X-Git-Url: http://git.megacz.com/?p=ghc-hetmet.git;a=blobdiff_plain;f=compiler%2Ftypecheck%2FTcHsType.lhs;h=4fe6b60376461ec9bc3b870cf7fb99f13e1a4114;hp=091296abc735cfe2d8b589d4cb3bbda558dc64a4;hb=HEAD;hpb=2058d7802ae1f054d8bb0b34a72ce69b4b63bf56 diff --git a/compiler/typecheck/TcHsType.lhs b/compiler/typecheck/TcHsType.lhs index 091296a..4fe6b60 100644 --- a/compiler/typecheck/TcHsType.lhs +++ b/compiler/typecheck/TcHsType.lhs @@ -6,18 +6,18 @@ \begin{code} module TcHsType ( - tcHsSigType, tcHsDeriv, + tcHsSigType, tcHsSigTypeNC, tcHsDeriv, tcHsInstHead, tcHsQuantifiedType, UserTypeCtxt(..), -- Kind checking kcHsTyVars, kcHsSigType, kcHsLiftedSigType, - kcCheckHsType, kcHsContext, kcHsType, + kcLHsType, kcCheckLHsType, kcHsContext, -- Typechecking kinded types tcHsKindedContext, tcHsKindedType, tcHsBangType, - tcTyVarBndrs, dsHsType, tcLHsConResTy, - tcDataKindSig, + tcTyVarBndrs, dsHsType, kcHsLPred, dsHsLPred, + tcDataKindSig, ExpKind(..), EkCtxt(..), -- Pattern type signatures tcHsPatSigType, tcPatSig @@ -25,6 +25,10 @@ module TcHsType ( #include "HsVersions.h" +#ifdef GHCI /* Only if bootstrapped */ +import {-# SOURCE #-} TcSplice( kcSpliceType ) +#endif + import HsSyn import RnHsSyn import TcRnMonad @@ -33,22 +37,21 @@ import TcMType import TcUnify import TcIface import TcType +import TysPrim ( ecKind ) import {- Kind parts of -} Type import Var +import VarSet import TyCon import Class import Name -import OccName import NameSet -import PrelNames import TysWiredIn import BasicTypes import SrcLoc +import Util import UniqSupply import Outputable import FastString - -import Control.Monad \end{code} @@ -135,25 +138,53 @@ the TyCon being defined. %************************************************************************ \begin{code} -tcHsSigType :: UserTypeCtxt -> LHsType Name -> TcM Type +tcHsSigType, tcHsSigTypeNC :: UserTypeCtxt -> LHsType Name -> TcM Type -- Do kind checking, and hoist for-alls to the top -- NB: it's important that the foralls that come from the top-level -- HsForAllTy in hs_ty occur *first* in the returned type. -- See Note [Scoped] with TcSigInfo tcHsSigType ctxt hs_ty = addErrCtxt (pprHsSigCtxt ctxt hs_ty) $ - do { kinded_ty <- kcTypeType hs_ty + tcHsSigTypeNC ctxt hs_ty + +tcHsSigTypeNC ctxt hs_ty + = do { (kinded_ty, _kind) <- kc_lhs_type hs_ty + -- The kind is checked by checkValidType, and isn't necessarily + -- of kind * in a Template Haskell quote eg [t| Maybe |] ; ty <- tcHsKindedType kinded_ty ; checkValidType ctxt ty ; return ty } -tcHsInstHead :: LHsType Name -> TcM ([TyVar], ThetaType, Type) +tcHsInstHead :: LHsType Name -> TcM ([TyVar], ThetaType, Class, [Type]) -- Typecheck an instance head. We can't use -- tcHsSigType, because it's not a valid user type. -tcHsInstHead hs_ty - = do { kinded_ty <- kcHsSigType hs_ty - ; poly_ty <- tcHsKindedType kinded_ty - ; return (tcSplitSigmaTy poly_ty) } +tcHsInstHead (L loc hs_ty) + = setSrcSpan loc $ -- No need for an "In the type..." context + -- because that comes from the caller + do { kinded_ty <- kc_inst_head hs_ty + ; ds_inst_head kinded_ty } + where + kc_inst_head ty@(HsPredTy pred@(HsClassP {})) + = do { (pred', kind) <- kc_pred pred + ; checkExpectedKind ty kind ekLifted + ; return (HsPredTy pred') } + kc_inst_head (HsForAllTy exp tv_names context (L loc ty)) + = kcHsTyVars tv_names $ \ tv_names' -> + do { ctxt' <- kcHsContext context + ; ty' <- kc_inst_head ty + ; return (HsForAllTy exp tv_names' ctxt' (L loc ty')) } + kc_inst_head _ = failWithTc (ptext (sLit "Malformed instance type")) + + ds_inst_head (HsPredTy (HsClassP cls_name tys)) + = do { clas <- tcLookupClass cls_name + ; arg_tys <- dsHsTypes tys + ; return ([], [], clas, arg_tys) } + ds_inst_head (HsForAllTy _ tvs ctxt (L _ tau)) + = tcTyVarBndrs tvs $ \ tvs' -> + do { ctxt' <- mapM dsHsLPred (unLoc ctxt) + ; (tvs_r, ctxt_r, cls, tys) <- ds_inst_head tau + ; return (tvs' ++ tvs_r, ctxt' ++ ctxt_r , cls, tys) } + ds_inst_head _ = panic "ds_inst_head" tcHsQuantifiedType :: [LHsTyVarBndr Name] -> LHsType Name -> TcM ([TyVar], Type) -- Behave very like type-checking (HsForAllTy sig_tvs hs_ty), @@ -166,15 +197,15 @@ tcHsQuantifiedType tv_names hs_ty ; return (tvs, ty) } } -- Used for the deriving(...) items -tcHsDeriv :: LHsType Name -> TcM ([TyVar], Class, [Type]) -tcHsDeriv = addLocM (tc_hs_deriv []) +tcHsDeriv :: HsType Name -> TcM ([TyVar], Class, [Type]) +tcHsDeriv = tc_hs_deriv [] tc_hs_deriv :: [LHsTyVarBndr Name] -> HsType Name -> TcM ([TyVar], Class, [Type]) tc_hs_deriv tv_names (HsPredTy (HsClassP cls_name hs_tys)) = kcHsTyVars tv_names $ \ tv_names' -> do { cls_kind <- kcClass cls_name - ; (tys, _res_kind) <- kcApps cls_kind (ppr cls_name) hs_tys + ; (tys, _res_kind) <- kcApps cls_name cls_kind hs_tys ; tcTyVarBndrs tv_names' $ \ tyvars -> do { arg_tys <- dsHsTypes tys ; cls <- tcLookupClass cls_name @@ -197,8 +228,8 @@ tc_hs_deriv _ other \begin{code} kcHsSigType, kcHsLiftedSigType :: LHsType Name -> TcM (LHsType Name) -- Used for type signatures -kcHsSigType ty = kcTypeType ty -kcHsLiftedSigType ty = kcLiftedType ty +kcHsSigType ty = addKcTypeCtxt ty $ kcTypeType ty +kcHsLiftedSigType ty = addKcTypeCtxt ty $ kcLiftedType ty tcHsKindedType :: LHsType Name -> TcM Type -- Don't do kind checking, nor validity checking. @@ -231,39 +262,59 @@ tcHsKindedContext hs_theta = addLocM (mapM dsHsLPred) hs_theta --------------------------- kcLiftedType :: LHsType Name -> TcM (LHsType Name) -- The type ty must be a *lifted* *type* -kcLiftedType ty = kcCheckHsType ty liftedTypeKind +kcLiftedType ty = kc_check_lhs_type ty ekLifted --------------------------- kcTypeType :: LHsType Name -> TcM (LHsType Name) -- The type ty must be a *type*, but it can be lifted or -- unlifted or an unboxed tuple. -kcTypeType ty = kcCheckHsType ty openTypeKind +kcTypeType ty = kc_check_lhs_type ty ekOpen --------------------------- -kcCheckHsType :: LHsType Name -> TcKind -> TcM (LHsType Name) +kcCheckLHsType :: LHsType Name -> ExpKind -> TcM (LHsType Name) +kcCheckLHsType ty kind = addKcTypeCtxt ty $ kc_check_lhs_type ty kind + + +kc_check_lhs_type :: LHsType Name -> ExpKind -> TcM (LHsType Name) -- Check that the type has the specified kind -- Be sure to use checkExpectedKind, rather than simply unifying -- with OpenTypeKind, because it gives better error messages -kcCheckHsType (L span ty) exp_kind - = setSrcSpan span $ - do { (ty', act_kind) <- add_ctxt ty (kc_hs_type ty) +kc_check_lhs_type (L span ty) exp_kind + = setSrcSpan span $ + do { ty' <- kc_check_hs_type ty exp_kind + ; return (L span ty') } + +kc_check_lhs_types :: [(LHsType Name, ExpKind)] -> TcM [LHsType Name] +kc_check_lhs_types tys_w_kinds + = mapM kc_arg tys_w_kinds + where + kc_arg (arg, arg_kind) = kc_check_lhs_type arg arg_kind + + +--------------------------- +kc_check_hs_type :: HsType Name -> ExpKind -> TcM (HsType Name) + +-- First some special cases for better error messages +-- when we know the expected kind +kc_check_hs_type (HsParTy ty) exp_kind + = do { ty' <- kc_check_lhs_type ty exp_kind; return (HsParTy ty') } + +kc_check_hs_type ty@(HsAppTy ty1 ty2) exp_kind + = do { let (fun_ty, arg_tys) = splitHsAppTys ty1 [ty2] + ; (fun_ty', fun_kind) <- kc_lhs_type fun_ty + ; arg_tys' <- kcCheckApps fun_ty fun_kind arg_tys ty exp_kind + ; return (mkHsAppTys fun_ty' arg_tys') } + +-- This is the general case: infer the kind and compare +kc_check_hs_type ty exp_kind + = do { (ty', act_kind) <- kc_hs_type ty -- Add the context round the inner check only -- because checkExpectedKind already mentions -- 'ty' by name in any error message ; checkExpectedKind (strip ty) act_kind exp_kind - ; return (L span ty') } + ; return ty' } where - -- Wrap a context around only if we want to show that contexts. - add_ctxt (HsPredTy _) thing = thing - -- Omit invisble ones and ones user's won't grok (HsPred p). - add_ctxt (HsForAllTy _ _ (L _ []) _) thing = thing - -- Omit wrapping if the theta-part is empty - -- Reason: the recursive call to kcLiftedType, in the ForAllTy - -- case of kc_hs_type, will do the wrapping instead - -- and we don't want to duplicate - add_ctxt other_ty thing = addErrCtxt (typeCtxt other_ty) thing - -- We infer the kind of the type, and then complain if it's -- not right. But we don't want to complain about -- (ty) or !(ty) or forall a. ty @@ -277,9 +328,17 @@ kcCheckHsType (L span ty) exp_kind Here comes the main function \begin{code} -kcHsType :: LHsType Name -> TcM (LHsType Name, TcKind) -kcHsType ty = wrapLocFstM kc_hs_type ty --- kcHsType *returns* the kind of the type, rather than taking an expected +kcLHsType :: LHsType Name -> TcM (LHsType Name, TcKind) +-- Called from outside: set the context +kcLHsType ty = addKcTypeCtxt ty (kc_lhs_type ty) + +kc_lhs_type :: LHsType Name -> TcM (LHsType Name, TcKind) +kc_lhs_type (L span ty) + = setSrcSpan span $ + do { (ty', kind) <- kc_hs_type ty + ; return (L span ty', kind) } + +-- kc_hs_type *returns* the kind of the type, rather than taking an expected -- kind as argument as tcExpr does. -- Reasons: -- (a) the kind of (->) is @@ -291,7 +350,7 @@ kcHsType ty = wrapLocFstM kc_hs_type ty kc_hs_type :: HsType Name -> TcM (HsType Name, TcKind) kc_hs_type (HsParTy ty) = do - (ty', kind) <- kcHsType ty + (ty', kind) <- kc_lhs_type ty return (HsParTy ty', kind) kc_hs_type (HsTyVar name) = do @@ -306,11 +365,18 @@ kc_hs_type (HsPArrTy ty) = do ty' <- kcLiftedType ty return (HsPArrTy ty', liftedTypeKind) -kc_hs_type (HsNumTy n) - = return (HsNumTy n, liftedTypeKind) +kc_hs_type (HsModalBoxType ecn ty) = do + kc_check_hs_type (HsTyVar ecn) (EK ecKind EkUnk) + ty' <- kcLiftedType ty + return (HsModalBoxType ecn ty', liftedTypeKind) + +kc_hs_type (HsKappaTy ty1 ty2) = do + ty1' <- kc_check_lhs_type ty1 (EK argTypeKind EkUnk) + ty2' <- kcTypeType ty2 + return (HsKappaTy ty1' ty2', liftedTypeKind) kc_hs_type (HsKindSig ty k) = do - ty' <- kcCheckHsType ty k + ty' <- kc_check_lhs_type ty (EK k EkKindSig) return (HsKindSig ty' k, k) kc_hs_type (HsTupleTy Boxed tys) = do @@ -322,33 +388,26 @@ kc_hs_type (HsTupleTy Unboxed tys) = do return (HsTupleTy Unboxed tys', ubxTupleKind) kc_hs_type (HsFunTy ty1 ty2) = do - ty1' <- kcCheckHsType ty1 argTypeKind + ty1' <- kc_check_lhs_type ty1 (EK argTypeKind EkUnk) ty2' <- kcTypeType ty2 return (HsFunTy ty1' ty2', liftedTypeKind) kc_hs_type (HsOpTy ty1 op ty2) = do op_kind <- addLocM kcTyVar op - ([ty1',ty2'], res_kind) <- kcApps op_kind (ppr op) [ty1,ty2] + ([ty1',ty2'], res_kind) <- kcApps op op_kind [ty1,ty2] return (HsOpTy ty1' op ty2', res_kind) kc_hs_type (HsAppTy ty1 ty2) = do - (fun_ty', fun_kind) <- kcHsType fun_ty - ((arg_ty':arg_tys'), res_kind) <- kcApps fun_kind (ppr fun_ty) arg_tys - return (foldl mk_app (HsAppTy fun_ty' arg_ty') arg_tys', res_kind) - where - (fun_ty, arg_tys) = split ty1 [ty2] - split (L _ (HsAppTy f a)) as = split f (a:as) - split f as = (f,as) - mk_app fun arg = HsAppTy (noLoc fun) arg -- Add noLocs for inner nodes of - -- the application; they are - -- never used + let (fun_ty, arg_tys) = splitHsAppTys ty1 [ty2] + (fun_ty', fun_kind) <- kc_lhs_type fun_ty + (arg_tys', res_kind) <- kcApps fun_ty fun_kind arg_tys + return (mkHsAppTys fun_ty' arg_tys', res_kind) -kc_hs_type (HsPredTy (HsEqualP _ _)) - = wrongEqualityErr +kc_hs_type (HsPredTy pred) + = wrongPredErr pred -kc_hs_type (HsPredTy pred) = do - pred' <- kcHsPred pred - return (HsPredTy pred', liftedTypeKind) +kc_hs_type (HsCoreTy ty) + = return (HsCoreTy ty, typeKind ty) kc_hs_type (HsForAllTy exp tv_names context ty) = kcHsTyVars tv_names $ \ tv_names' -> @@ -365,12 +424,22 @@ kc_hs_type (HsForAllTy exp tv_names context ty) ; return (HsForAllTy exp tv_names' ctxt' ty', liftedTypeKind) } -kc_hs_type (HsBangTy b ty) = do - (ty', kind) <- kcHsType ty - return (HsBangTy b ty', kind) +kc_hs_type (HsBangTy b ty) + = do { (ty', kind) <- kc_lhs_type ty + ; return (HsBangTy b ty', kind) } + +kc_hs_type ty@(HsRecTy _) + = failWithTc (ptext (sLit "Unexpected record type") <+> ppr ty) + -- Record types (which only show up temporarily in constructor signatures) + -- should have been removed by now -kc_hs_type ty@(HsSpliceTy _) - = failWithTc (ptext (sLit "Unexpected type splice:") <+> ppr ty) +#ifdef GHCI /* Only if bootstrapped */ +kc_hs_type (HsSpliceTy sp fvs _) = kcSpliceType sp fvs +#else +kc_hs_type ty@(HsSpliceTy {}) = failWithTc (ptext (sLit "Unexpected type splice:") <+> ppr ty) +#endif + +kc_hs_type (HsQuasiQuoteTy {}) = panic "kc_hs_type" -- Eliminated by renamer -- remove the doc nodes here, no need to worry about the location since -- its the same for a doc node and it's child type node @@ -378,25 +447,39 @@ kc_hs_type (HsDocTy ty _) = kc_hs_type (unLoc ty) --------------------------- -kcApps :: TcKind -- Function kind - -> SDoc -- Function +kcApps :: Outputable a + => a + -> TcKind -- Function kind -> [LHsType Name] -- Arg types -> TcM ([LHsType Name], TcKind) -- Kind-checked args -kcApps fun_kind ppr_fun args = do - (arg_kinds, res_kind) <- split_fk fun_kind (length args) - args' <- zipWithM kc_arg args arg_kinds - return (args', res_kind) - where - split_fk fk 0 = return ([], fk) - split_fk fk n = do mb_fk <- unifyFunKind fk - case mb_fk of - Nothing -> failWithTc too_many_args - Just (ak,fk') -> do (aks, rk) <- split_fk fk' (n-1) - return (ak:aks, rk) +kcApps the_fun fun_kind args + = do { (args_w_kinds, res_kind) <- splitFunKind (ppr the_fun) 1 fun_kind args + ; args' <- kc_check_lhs_types args_w_kinds + ; return (args', res_kind) } + +kcCheckApps :: Outputable a => a -> TcKind -> [LHsType Name] + -> HsType Name -- The type being checked (for err messages only) + -> ExpKind -- Expected kind + -> TcM [LHsType Name] +kcCheckApps the_fun fun_kind args ty exp_kind + = do { (args_w_kinds, res_kind) <- splitFunKind (ppr the_fun) 1 fun_kind args + ; checkExpectedKind ty res_kind exp_kind + -- Check the result kind *before* checking argument kinds + -- This improves error message; Trac #2994 + ; kc_check_lhs_types args_w_kinds } - kc_arg arg arg_kind = kcCheckHsType arg arg_kind - too_many_args = ptext (sLit "Kind error:") <+> quotes ppr_fun <+> +--------------------------- +splitFunKind :: SDoc -> Int -> TcKind -> [b] -> TcM ([(b,ExpKind)], TcKind) +splitFunKind _ _ fk [] = return ([], fk) +splitFunKind the_fun arg_no fk (arg:args) + = do { mb_fk <- matchExpectedFunKind fk + ; case mb_fk of + Nothing -> failWithTc too_many_args + Just (ak,fk') -> do { (aks, rk) <- splitFunKind the_fun (arg_no+1) fk' args + ; return ((arg, EK ak (EkArg the_fun arg_no)):aks, rk) } } + where + too_many_args = quotes the_fun <+> ptext (sLit "is applied to too many type arguments") --------------------------- @@ -407,9 +490,9 @@ kcHsLPred :: LHsPred Name -> TcM (LHsPred Name) kcHsLPred = wrapLocM kcHsPred kcHsPred :: HsPred Name -> TcM (HsPred Name) -kcHsPred pred = do -- Checks that the result is of kind liftedType +kcHsPred pred = do -- Checks that the result is a type kind (pred', kind) <- kc_pred pred - checkExpectedKind pred kind liftedTypeKind + checkExpectedKind pred kind ekOpen return pred' --------------------------- @@ -417,29 +500,24 @@ kc_pred :: HsPred Name -> TcM (HsPred Name, TcKind) -- Does *not* check for a saturated -- application (reason: used from TcDeriv) kc_pred (HsIParam name ty) - = do { (ty', kind) <- kcHsType ty - ; return (HsIParam name ty', kind) - } + = do { (ty', kind) <- kc_lhs_type ty + ; return (HsIParam name ty', kind) } kc_pred (HsClassP cls tys) = do { kind <- kcClass cls - ; (tys', res_kind) <- kcApps kind (ppr cls) tys - ; return (HsClassP cls tys', res_kind) - } + ; (tys', res_kind) <- kcApps cls kind tys + ; return (HsClassP cls tys', res_kind) } kc_pred (HsEqualP ty1 ty2) - = do { (ty1', kind1) <- kcHsType ty1 --- ; checkExpectedKind ty1 kind1 liftedTypeKind - ; (ty2', kind2) <- kcHsType ty2 --- ; checkExpectedKind ty2 kind2 liftedTypeKind - ; checkExpectedKind ty2 kind2 kind1 - ; return (HsEqualP ty1' ty2', liftedTypeKind) - } + = do { (ty1', kind1) <- kc_lhs_type ty1 + ; (ty2', kind2) <- kc_lhs_type ty2 + ; checkExpectedKind ty2 kind2 (EK kind1 EkEqPred) + ; return (HsEqualP ty1' ty2', unliftedTypeKind) } --------------------------- kcTyVar :: Name -> TcM TcKind kcTyVar name = do -- Could be a tyvar or a tycon - traceTc (text "lk1" <+> ppr name) + traceTc "lk1" (ppr name) thing <- tcLookup name - traceTc (text "lk2" <+> ppr name <+> ppr thing) + traceTc "lk2" (ppr name <+> ppr thing) case thing of ATyVar _ ty -> return (typeKind ty) AThing kind -> return kind @@ -484,9 +562,12 @@ ds_type ty@(HsTyVar _) ds_type (HsParTy ty) -- Remove the parentheses markers = dsHsType ty -ds_type ty@(HsBangTy _ _) -- No bangs should be here +ds_type ty@(HsBangTy {}) -- No bangs should be here = failWithTc (ptext (sLit "Unexpected strictness annotation:") <+> ppr ty) +ds_type ty@(HsRecTy {}) -- No bangs should be here + = failWithTc (ptext (sLit "Unexpected record type:") <+> ppr ty) + ds_type (HsKindSig ty _) = dsHsType ty -- Kind checking done already @@ -500,6 +581,16 @@ ds_type (HsPArrTy ty) = do checkWiredInTyCon parrTyCon return (mkPArrTy tau_ty) +ds_type (HsModalBoxType ecn ty) = do + tau_ty <- dsHsType ty + checkWiredInTyCon hetMetCodeTypeTyCon + return (mkHetMetCodeTypeTy (mkTyVar ecn ecKind) tau_ty) + +ds_type (HsKappaTy ty1 ty2) = do + tau_ty1 <- dsHsType ty1 + tau_ty2 <- dsHsType ty2 + return (mkHetMetKappaTy tau_ty1 tau_ty2) + ds_type (HsTupleTy boxity tys) = do tau_tys <- dsHsTypes tys checkWiredInTyCon tycon @@ -517,11 +608,6 @@ ds_type (HsOpTy ty1 (L span op) ty2) = do tau_ty2 <- dsHsType ty2 setSrcSpan span (ds_var_app op [tau_ty1,tau_ty2]) -ds_type (HsNumTy n) - = ASSERT(n==1) do - tc <- tcLookupTyCon genUnitTyConName - return (mkTyConApp tc []) - ds_type ty@(HsAppTy _ _) = ds_app ty [] @@ -535,11 +621,16 @@ ds_type (HsForAllTy _ tv_names ctxt ty) tau <- dsHsType ty return (mkSigmaTy tyvars theta tau) -ds_type (HsSpliceTy {}) = panic "ds_type: HsSpliceTy" - ds_type (HsDocTy ty _) -- Remove the doc comment = dsHsType ty +ds_type (HsSpliceTy _ _ kind) + = do { kind' <- zonkTcKindToKind kind + ; newFlexiTyVarTy kind' } + +ds_type (HsQuasiQuoteTy {}) = panic "ds_type" -- Eliminated by renamer +ds_type (HsCoreTy ty) = return ty + dsHsTypes :: [LHsType Name] -> TcM [Type] dsHsTypes arg_tys = mapM dsHsType arg_tys \end{code} @@ -593,34 +684,12 @@ dsHsPred (HsIParam name ty) } \end{code} -GADT constructor signatures - \begin{code} -tcLHsConResTy :: LHsType Name -> TcM (TyCon, [TcType]) -tcLHsConResTy (L span res_ty) - = setSrcSpan span $ - case get_args res_ty [] of - (HsTyVar tc_name, args) - -> do { args' <- mapM dsHsType args - ; thing <- tcLookup tc_name - ; case thing of - AGlobal (ATyCon tc) -> return (tc, args') - _ -> failWithTc (badGadtDecl res_ty) } - _ -> failWithTc (badGadtDecl res_ty) - where - -- We can't call dsHsType on res_ty, and then do tcSplitTyConApp_maybe - -- because that causes a black hole, and for good reason. Building - -- the type means expanding type synonyms, and we can't do that - -- inside the "knot". So we have to work by steam. - get_args (HsAppTy (L _ fun) arg) args = get_args fun (arg:args) - get_args (HsParTy (L _ ty)) args = get_args ty args - get_args (HsOpTy ty1 (L _ tc) ty2) args = (HsTyVar tc, ty1:ty2:args) - get_args ty args = (ty, args) - -badGadtDecl :: HsType Name -> SDoc -badGadtDecl ty - = hang (ptext (sLit "Malformed constructor result type:")) - 2 (ppr ty) +addKcTypeCtxt :: LHsType Name -> TcM a -> TcM a + -- Wrap a context around only if we want to show that contexts. +addKcTypeCtxt (L _ (HsPredTy _)) thing = thing + -- Omit invisble ones and ones user's won't grok (HsPred p). +addKcTypeCtxt (L _ other_ty) thing = addErrCtxt (typeCtxt other_ty) thing typeCtxt :: HsType Name -> SDoc typeCtxt ty = ptext (sLit "In the type") <+> quotes (ppr ty) @@ -638,14 +707,14 @@ kcHsTyVars :: [LHsTyVarBndr Name] -> ([LHsTyVarBndr Name] -> TcM r) -- These binders are kind-annotated -- They scope over the thing inside -> TcM r -kcHsTyVars tvs thing_inside = do - bndrs <- mapM (wrapLocM kcHsTyVar) tvs - tcExtendKindEnvTvs bndrs (thing_inside bndrs) +kcHsTyVars tvs thing_inside + = do { kinded_tvs <- mapM (wrapLocM kcHsTyVar) tvs + ; tcExtendKindEnvTvs kinded_tvs thing_inside } kcHsTyVar :: HsTyVarBndr Name -> TcM (HsTyVarBndr Name) -- Return a *kind-annotated* binder, and a tyvar with a mutable kind in it -kcHsTyVar (UserTyVar name) = KindedTyVar name <$> newKindVar -kcHsTyVar (KindedTyVar name kind) = return (KindedTyVar name kind) +kcHsTyVar (UserTyVar name _) = UserTyVar name <$> newKindVar +kcHsTyVar tv@(KindedTyVar {}) = return tv ------------------ tcTyVarBndrs :: [LHsTyVarBndr Name] -- Kind-annotated binders, which need kind-zonking @@ -657,10 +726,9 @@ tcTyVarBndrs bndrs thing_inside = do tyvars <- mapM (zonk . unLoc) bndrs tcExtendTyVarEnv tyvars (thing_inside tyvars) where - zonk (KindedTyVar name kind) = do { kind' <- zonkTcKindToKind kind - ; return (mkTyVar name kind') } - zonk (UserTyVar name) = WARN( True, ptext (sLit "Un-kinded tyvar") <+> ppr name ) - return (mkTyVar name liftedTypeKind) + zonk (UserTyVar name kind) = do { kind' <- zonkTcKindToKind kind + ; return (mkTyVar name kind') } + zonk (KindedTyVar name kind) = return (mkTyVar name kind) ----------------------------------- tcDataKindSig :: Maybe Kind -> TcM [TyVar] @@ -676,15 +744,17 @@ tcDataKindSig (Just kind) ; us <- newUniqueSupply ; let uniqs = uniqsFromSupply us ; return [ mk_tv span uniq str kind - | ((kind, str), uniq) <- arg_kinds `zip` names `zip` uniqs ] } + | ((kind, str), uniq) <- arg_kinds `zip` dnames `zip` uniqs ] } where (arg_kinds, res_kind) = splitKindFunTys kind mk_tv loc uniq str kind = mkTyVar name kind where name = mkInternalName uniq occ loc occ = mkOccName tvName str + + dnames = map ('$' :) names -- Note [Avoid name clashes for associated data types] - names :: [String] -- a,b,c...aa,ab,ac etc + names :: [String] names = [ c:cs | cs <- "" : names, c <- ['a'..'z'] ] badKindSig :: Kind -> SDoc @@ -693,6 +763,24 @@ badKindSig kind 2 (ppr kind) \end{code} +Note [Avoid name clashes for associated data types] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Consider class C a b where + data D b :: * -> * +When typechecking the decl for D, we'll invent an extra type variable for D, +to fill out its kind. We *don't* want this type variable to be 'a', because +in an .hi file we'd get + class C a b where + data D b a +which makes it look as if there are *two* type indices. But there aren't! +So we use $a instead, which cannot clash with a user-written type variable. +Remember that type variable binders in interface files are just FastStrings, +not proper Names. + +(The tidying phase can't help here because we don't tidy TyCons. Another +alternative would be to record the number of indexing parameters in the +interface file.) + %************************************************************************ %* * @@ -750,9 +838,9 @@ tcHsPatSigType ctxt hs_ty -- should be bound by the pattern signature in_scope <- getInLocalScope ; let span = getLoc hs_ty - sig_tvs = [ L span (UserTyVar n) - | n <- nameSetToList (extractHsTyVars hs_ty), - not (in_scope n) ] + sig_tvs = userHsTyVarBndrs $ map (L span) $ + filterOut in_scope $ + nameSetToList (extractHsTyVars hs_ty) ; (tyvars, sig_ty) <- tcHsQuantifiedType sig_tvs hs_ty ; checkValidType ctxt sig_ty @@ -761,20 +849,24 @@ tcHsPatSigType ctxt hs_ty tcPatSig :: UserTypeCtxt -> LHsType Name - -> BoxySigmaType + -> TcSigmaType -> TcM (TcType, -- The type to use for "inside" the signature - [(Name,TcType)]) -- The new bit of type environment, binding + [(Name, TcType)], -- The new bit of type environment, binding -- the scoped type variables + HsWrapper) -- Coercion due to unification with actual ty + -- Of shape: res_ty ~ sig_ty tcPatSig ctxt sig res_ty = do { (sig_tvs, sig_ty) <- tcHsPatSigType ctxt sig + -- sig_tvs are the type variables free in 'sig', + -- and not already in scope. These are the ones + -- that should be brought into scope ; if null sig_tvs then do { -- The type signature binds no type variables, -- and hence is rigid, so use it to zap the res_ty - boxyUnify sig_ty res_ty - ; return (sig_ty, []) - - } else do { + wrap <- tcSubType PatSigOrigin ctxt res_ty sig_ty + ; return (sig_ty, [], wrap) + } else do { -- Type signature binds at least one scoped type variable -- A pattern binding cannot bind scoped type variables @@ -786,47 +878,134 @@ tcPatSig ctxt sig res_ty _ -> False ; ASSERT( not in_pat_bind || null sig_tvs ) return () - -- Check that pat_ty is rigid - ; checkTc (isRigidTy res_ty) (wobblyPatSig sig_tvs) - - -- Now match the pattern signature against res_ty - -- For convenience, and uniform-looking error messages - -- we do the matching by allocating meta type variables, - -- unifying, and reading out the results. - -- This is a strictly local operation. - ; box_tvs <- mapM tcInstBoxyTyVar sig_tvs - ; boxyUnify (substTyWith sig_tvs (mkTyVarTys box_tvs) sig_ty) res_ty - ; sig_tv_tys <- mapM readFilledBox box_tvs - - -- Check that each is bound to a distinct type variable, - -- and one that is not already in scope - ; let tv_binds = map tyVarName sig_tvs `zip` sig_tv_tys - ; binds_in_scope <- getScopedTyVarBinds + -- Check that all newly-in-scope tyvars are in fact + -- constrained by the pattern. This catches tiresome + -- cases like + -- type T a = Int + -- f :: Int -> Int + -- f (x :: T a) = ... + -- Here 'a' doesn't get a binding. Sigh + ; let bad_tvs = filterOut (`elemVarSet` exactTyVarsOfType sig_ty) sig_tvs + ; checkTc (null bad_tvs) (badPatSigTvs sig_ty bad_tvs) + + -- Now do a subsumption check of the pattern signature against res_ty + ; sig_tvs' <- tcInstSigTyVars sig_tvs + ; let sig_ty' = substTyWith sig_tvs sig_tv_tys' sig_ty + sig_tv_tys' = mkTyVarTys sig_tvs' + ; wrap <- tcSubType PatSigOrigin ctxt res_ty sig_ty' + + -- Check that each is bound to a distinct type variable, + -- and one that is not already in scope + ; binds_in_scope <- getScopedTyVarBinds + ; let tv_binds = map tyVarName sig_tvs `zip` sig_tv_tys' ; check binds_in_scope tv_binds - -- Phew! - ; return (res_ty, tv_binds) - } } + -- Phew! + ; return (sig_ty', tv_binds, wrap) + } } where check _ [] = return () check in_scope ((n,ty):rest) = do { check_one in_scope n ty ; check ((n,ty):in_scope) rest } check_one in_scope n ty - = do { checkTc (tcIsTyVarTy ty) (scopedNonVar n ty) - -- Must bind to a type variable - - ; checkTc (null dups) (dupInScope n (head dups) ty) + = checkTc (null dups) (dupInScope n (head dups) ty) -- Must not bind to the same type variable -- as some other in-scope type variable - - ; return () } where - dups = [n' | (n',ty') <- in_scope, tcEqType ty' ty] + dups = [n' | (n',ty') <- in_scope, eqType ty' ty] \end{code} %************************************************************************ +%* * + Checking kinds +%* * +%************************************************************************ + +We would like to get a decent error message from + (a) Under-applied type constructors + f :: (Maybe, Maybe) + (b) Over-applied type constructors + f :: Int x -> Int x + +\begin{code} +-- The ExpKind datatype means "expected kind" and contains +-- some info about just why that kind is expected, to improve +-- the error message on a mis-match +data ExpKind = EK TcKind EkCtxt +data EkCtxt = EkUnk -- Unknown context + | EkEqPred -- Second argument of an equality predicate + | EkKindSig -- Kind signature + | EkArg SDoc Int -- Function, arg posn, expected kind + + +ekLifted, ekOpen :: ExpKind +ekLifted = EK liftedTypeKind EkUnk +ekOpen = EK openTypeKind EkUnk + +checkExpectedKind :: Outputable a => a -> TcKind -> ExpKind -> TcM () +-- A fancy wrapper for 'unifyKind', which tries +-- to give decent error messages. +-- (checkExpectedKind ty act_kind exp_kind) +-- checks that the actual kind act_kind is compatible +-- with the expected kind exp_kind +-- The first argument, ty, is used only in the error message generation +checkExpectedKind ty act_kind (EK exp_kind ek_ctxt) + | act_kind `isSubKind` exp_kind -- Short cut for a very common case + = return () + | otherwise = do + (_errs, mb_r) <- tryTc (unifyKind exp_kind act_kind) + case mb_r of + Just _ -> return () -- Unification succeeded + Nothing -> do + + -- So there's definitely an error + -- Now to find out what sort + exp_kind <- zonkTcKind exp_kind + act_kind <- zonkTcKind act_kind + + env0 <- tcInitTidyEnv + let (exp_as, _) = splitKindFunTys exp_kind + (act_as, _) = splitKindFunTys act_kind + n_exp_as = length exp_as + n_act_as = length act_as + + (env1, tidy_exp_kind) = tidyKind env0 exp_kind + (env2, tidy_act_kind) = tidyKind env1 act_kind + + err | n_exp_as < n_act_as -- E.g. [Maybe] + = quotes (ppr ty) <+> ptext (sLit "is not applied to enough type arguments") + + -- Now n_exp_as >= n_act_as. In the next two cases, + -- n_exp_as == 0, and hence so is n_act_as + | isLiftedTypeKind exp_kind && isUnliftedTypeKind act_kind + = ptext (sLit "Expecting a lifted type, but") <+> quotes (ppr ty) + <+> ptext (sLit "is unlifted") + + | isUnliftedTypeKind exp_kind && isLiftedTypeKind act_kind + = ptext (sLit "Expecting an unlifted type, but") <+> quotes (ppr ty) + <+> ptext (sLit "is lifted") + + | otherwise -- E.g. Monad [Int] + = ptext (sLit "Kind mis-match") + + more_info = sep [ expected_herald ek_ctxt <+> ptext (sLit "kind") + <+> quotes (pprKind tidy_exp_kind) <> comma, + ptext (sLit "but") <+> quotes (ppr ty) <+> + ptext (sLit "has kind") <+> quotes (pprKind tidy_act_kind)] + + expected_herald EkUnk = ptext (sLit "Expected") + expected_herald EkKindSig = ptext (sLit "An enclosing kind signature specified") + expected_herald EkEqPred = ptext (sLit "The left argument of the equality predicate had") + expected_herald (EkArg fun arg_no) + = ptext (sLit "The") <+> speakNth arg_no <+> ptext (sLit "argument of") + <+> quotes fun <+> ptext (sLit ("should have")) + + failWithTcM (env2, err $$ more_info) +\end{code} + +%************************************************************************ %* * Scoped type variables %* * @@ -834,7 +1013,7 @@ tcPatSig ctxt sig res_ty \begin{code} pprHsSigCtxt :: UserTypeCtxt -> LHsType Name -> SDoc -pprHsSigCtxt ctxt hs_ty = vcat [ ptext (sLit "In") <+> pprUserTypeCtxt ctxt <> colon, +pprHsSigCtxt ctxt hs_ty = sep [ ptext (sLit "In") <+> pprUserTypeCtxt ctxt <> colon, nest 2 (pp_sig ctxt) ] where pp_sig (FunSigCtxt n) = pp_n_colon n @@ -844,17 +1023,14 @@ pprHsSigCtxt ctxt hs_ty = vcat [ ptext (sLit "In") <+> pprUserTypeCtxt ctxt <> c pp_n_colon n = ppr n <+> dcolon <+> ppr (unLoc hs_ty) -wobblyPatSig :: [Var] -> SDoc -wobblyPatSig sig_tvs - = hang (ptext (sLit "A pattern type signature cannot bind scoped type variables") - <+> pprQuotedList sig_tvs) - 2 (ptext (sLit "unless the pattern has a rigid type context")) - -scopedNonVar :: Name -> Type -> SDoc -scopedNonVar n ty - = vcat [sep [ptext (sLit "The scoped type variable") <+> quotes (ppr n), - nest 2 (ptext (sLit "is bound to the type") <+> quotes (ppr ty))], - nest 2 (ptext (sLit "You can only bind scoped type variables to type variables"))] +badPatSigTvs :: TcType -> [TyVar] -> SDoc +badPatSigTvs sig_ty bad_tvs + = vcat [ fsep [ptext (sLit "The type variable") <> plural bad_tvs, + quotes (pprWithCommas ppr bad_tvs), + ptext (sLit "should be bound by the pattern signature") <+> quotes (ppr sig_ty), + ptext (sLit "but are actually discarded by a type synonym") ] + , ptext (sLit "To fix this, expand the type synonym") + , ptext (sLit "[Note: I hope to lift this restriction in due course]") ] dupInScope :: Name -> Name -> Type -> SDoc dupInScope n n' _ @@ -862,8 +1038,7 @@ dupInScope n n' _ 2 (vcat [ptext (sLit "are bound to the same type (variable)"), ptext (sLit "Distinct scoped type variables must be distinct")]) -wrongEqualityErr :: TcM (HsType Name, TcKind) -wrongEqualityErr - = failWithTc (text "Equality predicate used as a type") +wrongPredErr :: HsPred Name -> TcM (HsType Name, TcKind) +wrongPredErr pred = failWithTc (text "Predicate used as a type:" <+> ppr pred) \end{code}