (HsIParam name ty) + = do { (ty', kind) <- kcHsType ty + ; return (HsIParam name ty', kind) + } +kc_pred (HsClassP cls tys) + = do { kind <- kcClass cls + ; (tys', res_kind) <- kcApps kind (ppr cls) tys + ; return (HsClassP cls tys', res_kind) + } +kc_pred (HsEqualP ty1 ty2) + = do { (ty1', kind1) <- kcHsType ty1 +-- ; checkExpectedKind ty1 kind1 liftedTypeKind + ; (ty2', kind2) <- kcHsType ty2 +-- ; checkExpectedKind ty2 kind2 liftedTypeKind + ; checkExpectedKind ty2 kind2 kind1 + ; return (HsEqualP ty1' ty2', liftedTypeKind) + } --------------------------- kcTyVar :: Name -> TcM TcKind -kcTyVar name -- Could be a tyvar or a tycon - = traceTc (text "lk1" <+> ppr name) `thenM_` - tcLookup name `thenM` \ thing -> - traceTc (text "lk2" <+> ppr name <+> ppr thing) `thenM_` +kcTyVar name = do -- Could be a tyvar or a tycon + traceTc (text "lk1" <+> ppr name) + thing <- tcLookup name + traceTc (text "lk2" <+> ppr name <+> ppr thing) case thing of - ATyVar _ ty -> returnM (typeKind ty) - AThing kind -> returnM kind - AGlobal (ATyCon tc) -> returnM (tyConKind tc) - other -> wrongThingErr "type" thing name + ATyVar _ ty -> return (typeKind ty) + AThing kind -> return kind + AGlobal (ATyCon tc) -> return (tyConKind tc) + _ -> wrongThingErr "type" thing name kcClass :: Name -> TcM TcKind -kcClass cls -- Must be a class - = tcLookup cls `thenM` \ thing -> +kcClass cls = do -- Must be a class + thing <- tcLookup cls case thing of - AThing kind -> returnM kind - AGlobal (AClass cls) -> returnM (tyConKind (classTyCon cls)) - other -> wrongThingErr "class" thing cls + AThing kind -> return kind + AGlobal (AClass cls) -> return (tyConKind (classTyCon cls)) + _ -> wrongThingErr "class" thing cls \end{code} @@ -439,66 +477,71 @@ dsHsType :: LHsType Name -> TcM Type -- All HsTyVarBndrs in the intput type are kind-annotated dsHsType ty = ds_type (unLoc ty) -ds_type ty@(HsTyVar name) +ds_type :: HsType Name -> TcM Type +ds_type ty@(HsTyVar _) = ds_app ty [] ds_type (HsParTy ty) -- Remove the parentheses markers = dsHsType ty ds_type ty@(HsBangTy _ _) -- No bangs should be here - = failWithTc (ptext SLIT("Unexpected strictness annotation:") <+> ppr ty) + = failWithTc (ptext (sLit "Unexpected strictness annotation:") <+> ppr ty) -ds_type (HsKindSig ty k) +ds_type (HsKindSig ty _) = dsHsType ty -- Kind checking done already -ds_type (HsListTy ty) - = dsHsType ty `thenM` \ tau_ty -> - checkWiredInTyCon listTyCon `thenM_` - returnM (mkListTy tau_ty) +ds_type (HsListTy ty) = do + tau_ty <- dsHsType ty + checkWiredInTyCon listTyCon + return (mkListTy tau_ty) -ds_type (HsPArrTy ty) - = dsHsType ty `thenM` \ tau_ty -> - checkWiredInTyCon parrTyCon `thenM_` - returnM (mkPArrTy tau_ty) +ds_type (HsPArrTy ty) = do + tau_ty <- dsHsType ty + checkWiredInTyCon parrTyCon + return (mkPArrTy tau_ty) -ds_type (HsTupleTy boxity tys) - = dsHsTypes tys `thenM` \ tau_tys -> - checkWiredInTyCon tycon `thenM_` - returnM (mkTyConApp tycon tau_tys) +ds_type (HsTupleTy boxity tys) = do + tau_tys <- dsHsTypes tys + checkWiredInTyCon tycon + return (mkTyConApp tycon tau_tys) where tycon = tupleTyCon boxity (length tys) -ds_type (HsFunTy ty1 ty2) - = dsHsType ty1 `thenM` \ tau_ty1 -> - dsHsType ty2 `thenM` \ tau_ty2 -> - returnM (mkFunTy tau_ty1 tau_ty2) +ds_type (HsFunTy ty1 ty2) = do + tau_ty1 <- dsHsType ty1 + tau_ty2 <- dsHsType ty2 + return (mkFunTy tau_ty1 tau_ty2) -ds_type (HsOpTy ty1 (L span op) ty2) - = dsHsType ty1 `thenM` \ tau_ty1 -> - dsHsType ty2 `thenM` \ tau_ty2 -> +ds_type (HsOpTy ty1 (L span op) ty2) = do + tau_ty1 <- dsHsType ty1 + tau_ty2 <- dsHsType ty2 setSrcSpan span (ds_var_app op [tau_ty1,tau_ty2]) ds_type (HsNumTy n) - = ASSERT(n==1) - tcLookupTyCon genUnitTyConName `thenM` \ tc -> - returnM (mkTyConApp tc []) + = ASSERT(n==1) do + tc <- tcLookupTyCon genUnitTyConName + return (mkTyConApp tc []) ds_type ty@(HsAppTy _ _) = ds_app ty [] -ds_type (HsPredTy pred) - = dsHsPred pred `thenM` \ pred' -> - returnM (mkPredTy pred') +ds_type (HsPredTy pred) = do + pred' <- dsHsPred pred + return (mkPredTy pred') -ds_type full_ty@(HsForAllTy exp tv_names ctxt ty) - = tcTyVarBndrs tv_names $ \ tyvars -> - mappM dsHsLPred (unLoc ctxt) `thenM` \ theta -> - dsHsType ty `thenM` \ tau -> - returnM (mkSigmaTy tyvars theta tau) +ds_type (HsForAllTy _ tv_names ctxt ty) + = tcTyVarBndrs tv_names $ \ tyvars -> do + theta <- mapM dsHsLPred (unLoc ctxt) + tau <- dsHsType ty + return (mkSigmaTy tyvars theta tau) ds_type (HsSpliceTy {}) = panic "ds_type: HsSpliceTy" -dsHsTypes arg_tys = mappM dsHsType arg_tys +ds_type (HsDocTy ty _) -- Remove the doc comment + = dsHsType ty + +dsHsTypes :: [LHsType Name] -> TcM [Type] +dsHsTypes arg_tys = mapM dsHsType arg_tys \end{code} Help functions for type applications @@ -509,20 +552,20 @@ ds_app :: HsType Name -> [LHsType Name] -> TcM Type ds_app (HsAppTy ty1 ty2) tys = ds_app (unLoc ty1) (ty2:tys) -ds_app ty tys - = dsHsTypes tys `thenM` \ arg_tys -> +ds_app ty tys = do + arg_tys <- dsHsTypes tys case ty of HsTyVar fun -> ds_var_app fun arg_tys - other -> ds_type ty `thenM` \ fun_ty -> - returnM (mkAppTys fun_ty arg_tys) + _ -> do fun_ty <- ds_type ty + return (mkAppTys fun_ty arg_tys) ds_var_app :: Name -> [Type] -> TcM Type -ds_var_app name arg_tys - = tcLookup name `thenM` \ thing -> +ds_var_app name arg_tys = do + thing <- tcLookup name case thing of - ATyVar _ ty -> returnM (mkAppTys ty arg_tys) - AGlobal (ATyCon tc) -> returnM (mkTyConApp tc arg_tys) - other -> wrongThingErr "type" thing name + ATyVar _ ty -> return (mkAppTys ty arg_tys) + AGlobal (ATyCon tc) -> return (mkTyConApp tc arg_tys) + _ -> wrongThingErr "type" thing name \end{code} @@ -533,49 +576,54 @@ Contexts dsHsLPred :: LHsPred Name -> TcM PredType dsHsLPred pred = dsHsPred (unLoc pred) -dsHsPred pred@(HsClassP class_name tys) - = dsHsTypes tys `thenM` \ arg_tys -> - tcLookupClass class_name `thenM` \ clas -> - returnM (ClassP clas arg_tys) - +dsHsPred :: HsPred Name -> TcM PredType +dsHsPred (HsClassP class_name tys) + = do { arg_tys <- dsHsTypes tys + ; clas <- tcLookupClass class_name + ; return (ClassP clas arg_tys) + } +dsHsPred (HsEqualP ty1 ty2) + = do { arg_ty1 <- dsHsType ty1 + ; arg_ty2 <- dsHsType ty2 + ; return (EqPred arg_ty1 arg_ty2) + } dsHsPred (HsIParam name ty) - = dsHsType ty `thenM` \ arg_ty -> - returnM (IParam name arg_ty) + = do { arg_ty <- dsHsType ty + ; return (IParam name arg_ty) + } \end{code} GADT constructor signatures \begin{code} tcLHsConResTy :: LHsType Name -> TcM (TyCon, [TcType]) -tcLHsConResTy res_ty - = addErrCtxt (gadtResCtxt res_ty) $ - case get_largs res_ty [] of +tcLHsConResTy (L span res_ty) + = setSrcSpan span $ + case get_args res_ty [] of (HsTyVar tc_name, args) -> do { args' <- mapM dsHsType args ; thing <- tcLookup tc_name ; case thing of AGlobal (ATyCon tc) -> return (tc, args') - other -> failWithTc (badGadtDecl res_ty) } - other -> failWithTc (badGadtDecl res_ty) + _ -> failWithTc (badGadtDecl res_ty) } + _ -> failWithTc (badGadtDecl res_ty) where -- We can't call dsHsType on res_ty, and then do tcSplitTyConApp_maybe -- because that causes a black hole, and for good reason. Building -- the type means expanding type synonyms, and we can't do that -- inside the "knot". So we have to work by steam. - get_largs (L _ ty) args = get_args ty args - get_args (HsAppTy fun arg) args = get_largs fun (arg:args) - get_args (HsParTy ty) args = get_largs ty args - get_args (HsOpTy ty1 (L span tc) ty2) args = (HsTyVar tc, ty1:ty2:args) - get_args ty args = (ty, args) - -gadtResCtxt ty - = hang (ptext SLIT("In the result type of a data constructor:")) - 2 (ppr ty) + get_args (HsAppTy (L _ fun) arg) args = get_args fun (arg:args) + get_args (HsParTy (L _ ty)) args = get_args ty args + get_args (HsOpTy ty1 (L _ tc) ty2) args = (HsTyVar tc, ty1:ty2:args) + get_args ty args = (ty, args) + +badGadtDecl :: HsType Name -> SDoc badGadtDecl ty - = hang (ptext SLIT("Malformed constructor result type:")) + = hang (ptext (sLit "Malformed constructor result type:")) 2 (ppr ty) -typeCtxt ty = ptext SLIT("In the type") <+> quotes (ppr ty) +typeCtxt :: HsType Name -> SDoc +typeCtxt ty = ptext (sLit "In the type") <+> quotes (ppr ty) \end{code} %************************************************************************ @@ -590,15 +638,14 @@ kcHsTyVars :: [LHsTyVarBndr Name] -> ([LHsTyVarBndr Name] -> TcM r) -- These binders are kind-annotated -- They scope over the thing inside -> TcM r -kcHsTyVars tvs thing_inside - = mappM (wrapLocM kcHsTyVar) tvs `thenM` \ bndrs -> +kcHsTyVars tvs thing_inside = do + bndrs <- mapM (wrapLocM kcHsTyVar) tvs tcExtendKindEnvTvs bndrs (thing_inside bndrs) kcHsTyVar :: HsTyVarBndr Name -> TcM (HsTyVarBndr Name) -- Return a *kind-annotated* binder, and a tyvar with a mutable kind in it -kcHsTyVar (UserTyVar name) = newKindVar `thenM` \ kind -> - returnM (KindedTyVar name kind) -kcHsTyVar (KindedTyVar name kind) = returnM (KindedTyVar name kind) +kcHsTyVar (UserTyVar name) = KindedTyVar name <$> newKindVar +kcHsTyVar (KindedTyVar name kind) = return (KindedTyVar name kind) ------------------ tcTyVarBndrs :: [LHsTyVarBndr Name] -- Kind-annotated binders, which need kind-zonking @@ -606,13 +653,13 @@ tcTyVarBndrs :: [LHsTyVarBndr Name] -- Kind-annotated binders, which need kind- -> TcM r -- Used when type-checking types/classes/type-decls -- Brings into scope immutable TyVars, not mutable ones that require later zonking -tcTyVarBndrs bndrs thing_inside - = mapM (zonk . unLoc) bndrs `thenM` \ tyvars -> +tcTyVarBndrs bndrs thing_inside = do + tyvars <- mapM (zonk . unLoc) bndrs tcExtendTyVarEnv tyvars (thing_inside tyvars) where zonk (KindedTyVar name kind) = do { kind' <- zonkTcKindToKind kind ; return (mkTyVar name kind') } - zonk (UserTyVar name) = pprTrace "Un-kinded tyvar" (ppr name) $ + zonk (UserTyVar name) = WARN( True, ptext (sLit "Un-kinded tyvar") <+> ppr name ) return (mkTyVar name liftedTypeKind) ----------------------------------- @@ -627,9 +674,8 @@ tcDataKindSig (Just kind) = do { checkTc (isLiftedTypeKind res_kind) (badKindSig kind) ; span <- getSrcSpanM ; us <- newUniqueSupply - ; let loc = srcSpanStart span - uniqs = uniqsFromSupply us - ; return [ mk_tv loc uniq str kind + ; let uniqs = uniqsFromSupply us + ; return [ mk_tv span uniq str kind | ((kind, str), uniq) <- arg_kinds `zip` names `zip` uniqs ] } where (arg_kinds, res_kind) = splitKindFunTys kind @@ -643,7 +689,7 @@ tcDataKindSig (Just kind) badKindSig :: Kind -> SDoc badKindSig kind - = hang (ptext SLIT("Kind signature on data type declaration has non-* return kind")) + = hang (ptext (sLit "Kind signature on data type declaration has non-* return kind")) 2 (ppr kind) \end{code} @@ -708,16 +754,10 @@ tcHsPatSigType ctxt hs_ty | n <- nameSetToList (extractHsTyVars hs_ty), not (in_scope n) ] - -- Behave very like type-checking (HsForAllTy sig_tvs hs_ty), - -- except that we want to keep the tvs separate - ; (kinded_tvs, kinded_ty) <- kcHsTyVars sig_tvs $ \ kinded_tvs -> do - { kinded_ty <- kcTypeType hs_ty - ; return (kinded_tvs, kinded_ty) } - ; tcTyVarBndrs kinded_tvs $ \ tyvars -> do - { sig_ty <- dsHsType kinded_ty + ; (tyvars, sig_ty) <- tcHsQuantifiedType sig_tvs hs_ty ; checkValidType ctxt sig_ty ; return (tyvars, sig_ty) - } } + } tcPatSig :: UserTypeCtxt -> LHsType Name @@ -743,7 +783,7 @@ tcPatSig ctxt sig res_ty -- So we just have an ASSERT here ; let in_pat_bind = case ctxt of BindPatSigCtxt -> True - other -> False + _ -> False ; ASSERT( not in_pat_bind || null sig_tvs ) return () -- Check that pat_ty is rigid @@ -768,7 +808,7 @@ tcPatSig ctxt sig res_ty ; return (res_ty, tv_binds) } } where - check in_scope [] = return () + check _ [] = return () check in_scope ((n,ty):rest) = do { check_one in_scope n ty ; check ((n,ty):in_scope) rest } @@ -794,31 +834,36 @@ tcPatSig ctxt sig res_ty \begin{code} pprHsSigCtxt :: UserTypeCtxt -> LHsType Name -> SDoc -pprHsSigCtxt ctxt hs_ty = vcat [ ptext SLIT("In") <+> pprUserTypeCtxt ctxt <> colon, +pprHsSigCtxt ctxt hs_ty = vcat [ ptext (sLit "In") <+> pprUserTypeCtxt ctxt <> colon, nest 2 (pp_sig ctxt) ] where pp_sig (FunSigCtxt n) = pp_n_colon n pp_sig (ConArgCtxt n) = pp_n_colon n pp_sig (ForSigCtxt n) = pp_n_colon n - pp_sig (RuleSigCtxt n) = pp_n_colon n - pp_sig other = ppr (unLoc hs_ty) + pp_sig _ = ppr (unLoc hs_ty) pp_n_colon n = ppr n <+> dcolon <+> ppr (unLoc hs_ty) - +wobblyPatSig :: [Var] -> SDoc wobblyPatSig sig_tvs - = hang (ptext SLIT("A pattern type signature cannot bind scoped type variables") + = hang (ptext (sLit "A pattern type signature cannot bind scoped type variables") <+> pprQuotedList sig_tvs) - 2 (ptext SLIT("unless the pattern has a rigid type context")) + 2 (ptext (sLit "unless the pattern has a rigid type context")) +scopedNonVar :: Name -> Type -> SDoc scopedNonVar n ty - = vcat [sep [ptext SLIT("The scoped type variable") <+> quotes (ppr n), - nest 2 (ptext SLIT("is bound to the type") <+> quotes (ppr ty))], - nest 2 (ptext SLIT("You can only bind scoped type variables to type variables"))] - -dupInScope n n' ty - = hang (ptext SLIT("The scoped type variables") <+> quotes (ppr n) <+> ptext SLIT("and") <+> quotes (ppr n')) - 2 (vcat [ptext SLIT("are bound to the same type (variable)"), - ptext SLIT("Distinct scoped type variables must be distinct")]) + = vcat [sep [ptext (sLit "The scoped type variable") <+> quotes (ppr n), + nest 2 (ptext (sLit "is bound to the type") <+> quotes (ppr ty))], + nest 2 (ptext (sLit "You can only bind scoped type variables to type variables"))] + +dupInScope :: Name -> Name -> Type -> SDoc +dupInScope n n' _ + = hang (ptext (sLit "The scoped type variables") <+> quotes (ppr n) <+> ptext (sLit "and") <+> quotes (ppr n')) + 2 (vcat [ptext (sLit "are bound to the same type (variable)"), + ptext (sLit "Distinct scoped type variables must be distinct")]) + +wrongEqualityErr :: TcM (HsType Name, TcKind) +wrongEqualityErr + = failWithTc (text "Equality predicate used as a type") \end{code}