X-Git-Url: http://git.megacz.com/?p=ghc-hetmet.git;a=blobdiff_plain;f=compiler%2Ftypes%2FType.lhs;h=f894cd304f1e0bac556c732613af689dbf0e647d;hp=d5c00e80704c35d0b4031b5a08998b854c2fc8cf;hb=b06d623b2e367a572de5daf06d6a0b12c2740471;hpb=c26717e6713bf1037a065ae5d89f98b109f87fab diff --git a/compiler/types/Type.lhs b/compiler/types/Type.lhs index d5c00e8..f894cd3 100644 --- a/compiler/types/Type.lhs +++ b/compiler/types/Type.lhs @@ -13,71 +13,71 @@ Type - public interface -- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings -- for details +-- | Main functions for manipulating types and type-related things module Type ( - -- re-exports from TypeRep - TyThing(..), Type, PredType(..), ThetaType, - funTyCon, + -- Note some of this is just re-exports from TyCon.. - -- Kinds - Kind, SimpleKind, KindVar, - kindFunResult, splitKindFunTys, splitKindFunTysN, - - liftedTypeKindTyCon, openTypeKindTyCon, unliftedTypeKindTyCon, - argTypeKindTyCon, ubxTupleKindTyCon, - - liftedTypeKind, unliftedTypeKind, openTypeKind, - argTypeKind, ubxTupleKind, - - tySuperKind, coSuperKind, + -- * Main data types representing Types + -- $type_classification + + -- $representation_types + TyThing(..), Type, PredType(..), ThetaType, - isLiftedTypeKind, isUnliftedTypeKind, isOpenTypeKind, - isUbxTupleKind, isArgTypeKind, isKind, isTySuperKind, - isCoSuperKind, isSuperKind, isCoercionKind, isEqPred, - mkArrowKind, mkArrowKinds, - - isSubArgTypeKind, isSubOpenTypeKind, isSubKind, defaultKind, eqKind, - isSubKindCon, - - -- Re-exports from TyCon - PrimRep(..), - - mkTyVarTy, mkTyVarTys, getTyVar, getTyVar_maybe, isTyVarTy, + -- ** Constructing and deconstructing types + mkTyVarTy, mkTyVarTys, getTyVar, getTyVar_maybe, mkAppTy, mkAppTys, splitAppTy, splitAppTys, splitAppTy_maybe, repSplitAppTy_maybe, mkFunTy, mkFunTys, splitFunTy, splitFunTy_maybe, splitFunTys, splitFunTysN, - funResultTy, funArgTy, zipFunTys, isFunTy, + funResultTy, funArgTy, zipFunTys, mkTyConApp, mkTyConTy, tyConAppTyCon, tyConAppArgs, splitTyConApp_maybe, splitTyConApp, - splitNewTyConApp_maybe, splitNewTyConApp, - repType, typePrimRep, coreView, tcView, kindView, rttiView, + mkForAllTy, mkForAllTys, splitForAllTy_maybe, splitForAllTys, + applyTy, applyTys, applyTysD, isForAllTy, dropForAlls, + + -- (Newtypes) + newTyConInstRhs, carefullySplitNewType_maybe, + + -- (Type families) + tyFamInsts, predFamInsts, - mkForAllTy, mkForAllTys, splitForAllTy_maybe, splitForAllTys, - applyTy, applyTys, isForAllTy, dropForAlls, + -- (Source types) + mkPredTy, mkPredTys, mkFamilyTyConApp, isEqPred, - -- Source types - predTypeRep, mkPredTy, mkPredTys, pprSourceTyCon, mkFamilyTyConApp, + -- ** Common type constructors + funTyCon, - -- Newtypes - newTyConInstRhs, + -- ** Predicates on types + isTyVarTy, isFunTy, - -- Lifting and boxity + -- (Lifting and boxity) isUnLiftedType, isUnboxedTupleType, isAlgType, isClosedAlgType, isPrimitiveType, isStrictType, isStrictPred, - -- Free variables - tyVarsOfType, tyVarsOfTypes, tyVarsOfPred, tyVarsOfTheta, - typeKind, + -- * Main data types representing Kinds + -- $kind_subtyping + Kind, SimpleKind, KindVar, + + -- ** Common Kinds and SuperKinds + liftedTypeKind, unliftedTypeKind, openTypeKind, + argTypeKind, ubxTupleKind, - -- Type families - tyFamInsts, + tySuperKind, coSuperKind, - -- Tidying up for printing + -- ** Common Kind type constructors + liftedTypeKindTyCon, openTypeKindTyCon, unliftedTypeKindTyCon, + argTypeKindTyCon, ubxTupleKindTyCon, + + -- * Type free variables + tyVarsOfType, tyVarsOfTypes, tyVarsOfPred, tyVarsOfTheta, + expandTypeSynonyms, + + -- * Tidying type related things up for printing tidyType, tidyTypes, tidyOpenType, tidyOpenTypes, tidyTyVarBndr, tidyFreeTyVars, @@ -85,28 +85,46 @@ module Type ( tidyTopType, tidyPred, tidyKind, - -- Comparison - coreEqType, tcEqType, tcEqTypes, tcCmpType, tcCmpTypes, - tcEqPred, tcCmpPred, tcEqTypeX, tcPartOfType, tcPartOfPred, + -- * Type comparison + coreEqType, coreEqType2, + tcEqType, tcEqTypes, tcCmpType, tcCmpTypes, + tcEqPred, tcEqPredX, tcCmpPred, tcEqTypeX, tcPartOfType, tcPartOfPred, - -- Seq + -- * Forcing evaluation of types seqType, seqTypes, - -- Type substitutions - TvSubstEnv, emptyTvSubstEnv, -- Representation widely visible - TvSubst(..), emptyTvSubst, -- Representation visible to a few friends + -- * Other views onto Types + coreView, tcView, kindView, + + repType, + + -- * Type representation for the code generator + PrimRep(..), + + typePrimRep, predTypeRep, + + -- * Main type substitution data types + TvSubstEnv, -- Representation widely visible + TvSubst(..), -- Representation visible to a few friends + + -- ** Manipulating type substitutions + emptyTvSubstEnv, emptyTvSubst, + mkTvSubst, mkOpenTvSubst, zipOpenTvSubst, zipTopTvSubst, mkTopTvSubst, notElemTvSubst, - getTvSubstEnv, setTvSubstEnv, getTvInScope, extendTvInScope, + getTvSubstEnv, setTvSubstEnv, zapTvSubstEnv, getTvInScope, + extendTvInScope, extendTvInScopeList, extendTvSubst, extendTvSubstList, isInScope, composeTvSubst, zipTyEnv, isEmptyTvSubst, - -- Performing substitution on types - substTy, substTys, substTyWith, substTheta, + -- ** Performing substitution on types + substTy, substTys, substTyWith, substTysWith, substTheta, substPred, substTyVar, substTyVars, substTyVarBndr, deShadowTy, lookupTyVar, - -- Pretty-printing + -- * Pretty-printing pprType, pprParendType, pprTypeApp, pprTyThingCategory, pprTyThing, pprForAll, - pprPred, pprTheta, pprThetaArrow, pprClassPred, pprKind, pprParendKind + pprPred, pprEqPred, pprTheta, pprThetaArrow, pprClassPred, pprKind, pprParendKind, + + pprSourceTyCon ) where #include "HsVersions.h" @@ -123,18 +141,75 @@ import VarSet import Name import Class -import PrelNames import TyCon -- others import StaticFlags import Util import Outputable +import FastString import Data.List import Data.Maybe ( isJust ) \end{code} +\begin{code} +-- $type_classification +-- #type_classification# +-- +-- Types are one of: +-- +-- [Unboxed] Iff its representation is other than a pointer +-- Unboxed types are also unlifted. +-- +-- [Lifted] Iff it has bottom as an element. +-- Closures always have lifted types: i.e. any +-- let-bound identifier in Core must have a lifted +-- type. Operationally, a lifted object is one that +-- can be entered. +-- Only lifted types may be unified with a type variable. +-- +-- [Algebraic] Iff it is a type with one or more constructors, whether +-- declared with @data@ or @newtype@. +-- An algebraic type is one that can be deconstructed +-- with a case expression. This is /not/ the same as +-- lifted types, because we also include unboxed +-- tuples in this classification. +-- +-- [Data] Iff it is a type declared with @data@, or a boxed tuple. +-- +-- [Primitive] Iff it is a built-in type that can't be expressed in Haskell. +-- +-- Currently, all primitive types are unlifted, but that's not necessarily +-- the case: for example, @Int@ could be primitive. +-- +-- Some primitive types are unboxed, such as @Int#@, whereas some are boxed +-- but unlifted (such as @ByteArray#@). The only primitive types that we +-- classify as algebraic are the unboxed tuples. +-- +-- Some examples of type classifications that may make this a bit clearer are: +-- +-- @ +-- Type primitive boxed lifted algebraic +-- ----------------------------------------------------------------------------- +-- Int# Yes No No No +-- ByteArray# Yes Yes No No +-- (\# a, b \#) Yes No No Yes +-- ( a, b ) No Yes Yes Yes +-- [a] No Yes Yes Yes +-- @ + +-- $representation_types +-- A /source type/ is a type that is a separate type as far as the type checker is +-- concerned, but which has a more low-level representation as far as Core-to-Core +-- passes and the rest of the back end is concerned. Notably, 'PredTy's are removed +-- from the representation type while they do exist in the source types. +-- +-- You don't normally have to worry about this, as the utility functions in +-- this module will automatically convert a source into a representation type +-- if they are spotted, to the best of it's abilities. If you don't want this +-- to happen, use the equivalent functions from the "TcType" module. +\end{code} %************************************************************************ %* * @@ -142,27 +217,35 @@ import Data.Maybe ( isJust ) %* * %************************************************************************ -In Core, we "look through" non-recursive newtypes and PredTypes. - \begin{code} {-# INLINE coreView #-} coreView :: Type -> Maybe Type --- Strips off the *top layer only* of a type to give +-- ^ In Core, we \"look through\" non-recursive newtypes and 'PredTypes': this +-- function tries to obtain a different view of the supplied type given this +-- +-- Strips off the /top layer only/ of a type to give -- its underlying representation type. -- Returns Nothing if there is nothing to look through. -- --- In the case of newtypes, it returns --- *either* a vanilla TyConApp (recursive newtype, or non-saturated) --- *or* the newtype representation (otherwise), meaning the --- type written in the RHS of the newtype decl, --- which may itself be a newtype +-- In the case of @newtype@s, it returns one of: -- --- Example: newtype R = MkR S --- newtype S = MkS T --- newtype T = MkT (T -> T) --- expandNewTcApp on R gives Just S --- on S gives Just T --- on T gives Nothing (no expansion) +-- 1) A vanilla 'TyConApp' (recursive newtype, or non-saturated) +-- +-- 2) The newtype representation (otherwise), meaning the +-- type written in the RHS of the newtype declaration, +-- which may itself be a newtype +-- +-- For example, with: +-- +-- > newtype R = MkR S +-- > newtype S = MkS T +-- > newtype T = MkT (T -> T) +-- +-- 'expandNewTcApp' on: +-- +-- * @R@ gives @Just S@ +-- * @S@ gives @Just T@ +-- * @T@ gives @Nothing@ (no expansion) -- By being non-recursive and inlined, this case analysis gets efficiently -- joined onto the case analysis that the caller is already doing @@ -181,25 +264,39 @@ coreView _ = Nothing ----------------------------------------------- {-# INLINE tcView #-} tcView :: Type -> Maybe Type --- Same, but for the type checker, which just looks through synonyms +-- ^ Similar to 'coreView', but for the type checker, which just looks through synonyms tcView (TyConApp tc tys) | Just (tenv, rhs, tys') <- tcExpandTyCon_maybe tc tys = Just (mkAppTys (substTy (mkTopTvSubst tenv) rhs) tys') tcView _ = Nothing ----------------------------------------------- -rttiView :: Type -> Type --- Same, but for the RTTI system, which cannot deal with predicates nor polymorphism -rttiView (ForAllTy _ ty) = rttiView ty -rttiView (FunTy PredTy{} ty) = rttiView ty -rttiView ty@TyConApp{} | Just ty' <- coreView ty - = rttiView ty' -rttiView (TyConApp tc tys) = mkTyConApp tc (map rttiView tys) -rttiView ty = ty +expandTypeSynonyms :: Type -> Type +-- ^ Expand out all type synonyms. Actually, it'd suffice to expand out +-- just the ones that discard type variables (e.g. type Funny a = Int) +-- But we don't know which those are currently, so we just expand all. +expandTypeSynonyms ty + = go ty + where + go (TyConApp tc tys) + | Just (tenv, rhs, tys') <- tcExpandTyCon_maybe tc tys + = go (mkAppTys (substTy (mkTopTvSubst tenv) rhs) tys') + | otherwise + = TyConApp tc (map go tys) + go (TyVarTy tv) = TyVarTy tv + go (AppTy t1 t2) = AppTy (go t1) (go t2) + go (FunTy t1 t2) = FunTy (go t1) (go t2) + go (ForAllTy tv t) = ForAllTy tv (go t) + go (PredTy p) = PredTy (go_pred p) + + go_pred (ClassP c ts) = ClassP c (map go ts) + go_pred (IParam ip t) = IParam ip (go t) + go_pred (EqPred t1 t2) = EqPred (go t1) (go t2) ----------------------------------------------- {-# INLINE kindView #-} kindView :: Kind -> Maybe Kind --- C.f. coreView, tcView +-- ^ Similar to 'coreView' or 'tcView', but works on 'Kind's + -- For the moment, we don't even handle synonyms in kinds kindView _ = Nothing \end{code} @@ -222,6 +319,8 @@ mkTyVarTy = TyVarTy mkTyVarTys :: [TyVar] -> [Type] mkTyVarTys = map mkTyVarTy -- a common use of mkTyVarTy +-- | Attempts to obtain the type variable underlying a 'Type', and panics with the +-- given message if this is not a type variable type. See also 'getTyVar_maybe' getTyVar :: String -> Type -> TyVar getTyVar msg ty = case getTyVar_maybe ty of Just tv -> tv @@ -230,6 +329,7 @@ getTyVar msg ty = case getTyVar_maybe ty of isTyVarTy :: Type -> Bool isTyVarTy ty = isJust (getTyVar_maybe ty) +-- | Attempts to obtain the type variable underlying a 'Type' getTyVar_maybe :: Type -> Maybe TyVar getTyVar_maybe ty | Just ty' <- coreView ty = getTyVar_maybe ty' getTyVar_maybe (TyVarTy tv) = Just tv @@ -246,6 +346,7 @@ invariant that a TyConApp is always visibly so. mkAppTy maintains the invariant: use it. \begin{code} +-- | Applies a type to another, as in e.g. @k a@ mkAppTy :: Type -> Type -> Type mkAppTy orig_ty1 orig_ty2 = mk_app orig_ty1 @@ -277,38 +378,47 @@ mkAppTys orig_ty1 orig_tys2 ------------- splitAppTy_maybe :: Type -> Maybe (Type, Type) +-- ^ Attempt to take a type application apart, whether it is a +-- function, type constructor, or plain type application. Note +-- that type family applications are NEVER unsaturated by this! splitAppTy_maybe ty | Just ty' <- coreView ty = splitAppTy_maybe ty' splitAppTy_maybe ty = repSplitAppTy_maybe ty ------------- repSplitAppTy_maybe :: Type -> Maybe (Type,Type) --- Does the AppTy split, but assumes that any view stuff is already done +-- ^ Does the AppTy split as in 'splitAppTy_maybe', but assumes that +-- any Core view stuff is already done repSplitAppTy_maybe (FunTy ty1 ty2) = Just (TyConApp funTyCon [ty1], ty2) repSplitAppTy_maybe (AppTy ty1 ty2) = Just (ty1, ty2) repSplitAppTy_maybe (TyConApp tc tys) - | not (isOpenSynTyCon tc) || length tys > tyConArity tc + | isDecomposableTyCon tc || length tys > tyConArity tc = case snocView tys of -- never create unsaturated type family apps Just (tys', ty') -> Just (TyConApp tc tys', ty') Nothing -> Nothing repSplitAppTy_maybe _other = Nothing ------------- splitAppTy :: Type -> (Type, Type) +-- ^ Attempts to take a type application apart, as in 'splitAppTy_maybe', +-- and panics if this is not possible splitAppTy ty = case splitAppTy_maybe ty of Just pr -> pr Nothing -> panic "splitAppTy" ------------- splitAppTys :: Type -> (Type, [Type]) +-- ^ Recursively splits a type as far as is possible, leaving a residual +-- type being applied to and the type arguments applied to it. Never fails, +-- even if that means returning an empty list of type applications. splitAppTys ty = split ty ty [] where split orig_ty ty args | Just ty' <- coreView ty = split orig_ty ty' args split _ (AppTy ty arg) args = split ty ty (arg:args) split _ (TyConApp tc tc_args) args = let -- keep type families saturated - n | isOpenSynTyCon tc = tyConArity tc - | otherwise = 0 - (tc_args1, tc_args2) = splitAt n tc_args + n | isDecomposableTyCon tc = 0 + | otherwise = tyConArity tc + (tc_args1, tc_args2) = splitAt n tc_args in (TyConApp tc tc_args1, tc_args2 ++ args) split _ (FunTy ty1 ty2) args = ASSERT( null args ) @@ -324,8 +434,9 @@ splitAppTys ty = split ty ty [] \begin{code} mkFunTy :: Type -> Type -> Type -mkFunTy (PredTy (EqPred ty1 ty2)) res = mkForAllTy (mkWildCoVar (PredTy (EqPred ty1 ty2))) res -mkFunTy arg res = FunTy arg res +-- ^ Creates a function type from the given argument and result type +mkFunTy arg@(PredTy (EqPred {})) res = ForAllTy (mkWildCoVar arg) res +mkFunTy arg res = FunTy arg res mkFunTys :: [Type] -> Type -> Type mkFunTys tys ty = foldr mkFunTy ty tys @@ -334,11 +445,14 @@ isFunTy :: Type -> Bool isFunTy ty = isJust (splitFunTy_maybe ty) splitFunTy :: Type -> (Type, Type) +-- ^ Attempts to extract the argument and result types from a type, and +-- panics if that is not possible. See also 'splitFunTy_maybe' splitFunTy ty | Just ty' <- coreView ty = splitFunTy ty' splitFunTy (FunTy arg res) = (arg, res) splitFunTy other = pprPanic "splitFunTy" (ppr other) splitFunTy_maybe :: Type -> Maybe (Type, Type) +-- ^ Attempts to extract the argument and result types from a type splitFunTy_maybe ty | Just ty' <- coreView ty = splitFunTy_maybe ty' splitFunTy_maybe (FunTy arg res) = Just (arg, res) splitFunTy_maybe _ = Nothing @@ -351,13 +465,18 @@ splitFunTys ty = split [] ty ty split args orig_ty _ = (reverse args, orig_ty) splitFunTysN :: Int -> Type -> ([Type], Type) --- Split off exactly n arg tys +-- ^ Split off exactly the given number argument types, and panics if that is not possible splitFunTysN 0 ty = ([], ty) splitFunTysN n ty = case splitFunTy ty of { (arg, res) -> case splitFunTysN (n-1) res of { (args, res) -> (arg:args, res) }} -zipFunTys :: Outputable a => [a] -> Type -> ([(a,Type)], Type) +-- | Splits off argument types from the given type and associating +-- them with the things in the input list from left to right. The +-- final result type is returned, along with the resulting pairs of +-- objects and types, albeit with the list of pairs in reverse order. +-- Panics if there are not enough argument types for the input list. +zipFunTys :: Outputable a => [a] -> Type -> ([(a, Type)], Type) zipFunTys orig_xs orig_ty = split [] orig_xs orig_ty orig_ty where split acc [] nty _ = (reverse acc, nty) @@ -367,24 +486,25 @@ zipFunTys orig_xs orig_ty = split [] orig_xs orig_ty orig_ty split _ _ _ _ = pprPanic "zipFunTys" (ppr orig_xs <+> ppr orig_ty) funResultTy :: Type -> Type +-- ^ Extract the function result type and panic if that is not possible funResultTy ty | Just ty' <- coreView ty = funResultTy ty' funResultTy (FunTy _arg res) = res funResultTy ty = pprPanic "funResultTy" (ppr ty) funArgTy :: Type -> Type +-- ^ Extract the function argument type and panic if that is not possible funArgTy ty | Just ty' <- coreView ty = funArgTy ty' funArgTy (FunTy arg _res) = arg funArgTy ty = pprPanic "funArgTy" (ppr ty) \end{code} - --------------------------------------------------------------------- TyConApp ~~~~~~~~ -@mkTyConApp@ is a key function, because it builds a TyConApp, FunTy or PredTy, -as apppropriate. \begin{code} +-- | A key function: builds a 'TyConApp' or 'FunTy' as apppropriate to its arguments. +-- Applies its arguments to the constructor from left to right mkTyConApp :: TyCon -> [Type] -> Type mkTyConApp tycon tys | isFunTyCon tycon, [ty1,ty2] <- tys @@ -393,6 +513,7 @@ mkTyConApp tycon tys | otherwise = TyConApp tycon tys +-- | Create the plain type constructor type which has been applied to no type arguments at all. mkTyConTy :: TyCon -> Type mkTyConTy tycon = mkTyConApp tycon [] @@ -400,39 +521,33 @@ mkTyConTy tycon = mkTyConApp tycon [] -- mean a distinct type, but all other type-constructor applications -- including functions are returned as Just .. +-- | The same as @fst . splitTyConApp@ tyConAppTyCon :: Type -> TyCon tyConAppTyCon ty = fst (splitTyConApp ty) +-- | The same as @snd . splitTyConApp@ tyConAppArgs :: Type -> [Type] tyConAppArgs ty = snd (splitTyConApp ty) +-- | Attempts to tease a type apart into a type constructor and the application +-- of a number of arguments to that constructor. Panics if that is not possible. +-- See also 'splitTyConApp_maybe' splitTyConApp :: Type -> (TyCon, [Type]) splitTyConApp ty = case splitTyConApp_maybe ty of Just stuff -> stuff Nothing -> pprPanic "splitTyConApp" (ppr ty) +-- | Attempts to tease a type apart into a type constructor and the application +-- of a number of arguments to that constructor splitTyConApp_maybe :: Type -> Maybe (TyCon, [Type]) splitTyConApp_maybe ty | Just ty' <- coreView ty = splitTyConApp_maybe ty' splitTyConApp_maybe (TyConApp tc tys) = Just (tc, tys) splitTyConApp_maybe (FunTy arg res) = Just (funTyCon, [arg,res]) splitTyConApp_maybe _ = Nothing --- Sometimes we do NOT want to look throught a newtype. When case matching --- on a newtype we want a convenient way to access the arguments of a newty --- constructor so as to properly form a coercion. -splitNewTyConApp :: Type -> (TyCon, [Type]) -splitNewTyConApp ty = case splitNewTyConApp_maybe ty of - Just stuff -> stuff - Nothing -> pprPanic "splitNewTyConApp" (ppr ty) -splitNewTyConApp_maybe :: Type -> Maybe (TyCon, [Type]) -splitNewTyConApp_maybe ty | Just ty' <- tcView ty = splitNewTyConApp_maybe ty' -splitNewTyConApp_maybe (TyConApp tc tys) = Just (tc, tys) -splitNewTyConApp_maybe (FunTy arg res) = Just (funTyCon, [arg,res]) -splitNewTyConApp_maybe _ = Nothing - newTyConInstRhs :: TyCon -> [Type] -> Type --- Unwrap one 'layer' of newtype --- Use the eta'd version if possible +-- ^ Unwrap one 'layer' of newtype on a type constructor and its arguments, using an +-- eta-reduced version of the @newtype@ if possible newTyConInstRhs tycon tys = ASSERT2( equalLength tvs tys1, ppr tycon $$ ppr tys $$ ppr tvs ) mkAppTys (substTyWith tvs tys1 ty) tys2 @@ -488,15 +603,16 @@ newtype at outermost level; and bale out if we see it again. Representation types ~~~~~~~~~~~~~~~~~~~~ -repType looks through - (a) for-alls, and - (b) synonyms - (c) predicates - (d) usage annotations - (e) all newtypes, including recursive ones, but not newtype families -It's useful in the back end. \begin{code} +-- | Looks through: +-- +-- 1. For-alls +-- 2. Synonyms +-- 3. Predicates +-- 4. All newtypes, including recursive ones, but not newtype families +-- +-- It's useful in the back end of the compiler. repType :: Type -> Type -- Only applied to types of kind *; hence tycons are saturated repType ty @@ -509,21 +625,29 @@ repType ty go rec_nts (ForAllTy _ ty) -- Look through foralls = go rec_nts ty - go rec_nts ty@(TyConApp tc tys) -- Expand newtypes - | Just _co_con <- newTyConCo_maybe tc -- See Note [Expanding newtypes] - = if tc `elem` rec_nts -- in Type.lhs - then ty - else go rec_nts' nt_rhs - where - nt_rhs = newTyConInstRhs tc tys - rec_nts' | isRecursiveTyCon tc = tc:rec_nts - | otherwise = rec_nts + go rec_nts (TyConApp tc tys) -- Expand newtypes + | Just (rec_nts', ty') <- carefullySplitNewType_maybe rec_nts tc tys + = go rec_nts' ty' go _ ty = ty +carefullySplitNewType_maybe :: [TyCon] -> TyCon -> [Type] -> Maybe ([TyCon],Type) +-- Return the representation of a newtype, unless +-- we've seen it already: see Note [Expanding newtypes] +carefullySplitNewType_maybe rec_nts tc tys + | isNewTyCon tc + , not (tc `elem` rec_nts) = Just (rec_nts', newTyConInstRhs tc tys) + | otherwise = Nothing + where + rec_nts' | isRecursiveTyCon tc = tc:rec_nts + | otherwise = rec_nts + + -- ToDo: this could be moved to the code generator, using splitTyConApp instead -- of inspecting the type directly. + +-- | Discovers the primitive representation of a more abstract 'Type' typePrimRep :: Type -> PrimRep typePrimRep ty = case repType ty of TyConApp tc _ -> tyConPrimRep tc @@ -546,8 +670,9 @@ typePrimRep ty = case repType ty of \begin{code} mkForAllTy :: TyVar -> Type -> Type mkForAllTy tyvar ty - = mkForAllTys [tyvar] ty + = ForAllTy tyvar ty +-- | Wraps foralls over the type using the provided 'TyVar's from left to right mkForAllTys :: [TyVar] -> Type -> Type mkForAllTys tyvars ty = foldr ForAllTy ty tyvars @@ -555,6 +680,8 @@ isForAllTy :: Type -> Bool isForAllTy (ForAllTy _ _) = True isForAllTy _ = False +-- | Attempts to take a forall type apart, returning the bound type variable +-- and the remainder of the type splitForAllTy_maybe :: Type -> Maybe (TyVar, Type) splitForAllTy_maybe ty = splitFAT_m ty where @@ -562,6 +689,9 @@ splitForAllTy_maybe ty = splitFAT_m ty splitFAT_m (ForAllTy tyvar ty) = Just(tyvar, ty) splitFAT_m _ = Nothing +-- | Attempts to take a forall type apart, returning all the immediate such bound +-- type variables and the remainder of the type. Always suceeds, even if that means +-- returning an empty list of 'TyVar's splitForAllTys :: Type -> ([TyVar], Type) splitForAllTys ty = split ty ty [] where @@ -569,6 +699,7 @@ splitForAllTys ty = split ty ty [] split _ (ForAllTy tv ty) tvs = split ty ty (tv:tvs) split orig_ty _ tvs = (reverse tvs, orig_ty) +-- | Equivalent to @snd . splitForAllTys@ dropForAlls :: Type -> Type dropForAlls ty = snd (splitForAllTys ty) \end{code} @@ -577,41 +708,52 @@ dropForAlls ty = snd (splitForAllTys ty) applyTy, applyTys ~~~~~~~~~~~~~~~~~ -Instantiate a for-all type with one or more type arguments. -Used when we have a polymorphic function applied to type args: - f t1 t2 -Then we use (applyTys type-of-f [t1,t2]) to compute the type of -the expression. \begin{code} +-- | Instantiate a forall type with one or more type arguments. +-- Used when we have a polymorphic function applied to type args: +-- +-- > f t1 t2 +-- +-- We use @applyTys type-of-f [t1,t2]@ to compute the type of the expression. +-- Panics if no application is possible. applyTy :: Type -> Type -> Type applyTy ty arg | Just ty' <- coreView ty = applyTy ty' arg applyTy (ForAllTy tv ty) arg = substTyWith [tv] [arg] ty applyTy _ _ = panic "applyTy" applyTys :: Type -> [Type] -> Type --- This function is interesting because --- a) the function may have more for-alls than there are args --- b) less obviously, it may have fewer for-alls --- For case (b) think of --- applyTys (forall a.a) [forall b.b, Int] +-- ^ This function is interesting because: +-- +-- 1. The function may have more for-alls than there are args +-- +-- 2. Less obviously, it may have fewer for-alls +-- +-- For case 2. think of: +-- +-- > applyTys (forall a.a) [forall b.b, Int] +-- -- This really can happen, via dressing up polymorphic types with newtype -- clothing. Here's an example: --- newtype R = R (forall a. a->a) --- foo = case undefined :: R of --- R f -> f () +-- +-- > newtype R = R (forall a. a->a) +-- > foo = case undefined :: R of +-- > R f -> f () -applyTys orig_fun_ty [] = orig_fun_ty -applyTys orig_fun_ty arg_tys +applyTys ty args = applyTysD empty ty args + +applyTysD :: SDoc -> Type -> [Type] -> Type -- Debug version +applyTysD _ orig_fun_ty [] = orig_fun_ty +applyTysD doc orig_fun_ty arg_tys | n_tvs == n_args -- The vastly common case = substTyWith tvs arg_tys rho_ty | n_tvs > n_args -- Too many for-alls = substTyWith (take n_args tvs) arg_tys (mkForAllTys (drop n_args tvs) rho_ty) | otherwise -- Too many type args - = ASSERT2( n_tvs > 0, ppr orig_fun_ty ) -- Zero case gives infnite loop! - applyTys (substTyWith tvs (take n_tvs arg_tys) rho_ty) - (drop n_tvs arg_tys) + = ASSERT2( n_tvs > 0, doc $$ ppr orig_fun_ty ) -- Zero case gives infnite loop! + applyTysD doc (substTyWith tvs (take n_tvs arg_tys) rho_ty) + (drop n_tvs arg_tys) where (tvs, rho_ty) = splitForAllTys orig_fun_ty n_tvs = length tvs @@ -625,9 +767,6 @@ applyTys orig_fun_ty arg_tys %* * %************************************************************************ -A "source type" is a type that is a separate type as far as the type checker is -concerned, but which has low-level representation as far as the back end is concerned. - Source types are always lifted. The key function is predTypeRep which gives the representation of a source type: @@ -639,11 +778,13 @@ mkPredTy pred = PredTy pred mkPredTys :: ThetaType -> [Type] mkPredTys preds = map PredTy preds +isEqPred :: PredType -> Bool +isEqPred (EqPred _ _) = True +isEqPred _ = False + predTypeRep :: PredType -> Type --- Convert a PredType to its "representation type"; --- the post-type-checking type used by all the Core passes of GHC. --- Unwraps only the outermost level; for example, the result might --- be a newtype application +-- ^ Convert a 'PredType' to its representation type. However, it unwraps +-- only the outermost level; for example, the result might be a newtype application predTypeRep (IParam _ ty) = ty predTypeRep (ClassP clas tys) = mkTyConApp (classTyCon clas) tys -- Result might be a newtype application, but the consumer will @@ -651,12 +792,15 @@ predTypeRep (ClassP clas tys) = mkTyConApp (classTyCon clas) tys predTypeRep (EqPred ty1 ty2) = pprPanic "predTypeRep" (ppr (EqPred ty1 ty2)) mkFamilyTyConApp :: TyCon -> [Type] -> Type --- Given a family instance TyCon and its arg types, return the --- corresponding family type. E.g. --- data family T a --- data instance T (Maybe b) = MkT b -- Instance tycon :RTL --- Then --- mkFamilyTyConApp :RTL Int = T (Maybe Int) +-- ^ Given a family instance TyCon and its arg types, return the +-- corresponding family type. E.g: +-- +-- > data family T a +-- > data instance T (Maybe b) = MkT b +-- +-- Where the instance tycon is :RTL, so: +-- +-- > mkFamilyTyConApp :RTL Int = T (Maybe Int) mkFamilyTyConApp tc tys | Just (fam_tc, fam_tys) <- tyConFamInst_maybe tc , let fam_subst = zipTopTvSubst (tyConTyVars tc) tys @@ -664,10 +808,12 @@ mkFamilyTyConApp tc tys | otherwise = mkTyConApp tc tys --- Pretty prints a tycon, using the family instance in case of a --- representation tycon. For example --- e.g. data T [a] = ... --- In that case we want to print `T [a]', where T is the family TyCon +-- | Pretty prints a 'TyCon', using the family instance in case of a +-- representation tycon. For example: +-- +-- > data T [a] = ... +-- +-- In that case we want to print @T [a]@, where @T@ is the family 'TyCon' pprSourceTyCon :: TyCon -> SDoc pprSourceTyCon tycon | Just (fam_tc, tys) <- tyConFamInst_maybe tycon @@ -679,47 +825,13 @@ pprSourceTyCon tycon %************************************************************************ %* * -\subsection{Kinds and free variables} + The free variables of a type %* * %************************************************************************ ---------------------------------------------------------------------- - Finding the kind of a type - ~~~~~~~~~~~~~~~~~~~~~~~~~~ -\begin{code} -typeKind :: Type -> Kind -typeKind (TyConApp tycon tys) = ASSERT( not (isCoercionTyCon tycon) ) - -- We should be looking for the coercion kind, - -- not the type kind - foldr (\_ k -> kindFunResult k) (tyConKind tycon) tys -typeKind (PredTy pred) = predKind pred -typeKind (AppTy fun _) = kindFunResult (typeKind fun) -typeKind (ForAllTy _ ty) = typeKind ty -typeKind (TyVarTy tyvar) = tyVarKind tyvar -typeKind (FunTy _arg res) - -- Hack alert. The kind of (Int -> Int#) is liftedTypeKind (*), - -- not unliftedTypKind (#) - -- The only things that can be after a function arrow are - -- (a) types (of kind openTypeKind or its sub-kinds) - -- (b) kinds (of super-kind TY) (e.g. * -> (* -> *)) - | isTySuperKind k = k - | otherwise = ASSERT( isSubOpenTypeKind k) liftedTypeKind - where - k = typeKind res - -predKind :: PredType -> Kind -predKind (EqPred {}) = coSuperKind -- A coercion kind! -predKind (ClassP {}) = liftedTypeKind -- Class and implicitPredicates are -predKind (IParam {}) = liftedTypeKind -- always represented by lifted types -\end{code} - - ---------------------------------------------------------------------- - Free variables of a type - ~~~~~~~~~~~~~~~~~~~~~~~~ \begin{code} tyVarsOfType :: Type -> TyVarSet --- NB: for type synonyms tyVarsOfType does *not* expand the synonym +-- ^ NB: for type synonyms tyVarsOfType does /not/ expand the synonym tyVarsOfType (TyVarTy tv) = unitVarSet tv tyVarsOfType (TyConApp _ tys) = tyVarsOfTypes tys tyVarsOfType (PredTy sty) = tyVarsOfPred sty @@ -746,9 +858,8 @@ tyVarsOfTheta = foldr (unionVarSet . tyVarsOfPred) emptyVarSet %* * %************************************************************************ -Type family instances occuring in a type after expanding synonyms. - \begin{code} +-- | Finds type family instances occuring in a type after expanding synonyms. tyFamInsts :: Type -> [(TyCon, [Type])] tyFamInsts ty | Just exp_ty <- tcView ty = tyFamInsts exp_ty @@ -759,6 +870,14 @@ tyFamInsts (TyConApp tc tys) tyFamInsts (FunTy ty1 ty2) = tyFamInsts ty1 ++ tyFamInsts ty2 tyFamInsts (AppTy ty1 ty2) = tyFamInsts ty1 ++ tyFamInsts ty2 tyFamInsts (ForAllTy _ ty) = tyFamInsts ty +tyFamInsts (PredTy pty) = predFamInsts pty + +-- | Finds type family instances occuring in a predicate type after expanding +-- synonyms. +predFamInsts :: PredType -> [(TyCon, [Type])] +predFamInsts (ClassP _cla tys) = concat (map tyFamInsts tys) +predFamInsts (IParam _ ty) = tyFamInsts ty +predFamInsts (EqPred ty1 ty2) = tyFamInsts ty1 ++ tyFamInsts ty2 \end{code} @@ -768,12 +887,11 @@ tyFamInsts (ForAllTy _ ty) = tyFamInsts ty %* * %************************************************************************ -tidyTy tidies up a type for printing in an error message, or in -an interface file. - -It doesn't change the uniques at all, just the print names. - \begin{code} +-- | This tidies up a type for printing in an error message, or in +-- an interface file. +-- +-- It doesn't change the uniques at all, just the print names. tidyTyVarBndr :: TidyEnv -> TyVar -> (TidyEnv, TyVar) tidyTyVarBndr env@(tidy_env, subst) tyvar = case tidyOccName tidy_env (getOccName name) of @@ -790,7 +908,7 @@ tidyTyVarBndr env@(tidy_env, subst) tyvar name = tyVarName tyvar tidyFreeTyVars :: TidyEnv -> TyVarSet -> TidyEnv --- Add the free tyvars to the env in tidy form, +-- ^ Add the free 'TyVar's to the env in tidy form, -- so that we can tidy the type they are free in tidyFreeTyVars env tyvars = fst (tidyOpenTyVars env (varSetElems tyvars)) @@ -798,7 +916,9 @@ tidyOpenTyVars :: TidyEnv -> [TyVar] -> (TidyEnv, [TyVar]) tidyOpenTyVars env tyvars = mapAccumL tidyOpenTyVar env tyvars tidyOpenTyVar :: TidyEnv -> TyVar -> (TidyEnv, TyVar) --- Treat a new tyvar as a binder, and give it a fresh tidy name +-- ^ Treat a new 'TyVar' as a binder, and give it a fresh tidy name +-- using the environment if one has not already been allocated. See +-- also 'tidyTyVarBndr' tidyOpenTyVar env@(_, subst) tyvar = case lookupVarEnv subst tyvar of Just tyvar' -> (env, tyvar') -- Already substituted @@ -830,10 +950,9 @@ tidyPred env (EqPred ty1 ty2) = EqPred (tidyType env ty1) (tidyType env ty2) \end{code} -@tidyOpenType@ grabs the free type variables, tidies them -and then uses @tidyType@ to work over the type itself - \begin{code} +-- | Grabs the free type variables, tidies them +-- and then uses 'tidyType' to work over the type itself tidyOpenType :: TidyEnv -> Type -> (TidyEnv, Type) tidyOpenType env ty = (env', tidyType env' ty) @@ -843,6 +962,7 @@ tidyOpenType env ty tidyOpenTypes :: TidyEnv -> [Type] -> (TidyEnv, [Type]) tidyOpenTypes env tys = mapAccumL tidyOpenType env tys +-- | Calls 'tidyType' on a top-level type (i.e. with an empty tidying environment) tidyTopType :: Type -> Type tidyTopType ty = tidyType emptyTidyEnv ty \end{code} @@ -862,6 +982,7 @@ tidyKind env k = tidyOpenType env k %************************************************************************ \begin{code} +-- | See "Type#type_classification" for what an unlifted type is isUnLiftedType :: Type -> Bool -- isUnLiftedType returns True for forall'd unlifted types: -- x :: forall a. Int# @@ -879,7 +1000,9 @@ isUnboxedTupleType ty = case splitTyConApp_maybe ty of Just (tc, _ty_args) -> isUnboxedTupleTyCon tc _ -> False --- Should only be applied to *types*; hence the assert +-- | See "Type#type_classification" for what an algebraic type is. +-- Should only be applied to /types/, as opposed to e.g. partially +-- saturated type constructors isAlgType :: Type -> Bool isAlgType ty = case splitTyConApp_maybe ty of @@ -887,7 +1010,10 @@ isAlgType ty isAlgTyCon tc _other -> False --- Should only be applied to *types*; hence the assert +-- | See "Type#type_classification" for what an algebraic type is. +-- Should only be applied to /types/, as opposed to e.g. partially +-- saturated type constructors. Closed type constructors are those +-- with a fixed right hand side, as opposed to e.g. associated types isClosedAlgType :: Type -> Bool isClosedAlgType ty = case splitTyConApp_maybe ty of @@ -896,14 +1022,15 @@ isClosedAlgType ty _other -> False \end{code} -@isStrictType@ computes whether an argument (or let RHS) should -be computed strictly or lazily, based only on its type. -Works just like isUnLiftedType, except that it has a special case -for dictionaries. Since it takes account of ClassP, you might think -this function should be in TcType, but isStrictType is used by DataCon, -which is below TcType in the hierarchy, so it's convenient to put it here. - \begin{code} +-- | Computes whether an argument (or let right hand side) should +-- be computed strictly or lazily, based only on its type. +-- Works just like 'isUnLiftedType', except that it has a special case +-- for dictionaries (i.e. does not work purely on representation types) + +-- Since it takes account of class 'PredType's, you might think +-- this function should be in 'TcType', but 'isStrictType' is used by 'DataCon', +-- which is below 'TcType' in the hierarchy, so it's convenient to put it here. isStrictType :: Type -> Bool isStrictType (PredTy pred) = isStrictPred pred isStrictType ty | Just ty' <- coreView ty = isStrictType ty' @@ -911,18 +1038,19 @@ isStrictType (ForAllTy _ ty) = isStrictType ty isStrictType (TyConApp tc _) = isUnLiftedTyCon tc isStrictType _ = False +-- | We may be strict in dictionary types, but only if it +-- has more than one component. +-- +-- (Being strict in a single-component dictionary risks +-- poking the dictionary component, which is wrong.) isStrictPred :: PredType -> Bool isStrictPred (ClassP clas _) = opt_DictsStrict && not (isNewTyCon (classTyCon clas)) isStrictPred _ = False - -- We may be strict in dictionary types, but only if it - -- has more than one component. - -- [Being strict in a single-component dictionary risks - -- poking the dictionary component, which is wrong.] \end{code} \begin{code} isPrimitiveType :: Type -> Bool --- Returns types that are opaque to Haskell. +-- ^ Returns true of types that are opaque to Haskell. -- Most of these are unlifted, but now that we interact with .NET, we -- may have primtive (foreign-imported) types that are lifted isPrimitiveType ty = case splitTyConApp_maybe ty of @@ -934,7 +1062,7 @@ isPrimitiveType ty = case splitTyConApp_maybe ty of %************************************************************************ %* * -\subsection{Sequencing on types +\subsection{Sequencing on types} %* * %************************************************************************ @@ -969,12 +1097,16 @@ Note that eqType works right even for partial applications of newtypes. See Note [Newtype eta] in TyCon.lhs \begin{code} +-- | Type equality test for Core types (i.e. ignores predicate-types, synonyms etc.) coreEqType :: Type -> Type -> Bool -coreEqType t1 t2 - = eq rn_env t1 t2 +coreEqType t1 t2 = coreEqType2 rn_env t1 t2 where rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfType t1 `unionVarSet` tyVarsOfType t2)) +coreEqType2 :: RnEnv2 -> Type -> Type -> Bool +coreEqType2 rn_env t1 t2 + = eq rn_env t1 t2 + where eq env (TyVarTy tv1) (TyVarTy tv2) = rnOccL env tv1 == rnOccR env tv2 eq env (ForAllTy tv1 t1) (ForAllTy tv2 t2) = eq (rnBndr2 env tv1 tv2) t1 t2 eq env (AppTy s1 t1) (AppTy s2 t2) = eq env s1 s2 && eq env t1 t2 @@ -1007,18 +1139,18 @@ coreEqType t1 t2 %* * %************************************************************************ -Note that - tcEqType, tcCmpType -do *not* look through newtypes, PredTypes - \begin{code} tcEqType :: Type -> Type -> Bool +-- ^ Type equality on source types. Does not look through @newtypes@ or +-- 'PredType's, but it does look through type synonyms. tcEqType t1 t2 = isEqual $ cmpType t1 t2 tcEqTypes :: [Type] -> [Type] -> Bool tcEqTypes tys1 tys2 = isEqual $ cmpTypes tys1 tys2 tcCmpType :: Type -> Type -> Ordering +-- ^ Type ordering on source types. Does not look through @newtypes@ or +-- 'PredType's, but it does look through type synonyms. tcCmpType t1 t2 = cmpType t1 t2 tcCmpTypes :: [Type] -> [Type] -> Ordering @@ -1027,6 +1159,9 @@ tcCmpTypes tys1 tys2 = cmpTypes tys1 tys2 tcEqPred :: PredType -> PredType -> Bool tcEqPred p1 p2 = isEqual $ cmpPred p1 p2 +tcEqPredX :: RnEnv2 -> PredType -> PredType -> Bool +tcEqPredX env p1 p2 = isEqual $ cmpPredX env p1 p2 + tcCmpPred :: PredType -> PredType -> Ordering tcCmpPred p1 p2 = cmpPred p1 p2 @@ -1034,10 +1169,9 @@ tcEqTypeX :: RnEnv2 -> Type -> Type -> Bool tcEqTypeX env t1 t2 = isEqual $ cmpTypeX env t1 t2 \end{code} -Checks whether the second argument is a subterm of the first. (We don't care -about binders, as we are only interested in syntactic subterms.) - \begin{code} +-- | Checks whether the second argument is a subterm of the first. (We don't care +-- about binders, as we are only interested in syntactic subterms.) tcPartOfType :: Type -> Type -> Bool tcPartOfType t1 t2 | tcEqType t1 t2 = True @@ -1145,6 +1279,19 @@ instance Ord PredType where { compare = tcCmpPred } %************************************************************************ \begin{code} +-- | Type substitution +-- +-- #tvsubst_invariant# +-- The following invariants must hold of a 'TvSubst': +-- +-- 1. The in-scope set is needed /only/ to +-- guide the generation of fresh uniques +-- +-- 2. In particular, the /kind/ of the type variables in +-- the in-scope set is not relevant +-- +-- 3. The substition is only applied ONCE! This is because +-- in general such application will not reached a fixed point. data TvSubst = TvSubst InScopeSet -- The in-scope type variables TvSubstEnv -- The substitution itself @@ -1174,13 +1321,7 @@ we use during unifications, it must not be repeatedly applied. Note [Extending the TvSubst] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -The following invariant should hold of a TvSubst - - The in-scope set is needed *only* to - guide the generation of fresh uniques - - In particular, the *kind* of the type variables in - the in-scope set is not relevant +See #tvsubst_invariant# for the invariants that must hold. This invariant allows a short-cut when the TvSubstEnv is empty: if the TvSubstEnv is empty --- i.e. (isEmptyTvSubt subst) holds --- @@ -1205,20 +1346,21 @@ This invariant has several crucial consequences: -------------------------------------------------------------- -} - +-- | A substitition of 'Type's for 'TyVar's type TvSubstEnv = TyVarEnv Type -- A TvSubstEnv is used both inside a TvSubst (with the apply-once -- invariant discussed in Note [Apply Once]), and also independently -- in the middle of matching, and unification (see Types.Unify) -- So you have to look at the context to know if it's idempotent or -- apply-once or whatever + emptyTvSubstEnv :: TvSubstEnv emptyTvSubstEnv = emptyVarEnv composeTvSubst :: InScopeSet -> TvSubstEnv -> TvSubstEnv -> TvSubstEnv --- (compose env1 env2)(x) is env1(env2(x)); i.e. apply env2 then env1 --- It assumes that both are idempotent --- Typically, env1 is the refinement to a base substitution env2 +-- ^ @(compose env1 env2)(x)@ is @env1(env2(x))@; i.e. apply @env2@ then @env1@. +-- It assumes that both are idempotent. +-- Typically, @env1@ is the refinement to a base substitution @env2@ composeTvSubst in_scope env1 env2 = env1 `plusVarEnv` mapVarEnv (substTy subst1) env2 -- First apply env1 to the range of env2 @@ -1253,8 +1395,14 @@ notElemTvSubst tv (TvSubst _ env) = not (tv `elemVarEnv` env) setTvSubstEnv :: TvSubst -> TvSubstEnv -> TvSubst setTvSubstEnv (TvSubst in_scope _) env = TvSubst in_scope env -extendTvInScope :: TvSubst -> [Var] -> TvSubst -extendTvInScope (TvSubst in_scope env) vars = TvSubst (extendInScopeSetList in_scope vars) env +zapTvSubstEnv :: TvSubst -> TvSubst +zapTvSubstEnv (TvSubst in_scope _) = TvSubst in_scope emptyVarEnv + +extendTvInScope :: TvSubst -> Var -> TvSubst +extendTvInScope (TvSubst in_scope env) var = TvSubst (extendInScopeSet in_scope var) env + +extendTvInScopeList :: TvSubst -> [Var] -> TvSubst +extendTvInScopeList (TvSubst in_scope env) vars = TvSubst (extendInScopeSetList in_scope vars) env extendTvSubst :: TvSubst -> TyVar -> Type -> TvSubst extendTvSubst (TvSubst in_scope env) tv ty = TvSubst in_scope (extendVarEnv env tv ty) @@ -1267,9 +1415,26 @@ extendTvSubstList (TvSubst in_scope env) tvs tys -- the types given; but it's just a thunk so with a bit of luck -- it'll never be evaluated +-- Note [Generating the in-scope set for a substitution] +-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +-- If we want to substitute [a -> ty1, b -> ty2] I used to +-- think it was enough to generate an in-scope set that includes +-- fv(ty1,ty2). But that's not enough; we really should also take the +-- free vars of the type we are substituting into! Example: +-- (forall b. (a,b,x)) [a -> List b] +-- Then if we use the in-scope set {b}, there is a danger we will rename +-- the forall'd variable to 'x' by mistake, getting this: +-- (forall x. (List b, x, x) +-- Urk! This means looking at all the calls to mkOpenTvSubst.... + + +-- | Generates the in-scope set for the 'TvSubst' from the types in the incoming +-- environment, hence "open" mkOpenTvSubst :: TvSubstEnv -> TvSubst mkOpenTvSubst env = TvSubst (mkInScopeSet (tyVarsOfTypes (varEnvElts env))) env +-- | Generates the in-scope set for the 'TvSubst' from the types in the incoming +-- environment, hence "open" zipOpenTvSubst :: [TyVar] -> [Type] -> TvSubst zipOpenTvSubst tyvars tys | debugIsOn && (length tyvars /= length tys) @@ -1277,9 +1442,8 @@ zipOpenTvSubst tyvars tys | otherwise = TvSubst (mkInScopeSet (tyVarsOfTypes tys)) (zipTyEnv tyvars tys) --- mkTopTvSubst is called when doing top-level substitutions. --- Here we expect that the free vars of the range of the --- substitution will be empty. +-- | Called when doing top-level substitutions. Here we expect that the +-- free vars of the range of the substitution will be empty. mkTopTvSubst :: [(TyVar, Type)] -> TvSubst mkTopTvSubst prs = TvSubst emptyInScopeSet (mkVarEnv prs) @@ -1319,9 +1483,9 @@ zip_ty_env tvs tys env = pprTrace "Var/Type length mismatch: " (ppr instance Outputable TvSubst where ppr (TvSubst ins env) - = brackets $ sep[ ptext SLIT("TvSubst"), - nest 2 (ptext SLIT("In scope:") <+> ppr ins), - nest 2 (ptext SLIT("Env:") <+> ppr env) ] + = brackets $ sep[ ptext (sLit "TvSubst"), + nest 2 (ptext (sLit "In scope:") <+> ppr ins), + nest 2 (ptext (sLit "Env:") <+> ppr env) ] \end{code} %************************************************************************ @@ -1331,29 +1495,42 @@ instance Outputable TvSubst where %************************************************************************ \begin{code} +-- | Type substitution making use of an 'TvSubst' that +-- is assumed to be open, see 'zipOpenTvSubst' substTyWith :: [TyVar] -> [Type] -> Type -> Type substTyWith tvs tys = ASSERT( length tvs == length tys ) substTy (zipOpenTvSubst tvs tys) +-- | Type substitution making use of an 'TvSubst' that +-- is assumed to be open, see 'zipOpenTvSubst' +substTysWith :: [TyVar] -> [Type] -> [Type] -> [Type] +substTysWith tvs tys = ASSERT( length tvs == length tys ) + substTys (zipOpenTvSubst tvs tys) + +-- | Substitute within a 'Type' substTy :: TvSubst -> Type -> Type substTy subst ty | isEmptyTvSubst subst = ty | otherwise = subst_ty subst ty +-- | Substitute within several 'Type's substTys :: TvSubst -> [Type] -> [Type] substTys subst tys | isEmptyTvSubst subst = tys | otherwise = map (subst_ty subst) tys +-- | Substitute within a 'ThetaType' substTheta :: TvSubst -> ThetaType -> ThetaType substTheta subst theta | isEmptyTvSubst subst = theta | otherwise = map (substPred subst) theta +-- | Substitute within a 'PredType' substPred :: TvSubst -> PredType -> PredType substPred subst (IParam n ty) = IParam n (subst_ty subst ty) substPred subst (ClassP clas tys) = ClassP clas (map (subst_ty subst) tys) substPred subst (EqPred ty1 ty2) = EqPred (subst_ty subst ty1) (subst_ty subst ty2) -deShadowTy :: TyVarSet -> Type -> Type -- Remove any nested binders mentioning tvs +-- | Remove any nested binders mentioning the 'TyVar's in the 'TyVarSet' +deShadowTy :: TyVarSet -> Type -> Type deShadowTy tvs ty = subst_ty (mkTvSubst in_scope emptyTvSubstEnv) ty where @@ -1367,20 +1544,20 @@ subst_ty :: TvSubst -> Type -> Type subst_ty subst ty = go ty where - go (TyVarTy tv) = substTyVar subst tv - go (TyConApp tc tys) = let args = map go tys - in args `seqList` TyConApp tc args + go (TyVarTy tv) = substTyVar subst tv + go (TyConApp tc tys) = let args = map go tys + in args `seqList` TyConApp tc args - go (PredTy p) = PredTy $! (substPred subst p) + go (PredTy p) = PredTy $! (substPred subst p) - go (FunTy arg res) = (FunTy $! (go arg)) $! (go res) - go (AppTy fun arg) = mkAppTy (go fun) $! (go arg) + go (FunTy arg res) = (FunTy $! (go arg)) $! (go res) + go (AppTy fun arg) = mkAppTy (go fun) $! (go arg) -- The mkAppTy smart constructor is important -- we might be replacing (a Int), represented with App -- by [Int], represented with TyConApp - go (ForAllTy tv ty) = case substTyVarBndr subst tv of - (subst', tv') -> - ForAllTy tv' $! (subst_ty subst' ty) + go (ForAllTy tv ty) = case substTyVarBndr subst tv of + (subst', tv') -> + ForAllTy tv' $! (subst_ty subst' ty) substTyVar :: TvSubst -> TyVar -> Type substTyVar subst@(TvSubst _ _) tv @@ -1431,28 +1608,35 @@ substTyVarBndr subst@(TvSubst in_scope env) old_var Kinds ~~~~~ -There's a little subtyping at the kind level: - - ? - / \ - / \ - ?? (#) - / \ - * # - -where * [LiftedTypeKind] means boxed type - # [UnliftedTypeKind] means unboxed type - (#) [UbxTupleKind] means unboxed tuple - ?? [ArgTypeKind] is the lub of *,# - ? [OpenTypeKind] means any type at all - -In particular: - - error :: forall a:?. String -> a - (->) :: ?? -> ? -> * - (\(x::t) -> ...) Here t::?? (i.e. not unboxed tuple) \begin{code} +-- $kind_subtyping +-- #kind_subtyping# +-- There's a little subtyping at the kind level: +-- +-- @ +-- ? +-- \/ \ +-- \/ \ +-- ?? (\#) +-- \/ \ +-- \* \# +-- . +-- Where: \* [LiftedTypeKind] means boxed type +-- \# [UnliftedTypeKind] means unboxed type +-- (\#) [UbxTupleKind] means unboxed tuple +-- ?? [ArgTypeKind] is the lub of {\*, \#} +-- ? [OpenTypeKind] means any type at all +-- @ +-- +-- In particular: +-- +-- > error :: forall a:?. String -> a +-- > (->) :: ?? -> ? -> \* +-- > (\\(x::t) -> ...) +-- +-- Where in the last example @t :: ??@ (i.e. is not an unboxed tuple) + type KindVar = TyVar -- invariant: KindVar will always be a -- TcTyVar with details MetaTv TauTv ... -- kind var constructors and functions are in TcType @@ -1483,123 +1667,3 @@ When unifying two internal type variables, we collect their kind constraints by finding the GLB of the two. Since the partial order is a tree, they only have a glb if one is a sub-kind of the other. In that case, we bind the less-informative one to the more informative one. Neat, eh? - - -\begin{code} - -\end{code} - -%************************************************************************ -%* * - Functions over Kinds -%* * -%************************************************************************ - -\begin{code} -kindFunResult :: Kind -> Kind -kindFunResult k = funResultTy k - -splitKindFunTys :: Kind -> ([Kind],Kind) -splitKindFunTys k = splitFunTys k - -splitKindFunTysN :: Int -> Kind -> ([Kind],Kind) -splitKindFunTysN k = splitFunTysN k - -isUbxTupleKind, isOpenTypeKind, isArgTypeKind, isUnliftedTypeKind :: Kind -> Bool -isOpenTypeKindCon, isUbxTupleKindCon, isArgTypeKindCon, - isUnliftedTypeKindCon, isSubArgTypeKindCon :: TyCon -> Bool - -isOpenTypeKindCon tc = tyConUnique tc == openTypeKindTyConKey - -isOpenTypeKind (TyConApp tc _) = isOpenTypeKindCon tc -isOpenTypeKind _ = False - -isUbxTupleKindCon tc = tyConUnique tc == ubxTupleKindTyConKey - -isUbxTupleKind (TyConApp tc _) = isUbxTupleKindCon tc -isUbxTupleKind _ = False - -isArgTypeKindCon tc = tyConUnique tc == argTypeKindTyConKey - -isArgTypeKind (TyConApp tc _) = isArgTypeKindCon tc -isArgTypeKind _ = False - -isUnliftedTypeKindCon tc = tyConUnique tc == unliftedTypeKindTyConKey - -isUnliftedTypeKind (TyConApp tc _) = isUnliftedTypeKindCon tc -isUnliftedTypeKind _ = False - -isSubOpenTypeKind :: Kind -> Bool --- True of any sub-kind of OpenTypeKind (i.e. anything except arrow) -isSubOpenTypeKind (FunTy k1 k2) = ASSERT2 ( isKind k1, text "isSubOpenTypeKind" <+> ppr k1 <+> text "::" <+> ppr (typeKind k1) ) - ASSERT2 ( isKind k2, text "isSubOpenTypeKind" <+> ppr k2 <+> text "::" <+> ppr (typeKind k2) ) - False -isSubOpenTypeKind (TyConApp kc []) = ASSERT( isKind (TyConApp kc []) ) True -isSubOpenTypeKind other = ASSERT( isKind other ) False - -- This is a conservative answer - -- It matters in the call to isSubKind in - -- checkExpectedKind. - -isSubArgTypeKindCon kc - | isUnliftedTypeKindCon kc = True - | isLiftedTypeKindCon kc = True - | isArgTypeKindCon kc = True - | otherwise = False - -isSubArgTypeKind :: Kind -> Bool --- True of any sub-kind of ArgTypeKind -isSubArgTypeKind (TyConApp kc []) = isSubArgTypeKindCon kc -isSubArgTypeKind _ = False - -isSuperKind :: Type -> Bool -isSuperKind (TyConApp (skc) []) = isSuperKindTyCon skc -isSuperKind _ = False - -isKind :: Kind -> Bool -isKind k = isSuperKind (typeKind k) - -isSubKind :: Kind -> Kind -> Bool --- (k1 `isSubKind` k2) checks that k1 <: k2 -isSubKind (TyConApp kc1 []) (TyConApp kc2 []) = kc1 `isSubKindCon` kc2 -isSubKind (FunTy a1 r1) (FunTy a2 r2) = (a2 `isSubKind` a1) && (r1 `isSubKind` r2) -isSubKind (PredTy (EqPred ty1 ty2)) (PredTy (EqPred ty1' ty2')) - = ty1 `tcEqType` ty1' && ty2 `tcEqType` ty2' -isSubKind _ _ = False - -eqKind :: Kind -> Kind -> Bool -eqKind = tcEqType - -isSubKindCon :: TyCon -> TyCon -> Bool --- (kc1 `isSubKindCon` kc2) checks that kc1 <: kc2 -isSubKindCon kc1 kc2 - | isLiftedTypeKindCon kc1 && isLiftedTypeKindCon kc2 = True - | isUnliftedTypeKindCon kc1 && isUnliftedTypeKindCon kc2 = True - | isUbxTupleKindCon kc1 && isUbxTupleKindCon kc2 = True - | isOpenTypeKindCon kc2 = True - -- we already know kc1 is not a fun, its a TyCon - | isArgTypeKindCon kc2 && isSubArgTypeKindCon kc1 = True - | otherwise = False - -defaultKind :: Kind -> Kind --- Used when generalising: default kind '?' and '??' to '*' --- --- When we generalise, we make generic type variables whose kind is --- simple (* or *->* etc). So generic type variables (other than --- built-in constants like 'error') always have simple kinds. This is important; --- consider --- f x = True --- We want f to get type --- f :: forall (a::*). a -> Bool --- Not --- f :: forall (a::??). a -> Bool --- because that would allow a call like (f 3#) as well as (f True), ---and the calling conventions differ. This defaulting is done in TcMType.zonkTcTyVarBndr. -defaultKind k - | isSubOpenTypeKind k = liftedTypeKind - | isSubArgTypeKind k = liftedTypeKind - | otherwise = k - -isEqPred :: PredType -> Bool -isEqPred (EqPred _ _) = True -isEqPred _ = False -\end{code}