X-Git-Url: http://git.megacz.com/?p=ghc-hetmet.git;a=blobdiff_plain;f=compiler%2Ftypecheck%2FTcMType.lhs;h=955d45c551c6a07d209d74bbd69161fc2a0e2400;hp=6a2041e844c4ac546fee127b35d28a4c5c8767f2;hb=c1681a73fa4ca4cf8758264ae387ac09a9e900d8;hpb=156fb5686ba6d7e121e0b876ff212268ebae444a diff --git a/compiler/typecheck/TcMType.lhs b/compiler/typecheck/TcMType.lhs index 6a2041e..955d45c 100644 --- a/compiler/typecheck/TcMType.lhs +++ b/compiler/typecheck/TcMType.lhs @@ -1,9 +1,12 @@ % +% (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % -\section{Monadic type operations} -This module contains monadic operations over types that contain mutable type variables +Monadic type operations + +This module contains monadic operations over types that contain +mutable type variables \begin{code} module TcMType ( @@ -23,8 +26,12 @@ module TcMType ( newBoxyTyVar, newBoxyTyVars, newBoxyTyVarTys, readFilledBox, -------------------------------- + -- Creating new coercion variables + newCoVars, + + -------------------------------- -- Instantiation - tcInstTyVar, tcInstType, tcInstTyVars, tcInstBoxy, tcInstBoxyTyVar, + tcInstTyVar, tcInstType, tcInstTyVars, tcInstBoxyTyVar, tcInstSigTyVars, zonkSigTyVar, tcInstSkolTyVar, tcInstSkolTyVars, tcInstSkolType, tcSkolSigType, tcSkolSigTyVars, @@ -40,9 +47,10 @@ module TcMType ( -------------------------------- -- Zonking zonkType, zonkTcPredType, - zonkTcTyVar, zonkTcTyVars, zonkTcTyVarsAndFV, zonkQuantifiedTyVar, + zonkTcTyVar, zonkTcTyVars, zonkTcTyVarsAndFV, + zonkQuantifiedTyVar, zonkQuantifiedTyVars, zonkTcType, zonkTcTypes, zonkTcClassConstraints, zonkTcThetaType, - zonkTcKindToKind, zonkTcKind, + zonkTcKindToKind, zonkTcKind, zonkTopTyVar, readKindVar, writeKindVar @@ -50,55 +58,30 @@ module TcMType ( #include "HsVersions.h" - -- friends: -import TypeRep ( Type(..), PredType(..), -- Friend; can see representation - ThetaType - ) -import TcType ( TcType, TcThetaType, TcTauType, TcPredType, - TcTyVarSet, TcKind, TcTyVar, TcTyVarDetails(..), - MetaDetails(..), SkolemInfo(..), BoxInfo(..), - BoxyTyVar, BoxyType, BoxyThetaType, BoxySigmaType, - UserTypeCtxt(..), - isMetaTyVar, isSigTyVar, metaTvRef, - tcCmpPred, isClassPred, tcGetTyVar, - tcSplitPhiTy, tcSplitPredTy_maybe, tcSplitAppTy_maybe, - tcValidInstHeadTy, tcSplitForAllTys, - tcIsTyVarTy, tcSplitSigmaTy, - isUnLiftedType, isIPPred, - typeKind, isSkolemTyVar, - mkAppTy, mkTyVarTy, mkTyVarTys, - tyVarsOfPred, getClassPredTys_maybe, - tyVarsOfType, tyVarsOfTypes, tcView, - pprPred, pprTheta, pprClassPred ) -import Kind ( Kind(..), KindVar, kindVarRef, mkKindVar, - isLiftedTypeKind, isArgTypeKind, isOpenTypeKind, - liftedTypeKind, defaultKind - ) -import Type ( TvSubst, zipTopTvSubst, substTy ) -import Class ( Class, classArity, className ) -import TyCon ( TyCon, isSynTyCon, isUnboxedTupleTyCon, - tyConArity, tyConName ) -import Var ( TyVar, tyVarKind, tyVarName, isTcTyVar, - mkTyVar, mkTcTyVar, tcTyVarDetails ) - - -- Assertions -#ifdef DEBUG -import TcType ( isFlexi, isBoxyTyVar, isImmutableTyVar ) -import Kind ( isSubKind ) -#endif +import TypeRep +import TcType +import Type +import Coercion +import Class +import TyCon +import Var -- others: import TcRnMonad -- TcType, amongst others -import FunDeps ( grow, checkInstCoverage ) -import Name ( Name, setNameUnique, mkSysTvName ) +import FunDeps +import Name import VarSet -import DynFlags ( dopt, DynFlag(..) ) -import Util ( nOfThem, isSingleton, notNull ) -import ListSetOps ( removeDups ) +import ErrUtils +import DynFlags +import Util +import Maybes +import ListSetOps +import UniqSupply +import SrcLoc import Outputable -import Control.Monad ( when ) +import Control.Monad ( when, unless ) import Data.List ( (\\) ) \end{code} @@ -140,10 +123,17 @@ tcInstType inst_tyvars ty %************************************************************************ \begin{code} +newCoVars :: [(TcType,TcType)] -> TcM [CoVar] +newCoVars spec + = do { us <- newUniqueSupply + ; return [ mkCoVar (mkSysTvName uniq FSLIT("co")) + (mkCoKind ty1 ty2) + | ((ty1,ty2), uniq) <- spec `zip` uniqsFromSupply us] } + newKindVar :: TcM TcKind newKindVar = do { uniq <- newUnique - ; ref <- newMutVar Nothing - ; return (KindVar (mkKindVar uniq ref)) } + ; ref <- newMutVar Flexi + ; return (mkTyVarTy (mkKindVar uniq ref)) } newKindVars :: Int -> TcM [TcKind] newKindVars n = mappM (\ _ -> newKindVar) (nOfThem n ()) @@ -171,19 +161,30 @@ tcSkolSigTyVars :: SkolemInfo -> [TyVar] -> [TcTyVar] tcSkolSigTyVars info tyvars = [ mkSkolTyVar (tyVarName tv) (tyVarKind tv) info | tv <- tyvars ] -tcInstSkolType :: SkolemInfo -> TcType -> TcM ([TcTyVar], TcThetaType, TcType) --- Instantiate a type with fresh skolem constants -tcInstSkolType info ty = tcInstType (tcInstSkolTyVars info) ty - -tcInstSkolTyVar :: SkolemInfo -> TyVar -> TcM TcTyVar -tcInstSkolTyVar info tyvar +tcInstSkolTyVar :: SkolemInfo -> Maybe SrcSpan -> TyVar -> TcM TcTyVar +-- Instantiate the tyvar, using +-- * the occ-name and kind of the supplied tyvar, +-- * the unique from the monad, +-- * the location either from the tyvar (mb_loc = Nothing) +-- or from mb_loc (Just loc) +tcInstSkolTyVar info mb_loc tyvar = do { uniq <- newUnique - ; let name = setNameUnique (tyVarName tyvar) uniq - kind = tyVarKind tyvar - ; return (mkSkolTyVar name kind info) } + ; let old_name = tyVarName tyvar + kind = tyVarKind tyvar + loc = mb_loc `orElse` getSrcSpan old_name + new_name = mkInternalName uniq (nameOccName old_name) loc + ; return (mkSkolTyVar new_name kind info) } tcInstSkolTyVars :: SkolemInfo -> [TyVar] -> TcM [TcTyVar] -tcInstSkolTyVars info tyvars = mapM (tcInstSkolTyVar info) tyvars +-- Get the location from the monad +tcInstSkolTyVars info tyvars + = do { span <- getSrcSpanM + ; mapM (tcInstSkolTyVar info (Just span)) tyvars } + +tcInstSkolType :: SkolemInfo -> TcType -> TcM ([TcTyVar], TcThetaType, TcType) +-- Instantiate a type with fresh skolem constants +-- Binding location comes from the monad +tcInstSkolType info ty = tcInstType (tcInstSkolTyVars info) ty \end{code} @@ -201,9 +202,13 @@ newMetaTyVar box_info kind ; ref <- newMutVar Flexi ; ; let name = mkSysTvName uniq fs fs = case box_info of - BoxTv -> FSLIT("bx") + BoxTv -> FSLIT("t") TauTv -> FSLIT("t") SigTv _ -> FSLIT("a") + -- We give BoxTv and TauTv the same string, because + -- otherwise we get user-visible differences in error + -- messages, which are confusing. If you want to see + -- the box_info of each tyvar, use -dppr-debug ; return (mkTcTyVar name kind (MetaTv box_info ref)) } instMetaTyVar :: BoxInfo -> TyVar -> TcM TcTyVar @@ -282,9 +287,14 @@ tcInstTyVars tyvars %************************************************************************ \begin{code} -tcInstSigTyVars :: SkolemInfo -> [TyVar] -> TcM [TcTyVar] --- Instantiate with meta SigTvs -tcInstSigTyVars skol_info tyvars +tcInstSigTyVars :: Bool -> SkolemInfo -> [TyVar] -> TcM [TcTyVar] +-- Instantiate with skolems or meta SigTvs; depending on use_skols +-- Always take location info from the supplied tyvars +tcInstSigTyVars use_skols skol_info tyvars + | use_skols + = mapM (tcInstSkolTyVar skol_info Nothing) tyvars + + | otherwise = mapM (instMetaTyVar (SigTv skol_info)) tyvars zonkSigTyVar :: TcTyVar -> TcM TcTyVar @@ -327,12 +337,6 @@ readFilledBox box_tv = ASSERT( isBoxyTyVar box_tv ) tcInstBoxyTyVar :: TyVar -> TcM BoxyTyVar -- Instantiate with a BOXY type variable tcInstBoxyTyVar tyvar = instMetaTyVar BoxTv tyvar - -tcInstBoxy :: TcType -> TcM ([BoxyTyVar], BoxyThetaType, BoxySigmaType) --- tcInstType instantiates the outer-level for-alls of a TcType with --- fresh BOXY type variables, splits off the dictionary part, --- and returns the pieces. -tcInstBoxy ty = tcInstType (mapM tcInstBoxyTyVar) ty \end{code} @@ -355,7 +359,8 @@ data LookupTyVarResult -- The result of a lookupTcTyVar call lookupTcTyVar :: TcTyVar -> TcM LookupTyVarResult lookupTcTyVar tyvar - = case details of + = ASSERT2( isTcTyVar tyvar, ppr tyvar ) + case details of SkolemTv _ -> return (DoneTv details) MetaTv _ ref -> do { meta_details <- readMutVar ref ; case meta_details of @@ -417,7 +422,7 @@ zonkTcTyVarsAndFV tyvars = mappM zonkTcTyVar tyvars `thenM` \ tys -> returnM (tyVarsOfTypes tys) zonkTcTyVar :: TcTyVar -> TcM TcType -zonkTcTyVar tyvar = ASSERT( isTcTyVar tyvar ) +zonkTcTyVar tyvar = ASSERT2( isTcTyVar tyvar, ppr tyvar) zonk_tc_tyvar (\ tv -> returnM (TyVarTy tv)) tyvar \end{code} @@ -445,23 +450,58 @@ zonkTcPredType (ClassP c ts) zonkTcPredType (IParam n t) = zonkTcType t `thenM` \ new_t -> returnM (IParam n new_t) +zonkTcPredType (EqPred t1 t2) + = zonkTcType t1 `thenM` \ new_t1 -> + zonkTcType t2 `thenM` \ new_t2 -> + returnM (EqPred new_t1 new_t2) \end{code} ------------------- These ...ToType, ...ToKind versions are used at the end of type checking \begin{code} +zonkTopTyVar :: TcTyVar -> TcM TcTyVar +-- zonkTopTyVar is used, at the top level, on any un-instantiated meta type variables +-- to default the kind of ? and ?? etc to *. This is important to ensure that +-- instance declarations match. For example consider +-- instance Show (a->b) +-- foo x = show (\_ -> True) +-- Then we'll get a constraint (Show (p ->q)) where p has argTypeKind (printed ??), +-- and that won't match the typeKind (*) in the instance decl. +-- +-- Because we are at top level, no further constraints are going to affect these +-- type variables, so it's time to do it by hand. However we aren't ready +-- to default them fully to () or whatever, because the type-class defaulting +-- rules have yet to run. + +zonkTopTyVar tv + | k `eqKind` default_k = return tv + | otherwise + = do { tv' <- newFlexiTyVar default_k + ; writeMetaTyVar tv (mkTyVarTy tv') + ; return tv' } + where + k = tyVarKind tv + default_k = defaultKind k + +zonkQuantifiedTyVars :: [TcTyVar] -> TcM [TyVar] +zonkQuantifiedTyVars = mappM zonkQuantifiedTyVar + zonkQuantifiedTyVar :: TcTyVar -> TcM TyVar -- zonkQuantifiedTyVar is applied to the a TcTyVar when quantifying over it. --- It might be a meta TyVar, in which case we freeze it into an ordinary TyVar. --- When we do this, we also default the kind -- see notes with Kind.defaultKind +-- +-- The quantified type variables often include meta type variables +-- we want to freeze them into ordinary type variables, and +-- default their kind (e.g. from OpenTypeKind to TypeKind) +-- -- see notes with Kind.defaultKind -- The meta tyvar is updated to point to the new regular TyVar. Now any -- bound occurences of the original type variable will get zonked to -- the immutable version. -- -- We leave skolem TyVars alone; they are immutable. zonkQuantifiedTyVar tv - | isSkolemTyVar tv = return tv + | ASSERT( isTcTyVar tv ) + isSkolemTyVar tv = return tv -- It might be a skolem type variable, -- for example from a user type signature @@ -569,10 +609,13 @@ zonkType unbound_var_fn ty go ty `thenM` \ ty' -> returnM (ForAllTy tyvar ty') - go_pred (ClassP c tys) = mappM go tys `thenM` \ tys' -> - returnM (ClassP c tys') - go_pred (IParam n ty) = go ty `thenM` \ ty' -> - returnM (IParam n ty') + go_pred (ClassP c tys) = mappM go tys `thenM` \ tys' -> + returnM (ClassP c tys') + go_pred (IParam n ty) = go ty `thenM` \ ty' -> + returnM (IParam n ty') + go_pred (EqPred ty1 ty2) = go ty1 `thenM` \ ty1' -> + go ty2 `thenM` \ ty2' -> + returnM (EqPred ty1' ty2') zonk_tc_tyvar :: (TcTyVar -> TcM Type) -- What to do for an unbound mutable variable -> TcTyVar -> TcM TcType @@ -596,35 +639,20 @@ zonk_tc_tyvar unbound_var_fn tyvar %************************************************************************ \begin{code} -readKindVar :: KindVar -> TcM (Maybe TcKind) +readKindVar :: KindVar -> TcM (MetaDetails) writeKindVar :: KindVar -> TcKind -> TcM () readKindVar kv = readMutVar (kindVarRef kv) -writeKindVar kv val = writeMutVar (kindVarRef kv) (Just val) +writeKindVar kv val = writeMutVar (kindVarRef kv) (Indirect val) ------------- zonkTcKind :: TcKind -> TcM TcKind -zonkTcKind (FunKind k1 k2) = do { k1' <- zonkTcKind k1 - ; k2' <- zonkTcKind k2 - ; returnM (FunKind k1' k2') } -zonkTcKind k@(KindVar kv) = do { mb_kind <- readKindVar kv - ; case mb_kind of - Nothing -> returnM k - Just k -> zonkTcKind k } -zonkTcKind other_kind = returnM other_kind +zonkTcKind k = zonkTcType k ------------- zonkTcKindToKind :: TcKind -> TcM Kind -zonkTcKindToKind (FunKind k1 k2) = do { k1' <- zonkTcKindToKind k1 - ; k2' <- zonkTcKindToKind k2 - ; returnM (FunKind k1' k2') } - -zonkTcKindToKind (KindVar kv) = do { mb_kind <- readKindVar kv - ; case mb_kind of - Nothing -> return liftedTypeKind - Just k -> zonkTcKindToKind k } - -zonkTcKindToKind OpenTypeKind = returnM liftedTypeKind -- An "Open" kind defaults to * -zonkTcKindToKind other_kind = returnM other_kind +-- When zonking a TcKind to a kind, we need to instantiate kind variables, +-- Haskell specifies that * is to be used, so we follow that. +zonkTcKindToKind k = zonkType (\ _ -> return liftedTypeKind) k \end{code} %************************************************************************ @@ -666,9 +694,13 @@ checkValidType :: UserTypeCtxt -> Type -> TcM () -- Checks that the type is valid for the given context checkValidType ctxt ty = traceTc (text "checkValidType" <+> ppr ty) `thenM_` - doptM Opt_GlasgowExts `thenM` \ gla_exts -> + doptM Opt_UnboxedTuples `thenM` \ unboxed -> + doptM Opt_Rank2Types `thenM` \ rank2 -> + doptM Opt_RankNTypes `thenM` \ rankn -> + doptM Opt_PolymorphicComponents `thenM` \ polycomp -> let - rank | gla_exts = Arbitrary + rank | rankn = Arbitrary + | rank2 = Rank 2 | otherwise = case ctxt of -- Haskell 98 GenPatCtxt -> Rank 0 @@ -679,30 +711,28 @@ checkValidType ctxt ty TySynCtxt _ -> Rank 0 ExprSigCtxt -> Rank 1 FunSigCtxt _ -> Rank 1 - ConArgCtxt _ -> Rank 1 -- We are given the type of the entire - -- constructor, hence rank 1 + ConArgCtxt _ -> if polycomp + then Rank 2 + -- We are given the type of the entire + -- constructor, hence rank 1 + else Rank 1 ForSigCtxt _ -> Rank 1 - RuleSigCtxt _ -> Rank 1 SpecInstCtxt -> Rank 1 actual_kind = typeKind ty kind_ok = case ctxt of TySynCtxt _ -> True -- Any kind will do - ResSigCtxt -> isOpenTypeKind actual_kind - ExprSigCtxt -> isOpenTypeKind actual_kind + ResSigCtxt -> isSubOpenTypeKind actual_kind + ExprSigCtxt -> isSubOpenTypeKind actual_kind GenPatCtxt -> isLiftedTypeKind actual_kind ForSigCtxt _ -> isLiftedTypeKind actual_kind - other -> isArgTypeKind actual_kind + other -> isSubArgTypeKind actual_kind - ubx_tup | not gla_exts = UT_NotOk - | otherwise = case ctxt of - TySynCtxt _ -> UT_Ok - ExprSigCtxt -> UT_Ok - other -> UT_NotOk - -- Unboxed tuples ok in function results, - -- but for type synonyms we allow them even at - -- top level + ubx_tup = case ctxt of + TySynCtxt _ | unboxed -> UT_Ok + ExprSigCtxt | unboxed -> UT_Ok + _ -> UT_NotOk in -- Check that the thing has kind Type, and is lifted if necessary checkTc kind_ok (kindErr actual_kind) `thenM_` @@ -779,7 +809,7 @@ check_tau_type rank ubx_tup ty@(FunTy (PredTy _) _) = failWithTc (forAllTyErr ty -- The Right Thing would be to fix the way that SPECIALISE instance pragmas -- are handled, but the quick thing is just to permit PredTys here. check_tau_type rank ubx_tup (PredTy sty) = getDOpts `thenM` \ dflags -> - check_source_ty dflags TypeCtxt sty + check_pred_ty dflags TypeCtxt sty check_tau_type rank ubx_tup (TyVarTy _) = returnM () check_tau_type rank ubx_tup ty@(FunTy arg_ty res_ty) @@ -799,12 +829,14 @@ check_tau_type rank ubx_tup ty@(TyConApp tc tys) -- type Foo a = Tree [a] -- f :: Foo a b -> ... ; case tcView ty of - Just ty' -> check_tau_type rank ubx_tup ty' -- Check expansion - Nothing -> failWithTc arity_msg - - ; gla_exts <- doptM Opt_GlasgowExts - ; if gla_exts then - -- If -fglasgow-exts then don't check the type arguments + Just ty' -> check_tau_type rank ubx_tup ty' -- Check expansion + Nothing -> unless (isOpenTyCon tc -- No expansion if open + && tyConArity tc <= length tys) $ + failWithTc arity_msg + + ; ok <- doptM Opt_PartiallyAppliedClosedTypeSynonyms + ; if ok && not (isOpenTyCon tc) then + -- Don't check the type arguments of *closed* synonyms. -- This allows us to instantiate a synonym defn with a -- for-all type, or with a partially-applied type synonym. -- e.g. type T a b = a @@ -821,8 +853,8 @@ check_tau_type rank ubx_tup ty@(TyConApp tc tys) } | isUnboxedTupleTyCon tc - = doptM Opt_GlasgowExts `thenM` \ gla_exts -> - checkTc (ubx_tup_ok gla_exts) ubx_tup_msg `thenM_` + = doptM Opt_UnboxedTuples `thenM` \ ub_tuples_allowed -> + checkTc (ubx_tup_ok ub_tuples_allowed) ubx_tup_msg `thenM_` mappM_ (check_tau_type (Rank 0) UT_Ok) tys -- Args are allowed to be unlifted, or -- more unboxed tuples, so can't use check_arg_ty @@ -831,7 +863,7 @@ check_tau_type rank ubx_tup ty@(TyConApp tc tys) = mappM_ check_arg_type tys where - ubx_tup_ok gla_exts = case ubx_tup of { UT_Ok -> gla_exts; other -> False } + ubx_tup_ok ub_tuples_allowed = case ubx_tup of { UT_Ok -> ub_tuples_allowed; other -> False } n_args = length tys tc_arity = tyConArity tc @@ -891,31 +923,44 @@ check_valid_theta ctxt [] check_valid_theta ctxt theta = getDOpts `thenM` \ dflags -> warnTc (notNull dups) (dupPredWarn dups) `thenM_` - mappM_ (check_source_ty dflags ctxt) theta + mappM_ (check_pred_ty dflags ctxt) theta where (_,dups) = removeDups tcCmpPred theta ------------------------- -check_source_ty dflags ctxt pred@(ClassP cls tys) - = -- Class predicates are valid in all contexts - checkTc (arity == n_tys) arity_err `thenM_` - - -- Check the form of the argument types - mappM_ check_arg_type tys `thenM_` - checkTc (check_class_pred_tys dflags ctxt tys) - (predTyVarErr pred $$ how_to_allow) - +check_pred_ty dflags ctxt pred@(ClassP cls tys) + = do { -- Class predicates are valid in all contexts + ; checkTc (arity == n_tys) arity_err + + -- Check the form of the argument types + ; mappM_ check_arg_type tys + ; checkTc (check_class_pred_tys dflags ctxt tys) + (predTyVarErr pred $$ how_to_allow) + } where class_name = className cls arity = classArity cls n_tys = length tys arity_err = arityErr "Class" class_name arity n_tys - how_to_allow = parens (ptext SLIT("Use -fglasgow-exts to permit this")) - -check_source_ty dflags SigmaCtxt (IParam _ ty) = check_arg_type ty - -- Implicit parameters only allows in type + how_to_allow = parens (ptext SLIT("Use -XFlexibleContexts to permit this")) + +check_pred_ty dflags ctxt pred@(EqPred ty1 ty2) + = do { -- Equational constraints are valid in all contexts if type + -- families are permitted + ; checkTc (dopt Opt_TypeFamilies dflags) (eqPredTyErr pred) + + -- Check the form of the argument types + ; check_eq_arg_type ty1 + ; check_eq_arg_type ty2 + } + where + check_eq_arg_type = check_poly_type (Rank 0) UT_NotOk + +check_pred_ty dflags SigmaCtxt (IParam _ ty) = check_arg_type ty + -- Implicit parameters only allowed in type -- signatures; not in instance decls, superclasses etc - -- The reason for not allowing implicit params in instances is a bit subtle + -- The reason for not allowing implicit params in instances is a bit + -- subtle. -- If we allowed instance (?x::Int, Eq a) => Foo [a] where ... -- then when we saw (e :: (?x::Int) => t) it would be unclear how to -- discharge all the potential usas of the ?x in e. For example, a @@ -923,18 +968,18 @@ check_source_ty dflags SigmaCtxt (IParam _ ty) = check_arg_type ty -- instance decl would show up two uses of ?x. -- Catch-all -check_source_ty dflags ctxt sty = failWithTc (badSourceTyErr sty) +check_pred_ty dflags ctxt sty = failWithTc (badPredTyErr sty) ------------------------- check_class_pred_tys dflags ctxt tys = case ctxt of TypeCtxt -> True -- {-# SPECIALISE instance Eq (T Int) #-} is fine - InstThetaCtxt -> gla_exts || undecidable_ok || all tcIsTyVarTy tys + InstThetaCtxt -> flexible_contexts || undecidable_ok || all tcIsTyVarTy tys -- Further checks on head and theta in -- checkInstTermination - other -> gla_exts || all tyvar_head tys + other -> flexible_contexts || all tyvar_head tys where - gla_exts = dopt Opt_GlasgowExts dflags + flexible_contexts = dopt Opt_FlexibleContexts dflags undecidable_ok = dopt Opt_AllowUndecidableInstances dflags ------------------------- @@ -1008,7 +1053,8 @@ even in a scope where b is in scope. \begin{code} checkFreeness forall_tyvars theta - = mappM_ complain (filter is_free theta) + = do { flexible_contexts <- doptM Opt_FlexibleContexts + ; unless flexible_contexts $ mappM_ complain (filter is_free theta) } where is_free pred = not (isIPPred pred) && not (any bound_var (varSetElems (tyVarsOfPred pred))) @@ -1027,7 +1073,10 @@ checkThetaCtxt ctxt theta = vcat [ptext SLIT("In the context:") <+> pprTheta theta, ptext SLIT("While checking") <+> pprSourceTyCtxt ctxt ] -badSourceTyErr sty = ptext SLIT("Illegal constraint") <+> pprPred sty +badPredTyErr sty = ptext SLIT("Illegal constraint") <+> pprPred sty +eqPredTyErr sty = ptext SLIT("Illegal equational constraint") <+> pprPred sty + $$ + parens (ptext SLIT("Use -ftype-families to permit this")) predTyVarErr pred = sep [ptext SLIT("Non type-variable argument"), nest 2 (ptext SLIT("in the constraint:") <+> pprPred pred)] dupPredWarn dups = ptext SLIT("Duplicate constraint(s):") <+> pprWithCommas pprPred (map head dups) @@ -1077,19 +1126,30 @@ checkValidInstHead ty -- Should be a source type check_inst_head dflags clas tys -- If GlasgowExts then check at least one isn't a type variable - | dopt Opt_GlasgowExts dflags - = mapM_ check_one tys - - -- WITH HASKELL 98, MUST HAVE C (T a b c) - | otherwise - = checkTc (isSingleton tys && tcValidInstHeadTy first_ty) - (instTypeErr (pprClassPred clas tys) head_shape_msg) - + = do checkTc (dopt Opt_TypeSynonymInstances dflags || + all tcInstHeadTyNotSynonym tys) + (instTypeErr (pprClassPred clas tys) head_type_synonym_msg) + checkTc (dopt Opt_FlexibleInstances dflags || + all tcInstHeadTyAppAllTyVars tys) + (instTypeErr (pprClassPred clas tys) head_type_args_tyvars_msg) + checkTc (dopt Opt_MultiParamTypeClasses dflags || + isSingleton tys) + (instTypeErr (pprClassPred clas tys) head_one_type_msg) + mapM_ check_one tys where - (first_ty : _) = tys + head_type_synonym_msg = parens ( + text "All instance types must be of the form (T t1 ... tn)" $$ + text "where T is not a synonym." $$ + text "Use -XTypeSynonymInstances if you want to disable this.") - head_shape_msg = parens (text "The instance type must be of form (T a b c)" $$ - text "where T is not a synonym, and a,b,c are distinct type variables") + head_type_args_tyvars_msg = parens ( + text "All instance types must be of the form (T a1 ... an)" $$ + text "where a1 ... an are distinct type *variables*" $$ + text "Use -XFlexibleInstances if you want to disable this.") + + head_one_type_msg = parens ( + text "Only one type can be given in an instance head." $$ + text "Use -XMultiParamTypeClasses if you want to allow more.") -- For now, I only allow tau-types (not polytypes) in -- the head of an instance decl. @@ -1115,26 +1175,31 @@ instTypeErr pp_ty msg \begin{code} checkValidInstance :: [TyVar] -> ThetaType -> Class -> [TcType] -> TcM () checkValidInstance tyvars theta clas inst_tys - = do { gla_exts <- doptM Opt_GlasgowExts - ; undecidable_ok <- doptM Opt_AllowUndecidableInstances + = do { undecidable_ok <- doptM Opt_AllowUndecidableInstances ; checkValidTheta InstThetaCtxt theta ; checkAmbiguity tyvars theta (tyVarsOfTypes inst_tys) -- Check that instance inference will terminate (if we care) - -- For Haskell 98, checkValidTheta has already done that - ; when (gla_exts && not undecidable_ok) $ - checkInstTermination theta inst_tys + -- For Haskell 98 this will already have been done by checkValidTheta, + -- but as we may be using other extensions we need to check. + ; unless undecidable_ok $ + mapM_ addErrTc (checkInstTermination inst_tys theta) -- The Coverage Condition ; checkTc (undecidable_ok || checkInstCoverage clas inst_tys) (instTypeErr (pprClassPred clas inst_tys) msg) } where - msg = parens (ptext SLIT("the Coverage Condition fails for one of the functional dependencies")) + msg = parens (vcat [ptext SLIT("the Coverage Condition fails for one of the functional dependencies;"), + undecidableMsg]) \end{code} -Termination test: each assertion in the context satisfies +Termination test: the so-called "Paterson conditions" (see Section 5 of +"Understanding functionsl dependencies via Constraint Handling Rules, +JFP Jan 2007). + +We check that each assertion in the context satisfies: (1) no variable has more occurrences in the assertion than in the head, and (2) the assertion has fewer constructors and variables (taken together and counting repetitions) than the head. @@ -1148,20 +1213,19 @@ The underlying idea is that \begin{code} -checkInstTermination :: ThetaType -> [TcType] -> TcM () -checkInstTermination theta tys - = do { mappM_ (check_nomore (fvTypes tys)) theta - ; mappM_ (check_smaller (sizeTypes tys)) theta } - -check_nomore :: [TyVar] -> PredType -> TcM () -check_nomore fvs pred - = checkTc (null (fvPred pred \\ fvs)) - (predUndecErr pred nomoreMsg $$ parens undecidableMsg) - -check_smaller :: Int -> PredType -> TcM () -check_smaller n pred - = checkTc (sizePred pred < n) - (predUndecErr pred smallerMsg $$ parens undecidableMsg) +checkInstTermination :: [TcType] -> ThetaType -> [Message] +checkInstTermination tys theta + = mapCatMaybes check theta + where + fvs = fvTypes tys + size = sizeTypes tys + check pred + | not (null (fvPred pred \\ fvs)) + = Just (predUndecErr pred nomoreMsg $$ parens undecidableMsg) + | sizePred pred >= size + = Just (predUndecErr pred smallerMsg $$ parens undecidableMsg) + | otherwise + = Nothing predUndecErr pred msg = sep [msg, nest 2 (ptext SLIT("in the constraint:") <+> pprPred pred)] @@ -1187,6 +1251,7 @@ fvTypes tys = concat (map fvType tys) fvPred :: PredType -> [TyVar] fvPred (ClassP _ tys') = fvTypes tys' fvPred (IParam _ ty) = fvType ty +fvPred (EqPred ty1 ty2) = fvType ty1 ++ fvType ty2 -- Size of a type: the number of variables and constructors sizeType :: Type -> Int @@ -1205,4 +1270,5 @@ sizeTypes xs = sum (map sizeType xs) sizePred :: PredType -> Int sizePred (ClassP _ tys') = sizeTypes tys' sizePred (IParam _ ty) = sizeType ty +sizePred (EqPred ty1 ty2) = sizeType ty1 + sizeType ty2 \end{code}