no longer need to thread a Grammar through Parser.Table
[sbp.git] / src / edu / berkeley / sbp / Parser.java
index c37d1a8..5f6e252 100644 (file)
@@ -2,8 +2,8 @@
 
 package edu.berkeley.sbp;
 import edu.berkeley.sbp.util.*;
-import edu.berkeley.sbp.Sequence.Position;
-import edu.berkeley.sbp.Sequence.Position;
+import edu.berkeley.sbp.Sequence.Pos;
+import edu.berkeley.sbp.Sequence.Pos;
 import java.io.*;
 import java.util.*;
 
@@ -21,7 +21,6 @@ public abstract class Parser<Token, NodeType> {
     public abstract Topology<Token> emptyTopology();
 
     public String toString() { return pt.toString(); }
-    Grammar cache() { return pt; }
 
     /** parse <tt>input</tt>, and return the shared packed parse forest (or throw an exception) */
     public Forest<NodeType> parse(Input<Token> input) throws IOException, ParseFailed {
@@ -119,35 +118,36 @@ public abstract class Parser<Token, NodeType> {
         private int master_state_idx = 0;
 
         /** all the states for this table */
-        private transient HashSet<State<Token>>                     all_states       = new HashSet<State<Token>>();
+        private transient HashSet<State<Token>>                all_states       = new HashSet<State<Token>>();
 
         /** all the doomed states in this table */
-        private transient HashMap<HashSet<Position>,State<Token>>   doomed_states    = new HashMap<HashSet<Position>,State<Token>>();
+        private transient HashMap<HashSet<Pos>,State<Token>>   doomed_states    = new HashMap<HashSet<Pos>,State<Token>>();
 
         /** all the non-doomed states in this table */
-        private transient HashMap<HashSet<Position>,State<Token>>   normal_states    = new HashMap<HashSet<Position>,State<Token>>();
+        private transient HashMap<HashSet<Pos>,State<Token>>   normal_states    = new HashMap<HashSet<Pos>,State<Token>>();
 
-        Topology<Token> emptyTopology() { return Parser.this.emptyTopology(); }
-    
         /** construct a parse table for the given grammar */
         Table(Union ux) {
-            super(new Union("0", Sequence.create(ux), true));
+            Union rootUnion = new Union("0", Sequence.create(ux), true);
+            Grammar<Token> grammar = new Grammar<Token>(rootUnion) {
+                public Topology<Token> emptyTopology() { return Parser.this.emptyTopology(); }
+            };
 
             // create the "dead state"
-            this.dead_state = new State<Token>(new HashSet<Position>(), true);
+            this.dead_state = new State<Token>(new HashSet<Pos>(), true, grammar);
 
             // construct the start state; this will recursively create *all* the states
-            this.start = new State<Token>(reachable(rootUnion), false);
+            this.start = new State<Token>(reachable(rootUnion), false, grammar);
 
-            buildReductions();
-            sortReductions();
+            buildReductions(grammar);
+            sortReductions(grammar);
         }
 
         /** fill in the reductions table */
-        private void buildReductions() {
+        private void buildReductions(Grammar<Token> grammar) {
             // for each state, fill in the corresponding "row" of the parse table
             for(State<Token> state : all_states)
-                for(Position p : state.hs) {
+                for(Pos p : state.hs) {
 
                     // if the element following this position is an atom, copy the corresponding
                     // set of rows out of the "master" goto table and into this state's shift table
@@ -157,9 +157,9 @@ public abstract class Parser<Token, NodeType> {
                     // RNGLR: we can potentially reduce from any "right-nullable" position -- that is,
                     // any position for which all Elements after it in the Sequence are capable of
                     // matching the empty string.
-                    if (!isRightNullable(p)) continue;
-                    Topology<Token> follow = follow(p.owner());
-                    for(Position p2 = p; p2 != null && p2.element() != null; p2 = p2.next()) {
+                    if (!grammar.isRightNullable(p)) continue;
+                    Topology<Token> follow = grammar.follow(p.owner());
+                    for(Pos p2 = p; p2 != null && p2.element() != null; p2 = p2.next()) {
                         if (!(p2.element() instanceof Union))
                             throw new Error("impossible -- only Unions can be nullable");
                         
@@ -167,15 +167,15 @@ public abstract class Parser<Token, NodeType> {
                         // not just the follow-set of the last non-nullable element, but the
                         // follow-sets of the nulled elements as well.
                         for(Sequence s : ((Union)p2.element()))
-                            follow = follow.intersect(follow(s));
-                        Topology<Token> set = epsilonFollowSet((Union)p2.element());
+                            follow = follow.intersect(grammar.follow(s));
+                        Topology<Token> set = grammar.epsilonFollowSet((Union)p2.element());
                         if (set != null) follow = follow.intersect(set);
                     }
                     
                     // indicate that when the next token is in the set "follow", nodes in this
-                    // state should reduce according to Position "p"
+                    // state should reduce according to Pos "p"
                     state.reductions.put(follow, p);
-                    if (followEof.contains(p.owner())) state.eofReductions.add(p);
+                    if (grammar.followEof.contains(p.owner())) state.eofReductions.add(p);
                 }
 
             // optimize the reductions table
@@ -188,17 +188,17 @@ public abstract class Parser<Token, NodeType> {
         }
 
         // FIXME: this method needs to be cleaned up and documented
-        private void sortReductions() {
+        private void sortReductions(Grammar<Token> grammar) {
             // crude algorithm to assing an ordinal ordering to every position
             // al will be sorted in DECREASING order (al[0] >= al[1])
-            ArrayList<Sequence.Position> al = new ArrayList<Sequence.Position>();
+            ArrayList<Sequence.Pos> al = new ArrayList<Sequence.Pos>();
             for(State s : all_states) {
                 for(Object po : s.positions()) {
-                    Sequence.Position p = (Sequence.Position)po;
+                    Sequence.Pos p = (Sequence.Pos)po;
                     if (al.contains(p)) continue;
                     int i=0;
                     for(; i<al.size(); i++) {
-                        if (comparePositions(p, al.get(i)) < 0)
+                        if (grammar.comparePositions(p, al.get(i)) < 0)
                             break;
                     }
                     al.add(i, p);
@@ -209,8 +209,8 @@ public abstract class Parser<Token, NodeType> {
             OUTER: while(true) {
                 for(int i=0; i<al.size(); i++)
                     for(int j=i+1; j<al.size(); j++)
-                        if (comparePositions(al.get(i), al.get(j)) > 0) {
-                            Sequence.Position p = al.remove(j);
+                        if (grammar.comparePositions(al.get(i), al.get(j)) > 0) {
+                            Sequence.Pos p = al.remove(j);
                             al.add(i, p);
                             continue OUTER;
                         }
@@ -222,7 +222,7 @@ public abstract class Parser<Token, NodeType> {
             for(int i=0; i<al.size(); i++) {
                 boolean inc = false;
                 for(int k=pk; k<i; k++) {
-                    if (comparePositions(al.get(k), al.get(i)) > 0)
+                    if (grammar.comparePositions(al.get(k), al.get(i)) > 0)
                         { inc = true; break; }
                 }
                 inc = true;
@@ -238,13 +238,13 @@ public abstract class Parser<Token, NodeType> {
          *  A single state in the LR table and the transitions
          *  possible from it
          *
-         *  A state corresponds to a set of Sequence.Position's.  Each
+         *  A state corresponds to a set of Sequence.Pos's.  Each
          *  Node in the GSS has a State; the Node represents a set of
-         *  possible parses, one for each Position in the State.
+         *  possible parses, one for each Pos in the State.
          *
-         *  Every state is either "doomed" or "normal".  If a Position
+         *  Every state is either "doomed" or "normal".  If a Pos
          *  is part of a Sequence which is a conjunct (that is, it was
-         *  passed to Sequence.{and(),andnot()}), then that Position
+         *  passed to Sequence.{and(),andnot()}), then that Pos
          *  will appear only in doomed States.  Furthermore, any set
          *  of Positions reachable from a doomed State also forms a
          *  doomed State.  Note that in this latter case, a doomed
@@ -267,7 +267,7 @@ public abstract class Parser<Token, NodeType> {
         class State<Token> implements IntegerMappable, Serializable {
         
             public  final     int               idx    = master_state_idx++;
-            private final  transient   HashSet<Position> hs;
+            private final  transient   HashSet<Pos> hs;
             public HashSet<State<Token>> conjunctStates = new HashSet<State<Token>>();
 
             HashMap<Pos,State<Token>>      gotoSetNonTerminals = new HashMap<Pos,State<Token>>();
@@ -279,7 +279,7 @@ public abstract class Parser<Token, NodeType> {
             private           boolean                             accept              = false;
 
             private VisitableMap<Token,State<Token>> oshifts     = null;
-            private VisitableMap<Token,Position>     oreductions = null;
+            private VisitableMap<Token,Pos>     oreductions = null;
             public  final boolean doomed;
 
             // Interface Methods //////////////////////////////////////////////////////////////////////////////
@@ -287,26 +287,26 @@ public abstract class Parser<Token, NodeType> {
             public boolean doomed() { return doomed; }
             boolean                    isAccepting()           { return accept; }
 
-            Iterable<Position>  positions()             { return hs; }
+            Iterable<Pos>  positions()             { return hs; }
 
             boolean                    canShift(Token t)       { return oshifts!=null && oshifts.contains(t); }
             void                       invokeShifts(Token t, GSS.Phase phase, Result r) { oshifts.invoke(t, phase, r); }
             boolean                    canReduce(Token t)        {
                 return oreductions != null && (t==null ? eofReductions.size()>0 : oreductions.contains(t)); }
             void          invokeEpsilonReductions(Token t, Node node) {
-                if (t==null) for(Position r : eofReductions) node.invoke(r, null);
+                if (t==null) for(Pos r : eofReductions) node.invoke(r, null);
                 else         oreductions.invoke(t, node, null);
             }
             void          invokeReductions(Token t, Node node, Result b) {
-                if (t==null) for(Position r : eofReductions) node.invoke(r, b);
+                if (t==null) for(Pos r : eofReductions) node.invoke(r, b);
                 else         oreductions.invoke(t, node, b);
             }
 
             // Constructor //////////////////////////////////////////////////////////////////////////////
 
             /**
-             *  create a new state consisting of all the <tt>Position</tt>s in <tt>hs</tt>
-             *  @param hs           the set of <tt>Position</tt>s comprising this <tt>State</tt>
+             *  create a new state consisting of all the <tt>Pos</tt>s in <tt>hs</tt>
+             *  @param hs           the set of <tt>Pos</tt>s comprising this <tt>State</tt>
              *  @param all the set of all elements (Atom instances need not be included)
              *  
              *   In principle these two steps could be merged, but they
@@ -325,7 +325,7 @@ public abstract class Parser<Token, NodeType> {
              *      for non-Atom Elements.
              *  </ul>
              */
-            public State(HashSet<Position> hs, boolean doomed) {
+            public State(HashSet<Pos> hs, boolean doomed, Grammar<Token> grammar) {
                 this.hs = hs;
                 this.doomed = doomed;
 
@@ -334,35 +334,35 @@ public abstract class Parser<Token, NodeType> {
                 ((HashMap)(doomed ? doomed_states : normal_states)).put(hs, this);
                 ((HashSet)all_states).add(this);
 
-                for(Position p : hs) {
+                for(Pos p : hs) {
                     // Step 1a: take note if we are an accepting state
                     //          (last position of the root Union's sequence)
-                    if (p.next()==null && !doomed && rootUnion.contains(p.owner()))
+                    if (p.next()==null && !doomed && grammar.rootUnion.contains(p.owner()))
                         accept = true;
 
-                    // Step 1b: If any Position in the set is the first position of its sequence, then this
+                    // Step 1b: If any Pos in the set is the first position of its sequence, then this
                     //          state is responsible for spawning the "doomed" states for each of the
                     //          Sequence's conjuncts.  This obligation is recorded by adding the to-be-spawned
                     //          states to conjunctStates.
                     if (!p.isFirst()) continue;
                     for(Sequence s : p.owner().needs())
                         if (!hs.contains(s.firstp()))
-                            conjunctStates.add(mkstate(reachable(s.firstp()), true));
+                            conjunctStates.add(mkstate(reachable(s.firstp()), true, grammar));
                     for(Sequence s : p.owner().hates())
                         if (!hs.contains(s.firstp()))
-                            conjunctStates.add(mkstate(reachable(s.firstp()), true));
+                            conjunctStates.add(mkstate(reachable(s.firstp()), true, grammar));
                 }
 
-                // Step 2a: examine all Position's in this state and compute the mappings from
+                // Step 2a: examine all Pos's in this state and compute the mappings from
                 //          sets of follow tokens (tokens which could follow this position) to sets
                 //          of _new_ positions (positions after shifting).  These mappings are
                 //          collectively known as the _closure_
 
-                TopologicalBag<Token,Position> bag0 = new TopologicalBag<Token,Position>();
-                for(Position position : hs) {
+                TopologicalBag<Token,Pos> bag0 = new TopologicalBag<Token,Pos>();
+                for(Pos position : hs) {
                     if (position.isLast() || !(position.element() instanceof Atom)) continue;
                     Atom a = (Atom)position.element();
-                    HashSet<Position> hp = new HashSet<Position>();
+                    HashSet<Pos> hp = new HashSet<Pos>();
                     reachable(position.next(), hp);
                     bag0.addAll(a.getTokenTopology(), hp);
                 }
@@ -372,9 +372,9 @@ public abstract class Parser<Token, NodeType> {
                 //          computed next-position set).
 
                 for(Topology<Token> r : bag0) {
-                    HashSet<Position> h = new HashSet<Position>();
-                    for(Position p : bag0.getAll(r)) h.add(p);
-                    ((TopologicalBag)gotoSetTerminals).put(r, mkstate(h, doomed));
+                    HashSet<Pos> h = new HashSet<Pos>();
+                    for(Pos p : bag0.getAll(r)) h.add(p);
+                    ((TopologicalBag)gotoSetTerminals).put(r, mkstate(h, doomed, grammar));
                 }
 
                 // Step 3: for every Sequence, compute the closure over every position in this set which
@@ -384,43 +384,43 @@ public abstract class Parser<Token, NodeType> {
                 //         to avoid having to iteratively construct our set of States as shown in most
                 //         expositions of the algorithm (ie "keep doing XYZ until things stop changing").
 
-                HashMapBag<Sequence,Position> move = new HashMapBag<Sequence,Position>();
-                for(Position p : hs)
+                HashMapBag<Sequence,Pos> move = new HashMapBag<Sequence,Pos>();
+                for(Pos p : hs)
                     if (!p.isLast() && p.element() instanceof Union)
                         for(Sequence s : ((Union)p.element())) {
-                            HashSet<Position> hp = new HashSet<Position>();
+                            HashSet<Pos> hp = new HashSet<Pos>();
                             reachable(p.next(), hp);
                             move.addAll(s, hp);
                         }
                 OUTER: for(Sequence y : move) {
                     // if a reduction is "lame", it should wind up in the dead_state after reducing
-                    HashSet<Position> h = move.getAll(y);
-                    State<Token> s = mkstate(h, doomed);
-                    for(Position p : hs)
+                    HashSet<Pos> h = move.getAll(y);
+                    State<Token> s = mkstate(h, doomed, grammar);
+                    for(Pos p : hs)
                         if (p.element() != null && (p.element() instanceof Union))
                             for(Sequence seq : ((Union)p.element()))
                                 if (seq.needs.contains(y) || seq.hates.contains(y)) {
                                     // FIXME: assumption that no sequence is ever both usefully (non-lamely) matched
                                     //        and also directly lamely matched
-                                    for(Position pp = y.firstp(); pp != null; pp = pp.next())
+                                    for(Pos pp = y.firstp(); pp != null; pp = pp.next())
                                         ((HashMap)gotoSetNonTerminals).put(pp, dead_state);
                                     continue OUTER;
                                 }
-                    for(Position pp = y.firstp(); pp != null; pp = pp.next())
+                    for(Pos pp = y.firstp(); pp != null; pp = pp.next())
                         gotoSetNonTerminals.put(pp, s);
                 }
             }
 
-            private State<Token> mkstate(HashSet<Position> h, boolean b) {
+            private State<Token> mkstate(HashSet<Pos> h, boolean b, Grammar<Token> grammar) {
                 State ret = (b?doomed_states:normal_states).get(h);
-                if (ret==null) ret = new State<Token>(h,b);
+                if (ret==null) ret = new State<Token>(h,b, grammar);
                 return ret;
             }
 
             public int toInt() { return idx; }
             public String toString() {
                 StringBuffer ret = new StringBuffer();
-                for(Position p : hs)
+                for(Pos p : hs)
                     ret.append(p+"\n");
                 return ret.toString();
             }
@@ -430,23 +430,23 @@ public abstract class Parser<Token, NodeType> {
 
     // Helpers //////////////////////////////////////////////////////////////////////////////
     
-    private static HashSet<Position> reachable(Element e) {
-        HashSet<Position> h = new HashSet<Position>();
+    private static HashSet<Pos> reachable(Element e) {
+        HashSet<Pos> h = new HashSet<Pos>();
         reachable(e, h);
         return h;
     }
-    private static void reachable(Element e, HashSet<Position> h) {
+    private static void reachable(Element e, HashSet<Pos> h) {
         if (e instanceof Atom) return;
         for(Sequence s : ((Union)e))
             reachable(s.firstp(), h);
     }
-    private static void reachable(Position p, HashSet<Position> h) {
+    private static void reachable(Pos p, HashSet<Pos> h) {
         if (h.contains(p)) return;
         h.add(p);
         if (p.element() != null) reachable(p.element(), h);
     }
-    private static HashSet<Position> reachable(Position p) {
-        HashSet<Position> ret = new HashSet<Position>();
+    private static HashSet<Pos> reachable(Pos p) {
+        HashSet<Pos> ret = new HashSet<Pos>();
         reachable(p, ret);
         return ret;
     }