
Lexerless GLR
and

Boolean Grammars
Adam Megacz
02-Nov-2005

JBP: Java Boolean Parser
(for lack of a better name)

Motivation: need GLR implementation that is:

Lexerless

In Java (emits parser as Java source code)

Bonus features:

Programmatic grammar manipulation

Boolean Grammars (superset of Context-Free)

Outline

LR Parsing

GLR Parsing

History of GLR

Lexerless Parsing

Conjunctive Grammars

Boolean Grammars

Other features

2

1

3

4

5

6

7

LR Parsing

“Left-to-Right”: on-line parsing

O(n) time

Only works for “follow-deterministic”
grammars

1

LR Parsing
Expr ::= Expr “+” Expr
 | Expr “-” Expr
 | “(” Expr “)”
 | [0-9]+

1

LR Parsing
Expr ::= Expr “+” Expr
 | Expr “-” Expr
 | “(” Expr “)”
 | [0-9]+

Input: “(1+2)-3”

1

LR Parsing
Expr ::= Expr “+” Expr
 | Expr “-” Expr
 | “(” Expr “)”
 | [0-9]+

Input: “(1+2)-3”

(

Shift “(”

1

LR Parsing
Expr ::= Expr “+” Expr
 | Expr “-” Expr
 | “(” Expr “)”
 | [0-9]+

Input: “(1+2)-3”

(

1Shift “1”

1

LR Parsing
Expr ::= Expr “+” Expr
 | Expr “-” Expr
 | “(” Expr “)”
 | [0-9]+

Input: “(1+2)-3”

(

1

+

Shift “+”

1

LR Parsing
Expr ::= Expr “+” Expr
 | Expr “-” Expr
 | “(” Expr “)”
 | [0-9]+

Input: “(1+2)-3”

(

1

+

2

Shift “2”

1

LR Parsing
Expr ::= Expr “+” Expr
 | Expr “-” Expr
 | “(” Expr “)”
 | [0-9]+

Input: “(1+2)-3”

(

Reduce “Expr + Expr”
21

+

1

LR Parsing
Expr ::= Expr “+” Expr
 | Expr “-” Expr
 | “(” Expr “)”
 | [0-9]+

Input: “(1+2)-3”

(

Shift “)”

)

21

+

1

LR Parsing
Expr ::= Expr “+” Expr
 | Expr “-” Expr
 | “(” Expr “)”
 | [0-9]+

Input: “(1+2)-3”

Reduce “(Expr)”

21

+

()

1

LR Parsing
Expr ::= Expr “+” Expr
 | Expr “-” Expr
 | “(” Expr “)”
 | [0-9]+

Input: “(1+2)-3”

Shift “-”

-

21

+

()

1

LR Parsing
Expr ::= Expr “+” Expr
 | Expr “-” Expr
 | “(” Expr “)”
 | [0-9]+

Input: “(1+2)-3”

Shift “3”

3

-

21

+

()

1

LR Parsing
Expr ::= Expr “+” Expr
 | Expr “-” Expr
 | “(” Expr “)”
 | [0-9]+

Input: “(1+2)-3”

Reduce “Expr - Expr”

21

+

()

-

3

1

Key LR Invariant
The nodes along the path from the top of
the stack to the bottom represent parse
tree fragments for elements of a prefix
chain of productions

Expr ::= “(” Expr “)”

 | Expr “+” Expr

 | [0-9]+
Input: “(1+2)-3” (

1

+

1

GLR (Generalized LR)

Not only for “follow-deterministic”
grammars, but O(n) on them like LR

O(n^3) worst case

Almost always avoidable

Three key concepts

Multiple reduction paths

Graph Structured Stack

Shared, Packed Parse Forest

2

GLR (Generalized LR)
The nodes along each path
from the top of the graph
structured stack (GSS) to
the bottom represent
shared packed parse
forest (SPPF) fragments
for elements of a prefix
chain of productions

Input: “(1+2-3)”

21

+

3

-
32

-

+

1

(

2

Multiple Paths
The nodes along each
path from the top of
the GSS to the bottom
represents SPPF
fragments for
elements of a prefix
chain of productions

Multiple paths indicate
multiple possible prefix
chains

21

+

3

-
32

-

+

1

(

2

Graph Structured Stack
The nodes along each
path from the top of
the GSS to the bottom
represents SPPF
fragments for
elements of a prefix
chain of productions

Graph structured
stack allows sharing ;
bounds graph at O(n^2)
(for CNF grammars)

21

+

3

-
32

-

+

1

(

2

Shared Packed Parse Forest
The nodes along each
path from the top of
the GSS to the bottom
represents SPPF
fragments for
elements of a prefix
chain of productions

Shared, Packed Parse
Forest represents
multiple valid parse
trees efficiently 21

+

-

+

3

32

-

+

1

5

Input: (1+2-3)+5

2

Knuth 65
LR Parsing

Lang 74
Nondet. LR

DeRemer 69
SLR, LALR

Tomita 85
GLR

????

Farshi 91
Epsilon

Grammars

Rekers 92
Compact
Forests

Visser 97
Lexerless

GLR

Johnstone, Scott 02
Right Nulled GLR

Nederhof, Sarbo 96
Dynamic Epsilon

Removal

Aycock
Horspool 99

"GLR Unrolling"

Johnstone,
Scott 02

Generalized
Regular
Parsers

Salomon,
Cormack 89

Lexerless Parsing

McPeak,
Necula 02

Bounded-Depth
Determinism

1970

1980

1990

2000

Okhotin 00
Conjunctive
Grammars

Okhotin 03
Boolean

Grammars

History of GLR 3

Lexerless GLR
No lexer; every character is a parse token
Also called “scannerless” and “complete
character-level”
Advantage: single formalism for entire syntax
Disadvantage: requires strange “features”

Follow
Reject
Prefer/Avoid
Character Ranges
Whitespace insertion

4

Lexerless GLR extensions
Character Ranges

Specify A-Z without typing 26 things

Specify “all non-whitespace unicode
chars” without typing 65,000-some
things

A robust implementation needs to use
range-set arithmetic when
constructing the parse table

4

Lexerless GLR extensions

Follow Restrictions

simulate longest-match token

Identifier ::= [A-Za-z]+ ~/~ [A-Za-z]

“not followed by”
(negative lookahead)

4

Lexerless GLR extensions
Reject Productions

identifiers cannot be keywords

interesting things happen when you
omit this...

Identifier ::= [A-Za-z]+ ~/~ [A-Za-z]
 | “while” {reject}

reject attribute
(regardless of other productions,

Identifier cannot match the text
“while”)

4

Lexerless GLR extensions
Prefer/Avoid

used to handle “dangling else”
implemented as a filter applied to the
packed forest after parsing

S ::= “if” E “then” S
 | “if” E “then” S “else” S

must not end with an if..then

4

Conjunctive Grammars

Straightforward concept, but details not
worked out until Okhotin ‘00

In addition to juxtaposition and union,
allows intersection (&) as an operator in
grammar productions

5

Conjunctive Grammars

S ::= AB & DC
A ::= “a” A | ε
B ::= “b” B “c” | ε
C ::= “c” C | ε
D ::= “a” D “b” | ε

a b c
n n n { }

Not context-free!

5

Conjunctive Grammars

Despite added power, still parseable in O(n^3)

GLR algorithm already gives us most of
what we need

Just add the ability for two ambiguous
parsings to be interdependent

A link between two reduction nodes

If either node is rejected, the other dies

5

Boolean Grammars

Okhotin ‘03

Adds negation to conjunctive grammars

Raises some theoretical issues:

Okhotin arrives at a minimal restriction to
retain sanity

Y ::= (~Y) & X

6

Boolean Grammars

Still parseable using GLR

Link between two ambiguity nodes

If nodes are ever merged and the negated
one has not yet failed, then both must fail

Boolean closure of follow-deterministic
grammars is still parseable in linear time!

6

Boolean Grammars

Why would you want to use these?

Okhotin uses them to make “variables
must be used within scope” a syntactic
constraint

Dirty little secret is that the resulting
grammar is pathologically
nondeterminitic; worst-case GLR
performance

6

Boolean Grammars
Better reason to use them:

Clean formalism, well understood

Subsumes most of the “ugly hacks” needed for
lexerless parsing

Visser’s algorithm for reject constraints is
a special case of Okhotin’s negation rule

Can handle dangling-else elegantly (no need
for prefer/avoid constraints)

6

Boolean & Lexerless

Lexerless parsing and Boolean grammars go
well together

Cleaner formalism for Lexerless Parsing

Realistic application for Boolean Grammars

Boolean grammars are just plain cool

Lots left to be discovered

7

Other Features

Any topological space (union, intersection,
complement, empty set, universe) can be used as
an alphabet (”character set”)

No assumption of a bijection with integers

No assumption that a bit-set is a practical
representation

Parsing a discrete sequence of objects drawn
from a non-discrete space

7

Other Features
Nice API, programmatic manipulations

All grammatical elements extend Element

7

Union expr = new Union();
Element id = new Range(’A’, ‘Z’).many1().maximal();

expr.add(new Sequence(new Object[] { expr, “+”, expr }));
expr.add(new Sequence(new Object[] { expr, “*”, expr }));
expr.add(new Sequence(new Object[] { id }));

Other Features
Union implements Collection<Sequence>
Sequence implements Collection<Element>

7

Union expr = new Union();
Element id = new Range(’A’, ‘Z’).many1().maximal();

expr.add(new Sequence(new Object[] { expr, “+”, expr }));
expr.add(new Sequence(new Object[] { expr, “*”, expr }));
expr.add(new Sequence(new Object[] { id }));

for(Sequence sequence : expr)
 for(Element element : sequence)
 System.out.print(element + “ “);

Implementation

http://www.cs.berkeley.edu/~megacz/jbp/

7

