don't clreol when displaying just the spinner
[sbp.git] / src / edu / berkeley / sbp / Parser.java
index 0504a11..0b5f7c1 100644 (file)
@@ -1,3 +1,5 @@
+// Copyright 2006 all rights reserved; see LICENSE file for BSD-style license
+
 package edu.berkeley.sbp;
 import edu.berkeley.sbp.*;
 import edu.berkeley.sbp.util.*;
@@ -5,183 +7,227 @@ import edu.berkeley.sbp.Sequence.Position;
 import java.io.*;
 import java.util.*;
 
-/** a parser which translates streams of Tokens of type T into a Forest<R> */
-public abstract class Parser<Tok, Result> {
+/** a parser which translates an Input&lt;Token&gt; into a Forest&lt;NodeType&gt; */
+public abstract class Parser<Token, NodeType> {
 
-    protected final Table<Tok> pt;
+    protected final Table<Token> pt;
 
     /** create a parser to parse the grammar with start symbol <tt>u</tt> */
-    protected Parser(Union u, Topology<Tok> top)  { this.pt = new Table<Tok>(u, top); }
-    protected Parser(Table<Tok> pt)               { this.pt = pt; }
+    public Parser(Union u, Topology<Token> top)  { this.pt = new Table<Token>(u, top); }
 
     /** implement this method to create the output forest corresponding to a lone shifted input token */
-    protected abstract Forest<Result> shiftToken(Tok t, Input.Location newloc);
-
-    boolean helpgc = true;
+    public abstract Forest<NodeType> shiftToken(Token t, Input.Location newloc);
 
     public String toString() { return pt.toString(); }
 
-    /** parse <tt>input</tt>, using the table <tt>pt</tt> to drive the parser */
-    public Forest<Result> parse(Input<Tok> input) throws IOException, ParseFailed {
-        GSS gss = new GSS();
-        Input.Location loc = input.getLocation();
-        GSS.Phase current = gss.new Phase<Tok>(null, this, null, input.next(), loc, null);
-        current.newNode(null, Forest.create(null, null, null, false), pt.start, true);
-        int count = 1;
-        for(int idx=0;;idx++) {
-            Input.Location oldloc = loc;
-            loc = input.getLocation();
-            current.reduce();
-            Forest forest = current.token==null ? null : shiftToken((Tok)current.token, loc);
-            GSS.Phase next = gss.new Phase<Tok>(current, this, current, input.next(), loc, forest);
-            if (!helpgc) {
-                FileOutputStream fos = new FileOutputStream("out-"+idx+".dot");
-                PrintWriter p = new PrintWriter(new OutputStreamWriter(fos));
-                GraphViz gv = new GraphViz();
-                for(Object n : next)
-                    ((GSS.Phase.Node)n).toGraphViz(gv);
-                gv.dump(p);
-                p.flush();
-                p.close();
-            }
-            count = next.size();
-            if (current.isDone()) return (Forest<Result>)gss.finalResult;
-            current = next;
+    private boolean verbose = false;;
+    private static final char[] spin = new char[] { '-', '\\', '|', '/' };
+    private int spinpos = 0;
+    private long last = 0;
+    void spin() {
+        if (verbose) {
+            long now = System.currentTimeMillis();
+            if (now-last < 70) return;
+            last = now;
+            System.err.print("\r  " + spin[spinpos++ % (spin.length)]+"\r");
         }
     }
 
-    // Table //////////////////////////////////////////////////////////////////////////////
-
-    /** an SLR(1) parse table which may contain conflicts */
-    static class Table<Tok> extends Walk.Cache {
-
-        public String toString() {
-            StringBuffer sb = new StringBuffer();
-            sb.append("parse table");
-            for(State<Tok> state : all_states.values()) {
-                sb.append("  " + state + "\n");
-                for(Topology<Tok> t : state.shifts) {
-                    sb.append("      shift  \""+
-                              new edu.berkeley.sbp.chr.CharTopology((IntegerTopology<Character>)t)+"\" => ");
-                    for(State st : state.shifts.getAll(t))
-                        sb.append(st.idx+"  ");
-                    sb.append("\n");
+    /** parse <tt>input</tt>, and return the shared packed parse forest (or throw an exception) */
+    public Forest<NodeType> parse(Input<Token> input) throws IOException, ParseFailed {
+        verbose = System.getProperty("sbp.verbose", null) != null;
+        spinpos = 0;
+        try {
+            GSS gss = new GSS(input, this);
+            for(GSS.Phase current = gss.new Phase<Token>(pt.start); ;) {
+                
+                if (verbose) {
+                    String s;
+                    s = "  " + spin[spinpos++ % (spin.length)]+" parsing ";
+                    s += input.getName();
+                    s += " "+input.getLocation();
+                    while(s.indexOf(':') != -1 && s.indexOf(':') < 8) s = " " + s;
+                    String y = "@"+gss.viewPos+" ";
+                    while(y.length() < 9) y = " " + y;
+                    s += y;
+                    //s += "   doom="+Node.doomedNodes;
+                    //while(s.length() < 40) s = s + " ";
+                    s += "   nodes="+gss.numOldNodes;
+                    while(s.length() < 50) s = s + " ";
+                    s += " shifted="+gss.numNewNodes;
+                    while(s.length() < 60) s = s + " ";
+                    s += " reductions="+gss.numReductions;
+                    System.err.print("\r"+s+ANSI.clreol()+"\r");
                 }
-                for(Topology<Tok> t : state.reductions)
-                    sb.append("      reduce \""+
-                              new edu.berkeley.sbp.chr.CharTopology((IntegerTopology<Character>)t)+"\" => " +
-                              state.reductions.getAll(t) + "\n");
+                
+                // FIXME: make sure all the locations line up properly in here
+                if (current.isDone()) return (Forest<NodeType>)current.finalResult;
+                Forest forest = shiftToken((Token)current.token, input.getLocation());
+                current = gss.new Phase<Token>(current, forest);
             }
-            return sb.toString();
+        } finally {
+            if (verbose)
+                System.err.print("\r                                                                                \r");
         }
+    }
 
-        public final Walk.Cache cache = this;
-
-        private void walk(Element e, HashSet<Element> hs) {
-            if (e==null) return;
-            if (hs.contains(e)) return;
-            hs.add(e);
-            if (e instanceof Atom) return;
-            for(Sequence s : (Union)e) {
-                hs.add(s);
-                for(Position p = s.firstp(); p != null; p = p.next())
-                    walk(p.element(), hs);
-            }
-        }
+
+    // Table //////////////////////////////////////////////////////////////////////////////
+
+    /** an SLR(1) parse table which may contain conflicts */
+    static class Table<Token> extends Cache {
 
         /** the start state */
-        public final State<Tok>   start;
+        public  final State<Token>   start;
+
+        /** the state from which no reductions can be done */
+        private final State<Token>   dead_state;
 
         /** used to generate unique values for State.idx */
         private int master_state_idx = 0;
-        HashMap<HashSet<Position>,State<Tok>>   all_states    = new HashMap<HashSet<Position>,State<Tok>>();
+        HashSet<State<Token>>   all_states    = new HashSet<State<Token>>();
+        HashMap<HashSet<Position>,State<Token>>   doomed_states    = new HashMap<HashSet<Position>,State<Token>>();
+        HashMap<HashSet<Position>,State<Token>>   normal_states    = new HashMap<HashSet<Position>,State<Token>>();
 
         /** construct a parse table for the given grammar */
         public Table(Topology top) { this("s", top); }
         public Table(String startSymbol, Topology top) { this(new Union(startSymbol), top); }
         public Table(Union ux, Topology top) {
+            super(ux, top);
             Union start0 = new Union("0");
-            start0.add(new Sequence.Singleton(ux));
-
-            for(Sequence s : start0) cache.eof.put(s, true);
-            cache.eof.put(start0, true);
+            Sequence seq0 = new Sequence.Singleton(ux);
+            start0.add(seq0);
+            buildFollowSet(seq0, top, true);
 
             // construct the set of states
-            HashSet<Element>                        all_elements  = new HashSet<Element>();
-            walk(start0, all_elements);
-            for(Element e : all_elements)
-                cache.ys.addAll(e, new Walk.YieldSet(e, cache).walk());
             HashSet<Position> hp = new HashSet<Position>();
             reachable(start0, hp);
-            this.start = new State<Tok>(hp, all_states, all_elements);
+
+            this.dead_state = new State<Token>(new HashSet<Position>(), true);
+            this.start = new State<Token>(hp);
 
             // for each state, fill in the corresponding "row" of the parse table
-            for(State<Tok> state : all_states.values())
+            for(State<Token> state : all_states)
                 for(Position p : state.hs) {
 
                     // the Grammar's designated "last position" is the only accepting state
-                    if (start0.contains(p.owner()) && p.next()==null)
+                    if (start0.contains(p.owner()) && p.next()==null && !state.doomed)
                         state.accept = true;
 
                     if (isRightNullable(p)) {
-                        Walk.Follow wf = new Walk.Follow(top.empty(), p.owner(), all_elements, cache);
-                        Topology follow = wf.walk(p.owner());
-                        for(Position p2 = p; p2 != null && p2.element() != null; p2 = p2.next())
-                            follow = follow.intersect(new Walk.Follow(top.empty(), p2.element(), all_elements, cache).walk(p2.element()));
+                        Topology<Token> follow = (Topology<Token>)follow(p.owner());
+                        for(Position p2 = p; p2 != null && p2.element() != null; p2 = p2.next()) {
+                            if (!(p2.element() instanceof Union)) throw new Error("impossible");
+                            Union u = (Union)p2.element();
+                            Atom set = new edu.berkeley.sbp.chr.CharAtom(new edu.berkeley.sbp.chr.CharTopology((Topology<Character>)epsilonFollowSet(u)));
+                            Element p2e = p2.element();
+                            if (p2e instanceof Union)
+                                for(Sequence p2es : ((Union)p2e))
+                                    follow = follow.intersect(follow(p2es));
+                            if (set != null) follow = follow.intersect(set.getTokenTopology());
+                        }
                         state.reductions.put(follow, p);
-                        if (wf.includesEof()) state.eofReductions.add(p);
+                        if (followEof.contains(p.owner())) state.eofReductions.add(p);
                     }
 
                     // if the element following this position is an atom, copy the corresponding
                     // set of rows out of the "master" goto table and into this state's shift table
                     if (p.element() != null && p.element() instanceof Atom)
-                        state.shifts.addAll(state.gotoSetTerminals.subset(((Atom)p.element())));
+                        state.shifts.addAll(state.gotoSetTerminals.subset(((Atom)p.element()).getTokenTopology()));
                 }
+
             if (top instanceof IntegerTopology)
-                for(State<Tok> state : all_states.values()) {
+                for(State<Token> state : all_states) {
                     state.oreductions = state.reductions.optimize(((IntegerTopology)top).functor());
                     state.oshifts = state.shifts.optimize(((IntegerTopology)top).functor());
                 }
-        }
 
-        private boolean isRightNullable(Position p) {
-            if (p.isLast()) return true;
-            if (!possiblyEpsilon(p.element())) return false;
-            return isRightNullable(p.next());
+            // crude algorithm to assing an ordinal ordering to every position
+            // al will be sorted in DECREASING order (al[0] >= al[1])
+            ArrayList<Sequence.Position> al = new ArrayList<Sequence.Position>();
+            for(State s : all_states) {
+                for(Object po : s) {
+                    Sequence.Position p = (Sequence.Position)po;
+                    if (al.contains(p)) continue;
+                    int i=0;
+                    for(; i<al.size(); i++) {
+                        if (comparePositions(p, al.get(i)) < 0)
+                            break;
+                    }
+                    al.add(i, p);
+                }
+            }
+            // FIXME: this actually pollutes the "pure" objects (the ones that should not be modified by the Parser)
+            // sort in increasing order...
+            OUTER: while(true) {
+                for(int i=0; i<al.size(); i++)
+                    for(int j=i+1; j<al.size(); j++)
+                        if (comparePositions(al.get(i), al.get(j)) > 0) {
+                            Sequence.Position p = al.remove(j);
+                            al.add(i, p);
+                            continue OUTER;
+                        }
+                break;
+            }
+
+            int j = 1;
+            int pk = 0;
+            for(int i=0; i<al.size(); i++) {
+                boolean inc = false;
+                for(int k=pk; k<i; k++) {
+                    if (comparePositions(al.get(k), al.get(i)) > 0)
+                        { inc = true; break; }
+                }
+                inc = true;
+                if (inc) {
+                    j++;
+                    pk = i;
+                }
+                al.get(i).ord = j;
+            }
+
+            /*
+            for(int i=0; i<al.size(); i++)
+                if (isRightNullable(al.get(i)))
+                    System.out.println(al.get(i).ord + "   " + al.get(i));
+            */
+            //mastercache = this;
         }
 
         /** a single state in the LR table and the transitions possible from it */
-
-        class State<Tok> implements Comparable<State<Tok>>, IntegerMappable, Iterable<Position> {
+        class State<Token> implements IntegerMappable, Iterable<Position> {
         
             public  final     int               idx    = master_state_idx++;
             private final     HashSet<Position> hs;
+            public HashSet<State<Token>> also = new HashSet<State<Token>>();
 
-            public transient HashMap<Element,State<Tok>>          gotoSetNonTerminals = new HashMap<Element,State<Tok>>();
-            private transient TopologicalBag<Tok,State<Tok>>     gotoSetTerminals    = new TopologicalBag<Tok,State<Tok>>();
+            public  transient HashMap<Sequence,State<Token>>         gotoSetNonTerminals = new HashMap<Sequence,State<Token>>();
+            private transient TopologicalBag<Token,State<Token>>     gotoSetTerminals    = new TopologicalBag<Token,State<Token>>();
 
-            private           TopologicalBag<Tok,Position> reductions          = new TopologicalBag<Tok,Position>();
-            private           HashSet<Position>              eofReductions       = new HashSet<Position>();
-            private           TopologicalBag<Tok,State<Tok>>     shifts              = new TopologicalBag<Tok,State<Tok>>();
-            private           boolean                         accept              = false;
+            private           TopologicalBag<Token,Position>      reductions          = new TopologicalBag<Token,Position>();
+            private           HashSet<Position>                   eofReductions       = new HashSet<Position>();
+            private           TopologicalBag<Token,State<Token>>  shifts              = new TopologicalBag<Token,State<Token>>();
+            private           boolean                             accept              = false;
 
-            private VisitableMap<Tok,State<Tok>> oshifts = null;
-            private VisitableMap<Tok,Position> oreductions = null;
+            private VisitableMap<Token,State<Token>> oshifts     = null;
+            private VisitableMap<Token,Position>     oreductions = null;
 
             // Interface Methods //////////////////////////////////////////////////////////////////////////////
 
-            boolean             isAccepting()               { return accept; }
-            public Iterator<Position>  iterator()                  { return hs.iterator(); }
-
-            boolean             canShift(Tok t)           { return oshifts.contains(t); }
-            <B,C> void          invokeShifts(Tok t, Invokable<State<Tok>,B,C> irbc, B b, C c) {
-                oshifts.invoke(t, irbc, b, c);
+            boolean                    isAccepting()           { return accept; }
+            public Iterator<Position>  iterator()              { return hs.iterator(); }
+            boolean                    canShift(Token t)       { return oshifts!=null && oshifts.contains(t); }
+            void                       invokeShifts(Token t, GSS.Phase phase, Result r) { oshifts.invoke(t, phase, r); }
+            boolean                    canReduce(Token t)        {
+                return oreductions != null && (t==null ? eofReductions.size()>0 : oreductions.contains(t)); }
+            void          invokeEpsilonReductions(Token t, Node node) {
+                if (t==null) for(Position r : eofReductions) node.invoke(r, null);
+                else         oreductions.invoke(t, node, null);
             }
-
-            boolean             canReduce(Tok t)          { return t==null ? eofReductions.size()>0 : oreductions.contains(t); }
-            <B,C> void          invokeReductions(Tok t, Invokable<Position,B,C> irbc, B b, C c) {
-                if (t==null) for(Position r : eofReductions) irbc.invoke(r, b, c);
-                else         oreductions.invoke(t, irbc, b, c);
+            void          invokeReductions(Token t, Node node, Result b) {
+                //System.err.println("\rinvokage:  " + this);
+                if (t==null) for(Position r : eofReductions) node.invoke(r, b);
+                else         oreductions.invoke(t, node, b);
             }
 
             // Constructor //////////////////////////////////////////////////////////////////////////////
@@ -189,8 +235,7 @@ public abstract class Parser<Tok, Result> {
             /**
              *  create a new state consisting of all the <tt>Position</tt>s in <tt>hs</tt>
              *  @param hs           the set of <tt>Position</tt>s comprising this <tt>State</tt>
-             *  @param all_states   the set of states already constructed (to avoid recreating states)
-             *  @param all_elements the set of all elements (Atom instances need not be included)
+             *  @param all the set of all elements (Atom instances need not be included)
              *  
              *   In principle these two steps could be merged, but they
              *   are written separately to highlight these two facts:
@@ -208,63 +253,94 @@ public abstract class Parser<Tok, Result> {
              *      for non-Atom Elements.
              *  </ul>
              */
-            public State(HashSet<Position> hs,
-                         HashMap<HashSet<Position>,State<Tok>> all_states,
-                         HashSet<Element> all_elements) {
+            public State(HashSet<Position> hs) { this(hs, false); }
+            public boolean doomed;
+            public State(HashSet<Position> hs, boolean doomed) {
                 this.hs = hs;
+                this.doomed = doomed;
 
                 // register ourselves in the all_states hash so that no
                 // two states are ever created with an identical position set
-                all_states.put(hs, this);
+                ((HashMap)(doomed ? doomed_states : normal_states)).put(hs, this);
+                ((HashSet)all_states).add(this);
+                
+                for(Position p : hs) {
+                    if (!p.isFirst()) continue;
+                    for(Sequence s : p.owner().needs()) {
+                        if (hs.contains(s.firstp())) continue;
+                        HashSet<Position> h2 = new HashSet<Position>();
+                        reachable(s, h2);
+                        also.add(mkstate(h2, true));
+                    }
+                    for(Sequence s : p.owner().hates()) {
+                        if (hs.contains(s.firstp())) continue;
+                        HashSet<Position> h2 = new HashSet<Position>();
+                        reachable(s, h2);
+                        also.add(mkstate(h2, true));
+                    }
+                }
 
                 // Step 1a: examine all Position's in this state and compute the mappings from
                 //          sets of follow tokens (tokens which could follow this position) to sets
                 //          of _new_ positions (positions after shifting).  These mappings are
                 //          collectively known as the _closure_
 
-                TopologicalBag<Tok,Position> bag0 = new TopologicalBag<Tok,Position>();
+                TopologicalBag<Token,Position> bag0 = new TopologicalBag<Token,Position>();
                 for(Position position : hs) {
                     if (position.isLast() || !(position.element() instanceof Atom)) continue;
                     Atom a = (Atom)position.element();
                     HashSet<Position> hp = new HashSet<Position>();
                     reachable(position.next(), hp);
-                    bag0.addAll(a, hp);
+                    bag0.addAll(a.getTokenTopology(), hp);
                 }
 
                 // Step 1b: for each _minimal, contiguous_ set of characters having an identical next-position
                 //          set, add that character set to the goto table (with the State corresponding to the
                 //          computed next-position set).
 
-                for(Topology<Tok> r : bag0) {
+                for(Topology<Token> r : bag0) {
                     HashSet<Position> h = new HashSet<Position>();
                     for(Position p : bag0.getAll(r)) h.add(p);
-                    gotoSetTerminals.put(r, all_states.get(h) == null ? new State<Tok>(h, all_states, all_elements) : all_states.get(h));
+                    ((TopologicalBag)gotoSetTerminals).put(r, mkstate(h, doomed));
                 }
 
-                // Step 2: for every non-Atom element (ie every Element which has a corresponding reduction),
-                //         compute the closure over every position in this set which is followed by a symbol
-                //         which could yield the Element in question.
+                // Step 2: for every Sequence, compute the closure over every position in this set which
+                //         is followed by a symbol which could yield the Sequence.
                 //
                 //         "yields" [in one or more step] is used instead of "produces" [in exactly one step]
                 //         to avoid having to iteratively construct our set of States as shown in most
                 //         expositions of the algorithm (ie "keep doing XYZ until things stop changing").
-                HashMapBag<Element,Position> move = new HashMapBag<Element,Position>();
-                for(Position p : hs) {
-                    Element e = p.element();
-                    if (e==null) continue;
-                    for(Element y : cache.ys.getAll(e)) {
-                        HashSet<Position> hp = new HashSet<Position>();
-                        reachable(p.next(), hp);
-                        move.addAll(y, hp);
-                    }
-                }
-                for(Element y : move) {
+
+                HashMapBag<Sequence,Position> move = new HashMapBag<Sequence,Position>();
+                for(Position p : hs)
+                    if (!p.isLast() && p.element() instanceof Union)
+                        for(Sequence s : ((Union)p.element())) {
+                            HashSet<Position> hp = new HashSet<Position>();
+                            reachable(p.next(), hp);
+                            move.addAll(s, hp);
+                        }
+                OUTER: for(Sequence y : move) {
+                    // if a reduction is "lame", it should wind up in the dead_state after reducing
                     HashSet<Position> h = move.getAll(y);
-                    State<Tok> s = all_states.get(h) == null ? new State<Tok>(h, all_states, all_elements) : all_states.get(h);
+                    State<Token> s = mkstate(h, doomed);
+                    for(Position p : hs)
+                        if (p.element() != null && (p.element() instanceof Union))
+                            for(Sequence seq : ((Union)p.element()))
+                                if (seq.needs.contains(y) || seq.hates.contains(y)) {
+                                    // FIXME: assumption that no sequence is ever both usefully (non-lamely) matched
+                                    //        and also directly lamely matched
+                                    ((HashMap)gotoSetNonTerminals).put(y, dead_state);
+                                    continue OUTER;
+                                }
                     gotoSetNonTerminals.put(y, s);
                 }
             }
 
+            private State<Token> mkstate(HashSet<Position> h, boolean b) {
+                if (b) return doomed_states.get(h) == null ? (State)new State<Token>(h,b) : (State)doomed_states.get(h);
+                else   return normal_states.get(h) == null ? (State)new State<Token>(h,b) : (State)normal_states.get(h);
+            }
+
             public String toStringx() {
                 StringBuffer st = new StringBuffer();
                 for(Position p : this) {
@@ -273,6 +349,7 @@ public abstract class Parser<Tok, Result> {
                 }
                 return st.toString();
             }
+
             public String toString() {
                 StringBuffer ret = new StringBuffer();
                 ret.append("state["+idx+"]: ");
@@ -280,22 +357,48 @@ public abstract class Parser<Tok, Result> {
                 return ret.toString();
             }
 
-            public int compareTo(State<Tok> s) { return idx==s.idx ? 0 : idx < s.idx ? -1 : 1; }
             public int toInt() { return idx; }
         }
+
+        public String toString() {
+            StringBuffer sb = new StringBuffer();
+            sb.append("parse table");
+            for(State<Token> state : all_states) {
+                sb.append("  " + state + "\n");
+                for(Topology<Token> t : state.shifts) {
+                    sb.append("      shift  \""+
+                              new edu.berkeley.sbp.chr.CharTopology((IntegerTopology<Character>)t)+"\" => ");
+                    for(State st : state.shifts.getAll(t))
+                        sb.append(st.idx+"  ");
+                    sb.append("\n");
+                }
+                for(Topology<Token> t : state.reductions)
+                    sb.append("      reduce \""+
+                              new edu.berkeley.sbp.chr.CharTopology((IntegerTopology<Character>)t)+"\" => " +
+                              state.reductions.getAll(t) + "\n");
+                for(Sequence s : state.gotoSetNonTerminals.keySet())
+                    sb.append("      goto   "+state.gotoSetNonTerminals.get(s)+" from " + s + "\n");
+            }
+            return sb.toString();
+        }
     }
 
     // Helpers //////////////////////////////////////////////////////////////////////////////
     
+    private static void reachable(Sequence s, HashSet<Position> h) {
+        reachable(s.firstp(), h);
+        //for(Sequence ss : s.needs()) reachable(ss, h);
+        //for(Sequence ss : s.hates()) reachable(ss, h);
+    }
     private static void reachable(Element e, HashSet<Position> h) {
         if (e instanceof Atom) return;
         for(Sequence s : ((Union)e))
-            reachable(s.firstp(), h);
+            reachable(s, h);
     }
     private static void reachable(Position p, HashSet<Position> h) {
         if (h.contains(p)) return;
         h.add(p);
         if (p.element() != null) reachable(p.element(), h);
     }
-
+    //public static Cache mastercache = null;
 }