X-Git-Url: http://git.megacz.com/?p=ghc-hetmet.git;a=blobdiff_plain;f=compiler%2Ftypecheck%2FTcTyDecls.lhs;h=a9ea11aefa19ab6158959342eabfffdd92f90318;hp=11b9c3bc9599b17199aeb805736feb04b6dfeda5;hb=6ea06bbf08517d9805feb82df65cc56ecbaf23a4;hpb=6bc54d1524cd6d10a978bef89bc6a8f0061adb66 diff --git a/compiler/typecheck/TcTyDecls.lhs b/compiler/typecheck/TcTyDecls.lhs index 11b9c3b..a9ea11a 100644 --- a/compiler/typecheck/TcTyDecls.lhs +++ b/compiler/typecheck/TcTyDecls.lhs @@ -31,6 +31,8 @@ import Digraph import BasicTypes import SrcLoc import Outputable +import Util ( isSingleton ) +import Data.List \end{code} @@ -102,7 +104,7 @@ synTyConsOfType ty \begin{code} calcSynCycles :: [LTyClDecl Name] -> [SCC (LTyClDecl Name)] calcSynCycles decls - = stronglyConnComp syn_edges + = stronglyConnCompFromEdgedVertices syn_edges where syn_edges = [ (ldecl, unLoc (tcdLName decl), mk_syn_edges (tcdSynRhs decl)) @@ -114,7 +116,7 @@ calcSynCycles decls calcClassCycles :: [LTyClDecl Name] -> [[LTyClDecl Name]] calcClassCycles decls - = [decls | CyclicSCC decls <- stronglyConnComp cls_edges] + = [decls | CyclicSCC decls <- stronglyConnCompFromEdgedVertices cls_edges] where cls_edges = [ (ldecl, unLoc (tcdLName decl), mk_cls_edges (unLoc (tcdCtxt decl))) @@ -130,6 +132,42 @@ calcClassCycles decls %* * %************************************************************************ +Identification of recursive TyCons +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +The knot-tying parameters: @rec_details_list@ is an alist mapping @Name@s to +@TyThing@s. + +Identifying a TyCon as recursive serves two purposes + +1. Avoid infinite types. Non-recursive newtypes are treated as +"transparent", like type synonyms, after the type checker. If we did +this for all newtypes, we'd get infinite types. So we figure out for +each newtype whether it is "recursive", and add a coercion if so. In +effect, we are trying to "cut the loops" by identifying a loop-breaker. + +2. Avoid infinite unboxing. This is nothing to do with newtypes. +Suppose we have + data T = MkT Int T + f (MkT x t) = f t +Well, this function diverges, but we don't want the strictness analyser +to diverge. But the strictness analyser will diverge because it looks +deeper and deeper into the structure of T. (I believe there are +examples where the function does something sane, and the strictness +analyser still diverges, but I can't see one now.) + +Now, concerning (1), the FC2 branch currently adds a coercion for ALL +newtypes. I did this as an experiment, to try to expose cases in which +the coercions got in the way of optimisations. If it turns out that we +can indeed always use a coercion, then we don't risk recursive types, +and don't need to figure out what the loop breakers are. + +For newtype *families* though, we will always have a coercion, so they +are always loop breakers! So you can easily adjust the current +algorithm by simply treating all newtype families as loop breakers (and +indeed type families). I think. + + + For newtypes, we label some as "recursive" such that INVARIANT: there is no cycle of non-recursive newtypes @@ -158,6 +196,7 @@ T's source module is compiled. We don't want T's recursiveness to change. The "recursive" flag for algebraic data types is irrelevant (never consulted) for types with more than one constructor. + An algebraic data type M.T is "recursive" iff it has just one constructor, and (a) it is declared in an hi-boot file (see RdrHsSyn.hsIfaceDecl) @@ -232,9 +271,18 @@ calcRecFlags boot_details tyclss -- loop. We could program round this, but it'd make the code -- rather less nice, so I'm not going to do that yet. + single_con_tycons = filter (isSingleton . tyConDataCons) all_tycons + -- Both newtypes and data types, with exactly one data constructor + (new_tycons, prod_tycons) = partition isNewTyCon single_con_tycons + -- NB: we do *not* call isProductTyCon because that checks + -- for vanilla-ness of data constructors; and that depends + -- on empty existential type variables; and that is figured + -- out by tcResultType; which uses tcMatchTy; which uses + -- coreView; which calls coreExpandTyCon_maybe; which uses + -- the recursiveness of the TyCon. Result... a black hole. + -- YUK YUK YUK + --------------- Newtypes ---------------------- - new_tycons = filter isNewTyConAndNotOpen all_tycons - isNewTyConAndNotOpen tycon = isNewTyCon tycon && not (isOpenTyCon tycon) nt_loop_breakers = mkNameSet (findLoopBreakers nt_edges) is_rec_nt tc = tyConName tc `elemNameSet` nt_loop_breakers -- is_rec_nt is a locally-used helper function @@ -252,9 +300,6 @@ calcRecFlags boot_details tyclss | otherwise = [] --------------- Product types ---------------------- - -- The "prod_tycons" are the non-newtype products - prod_tycons = [tc | tc <- all_tycons, - not (isNewTyCon tc), isProductTyCon tc] prod_loop_breakers = mkNameSet (findLoopBreakers prod_edges) prod_edges = [(tc, mk_prod_edges tc) | tc <- prod_tycons] @@ -287,7 +332,7 @@ findLoopBreakers deps = go [(tc,tc,ds) | (tc,ds) <- deps] where go edges = [ name - | CyclicSCC ((tc,_,_) : edges') <- stronglyConnCompR edges, + | CyclicSCC ((tc,_,_) : edges') <- stronglyConnCompFromEdgedVerticesR edges, name <- tyConName tc : go edges'] \end{code}