X-Git-Url: http://git.megacz.com/?p=ghc-hetmet.git;a=blobdiff_plain;f=compiler%2Fvectorise%2FVectorise.hs;h=4994e3f1659cbd1d333bba333ba07587f6f2219d;hp=59fded3c4f01c552c081869fd34c7698b2e285d6;hb=febf1ced754a3996ac1a5877dcded87828560d1c;hpb=222415a5b658e737a0a1f2c980c6f80635289f75 diff --git a/compiler/vectorise/Vectorise.hs b/compiler/vectorise/Vectorise.hs index 59fded3..4994e3f 100644 --- a/compiler/vectorise/Vectorise.hs +++ b/compiler/vectorise/Vectorise.hs @@ -1,529 +1,269 @@ +{-# OPTIONS -fno-warn-missing-signatures -fno-warn-unused-do-bind #-} -module Vectorise( vectorise ) +module Vectorise ( vectorise ) where -import VectMonad -import VectUtils -import VectType -import VectCore +import Vectorise.Type.Env +import Vectorise.Type.Type +import Vectorise.Convert +import Vectorise.Utils.Hoisting +import Vectorise.Exp +import Vectorise.Vect +import Vectorise.Env +import Vectorise.Monad import HscTypes hiding ( MonadThings(..) ) - -import Module ( PackageId ) -import CoreSyn -import CoreUtils -import CoreUnfold ( mkInlineRule ) -import MkCore ( mkWildCase ) +import CoreUnfold ( mkInlineUnfolding ) import CoreFVs +import PprCore +import CoreSyn import CoreMonad ( CoreM, getHscEnv ) -import DataCon -import TyCon import Type -import FamInstEnv ( extendFamInstEnvList ) -import Var -import VarEnv -import VarSet import Id import OccName +import DynFlags import BasicTypes ( isLoopBreaker ) - -import Literal ( Literal, mkMachInt ) -import TysWiredIn -import TysPrim ( intPrimTy ) - import Outputable -import FastString import Util ( zipLazy ) +import MonadUtils + import Control.Monad -import Data.List ( sortBy, unzip4 ) -vectorise :: PackageId -> ModGuts -> CoreM ModGuts -vectorise backend guts = do - hsc_env <- getHscEnv - liftIO $ vectoriseIO backend hsc_env guts -vectoriseIO :: PackageId -> HscEnv -> ModGuts -> IO ModGuts -vectoriseIO backend hsc_env guts - = do - eps <- hscEPS hsc_env - let info = hptVectInfo hsc_env `plusVectInfo` eps_vect_info eps - Just (info', guts') <- initV backend hsc_env guts info (vectModule guts) - return (guts' { mg_vect_info = info' }) +-- | Vectorise a single module. +-- +vectorise :: ModGuts -> CoreM ModGuts +vectorise guts + = do { hsc_env <- getHscEnv + ; liftIO $ vectoriseIO hsc_env guts + } + +-- | Vectorise a single monad, given the dynamic compiler flags and HscEnv. +-- +vectoriseIO :: HscEnv -> ModGuts -> IO ModGuts +vectoriseIO hsc_env guts + = do { -- Get information about currently loaded external packages. + ; eps <- hscEPS hsc_env + + -- Combine vectorisation info from the current module, and external ones. + ; let info = hptVectInfo hsc_env `plusVectInfo` eps_vect_info eps + + -- Run the main VM computation. + ; Just (info', guts') <- initV hsc_env guts info (vectModule guts) + ; return (guts' { mg_vect_info = info' }) + } +-- | Vectorise a single module, in the VM monad. +-- vectModule :: ModGuts -> VM ModGuts -vectModule guts - = do - (types', fam_insts, tc_binds) <- vectTypeEnv (mg_types guts) +vectModule guts@(ModGuts { mg_types = types + , mg_binds = binds + , mg_fam_insts = fam_insts + }) + = do { dumpOptVt Opt_D_dump_vt_trace "Before vectorisation" $ + pprCoreBindings binds + + -- Vectorise the type environment. + -- This may add new TyCons and DataCons. + ; (types', new_fam_insts, tc_binds) <- vectTypeEnv types - let fam_inst_env' = extendFamInstEnvList (mg_fam_inst_env guts) fam_insts - updGEnv (setFamInstEnv fam_inst_env') + ; (_, fam_inst_env) <- readGEnv global_fam_inst_env -- dicts <- mapM buildPADict pa_insts -- workers <- mapM vectDataConWorkers pa_insts - binds' <- mapM vectTopBind (mg_binds guts) - return $ guts { mg_types = types' - , mg_binds = Rec tc_binds : binds' - , mg_fam_inst_env = fam_inst_env' - , mg_fam_insts = mg_fam_insts guts ++ fam_insts - } + -- Vectorise all the top level bindings. + ; binds' <- mapM vectTopBind binds + + ; return $ guts { mg_types = types' + , mg_binds = Rec tc_binds : binds' + , mg_fam_inst_env = fam_inst_env + , mg_fam_insts = fam_insts ++ new_fam_insts + } + } + +-- | Try to vectorise a top-level binding. +-- If it doesn't vectorise then return it unharmed. +-- +-- For example, for the binding +-- +-- @ +-- foo :: Int -> Int +-- foo = \x -> x + x +-- @ +-- +-- we get +-- @ +-- foo :: Int -> Int +-- foo = \x -> vfoo $: x +-- +-- v_foo :: Closure void vfoo lfoo +-- v_foo = closure vfoo lfoo void +-- +-- vfoo :: Void -> Int -> Int +-- vfoo = ... +-- +-- lfoo :: PData Void -> PData Int -> PData Int +-- lfoo = ... +-- @ +-- +-- @vfoo@ is the "vectorised", or scalar, version that does the same as the original +-- function foo, but takes an explicit environment. +-- +-- @lfoo@ is the "lifted" version that works on arrays. +-- +-- @v_foo@ combines both of these into a `Closure` that also contains the +-- environment. +-- +-- The original binding @foo@ is rewritten to call the vectorised version +-- present in the closure. +-- vectTopBind :: CoreBind -> VM CoreBind vectTopBind b@(NonRec var expr) - = do - (inline, expr') <- vectTopRhs var expr - var' <- vectTopBinder var inline expr' - hs <- takeHoisted - cexpr <- tryConvert var var' expr - return . Rec $ (var, cexpr) : (var', expr') : hs + = do { -- Vectorise the right-hand side, create an appropriate top-level binding and add it to + -- the vectorisation map. + ; (inline, isScalar, expr') <- vectTopRhs [] var expr + ; var' <- vectTopBinder var inline expr' + ; when isScalar $ + addGlobalScalar var + + -- We replace the original top-level binding by a value projected from the vectorised + -- closure and add any newly created hoisted top-level bindings. + ; cexpr <- tryConvert var var' expr + ; hs <- takeHoisted + ; return . Rec $ (var, cexpr) : (var', expr') : hs + } `orElseV` return b - vectTopBind b@(Rec bs) - = do - (vars', _, exprs') <- fixV $ \ ~(_, inlines, rhss) -> - do - vars' <- sequence [vectTopBinder var inline rhs - | (var, ~(inline, rhs)) - <- zipLazy vars (zip inlines rhss)] - (inlines', exprs') <- mapAndUnzipM (uncurry vectTopRhs) bs - return (vars', inlines', exprs') - hs <- takeHoisted - cexprs <- sequence $ zipWith3 tryConvert vars vars' exprs - return . Rec $ zip vars cexprs ++ zip vars' exprs' ++ hs + = let (vars, exprs) = unzip bs + in + do { (vars', _, exprs', hs) <- fixV $ + \ ~(_, inlines, rhss, _) -> + do { -- Vectorise the right-hand sides, create an appropriate top-level bindings and + -- add them to the vectorisation map. + ; vars' <- sequence [vectTopBinder var inline rhs + | (var, ~(inline, rhs)) <- zipLazy vars (zip inlines rhss)] + ; (inlines, areScalars, exprs') <- mapAndUnzip3M (uncurry $ vectTopRhs vars) bs + ; hs <- takeHoisted + ; if and areScalars + then -- (1) Entire recursive group is scalar + -- => add all variables to the global set of scalars + do { mapM addGlobalScalar vars + ; return (vars', inlines, exprs', hs) + } + else -- (2) At least one binding is not scalar + -- => vectorise again with empty set of local scalars + do { (inlines, _, exprs') <- mapAndUnzip3M (uncurry $ vectTopRhs []) bs + ; hs <- takeHoisted + ; return (vars', inlines, exprs', hs) + } + } + + -- Replace the original top-level bindings by a values projected from the vectorised + -- closures and add any newly created hoisted top-level bindings to the group. + ; cexprs <- sequence $ zipWith3 tryConvert vars vars' exprs + ; return . Rec $ zip vars cexprs ++ zip vars' exprs' ++ hs + } `orElseV` - return b - where - (vars, exprs) = unzip bs - --- NOTE: vectTopBinder *MUST* be lazy in inline and expr because of how it is --- used inside of fixV in vectTopBind -vectTopBinder :: Var -> Inline -> CoreExpr -> VM Var + return b + +-- | Make the vectorised version of this top level binder, and add the mapping +-- between it and the original to the state. For some binder @foo@ the vectorised +-- version is @$v_foo@ +-- +-- NOTE: vectTopBinder *MUST* be lazy in inline and expr because of how it is +-- used inside of fixV in vectTopBind +-- +vectTopBinder :: Var -- ^ Name of the binding. + -> Inline -- ^ Whether it should be inlined, used to annotate it. + -> CoreExpr -- ^ RHS of binding, used to set the 'Unfolding' of the returned 'Var'. + -> VM Var -- ^ Name of the vectorised binding. vectTopBinder var inline expr - = do - vty <- vectType (idType var) - var' <- liftM (`setIdUnfolding` unfolding) $ cloneId mkVectOcc var vty - defGlobalVar var var' - return var' + = do { -- Vectorise the type attached to the var. + ; vty <- vectType (idType var) + + -- If there is a vectorisation declartion for this binding, make sure that its type + -- matches + ; vectDecl <- lookupVectDecl var + ; case vectDecl of + Nothing -> return () + Just (vdty, _) + | eqType vty vdty -> return () + | otherwise -> + cantVectorise ("Type mismatch in vectorisation pragma for " ++ show var) $ + (text "Expected type" <+> ppr vty) + $$ + (text "Inferred type" <+> ppr vdty) + + -- Make the vectorised version of binding's name, and set the unfolding used for inlining + ; var' <- liftM (`setIdUnfoldingLazily` unfolding) + $ cloneId mkVectOcc var vty + + -- Add the mapping between the plain and vectorised name to the state. + ; defGlobalVar var var' + + ; return var' + } where unfolding = case inline of - Inline arity -> mkInlineRule InlSat expr arity + Inline arity -> mkInlineUnfolding (Just arity) expr DontInline -> noUnfolding -vectTopRhs :: Var -> CoreExpr -> VM (Inline, CoreExpr) -vectTopRhs var expr - = closedV - $ do - (inline, vexpr) <- inBind var - $ vectPolyExpr (isLoopBreaker $ idOccInfo var) - (freeVars expr) - return (inline, vectorised vexpr) - -tryConvert :: Var -> Var -> CoreExpr -> VM CoreExpr -tryConvert var vect_var rhs - = fromVect (idType var) (Var vect_var) `orElseV` return rhs - --- ---------------------------------------------------------------------------- --- Bindings - -vectBndr :: Var -> VM VVar -vectBndr v - = do - (vty, lty) <- vectAndLiftType (idType v) - let vv = v `Id.setIdType` vty - lv = v `Id.setIdType` lty - updLEnv (mapTo vv lv) - return (vv, lv) - where - mapTo vv lv env = env { local_vars = extendVarEnv (local_vars env) v (vv, lv) } - -vectBndrNew :: Var -> FastString -> VM VVar -vectBndrNew v fs - = do - vty <- vectType (idType v) - vv <- newLocalVVar fs vty - updLEnv (upd vv) - return vv - where - upd vv env = env { local_vars = extendVarEnv (local_vars env) v vv } - -vectBndrIn :: Var -> VM a -> VM (VVar, a) -vectBndrIn v p - = localV - $ do - vv <- vectBndr v - x <- p - return (vv, x) - -vectBndrNewIn :: Var -> FastString -> VM a -> VM (VVar, a) -vectBndrNewIn v fs p - = localV - $ do - vv <- vectBndrNew v fs - x <- p - return (vv, x) - -vectBndrsIn :: [Var] -> VM a -> VM ([VVar], a) -vectBndrsIn vs p - = localV - $ do - vvs <- mapM vectBndr vs - x <- p - return (vvs, x) - --- ---------------------------------------------------------------------------- --- Expressions - -vectVar :: Var -> VM VExpr -vectVar v - = do - r <- lookupVar v - case r of - Local (vv,lv) -> return (Var vv, Var lv) - Global vv -> do - let vexpr = Var vv - lexpr <- liftPD vexpr - return (vexpr, lexpr) - -vectPolyVar :: Var -> [Type] -> VM VExpr -vectPolyVar v tys - = do - vtys <- mapM vectType tys - r <- lookupVar v - case r of - Local (vv, lv) -> liftM2 (,) (polyApply (Var vv) vtys) - (polyApply (Var lv) vtys) - Global poly -> do - vexpr <- polyApply (Var poly) vtys - lexpr <- liftPD vexpr - return (vexpr, lexpr) - -vectLiteral :: Literal -> VM VExpr -vectLiteral lit - = do - lexpr <- liftPD (Lit lit) - return (Lit lit, lexpr) - -vectPolyExpr :: Bool -> CoreExprWithFVs -> VM (Inline, VExpr) -vectPolyExpr loop_breaker (_, AnnNote note expr) - = do - (inline, expr') <- vectPolyExpr loop_breaker expr - return (inline, vNote note expr') -vectPolyExpr loop_breaker expr - = do - arity <- polyArity tvs - polyAbstract tvs $ \args -> - do - (inline, mono') <- vectFnExpr False loop_breaker mono - return (addInlineArity inline arity, - mapVect (mkLams $ tvs ++ args) mono') - where - (tvs, mono) = collectAnnTypeBinders expr - -vectExpr :: CoreExprWithFVs -> VM VExpr -vectExpr (_, AnnType ty) - = liftM vType (vectType ty) - -vectExpr (_, AnnVar v) = vectVar v - -vectExpr (_, AnnLit lit) = vectLiteral lit - -vectExpr (_, AnnNote note expr) - = liftM (vNote note) (vectExpr expr) - -vectExpr e@(_, AnnApp _ arg) - | isAnnTypeArg arg - = vectTyAppExpr fn tys - where - (fn, tys) = collectAnnTypeArgs e - -vectExpr (_, AnnApp (_, AnnVar v) (_, AnnLit lit)) - | Just con <- isDataConId_maybe v - , is_special_con con - = do - let vexpr = App (Var v) (Lit lit) - lexpr <- liftPD vexpr - return (vexpr, lexpr) - where - is_special_con con = con `elem` [intDataCon, floatDataCon, doubleDataCon] - - -vectExpr (_, AnnApp fn arg) - = do - arg_ty' <- vectType arg_ty - res_ty' <- vectType res_ty - fn' <- vectExpr fn - arg' <- vectExpr arg - mkClosureApp arg_ty' res_ty' fn' arg' - where - (arg_ty, res_ty) = splitFunTy . exprType $ deAnnotate fn - -vectExpr (_, AnnCase scrut bndr ty alts) - | Just (tycon, ty_args) <- splitTyConApp_maybe scrut_ty - , isAlgTyCon tycon - = vectAlgCase tycon ty_args scrut bndr ty alts - where - scrut_ty = exprType (deAnnotate scrut) - -vectExpr (_, AnnLet (AnnNonRec bndr rhs) body) - = do - vrhs <- localV . inBind bndr . liftM snd $ vectPolyExpr False rhs - (vbndr, vbody) <- vectBndrIn bndr (vectExpr body) - return $ vLet (vNonRec vbndr vrhs) vbody - -vectExpr (_, AnnLet (AnnRec bs) body) - = do - (vbndrs, (vrhss, vbody)) <- vectBndrsIn bndrs - $ liftM2 (,) - (zipWithM vect_rhs bndrs rhss) - (vectExpr body) - return $ vLet (vRec vbndrs vrhss) vbody - where - (bndrs, rhss) = unzip bs - - vect_rhs bndr rhs = localV - . inBind bndr - . liftM snd - $ vectPolyExpr (isLoopBreaker $ idOccInfo bndr) rhs - -vectExpr e@(_, AnnLam bndr _) - | isId bndr = liftM snd $ vectFnExpr True False e -{- -onlyIfV (isEmptyVarSet fvs) (vectScalarLam bs $ deAnnotate body) - `orElseV` vectLam True fvs bs body - where - (bs,body) = collectAnnValBinders e --} - -vectExpr e = cantVectorise "Can't vectorise expression" (ppr $ deAnnotate e) - -vectFnExpr :: Bool -> Bool -> CoreExprWithFVs -> VM (Inline, VExpr) -vectFnExpr inline loop_breaker e@(fvs, AnnLam bndr _) - | isId bndr = onlyIfV (isEmptyVarSet fvs) - (mark DontInline . vectScalarLam bs $ deAnnotate body) - `orElseV` mark inlineMe (vectLam inline loop_breaker fvs bs body) - where - (bs,body) = collectAnnValBinders e -vectFnExpr _ _ e = mark DontInline $ vectExpr e - -mark :: Inline -> VM a -> VM (Inline, a) -mark b p = do { x <- p; return (b,x) } - -vectScalarLam :: [Var] -> CoreExpr -> VM VExpr -vectScalarLam args body - = do - scalars <- globalScalars - onlyIfV (all is_scalar_ty arg_tys - && is_scalar_ty res_ty - && is_scalar (extendVarSetList scalars args) body) - $ do - fn_var <- hoistExpr (fsLit "fn") (mkLams args body) DontInline - zipf <- zipScalars arg_tys res_ty - clo <- scalarClosure arg_tys res_ty (Var fn_var) - (zipf `App` Var fn_var) - clo_var <- hoistExpr (fsLit "clo") clo DontInline - lclo <- liftPD (Var clo_var) - return (Var clo_var, lclo) - where - arg_tys = map idType args - res_ty = exprType body - - is_scalar_ty ty | Just (tycon, []) <- splitTyConApp_maybe ty - = tycon == intTyCon - || tycon == floatTyCon - || tycon == doubleTyCon - - | otherwise = False - - is_scalar vs (Var v) = v `elemVarSet` vs - is_scalar _ e@(Lit _) = is_scalar_ty $ exprType e - is_scalar vs (App e1 e2) = is_scalar vs e1 && is_scalar vs e2 - is_scalar _ _ = False - -vectLam :: Bool -> Bool -> VarSet -> [Var] -> CoreExprWithFVs -> VM VExpr -vectLam inline loop_breaker fvs bs body - = do - tyvars <- localTyVars - (vs, vvs) <- readLEnv $ \env -> - unzip [(var, vv) | var <- varSetElems fvs - , Just vv <- [lookupVarEnv (local_vars env) var]] - - arg_tys <- mapM (vectType . idType) bs - res_ty <- vectType (exprType $ deAnnotate body) - - buildClosures tyvars vvs arg_tys res_ty - . hoistPolyVExpr tyvars (maybe_inline (length vs + length bs)) - $ do - lc <- builtin liftingContext - (vbndrs, vbody) <- vectBndrsIn (vs ++ bs) - (vectExpr body) - vbody' <- break_loop lc res_ty vbody - return $ vLams lc vbndrs vbody' - where - maybe_inline n | inline = Inline n - | otherwise = DontInline - - break_loop lc ty (ve, le) - | loop_breaker - = do - empty <- emptyPD ty - lty <- mkPDataType ty - return (ve, mkWildCase (Var lc) intPrimTy lty - [(DEFAULT, [], le), - (LitAlt (mkMachInt 0), [], empty)]) - - | otherwise = return (ve, le) - - -vectTyAppExpr :: CoreExprWithFVs -> [Type] -> VM VExpr -vectTyAppExpr (_, AnnVar v) tys = vectPolyVar v tys -vectTyAppExpr e tys = cantVectorise "Can't vectorise expression" - (ppr $ deAnnotate e `mkTyApps` tys) - --- We convert --- --- case e :: t of v { ... } --- --- to +-- | Vectorise the RHS of a top-level binding, in an empty local environment. -- --- V: let v' = e in case v' of _ { ... } --- L: let v' = e in case v' `cast` ... of _ { ... } +-- We need to distinguish three cases: -- --- When lifting, we have to do it this way because v must have the type --- [:V(T):] but the scrutinee must be cast to the representation type. We also --- have to handle the case where v is a wild var correctly. +-- (1) We have a (non-scalar) vectorisation declaration for the variable (which explicitly provides +-- vectorised code implemented by the user) +-- => no automatic vectorisation & instead use the user-supplied code +-- +-- (2) We have a scalar vectorisation declaration for the variable +-- => generate vectorised code that uses a scalar 'map'/'zipWith' to lift the computation +-- +-- (3) There is no vectorisation declaration for the variable +-- => perform automatic vectorisation of the RHS -- - --- FIXME: this is too lazy -vectAlgCase :: TyCon -> [Type] -> CoreExprWithFVs -> Var -> Type - -> [(AltCon, [Var], CoreExprWithFVs)] - -> VM VExpr -vectAlgCase _tycon _ty_args scrut bndr ty [(DEFAULT, [], body)] - = do - vscrut <- vectExpr scrut - (vty, lty) <- vectAndLiftType ty - (vbndr, vbody) <- vectBndrIn bndr (vectExpr body) - return $ vCaseDEFAULT vscrut vbndr vty lty vbody - -vectAlgCase _tycon _ty_args scrut bndr ty [(DataAlt _, [], body)] - = do - vscrut <- vectExpr scrut - (vty, lty) <- vectAndLiftType ty - (vbndr, vbody) <- vectBndrIn bndr (vectExpr body) - return $ vCaseDEFAULT vscrut vbndr vty lty vbody - -vectAlgCase _tycon _ty_args scrut bndr ty [(DataAlt dc, bndrs, body)] - = do - (vty, lty) <- vectAndLiftType ty - vexpr <- vectExpr scrut - (vbndr, (vbndrs, (vect_body, lift_body))) - <- vect_scrut_bndr - . vectBndrsIn bndrs - $ vectExpr body - let (vect_bndrs, lift_bndrs) = unzip vbndrs - (vscrut, lscrut, pdata_tc, _arg_tys) <- mkVScrut (vVar vbndr) - vect_dc <- maybeV (lookupDataCon dc) - let [pdata_dc] = tyConDataCons pdata_tc - - let vcase = mk_wild_case vscrut vty vect_dc vect_bndrs vect_body - lcase = mk_wild_case lscrut lty pdata_dc lift_bndrs lift_body - - return $ vLet (vNonRec vbndr vexpr) (vcase, lcase) - where - vect_scrut_bndr | isDeadBinder bndr = vectBndrNewIn bndr (fsLit "scrut") - | otherwise = vectBndrIn bndr - - mk_wild_case expr ty dc bndrs body - = mkWildCase expr (exprType expr) ty [(DataAlt dc, bndrs, body)] - -vectAlgCase tycon _ty_args scrut bndr ty alts - = do - vect_tc <- maybeV (lookupTyCon tycon) - (vty, lty) <- vectAndLiftType ty - - let arity = length (tyConDataCons vect_tc) - sel_ty <- builtin (selTy arity) - sel_bndr <- newLocalVar (fsLit "sel") sel_ty - let sel = Var sel_bndr - - (vbndr, valts) <- vect_scrut_bndr - $ mapM (proc_alt arity sel vty lty) alts' - let (vect_dcs, vect_bndrss, lift_bndrss, vbodies) = unzip4 valts - - vexpr <- vectExpr scrut - (vect_scrut, lift_scrut, pdata_tc, _arg_tys) <- mkVScrut (vVar vbndr) - let [pdata_dc] = tyConDataCons pdata_tc - - let (vect_bodies, lift_bodies) = unzip vbodies - - vdummy <- newDummyVar (exprType vect_scrut) - ldummy <- newDummyVar (exprType lift_scrut) - let vect_case = Case vect_scrut vdummy vty - (zipWith3 mk_vect_alt vect_dcs vect_bndrss vect_bodies) - - lc <- builtin liftingContext - lbody <- combinePD vty (Var lc) sel lift_bodies - let lift_case = Case lift_scrut ldummy lty - [(DataAlt pdata_dc, sel_bndr : concat lift_bndrss, - lbody)] - - return . vLet (vNonRec vbndr vexpr) - $ (vect_case, lift_case) +vectTopRhs :: [Var] -- ^ Names of all functions in the rec block + -> Var -- ^ Name of the binding. + -> CoreExpr -- ^ Body of the binding. + -> VM ( Inline -- (1) inline specification for the binding + , Bool -- (2) whether the right-hand side is a scalar computation + , CoreExpr) -- (3) the vectorised right-hand side +vectTopRhs recFs var expr + = closedV + $ do { traceVt ("vectTopRhs of " ++ show var) $ ppr expr + + ; globalScalar <- isGlobalScalar var + ; vectDecl <- lookupVectDecl var + ; rhs globalScalar vectDecl + } where - vect_scrut_bndr | isDeadBinder bndr = vectBndrNewIn bndr (fsLit "scrut") - | otherwise = vectBndrIn bndr - - alts' = sortBy (\(alt1, _, _) (alt2, _, _) -> cmp alt1 alt2) alts - - cmp (DataAlt dc1) (DataAlt dc2) = dataConTag dc1 `compare` dataConTag dc2 - cmp DEFAULT DEFAULT = EQ - cmp DEFAULT _ = LT - cmp _ DEFAULT = GT - cmp _ _ = panic "vectAlgCase/cmp" - - proc_alt arity sel _ lty (DataAlt dc, bndrs, body) - = do - vect_dc <- maybeV (lookupDataCon dc) - let ntag = dataConTagZ vect_dc - tag = mkDataConTag vect_dc - fvs = freeVarsOf body `delVarSetList` bndrs - - sel_tags <- liftM (`App` sel) (builtin (selTags arity)) - lc <- builtin liftingContext - elems <- builtin (selElements arity ntag) - - (vbndrs, vbody) - <- vectBndrsIn bndrs - . localV - $ do - binds <- mapM (pack_var (Var lc) sel_tags tag) - . filter isLocalId - $ varSetElems fvs - (ve, le) <- vectExpr body - return (ve, Case (elems `App` sel) lc lty - [(DEFAULT, [], (mkLets (concat binds) le))]) - -- empty <- emptyPD vty - -- return (ve, Case (elems `App` sel) lc lty - -- [(DEFAULT, [], Let (NonRec flags_var flags_expr) - -- $ mkLets (concat binds) le), - -- (LitAlt (mkMachInt 0), [], empty)]) - let (vect_bndrs, lift_bndrs) = unzip vbndrs - return (vect_dc, vect_bndrs, lift_bndrs, vbody) - - proc_alt _ _ _ _ _ = panic "vectAlgCase/proc_alt" - - mk_vect_alt vect_dc bndrs body = (DataAlt vect_dc, bndrs, body) - - pack_var len tags t v - = do - r <- lookupVar v - case r of - Local (vv, lv) -> - do - lv' <- cloneVar lv - expr <- packByTagPD (idType vv) (Var lv) len tags t - updLEnv (\env -> env { local_vars = extendVarEnv - (local_vars env) v (vv, lv') }) - return [(NonRec lv' expr)] - - _ -> return [] - + rhs _globalScalar (Just (_, expr')) -- Case (1) + = return (inlineMe, False, expr') + rhs True Nothing -- Case (2) + = do { expr' <- vectScalarFun True recFs expr + ; return (inlineMe, True, vectorised expr') + } + rhs False Nothing -- Case (3) + = do { let fvs = freeVars expr + ; (inline, isScalar, vexpr) <- inBind var $ + vectPolyExpr (isLoopBreaker $ idOccInfo var) recFs fvs + ; return (inline, isScalar, vectorised vexpr) + } + +-- | Project out the vectorised version of a binding from some closure, +-- or return the original body if that doesn't work or the binding is scalar. +-- +tryConvert :: Var -- ^ Name of the original binding (eg @foo@) + -> Var -- ^ Name of vectorised version of binding (eg @$vfoo@) + -> CoreExpr -- ^ The original body of the binding. + -> VM CoreExpr +tryConvert var vect_var rhs + = do { globalScalar <- isGlobalScalar var + ; if globalScalar + then + return rhs + else + fromVect (idType var) (Var vect_var) `orElseV` return rhs + }