// Copyright 2002 Adam Megacz, see the COPYING file for licensing [GPL] package org.xwt; // **** This file must be preprocessed before compilation **** // RULE: coordinates on non-static methods are ALWAYS relative to the // upper-left hand corner of this // FEATURE: reflow before allowing js to read from width/height // FEATURE: fastpath for rows=1/cols=1 // FEATURE: reflow starting with a certain child // FEATURE: separate mark_for_reflow and mark_for_resize import java.io.*; import java.net.*; import java.util.*; import org.xwt.js.*; import org.xwt.util.*; import org.xwt.translators.*; /** *

* Encapsulates the data for a single XWT box as well as all layout * rendering logic. *

* *

* This is the real meat of XWT. Part of its monolithic design is for * performance reasons: deep inheritance heirarchies are slow, and * neither javago nor GCJ can inline across class boundaries. *

* *

The rendering process consists of three phases; each requires * one DFS pass over the tree

* *
  1. repacking: children of a box are packed into columns * and rows according to their colspan/rowspan attributes and * ordering. Minimum and maximum sizes of columns are computed. * *
  2. resizing: width/height and x/y positions of children * are assigned. If a PosChange or SizeChange is triggered, * Surface.abort will be set and the resizing process will * Surface.abort. * *
  3. repainting: children draw their content onto the * buffer. *
* * The first two passes together are called the reflow phase. * * Reflowing is done in a seperate pass since PosChanges and * SizeChanges trigger an Surface.abort; if rendering were done in the same * pass, rendering work done prior to the Surface.abort would be wasted. * * The two passes are repack and resize. Together they are known as * reflow. Repacking assigns boxes to the appropriate grid * coordinates within the parents and computes * contentwidth/contentheight. Resize computes actual size and * position. * * A note on coordinates: the Box class represents regions * internally as x,y,w,h tuples, even though the PixelBuffer class * uses x1,y1,x2,y2 tuples. */ public final class Box extends JS.Scope { public Box() { super(null); } // Misc instance data //////////////////////////////////////////////////////////////// static int sizePosChangesSinceLastRender = 0; // Misc instance data //////////////////////////////////////////////////////////////// boolean needs_reflow = true; //#define MARK_FOR_REFLOW_this for(Box b2 = this; b2 != null && !b2.needs_reflow; b2 = b2.parent) b2.needs_reflow = true; //#define MARK_FOR_REFLOW_b for(Box b2 = b; b2 != null && !b2.needs_reflow; b2 = b2.parent) b2.needs_reflow = true; //#define MARK_FOR_REFLOW_b_parent for(Box b2 = b.parent; b2 != null && !b2.needs_reflow; b2 = b2.parent) b2.needs_reflow = true; Box redirect = this; Surface surface = null; // null on all non-root boxen // Flags /////////////////////////////////////////////////////////////////////////////// short flags = 0; static int MOUSEINSIDE_FLAG = 0x00000001; static int INVISIBLE_FLAG = 0x00000002; static int ABSOLUTE_FLAG = 0x00000004; static int HSHRINK_FLAG = 0x00000008; static int VSHRINK_FLAG = 0x00000010; static int TILE_FLAG = 0x00000020; static int FONT_CHANGED_FLAG = 0x00000040; // set when font changes, cleared during repack static int ISROOT_FLAG = 0x00000080; // Geometry //////////////////////////////////////////////////////////////////////////// // xwt can be compiled with 16-bit lengths to save memory on small devices //#define LENGTH int //#define MAX_LENGTH Integer.MAX_VALUE //#define MIN_LENGTH Integer.MIN_VALUE // always correct (set directly by user) public LENGTH minwidth = 0; public LENGTH minheight = 0; public LENGTH maxwidth = MAX_LENGTH; public LENGTH maxheight = MAX_LENGTH; private LENGTH hpad = 0; private LENGTH vpad = 0; private String text = null; private Res font = null; private int fontsize = 10; private LENGTH textwidth = 0; private LENGTH textheight = 0; // FEATURE: use shorts private int rows = 1; private int cols = 0; private int rowspan = 1; private int colspan = 1; // computed during reflow public LENGTH x = 0; public LENGTH y = 0; public LENGTH width = 0; public LENGTH height = 0; private int row = 0; // FEATURE use a short private int col = 0; // FEATURE use a short private LENGTH contentwidth = 0; // == max(minwidth, textwidth+pad, sum(child.contentwidth) + pad) private LENGTH contentheight = 0; // Rendering Properties /////////////////////////////////////////////////////////// //private SVG.VP path = null; //private SVG.Paint fill = null; //private SVG.Paint stroke = null; public Picture image; // will disappear private int fillcolor = 0x00000000; // will become SVG.Paint private int strokecolor = 0xFF000000; // will become SVG.Paint private String cursor = null; // the cursor for this box // Instance Methods ///////////////////////////////////////////////////////////////////// /** Adds the intersection of (x,y,w,h) and the node's current actual geometry to the Surface's dirty list */ public final void dirty() { dirty(0, 0, width, height); } public final void dirty(int x, int y, int w, int h) { for(Box cur = this; cur != null; cur = cur.parent) { w = min(x + w, cur.width) - max(x, 0); h = min(y + h, cur.height) - max(y, 0); x = max(x, 0); y = max(y, 0); if (w <= 0 || h <= 0) return; if (cur.parent == null && cur.surface != null) cur.surface.dirty(x, y, w, h); x += cur.x; y += cur.y; } } /** * Given an old and new mouse position, this will update mouseinside and check * to see if this node requires any Enter, Leave, or Move notifications. * * @param forceleave set to true by the box's parent if the mouse is inside an older * sibling, which is covering up this box. */ void Move(int oldmousex, int oldmousey, int mousex, int mousey) { Move(oldmousex, oldmousey, mousex, mousey, false); } void Move(int oldmousex, int oldmousey, int mousex, int mousey, boolean forceleave) { boolean wasinside = (flags & MOUSEINSIDE_FLAG) != 0; boolean isinside = !((flags & INVISIBLE_FLAG) != 0) && inside(mousex, mousey) && !forceleave; if (isinside) flags |= MOUSEINSIDE_FLAG; else flags &= ~MOUSEINSIDE_FLAG; if (!wasinside && !isinside) return; if (!wasinside && isinside && get("Enter", Trap.class) != null) put("Enter", Boolean.TRUE); else if (wasinside && !isinside && get("Leave", Trap.class) != null) put("Leave", Boolean.TRUE); else if (wasinside && isinside && (mousex != oldmousex || mousey != oldmousey) && get("Move", Trap.class) != null) put("Move", Boolean.TRUE); if (isinside && cursor != null) getRoot().cursor = cursor; // if the mouse has moved into our padding region, it is considered 'outside' all our children if (!(mousex >= hpad && mousey >= vpad && mousex < width - hpad && mousey < height + vpad)) forceleave = true; for(Box b = getChild(numChildren() - 1); b != null; b = b.prevSibling()) { b.Move(oldmousex - b.x, oldmousey - b.y, mousex - b.x, mousey - b.y, forceleave); if (b.inside(mousex - b.x, mousey - b.y)) forceleave = true; } } // Reflow //////////////////////////////////////////////////////////////////////////////////////// void reflow() { reflow(width, height); } void reflow(int new_width, int new_height) { repack(); if (Surface.abort) return; resize(x, y, new_width, new_height); } /** Checks if the Box's size has changed, dirties it if necessary, and makes sure childrens' sizes are up to date */ void repack() { if (!needs_reflow) return; if (numChildren() == 0) { contentwidth = max(textwidth + 2 * hpad, minwidth); contentheight = max(textheight + 2 * vpad, minheight); return; } // --- Phase 0 ---------------------------------------------------------------------- // recurse for(Box child = getChild(0); child != null; child = child.nextSibling()) { if (((flags & FONT_CHANGED_FLAG) != 0) && child.font == null) { child.flags |= FONT_CHANGED_FLAG; child.needs_reflow = true; } child.repack(); if (Surface.abort) { MARK_FOR_REFLOW_this; return; } } flags &= ~FONT_CHANGED_FLAG; // --- Phase 1 ---------------------------------------------------------------------- // assign children to their row/column positions (assuming constrained columns) if ((rows == 0 && cols == 0) || (rows != 0 && cols != 0)) throw new Error("rows == " + rows + " cols == " + cols); //#repeat x/y y/x width/height col/row row/col cols/rows rows/cols colspan/rowspan rowspan/colspan colWidth/rowHeight numRowsInCol/numColsInRow INNER/INNER2 maxwidth/maxheight minwidth/minheight contentwidth/contentheight colMaxWidth/rowMaxHeight OUTER/OUTER2 INNER/INNER2 if (rows == 0) { int[] numRowsInCol = new int[cols]; // the number of cells occupied in each column Box child = getChild(0); for(; child != null && (((child.flags & ABSOLUTE_FLAG) != 0) || ((child.flags & INVISIBLE_FLAG) != 0)); child = child.nextSibling()); OUTER: for(int row=0; child != null; row++) { for(int col=0; child != null && col < cols;) { INNER: while(true) { // scan across the row, looking for an unoccupied gap at least as wide as the child while(col < cols && numRowsInCol[col] > row) col++; for(int i=col; i < cols && i < col + min(cols, child.colspan); i++) if (numRowsInCol[col] > row) { col = i + 1; continue INNER; } break; } if (col + min(cols, child.colspan) > cols) break; for(int i=col; i < col + min(cols, child.colspan); i++) numRowsInCol[i] += child.rowspan; child.col = col; child.row = row; col += min(cols, child.colspan); child = child.nextSibling(); for(; child != null && (((child.flags & ABSOLUTE_FLAG) != 0) || ((child.flags & INVISIBLE_FLAG) != 0)); child = child.nextSibling()); } } } //#end // --- Phase 2 ---------------------------------------------------------------------- // compute the min/max sizes of the columns and rows and set our contentwidth //#repeat x/y y/x width/height col/row cols/rows colspan/rowspan colWidth/rowHeight maxwidth/maxheight minwidth/minheight contentwidth/contentheight colMaxWidth/rowMaxHeight numCols/numRows hpad/vpad contentwidth = 2 * hpad; int numCols = cols; if (numCols == 0) for(Box child = getChild(0); child != null; child = child.nextSibling()) numCols = max(numCols, child.col + child.colspan); LENGTH[] colWidth = new LENGTH[numCols]; for(Box child = getChild(0); child != null; child = child.nextSibling()) if (!(((child.flags & ABSOLUTE_FLAG) != 0) || ((child.flags & INVISIBLE_FLAG) != 0))) colWidth[child.col] = max(colWidth[child.col], child.contentwidth / child.colspan); for(int col=0; col 0) while(slack > 0) { // FEATURE: inefficient int startslack = slack; int increment = max(1, slack / numCols); for(int col=0; col < numCols && slack > 0; col++) { slack += colWidth[col]; colWidth[col] = min(colMaxWidth[col], colWidth[col] + increment); slack -= colWidth[col]; } if (slack == startslack) break; } //#end // --- Phase 4 ---------------------------------------------------------------------- // assign children's new sizes and positions and recurse for(Box child = getChild(0); child != null; child = child.nextSibling()) { if ((child.flags & INVISIBLE_FLAG) != 0) continue; int child_x = 0, child_y = 0, child_width = 0, child_height = 0; if ((child.flags & ABSOLUTE_FLAG) != 0) { child_x = child.x; child_y = child.y; child_width = ((child.flags & HSHRINK_FLAG) != 0) ? child.contentwidth : min(child.maxwidth, width - child.x - hpad); child_height = ((child.flags & VSHRINK_FLAG) != 0) ? child.contentheight : min(child.maxheight, height - child.y - vpad); } else { int diff; //#repeat x/y y/x width/height col/row cols/rows colspan/rowspan colWidth/rowHeight maxwidth/maxheight minwidth/minheight contentwidth/contentheight colMaxWidth/rowMaxHeight HSHRINK_FLAG/VSHRINK_FLAG marginWidth/marginHeight hpad/vpad child_x/child_y child_width/child_height child_width = 0; for(int i=child.col; i 0 && dy2 - dy1 > 0 && sx2 - sx1 > 0 && sy2 - sy1 > 0) buf.drawPicture(image, dx1, dy1, dx2, dy2, sx1, sy1, sx2, sy2); } } } void renderText(int x, int y, int clipx, int clipy, int clipw, int cliph, PixelBuffer buf) { for(int i=0; i= numChildren() || i < 0 ? null : getChild(i); } /** * Inserts value as child i; calls remove() if necessary. * This method handles "reinserting" one of your children properly. * INVARIANT: after completion, getChild(min(i, numChildren())) == newnode * WARNING: O(n) runtime, unless i == numChildren() */ public void put(int i, Object value) { if (i < 0) return; if (value != null && !(value instanceof Box)) { if (Log.on) Log.logJS(this, "attempt to set a numerical property on a box to anything other than a box"); } else if (redirect == null) { if (Log.on) Log.logJS(this, "attempt to add/remove children to/from a node with a null redirect"); } else if (redirect != this) { Box b = value == null ? (Box)redirect.get(i) : (Box)value; redirect.put(i, value); put("0", b); } else if (value == null) { if (i >= 0 && i < numChildren()) { Box b = getChild(i); b.remove(); put("0", b); } } else { Box newnode = (Box)value; // check if box being moved is currently target of a redirect for(Box cur = newnode.parent; cur != null; cur = cur.parent) if (cur.redirect == newnode) { if (Log.on) Log.logJS(this, "attempt to move a box that is the target of a redirect"); return; } // check for recursive ancestor violation for(Box cur = this; cur != null; cur = cur.parent) if (cur == newnode) { if (Log.on) Log.logJS(this, "attempt to make a node a parent of its own ancestor"); if (Log.on) Log.log(this, "box == " + this + " ancestor == " + newnode); return; } if (numKids > 15 && children == null) convert_to_array(); newnode.remove(); newnode.parent = this; if (children == null) { if (firstKid == null) { firstKid = newnode; newnode.prevSibling = newnode; newnode.nextSibling = newnode; } else if (i >= numKids) { newnode.prevSibling = firstKid.prevSibling; newnode.nextSibling = firstKid; firstKid.prevSibling.nextSibling = newnode; firstKid.prevSibling = newnode; } else { Box cur = firstKid; for(int j=0; j= children.size()) { newnode.indexInParent = children.size(); children.addElement(newnode); } else { children.insertElementAt(newnode, i); for(int j=i; j= parent.children.size() - 1) return null; return (Box)parent.children.elementAt(indexInParent + 1); } } /** returns our next sibling (parent[ourindex + 1]) */ public final Box prevSibling() { if (parent == null) return null; if (parent.children == null) { if (this == parent.firstKid) return null; return prevSibling; } else { if (indexInParent == 0) return null; return (Box)parent.children.elementAt(indexInParent - 1); } } /** Returns the parent of this node */ public Box getParent() { return parent; } /** Returns ith child */ public Box getChild(int i) { if (children == null) { if (firstKid == null) return null; if (i >= numKids) return null; if (i == numKids - 1) return firstKid.prevSibling; Box cur = firstKid; for(int j=0; j= children.size() || i < 0) return null; return (Box)children.elementAt(i); } } /** Returns the number of children */ public int numChildren() { if (children == null) { if (firstKid == null) return 0; int i=1; for(Box cur = firstKid.nextSibling; cur != firstKid; i++) cur = cur.nextSibling; return i; } else { return children.size(); } } /** Returns our index in our parent */ public int getIndexInParent() { if (parent == null) return 0; if (parent.children == null) { int i = 0; for(Box cur = this; cur != parent.firstKid; i++) cur = cur.prevSibling; return i; } else { return indexInParent; } } /** returns the root of the surface that this box belongs to */ public final Box getRoot() { if (parent == null && surface != null) return this; if (parent == null) return null; return parent.getRoot(); } // Trivial Helper Methods (should be inlined) ///////////////////////////////////////// static final int min(int a, int b) { if (ab) return a; else return b; } static final int min(int a, int b, int c) { if (a<=b && a<=c) return a; else if (b<=c && b<=a) return b; else return c; } static final int max(int a, int b, int c) { if (a>=b && a>=c) return a; else if (b>=c && b>=a) return b; else return c; } static final int bound(int a, int b, int c) { if (c < b) return c; if (a > b) return a; return b; } final boolean inside(int x, int y) { return (!((flags & INVISIBLE_FLAG) != 0) && x >= 0 && y >= 0 && x < width && y < height); } /** figures out what box in this subtree of the Box owns the pixel at x,y relitave to the Surface */ public static Box whoIs(Box cur, int x, int y) { if (cur.parent != null) throw new Error("whoIs may only be invoked on the root box of a surface"); int globalx = 0; int globaly = 0; // WARNING: this method is called from the event-queueing // thread -- it may run concurrently with ANY part of XWT, and // is UNSYNCHRONIZED for performance reasons. BE CAREFUL // HERE. if ((cur.flags & INVISIBLE_FLAG) != 0) return null; if (!cur.inside(x - globalx, y - globaly)) return cur.parent == null ? cur : null; OUTER: while(true) { for(int i=cur.numChildren() - 1; i>=0; i--) { Box child = cur.getChild(i); if (child == null) continue; // since this method is unsynchronized, we have to double-check globalx += child.x; globaly += child.y; if (!((child.flags & INVISIBLE_FLAG) != 0) && child.inside(x - globalx, y - globaly)) { cur = child; continue OUTER; } globalx -= child.x; globaly -= child.y; } break; } return cur; } /** * A helper class for properties of Box which require special * handling. * * To avoid excessive use of String.equals(), the Box.get() and * Box.put() methods employ a Hash keyed on property names that * require special handling. The value stored in the Hash is an * instance of an anonymous subclass of SpecialBoxProperty, which knows * how to handle get()s and put()s for that property name. There * should be one anonymous subclass of SpecialBoxProperty for each * specially-handled property on Box. */ static class SpecialBoxProperty { SpecialBoxProperty() { } /** stores instances of SpecialBoxProperty; keyed on property name */ static Hash specialBoxProperties = new Hash(200, 3); /** this method defines the behavior when the property is get()ed from b */ Object get(Box b) { return null; } /** this method defines the behavior when the property is put() to b */ void put(Box b, Object value) { } /** this method defines the behavior when the property is put() to b, allows a single SpecialBoxProperty to serve multiple properties */ void put(String name, Box b, Object value) { put(b, value); } static { //#repeat fillcolor/strokecolor specialBoxProperties.put("fillcolor", new SpecialBoxProperty() { public Object get(Box b) { if ((b.fillcolor & 0xFF000000) == 0) return null; String red = Integer.toHexString((b.fillcolor & 0x00FF0000) >> 16); String green = Integer.toHexString((b.fillcolor & 0x0000FF00) >> 8); String blue = Integer.toHexString(b.fillcolor & 0x000000FF); if (red.length() < 2) red = "0" + red; if (blue.length() < 2) blue = "0" + blue; if (green.length() < 2) green = "0" + green; return "#" + red + green + blue; } public void put(Box b, Object value) { int newcolor = b.fillcolor; String s = value == null ? null : value.toString(); if (value == null) newcolor = 0x00000000; else if (s.length() > 0 && s.charAt(0) == '#') try { newcolor = 0xFF000000 | (Integer.parseInt(s.substring(1, 3), 16) << 16) | (Integer.parseInt(s.substring(3, 5), 16) << 8) | Integer.parseInt(s.substring(5, 7), 16); } catch (NumberFormatException e) { Log.log(this, "invalid color " + s); return; } else if (org.xwt.translators.SVG.colors.get(s) != null) newcolor = 0xFF000000 | ((Integer)org.xwt.translators.SVG.colors.get(s)).intValue(); if (newcolor == b.fillcolor) return; b.fillcolor = newcolor; b.dirty(); } }); //#end specialBoxProperties.put("color", new SpecialBoxProperty() { public Object get(Box b) { return b.get("fillcolor"); } public void put(Box b, Object value) { b.put("fillcolor", value); } }); specialBoxProperties.put("textcolor", new SpecialBoxProperty() { public Object get(Box b) { return b.get("strokecolor"); } public void put(Box b, Object value) { b.put("strokecolor", value); } }); specialBoxProperties.put("text", new SpecialBoxProperty() { public Object get(Box b) { return b.text; } public void put(Box b, Object value) { String t = value == null ? "null" : value.toString(); if (t.equals(b.text)) return; b.text = t; if (t == null) { if (b.textwidth != 0 || b.textheight != 0) MARK_FOR_REFLOW_b; b.textwidth = b.textheight = 0; } else { try { MARK_FOR_REFLOW_b; b.textwidth = 0; for(int i=0; i