X-Git-Url: http://git.megacz.com/?p=ghc-hetmet.git;a=blobdiff_plain;f=compiler%2Futils%2FFiniteMap.lhs;fp=compiler%2Futils%2FFiniteMap.lhs;h=9168d3656f60006255f6651f89e31aefc3cbca9f;hp=0000000000000000000000000000000000000000;hb=0065d5ab628975892cea1ec7303f968c3338cbe1;hpb=28a464a75e14cece5db40f2765a29348273ff2d2 diff --git a/compiler/utils/FiniteMap.lhs b/compiler/utils/FiniteMap.lhs new file mode 100644 index 0000000..9168d36 --- /dev/null +++ b/compiler/utils/FiniteMap.lhs @@ -0,0 +1,749 @@ + +% (c) The AQUA Project, Glasgow University, 1994-1998 +% +\section[FiniteMap]{An implementation of finite maps} + +``Finite maps'' are the heart of the compiler's +lookup-tables/environments and its implementation of sets. Important +stuff! + +This code is derived from that in the paper: +\begin{display} + S Adams + "Efficient sets: a balancing act" + Journal of functional programming 3(4) Oct 1993, pp553-562 +\end{display} + +The code is SPECIALIZEd to various highly-desirable types (e.g., Id) +near the end. + +\begin{code} + +module FiniteMap ( + FiniteMap, -- abstract type + + emptyFM, unitFM, listToFM, + + addToFM, + addToFM_C, + addListToFM, + addListToFM_C, + delFromFM, + delListFromFM, + + plusFM, + plusFM_C, + minusFM, + foldFM, + + intersectFM, + intersectFM_C, + mapFM, filterFM, + + sizeFM, isEmptyFM, elemFM, lookupFM, lookupWithDefaultFM, + + fmToList, keysFM, eltsFM + + , bagToFM + + ) where + +#include "HsVersions.h" +#define IF_NOT_GHC(a) {--} + +#if defined(DEBUG_FINITEMAPS)/* NB NB NB */ +#define OUTPUTABLE_key , Outputable key +#else +#define OUTPUTABLE_key {--} +#endif + +import Maybes +import Bag ( Bag, foldrBag ) +import Util +import Outputable + +import GLAEXTS + +#if ! OMIT_NATIVE_CODEGEN +# define IF_NCG(a) a +#else +# define IF_NCG(a) {--} +#endif + + +-- SIGH: but we use unboxed "sizes"... +#if __GLASGOW_HASKELL__ +#define IF_GHC(a,b) a +#else /* not GHC */ +#define IF_GHC(a,b) b +#endif /* not GHC */ +\end{code} + + +%************************************************************************ +%* * +\subsection{The signature of the module} +%* * +%************************************************************************ + +\begin{code} +-- BUILDING +emptyFM :: FiniteMap key elt +unitFM :: key -> elt -> FiniteMap key elt +listToFM :: (Ord key OUTPUTABLE_key) => [(key,elt)] -> FiniteMap key elt + -- In the case of duplicates, the last is taken +bagToFM :: (Ord key OUTPUTABLE_key) => Bag (key,elt) -> FiniteMap key elt + -- In the case of duplicates, who knows which is taken + +-- ADDING AND DELETING + -- Throws away any previous binding + -- In the list case, the items are added starting with the + -- first one in the list +addToFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> key -> elt -> FiniteMap key elt +addListToFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> [(key,elt)] -> FiniteMap key elt + + -- Combines with previous binding + -- The combining fn goes (old -> new -> new) +addToFM_C :: (Ord key OUTPUTABLE_key) => (elt -> elt -> elt) + -> FiniteMap key elt -> key -> elt + -> FiniteMap key elt +addListToFM_C :: (Ord key OUTPUTABLE_key) => (elt -> elt -> elt) + -> FiniteMap key elt -> [(key,elt)] + -> FiniteMap key elt + + -- Deletion doesn't complain if you try to delete something + -- which isn't there +delFromFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> key -> FiniteMap key elt +delListFromFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> [key] -> FiniteMap key elt + +-- COMBINING + -- Bindings in right argument shadow those in the left +plusFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt + -> FiniteMap key elt + + -- Combines bindings for the same thing with the given function +plusFM_C :: (Ord key OUTPUTABLE_key) => (elt -> elt -> elt) + -> FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt + +minusFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt + -- (minusFM a1 a2) deletes from a1 any bindings which are bound in a2 + +intersectFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt +intersectFM_C :: (Ord key OUTPUTABLE_key) => (elt1 -> elt2 -> elt3) + -> FiniteMap key elt1 -> FiniteMap key elt2 -> FiniteMap key elt3 + +-- MAPPING, FOLDING, FILTERING +foldFM :: (key -> elt -> a -> a) -> a -> FiniteMap key elt -> a +mapFM :: (key -> elt1 -> elt2) -> FiniteMap key elt1 -> FiniteMap key elt2 +filterFM :: (Ord key OUTPUTABLE_key) => (key -> elt -> Bool) + -> FiniteMap key elt -> FiniteMap key elt + + +-- INTERROGATING +sizeFM :: FiniteMap key elt -> Int +isEmptyFM :: FiniteMap key elt -> Bool + +elemFM :: (Ord key OUTPUTABLE_key) => key -> FiniteMap key elt -> Bool +lookupFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> key -> Maybe elt +lookupWithDefaultFM + :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> elt -> key -> elt + -- lookupWithDefaultFM supplies a "default" elt + -- to return for an unmapped key + +-- LISTIFYING +fmToList :: FiniteMap key elt -> [(key,elt)] +keysFM :: FiniteMap key elt -> [key] +eltsFM :: FiniteMap key elt -> [elt] +\end{code} + +%************************************************************************ +%* * +\subsection{The @FiniteMap@ data type, and building of same} +%* * +%************************************************************************ + +Invariants about @FiniteMap@: +\begin{enumerate} +\item +all keys in a FiniteMap are distinct +\item +all keys in left subtree are $<$ key in Branch and +all keys in right subtree are $>$ key in Branch +\item +size field of a Branch gives number of Branch nodes in the tree +\item +size of left subtree is differs from size of right subtree by a +factor of at most \tr{sIZE_RATIO} +\end{enumerate} + +\begin{code} +data FiniteMap key elt + = EmptyFM + | Branch key elt -- Key and elt stored here + IF_GHC(Int#,Int{-STRICT-}) -- Size >= 1 + (FiniteMap key elt) -- Children + (FiniteMap key elt) +\end{code} + +\begin{code} +emptyFM = EmptyFM +{- +emptyFM + = Branch bottom bottom IF_GHC(0#,0) bottom bottom + where + bottom = panic "emptyFM" +-} + +-- #define EmptyFM (Branch _ _ IF_GHC(0#,0) _ _) + +unitFM key elt = Branch key elt IF_GHC(1#,1) emptyFM emptyFM + +listToFM = addListToFM emptyFM + +bagToFM = foldrBag (\(k,v) fm -> addToFM fm k v) emptyFM +\end{code} + +%************************************************************************ +%* * +\subsection{Adding to and deleting from @FiniteMaps@} +%* * +%************************************************************************ + +\begin{code} +addToFM fm key elt = addToFM_C (\ old new -> new) fm key elt + +addToFM_C combiner EmptyFM key elt = unitFM key elt +addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt + = case compare new_key key of + LT -> mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r + GT -> mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) + EQ -> Branch new_key (combiner elt new_elt) size fm_l fm_r + +addListToFM fm key_elt_pairs = addListToFM_C (\ old new -> new) fm key_elt_pairs + +addListToFM_C combiner fm key_elt_pairs + = foldl' add fm key_elt_pairs -- foldl adds from the left + where + add fmap (key,elt) = addToFM_C combiner fmap key elt +\end{code} + +\begin{code} +delFromFM EmptyFM del_key = emptyFM +delFromFM (Branch key elt size fm_l fm_r) del_key + = case compare del_key key of + GT -> mkBalBranch key elt fm_l (delFromFM fm_r del_key) + LT -> mkBalBranch key elt (delFromFM fm_l del_key) fm_r + EQ -> glueBal fm_l fm_r + +delListFromFM fm keys = foldl' delFromFM fm keys +\end{code} + +%************************************************************************ +%* * +\subsection{Combining @FiniteMaps@} +%* * +%************************************************************************ + +\begin{code} +plusFM_C combiner EmptyFM fm2 = fm2 +plusFM_C combiner fm1 EmptyFM = fm1 +plusFM_C combiner fm1 (Branch split_key elt2 _ left right) + = mkVBalBranch split_key new_elt + (plusFM_C combiner lts left) + (plusFM_C combiner gts right) + where + lts = splitLT fm1 split_key + gts = splitGT fm1 split_key + new_elt = case lookupFM fm1 split_key of + Nothing -> elt2 + Just elt1 -> combiner elt1 elt2 + +-- It's worth doing plusFM specially, because we don't need +-- to do the lookup in fm1. +-- FM2 over-rides FM1. + +plusFM EmptyFM fm2 = fm2 +plusFM fm1 EmptyFM = fm1 +plusFM fm1 (Branch split_key elt1 _ left right) + = mkVBalBranch split_key elt1 (plusFM lts left) (plusFM gts right) + where + lts = splitLT fm1 split_key + gts = splitGT fm1 split_key + +minusFM EmptyFM fm2 = emptyFM +minusFM fm1 EmptyFM = fm1 +minusFM fm1 (Branch split_key elt _ left right) + = glueVBal (minusFM lts left) (minusFM gts right) + -- The two can be way different, so we need glueVBal + where + lts = splitLT fm1 split_key -- NB gt and lt, so the equal ones + gts = splitGT fm1 split_key -- are not in either. + +intersectFM fm1 fm2 = intersectFM_C (\ left right -> right) fm1 fm2 + +intersectFM_C combiner fm1 EmptyFM = emptyFM +intersectFM_C combiner EmptyFM fm2 = emptyFM +intersectFM_C combiner fm1 (Branch split_key elt2 _ left right) + + | maybeToBool maybe_elt1 -- split_elt *is* in intersection + = mkVBalBranch split_key (combiner elt1 elt2) (intersectFM_C combiner lts left) + (intersectFM_C combiner gts right) + + | otherwise -- split_elt is *not* in intersection + = glueVBal (intersectFM_C combiner lts left) (intersectFM_C combiner gts right) + + where + lts = splitLT fm1 split_key -- NB gt and lt, so the equal ones + gts = splitGT fm1 split_key -- are not in either. + + maybe_elt1 = lookupFM fm1 split_key + Just elt1 = maybe_elt1 +\end{code} + +%************************************************************************ +%* * +\subsection{Mapping, folding, and filtering with @FiniteMaps@} +%* * +%************************************************************************ + +\begin{code} +foldFM k z EmptyFM = z +foldFM k z (Branch key elt _ fm_l fm_r) + = foldFM k (k key elt (foldFM k z fm_r)) fm_l + +mapFM f EmptyFM = emptyFM +mapFM f (Branch key elt size fm_l fm_r) + = Branch key (f key elt) size (mapFM f fm_l) (mapFM f fm_r) + +filterFM p EmptyFM = emptyFM +filterFM p (Branch key elt _ fm_l fm_r) + | p key elt -- Keep the item + = mkVBalBranch key elt (filterFM p fm_l) (filterFM p fm_r) + + | otherwise -- Drop the item + = glueVBal (filterFM p fm_l) (filterFM p fm_r) +\end{code} + +%************************************************************************ +%* * +\subsection{Interrogating @FiniteMaps@} +%* * +%************************************************************************ + +\begin{code} +--{-# INLINE sizeFM #-} +sizeFM EmptyFM = 0 +sizeFM (Branch _ _ size _ _) = IF_GHC(I# size, size) + +isEmptyFM fm = sizeFM fm == 0 + +lookupFM EmptyFM key = Nothing +lookupFM (Branch key elt _ fm_l fm_r) key_to_find + = case compare key_to_find key of + LT -> lookupFM fm_l key_to_find + GT -> lookupFM fm_r key_to_find + EQ -> Just elt + +key `elemFM` fm + = case (lookupFM fm key) of { Nothing -> False; Just elt -> True } + +lookupWithDefaultFM fm deflt key + = case (lookupFM fm key) of { Nothing -> deflt; Just elt -> elt } +\end{code} + +%************************************************************************ +%* * +\subsection{Listifying @FiniteMaps@} +%* * +%************************************************************************ + +\begin{code} +fmToList fm = foldFM (\ key elt rest -> (key,elt) : rest) [] fm +keysFM fm = foldFM (\ key elt rest -> key : rest) [] fm +eltsFM fm = foldFM (\ key elt rest -> elt : rest) [] fm +\end{code} + + +%************************************************************************ +%* * +\subsection{The implementation of balancing} +%* * +%************************************************************************ + +%************************************************************************ +%* * +\subsubsection{Basic construction of a @FiniteMap@} +%* * +%************************************************************************ + +@mkBranch@ simply gets the size component right. This is the ONLY +(non-trivial) place the Branch object is built, so the ASSERTion +recursively checks consistency. (The trivial use of Branch is in +@unitFM@.) + +\begin{code} +sIZE_RATIO :: Int +sIZE_RATIO = 5 + +mkBranch :: (Ord key OUTPUTABLE_key) -- Used for the assertion checking only + => Int + -> key -> elt + -> FiniteMap key elt -> FiniteMap key elt + -> FiniteMap key elt + +mkBranch which key elt fm_l fm_r + = --ASSERT( left_ok && right_ok && balance_ok ) +#if defined(DEBUG_FINITEMAPS) + if not ( left_ok && right_ok && balance_ok ) then + pprPanic ("mkBranch:"++show which) (vcat [ppr [left_ok, right_ok, balance_ok], + ppr key, + ppr fm_l, + ppr fm_r]) + else +#endif + let + result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r + in +-- if sizeFM result <= 8 then + result +-- else +-- pprTrace ("mkBranch:"++(show which)) (ppr result) ( +-- result +-- ) + where + left_ok = case fm_l of + EmptyFM -> True + Branch left_key _ _ _ _ -> let + biggest_left_key = fst (findMax fm_l) + in + biggest_left_key < key + right_ok = case fm_r of + EmptyFM -> True + Branch right_key _ _ _ _ -> let + smallest_right_key = fst (findMin fm_r) + in + key < smallest_right_key + balance_ok = True -- sigh +{- LATER: + balance_ok + = -- Both subtrees have one or no elements... + (left_size + right_size <= 1) +-- NO || left_size == 0 -- ??? +-- NO || right_size == 0 -- ??? + -- ... or the number of elements in a subtree does not exceed + -- sIZE_RATIO times the number of elements in the other subtree + || (left_size * sIZE_RATIO >= right_size && + right_size * sIZE_RATIO >= left_size) +-} + + left_size = sizeFM fm_l + right_size = sizeFM fm_r + +#ifdef __GLASGOW_HASKELL__ + unbox :: Int -> Int# + unbox (I# size) = size +#else + unbox :: Int -> Int + unbox x = x +#endif +\end{code} + +%************************************************************************ +%* * +\subsubsection{{\em Balanced} construction of a @FiniteMap@} +%* * +%************************************************************************ + +@mkBalBranch@ rebalances, assuming that the subtrees aren't too far +out of whack. + +\begin{code} +mkBalBranch :: (Ord key OUTPUTABLE_key) + => key -> elt + -> FiniteMap key elt -> FiniteMap key elt + -> FiniteMap key elt + +mkBalBranch key elt fm_L fm_R + + | size_l + size_r < 2 + = mkBranch 1{-which-} key elt fm_L fm_R + + | size_r > sIZE_RATIO * size_l -- Right tree too big + = case fm_R of + Branch _ _ _ fm_rl fm_rr + | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R + | otherwise -> double_L fm_L fm_R + -- Other case impossible + + | size_l > sIZE_RATIO * size_r -- Left tree too big + = case fm_L of + Branch _ _ _ fm_ll fm_lr + | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R + | otherwise -> double_R fm_L fm_R + -- Other case impossible + + | otherwise -- No imbalance + = mkBranch 2{-which-} key elt fm_L fm_R + + where + size_l = sizeFM fm_L + size_r = sizeFM fm_R + + single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) + = mkBranch 3{-which-} key_r elt_r (mkBranch 4{-which-} key elt fm_l fm_rl) fm_rr + + double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) + = mkBranch 5{-which-} key_rl elt_rl (mkBranch 6{-which-} key elt fm_l fm_rll) + (mkBranch 7{-which-} key_r elt_r fm_rlr fm_rr) + + single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r + = mkBranch 8{-which-} key_l elt_l fm_ll (mkBranch 9{-which-} key elt fm_lr fm_r) + + double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r + = mkBranch 10{-which-} key_lr elt_lr (mkBranch 11{-which-} key_l elt_l fm_ll fm_lrl) + (mkBranch 12{-which-} key elt fm_lrr fm_r) +\end{code} + + +\begin{code} +mkVBalBranch :: (Ord key OUTPUTABLE_key) + => key -> elt + -> FiniteMap key elt -> FiniteMap key elt + -> FiniteMap key elt + +-- Assert: in any call to (mkVBalBranch_C comb key elt l r), +-- (a) all keys in l are < all keys in r +-- (b) all keys in l are < key +-- (c) all keys in r are > key + +mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt +mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt + +mkVBalBranch key elt fm_l@(Branch key_l elt_l _ fm_ll fm_lr) + fm_r@(Branch key_r elt_r _ fm_rl fm_rr) + | sIZE_RATIO * size_l < size_r + = mkBalBranch key_r elt_r (mkVBalBranch key elt fm_l fm_rl) fm_rr + + | sIZE_RATIO * size_r < size_l + = mkBalBranch key_l elt_l fm_ll (mkVBalBranch key elt fm_lr fm_r) + + | otherwise + = mkBranch 13{-which-} key elt fm_l fm_r + + where + size_l = sizeFM fm_l + size_r = sizeFM fm_r +\end{code} + +%************************************************************************ +%* * +\subsubsection{Gluing two trees together} +%* * +%************************************************************************ + +@glueBal@ assumes its two arguments aren't too far out of whack, just +like @mkBalBranch@. But: all keys in first arg are $<$ all keys in +second. + +\begin{code} +glueBal :: (Ord key OUTPUTABLE_key) + => FiniteMap key elt -> FiniteMap key elt + -> FiniteMap key elt + +glueBal EmptyFM fm2 = fm2 +glueBal fm1 EmptyFM = fm1 +glueBal fm1 fm2 + -- The case analysis here (absent in Adams' program) is really to deal + -- with the case where fm2 is a singleton. Then deleting the minimum means + -- we pass an empty tree to mkBalBranch, which breaks its invariant. + | sizeFM fm2 > sizeFM fm1 + = mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2) + + | otherwise + = mkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2 + where + (mid_key1, mid_elt1) = findMax fm1 + (mid_key2, mid_elt2) = findMin fm2 +\end{code} + +@glueVBal@ copes with arguments which can be of any size. +But: all keys in first arg are $<$ all keys in second. + +\begin{code} +glueVBal :: (Ord key OUTPUTABLE_key) + => FiniteMap key elt -> FiniteMap key elt + -> FiniteMap key elt + +glueVBal EmptyFM fm2 = fm2 +glueVBal fm1 EmptyFM = fm1 +glueVBal fm_l@(Branch key_l elt_l _ fm_ll fm_lr) + fm_r@(Branch key_r elt_r _ fm_rl fm_rr) + | sIZE_RATIO * size_l < size_r + = mkBalBranch key_r elt_r (glueVBal fm_l fm_rl) fm_rr + + | sIZE_RATIO * size_r < size_l + = mkBalBranch key_l elt_l fm_ll (glueVBal fm_lr fm_r) + + | otherwise -- We now need the same two cases as in glueBal above. + = glueBal fm_l fm_r + where + size_l = sizeFM fm_l + size_r = sizeFM fm_r +\end{code} + +%************************************************************************ +%* * +\subsection{Local utilities} +%* * +%************************************************************************ + +\begin{code} +splitLT, splitGT :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> key -> FiniteMap key elt + +-- splitLT fm split_key = fm restricted to keys < split_key +-- splitGT fm split_key = fm restricted to keys > split_key + +splitLT EmptyFM split_key = emptyFM +splitLT (Branch key elt _ fm_l fm_r) split_key + = case compare split_key key of + LT -> splitLT fm_l split_key + GT -> mkVBalBranch key elt fm_l (splitLT fm_r split_key) + EQ -> fm_l + +splitGT EmptyFM split_key = emptyFM +splitGT (Branch key elt _ fm_l fm_r) split_key + = case compare split_key key of + GT -> splitGT fm_r split_key + LT -> mkVBalBranch key elt (splitGT fm_l split_key) fm_r + EQ -> fm_r + +findMin :: FiniteMap key elt -> (key,elt) +findMin (Branch key elt _ EmptyFM _) = (key,elt) +findMin (Branch key elt _ fm_l _) = findMin fm_l + +deleteMin :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt +deleteMin (Branch key elt _ EmptyFM fm_r) = fm_r +deleteMin (Branch key elt _ fm_l fm_r) = mkBalBranch key elt (deleteMin fm_l) fm_r + +findMax :: FiniteMap key elt -> (key,elt) +findMax (Branch key elt _ _ EmptyFM) = (key,elt) +findMax (Branch key elt _ _ fm_r) = findMax fm_r + +deleteMax :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt +deleteMax (Branch key elt _ fm_l EmptyFM) = fm_l +deleteMax (Branch key elt _ fm_l fm_r) = mkBalBranch key elt fm_l (deleteMax fm_r) +\end{code} + +%************************************************************************ +%* * +\subsection{Output-ery} +%* * +%************************************************************************ + +\begin{code} +#if defined(DEBUG_FINITEMAPS) + +instance (Outputable key) => Outputable (FiniteMap key elt) where + ppr fm = pprX fm + +pprX EmptyFM = char '!' +pprX (Branch key elt sz fm_l fm_r) + = parens (hcat [pprX fm_l, space, + ppr key, space, int (IF_GHC(I# sz, sz)), space, + pprX fm_r]) +#else +-- and when not debugging the package itself... +instance (Outputable key, Outputable elt) => Outputable (FiniteMap key elt) where + ppr fm = ppr (fmToList fm) +#endif + +#if 0 +instance (Eq key, Eq elt) => Eq (FiniteMap key elt) where + fm_1 == fm_2 = (sizeFM fm_1 == sizeFM fm_2) && -- quick test + (fmToList fm_1 == fmToList fm_2) + +{- NO: not clear what The Right Thing to do is: +instance (Ord key, Ord elt) => Ord (FiniteMap key elt) where + fm_1 <= fm_2 = (sizeFM fm_1 <= sizeFM fm_2) && -- quick test + (fmToList fm_1 <= fmToList fm_2) +-} +#endif +\end{code} + +%************************************************************************ +%* * +\subsection{Efficiency pragmas for GHC} +%* * +%************************************************************************ + +When the FiniteMap module is used in GHC, we specialise it for +\tr{Uniques}, for dastardly efficiency reasons. + +\begin{code} +#if 0 + +#if __GLASGOW_HASKELL__ + +{-# SPECIALIZE addListToFM + :: FiniteMap (FastString, FAST_STRING) elt -> [((FAST_STRING, FAST_STRING),elt)] -> FiniteMap (FAST_STRING, FAST_STRING) elt + , FiniteMap RdrName elt -> [(RdrName,elt)] -> FiniteMap RdrName elt + IF_NCG(COMMA FiniteMap Reg elt -> [(Reg COMMA elt)] -> FiniteMap Reg elt) + #-} +{-# SPECIALIZE addListToFM_C + :: (elt -> elt -> elt) -> FiniteMap TyCon elt -> [(TyCon,elt)] -> FiniteMap TyCon elt + , (elt -> elt -> elt) -> FiniteMap FastString elt -> [(FAST_STRING,elt)] -> FiniteMap FAST_STRING elt + IF_NCG(COMMA (elt -> elt -> elt) -> FiniteMap Reg elt -> [(Reg COMMA elt)] -> FiniteMap Reg elt) + #-} +{-# SPECIALIZE addToFM + :: FiniteMap CLabel elt -> CLabel -> elt -> FiniteMap CLabel elt + , FiniteMap FastString elt -> FAST_STRING -> elt -> FiniteMap FAST_STRING elt + , FiniteMap (FastString, FAST_STRING) elt -> (FAST_STRING, FAST_STRING) -> elt -> FiniteMap (FAST_STRING, FAST_STRING) elt + , FiniteMap RdrName elt -> RdrName -> elt -> FiniteMap RdrName elt + IF_NCG(COMMA FiniteMap Reg elt -> Reg -> elt -> FiniteMap Reg elt) + #-} +{-# SPECIALIZE addToFM_C + :: (elt -> elt -> elt) -> FiniteMap (RdrName, RdrName) elt -> (RdrName, RdrName) -> elt -> FiniteMap (RdrName, RdrName) elt + , (elt -> elt -> elt) -> FiniteMap FastString elt -> FAST_STRING -> elt -> FiniteMap FAST_STRING elt + IF_NCG(COMMA (elt -> elt -> elt) -> FiniteMap Reg elt -> Reg -> elt -> FiniteMap Reg elt) + #-} +{-# SPECIALIZE bagToFM + :: Bag (FastString,elt) -> FiniteMap FAST_STRING elt + #-} +{-# SPECIALIZE delListFromFM + :: FiniteMap RdrName elt -> [RdrName] -> FiniteMap RdrName elt + , FiniteMap FastString elt -> [FAST_STRING] -> FiniteMap FAST_STRING elt + IF_NCG(COMMA FiniteMap Reg elt -> [Reg] -> FiniteMap Reg elt) + #-} +{-# SPECIALIZE listToFM + :: [([Char],elt)] -> FiniteMap [Char] elt + , [(FastString,elt)] -> FiniteMap FAST_STRING elt + , [((FastString,FAST_STRING),elt)] -> FiniteMap (FAST_STRING, FAST_STRING) elt + IF_NCG(COMMA [(Reg COMMA elt)] -> FiniteMap Reg elt) + #-} +{-# SPECIALIZE lookupFM + :: FiniteMap CLabel elt -> CLabel -> Maybe elt + , FiniteMap [Char] elt -> [Char] -> Maybe elt + , FiniteMap FastString elt -> FAST_STRING -> Maybe elt + , FiniteMap (FastString,FAST_STRING) elt -> (FAST_STRING,FAST_STRING) -> Maybe elt + , FiniteMap RdrName elt -> RdrName -> Maybe elt + , FiniteMap (RdrName,RdrName) elt -> (RdrName,RdrName) -> Maybe elt + IF_NCG(COMMA FiniteMap Reg elt -> Reg -> Maybe elt) + #-} +{-# SPECIALIZE lookupWithDefaultFM + :: FiniteMap FastString elt -> elt -> FAST_STRING -> elt + IF_NCG(COMMA FiniteMap Reg elt -> elt -> Reg -> elt) + #-} +{-# SPECIALIZE plusFM + :: FiniteMap RdrName elt -> FiniteMap RdrName elt -> FiniteMap RdrName elt + , FiniteMap FastString elt -> FiniteMap FAST_STRING elt -> FiniteMap FAST_STRING elt + IF_NCG(COMMA FiniteMap Reg elt -> FiniteMap Reg elt -> FiniteMap Reg elt) + #-} +{-# SPECIALIZE plusFM_C + :: (elt -> elt -> elt) -> FiniteMap FastString elt -> FiniteMap FAST_STRING elt -> FiniteMap FAST_STRING elt + IF_NCG(COMMA (elt -> elt -> elt) -> FiniteMap Reg elt -> FiniteMap Reg elt -> FiniteMap Reg elt) + #-} + +#endif /* compiling with ghc and have specialiser */ + +#endif /* 0 */ +\end{code}