don't clreol when displaying just the spinner
[sbp.git] / src / edu / berkeley / sbp / Parser.java
index db08afc..0b5f7c1 100644 (file)
@@ -1,3 +1,5 @@
+// Copyright 2006 all rights reserved; see LICENSE file for BSD-style license
+
 package edu.berkeley.sbp;
 import edu.berkeley.sbp.*;
 import edu.berkeley.sbp.util.*;
@@ -5,202 +7,227 @@ import edu.berkeley.sbp.Sequence.Position;
 import java.io.*;
 import java.util.*;
 
-/** a parser which translates streams of Tokens of type T into a Forest<R> */
-public abstract class Parser<T extends Token, R> {
+/** a parser which translates an Input&lt;Token&gt; into a Forest&lt;NodeType&gt; */
+public abstract class Parser<Token, NodeType> {
 
-    private final Table pt;
+    protected final Table<Token> pt;
 
     /** create a parser to parse the grammar with start symbol <tt>u</tt> */
-    protected Parser(Union u)  { this.pt = new Table(u, top()); }
-    //protected Parser(Table pt) { this.pt = pt; }
+    public Parser(Union u, Topology<Token> top)  { this.pt = new Table<Token>(u, top); }
 
     /** implement this method to create the output forest corresponding to a lone shifted input token */
-    public abstract Forest<R> shiftedToken(T t, Token.Location loc);
-
-    /** this method must return an empty topology of the input token type */
-    public abstract Topology<T> top();
-
-    /** parse <tt>input</tt> for a exactly one unique result, throwing <tt>Ambiguous</tt> if not unique or <tt>ParseFailed</tt> if none */
-    public Tree<R> parse1(Token.Stream<T> input) throws IOException, ParseFailed, Ambiguous {
-        Forest<R> ret = parse(input);
-        try { return ret.expand1(); }
-        catch (Ambiguous a) {
-            System.out.println("while expanding:");
-            System.out.println(ret);
-            throw a;
+    public abstract Forest<NodeType> shiftToken(Token t, Input.Location newloc);
+
+    public String toString() { return pt.toString(); }
+
+    private boolean verbose = false;;
+    private static final char[] spin = new char[] { '-', '\\', '|', '/' };
+    private int spinpos = 0;
+    private long last = 0;
+    void spin() {
+        if (verbose) {
+            long now = System.currentTimeMillis();
+            if (now-last < 70) return;
+            last = now;
+            System.err.print("\r  " + spin[spinpos++ % (spin.length)]+"\r");
         }
     }
 
-    /** parse <tt>input</tt>, using the table <tt>pt</tt> to drive the parser */
-    public Forest<R> parse(Token.Stream<T> input) throws IOException, ParseFailed {
-        GSS gss = new GSS();
-        Token.Location loc = input.getLocation();
-        GSS.Phase current = gss.new Phase(null, this, null, input.next(1, 0, 0), loc, null);
-        current.newNode(null, Forest.leaf(null, null), pt.start, true);
-        int count = 1;
-        for(;;) {
-            loc = input.getLocation();
-            current.reduce();
-            Forest forest = current.token==null ? null : shiftedToken((T)current.token, loc);
-            GSS.Phase next = gss.new Phase(current, this, current, input.next(count, gss.resets, gss.waits), loc, forest);
-            count = next.hash.size();
-            if (current.isDone()) return (Forest<R>)current.finalResult;
-            current = next;
+    /** parse <tt>input</tt>, and return the shared packed parse forest (or throw an exception) */
+    public Forest<NodeType> parse(Input<Token> input) throws IOException, ParseFailed {
+        verbose = System.getProperty("sbp.verbose", null) != null;
+        spinpos = 0;
+        try {
+            GSS gss = new GSS(input, this);
+            for(GSS.Phase current = gss.new Phase<Token>(pt.start); ;) {
+                
+                if (verbose) {
+                    String s;
+                    s = "  " + spin[spinpos++ % (spin.length)]+" parsing ";
+                    s += input.getName();
+                    s += " "+input.getLocation();
+                    while(s.indexOf(':') != -1 && s.indexOf(':') < 8) s = " " + s;
+                    String y = "@"+gss.viewPos+" ";
+                    while(y.length() < 9) y = " " + y;
+                    s += y;
+                    //s += "   doom="+Node.doomedNodes;
+                    //while(s.length() < 40) s = s + " ";
+                    s += "   nodes="+gss.numOldNodes;
+                    while(s.length() < 50) s = s + " ";
+                    s += " shifted="+gss.numNewNodes;
+                    while(s.length() < 60) s = s + " ";
+                    s += " reductions="+gss.numReductions;
+                    System.err.print("\r"+s+ANSI.clreol()+"\r");
+                }
+                
+                // FIXME: make sure all the locations line up properly in here
+                if (current.isDone()) return (Forest<NodeType>)current.finalResult;
+                Forest forest = shiftToken((Token)current.token, input.getLocation());
+                current = gss.new Phase<Token>(current, forest);
+            }
+        } finally {
+            if (verbose)
+                System.err.print("\r                                                                                \r");
         }
     }
-    
-
-    // Exceptions //////////////////////////////////////////////////////////////////////////////
 
 
     // Table //////////////////////////////////////////////////////////////////////////////
 
     /** an SLR(1) parse table which may contain conflicts */
-    static class Table extends Walk.Cache {
-
-        public final Walk.Cache cache = this;
-
-        public HashMapBag<Position,State> byPosition = new HashMapBag<Position,State>();
-        
-        private void walk(Element e, HashSet<Element> hs) {
-            if (e==null) return;
-            if (hs.contains(e)) return;
-            hs.add(e);
-            if (e instanceof Atom) return;
-            for(Sequence s : (Union)e) {
-                hs.add(s);
-                for(Position p = s.firstp(); p != null; p = p.next())
-                    walk(p.element(), hs);
-            }
-        }
+    static class Table<Token> extends Cache {
 
         /** the start state */
-        public final State   start;
+        public  final State<Token>   start;
+
+        /** the state from which no reductions can be done */
+        private final State<Token>   dead_state;
 
         /** used to generate unique values for State.idx */
         private int master_state_idx = 0;
+        HashSet<State<Token>>   all_states    = new HashSet<State<Token>>();
+        HashMap<HashSet<Position>,State<Token>>   doomed_states    = new HashMap<HashSet<Position>,State<Token>>();
+        HashMap<HashSet<Position>,State<Token>>   normal_states    = new HashMap<HashSet<Position>,State<Token>>();
 
         /** construct a parse table for the given grammar */
         public Table(Topology top) { this("s", top); }
         public Table(String startSymbol, Topology top) { this(new Union(startSymbol), top); }
         public Table(Union ux, Topology top) {
+            super(ux, top);
             Union start0 = new Union("0");
-            start0.add(new Sequence.Singleton(ux, null, null));
-
-            for(Sequence s : start0) cache.eof.put(s, true);
-            cache.eof.put(start0, true);
+            Sequence seq0 = new Sequence.Singleton(ux);
+            start0.add(seq0);
+            buildFollowSet(seq0, top, true);
 
             // construct the set of states
-            HashMap<HashSet<Position>,State>   all_states    = new HashMap<HashSet<Position>,State>();
-            HashSet<Element>                   all_elements  = new HashSet<Element>();
-            walk(start0, all_elements);
-            for(Element e : all_elements)
-                cache.ys.put(e, new Walk.YieldSet(e, cache).walk());
             HashSet<Position> hp = new HashSet<Position>();
             reachable(start0, hp);
-            this.start = new State(hp, all_states, all_elements);
+
+            this.dead_state = new State<Token>(new HashSet<Position>(), true);
+            this.start = new State<Token>(hp);
 
             // for each state, fill in the corresponding "row" of the parse table
-            for(State state : all_states.values())
+            for(State<Token> state : all_states)
                 for(Position p : state.hs) {
 
                     // the Grammar's designated "last position" is the only accepting state
-                    if (start0.contains(p.owner()) && p.next()==null)
+                    if (start0.contains(p.owner()) && p.next()==null && !state.doomed)
                         state.accept = true;
 
-                    if (p.isRightNullable(cache)) {
-                        Walk.Follow wf = new Walk.Follow(top.empty(), p.owner(), all_elements, cache);
-                        Reduction red = new Reduction(p);
-
-                        Topology follow = wf.walk(p.owner());
-                        if (p.owner() instanceof Sequence.RewritingSequence &&
-                            (((Sequence.RewritingSequence)p.owner()).tag+"").equals("emailaddr")) {
-                            System.out.println("follow before: " + new edu.berkeley.sbp.misc.CharToken.CharRange(follow));
+                    if (isRightNullable(p)) {
+                        Topology<Token> follow = (Topology<Token>)follow(p.owner());
+                        for(Position p2 = p; p2 != null && p2.element() != null; p2 = p2.next()) {
+                            if (!(p2.element() instanceof Union)) throw new Error("impossible");
+                            Union u = (Union)p2.element();
+                            Atom set = new edu.berkeley.sbp.chr.CharAtom(new edu.berkeley.sbp.chr.CharTopology((Topology<Character>)epsilonFollowSet(u)));
+                            Element p2e = p2.element();
+                            if (p2e instanceof Union)
+                                for(Sequence p2es : ((Union)p2e))
+                                    follow = follow.intersect(follow(p2es));
+                            if (set != null) follow = follow.intersect(set.getTokenTopology());
                         }
-                        for(Position p2 = p; p2 != null && p2.element() != null; p2 = p2.next())
-                            follow = follow.intersect(new Walk.Follow(top.empty(), p2.element(), all_elements, cache).walk(p2.element()));
-                        if (p.owner() instanceof Sequence.RewritingSequence &&
-                            (((Sequence.RewritingSequence)p.owner()).tag+"").equals("emailaddr")) {
-                            System.out.println("follow after: " + new edu.berkeley.sbp.misc.CharToken.CharRange(follow));
-                        }
-                        state.reductions.put(follow, red);
-                        if (wf.includesEof()) state.eofReductions.add(red);
+                        state.reductions.put(follow, p);
+                        if (followEof.contains(p.owner())) state.eofReductions.add(p);
                     }
 
                     // if the element following this position is an atom, copy the corresponding
                     // set of rows out of the "master" goto table and into this state's shift table
                     if (p.element() != null && p.element() instanceof Atom)
-                        state.shifts.addAll(state.gotoSetTerminals.subset(((Atom)p.element())));
+                        state.shifts.addAll(state.gotoSetTerminals.subset(((Atom)p.element()).getTokenTopology()));
                 }
-            for(State state : all_states.values()) {
-                state.oreductions = state.reductions.optimize();
-                state.oshifts = state.shifts.optimize();
-            }
-        }
 
-        /** a single state in the LR table and the transitions possible from it */
-
-        public class State implements Comparable<Table.State>, IntegerMappable, Iterable<Position> {
-        
-            public int toInt() { return idx; }
+            if (top instanceof IntegerTopology)
+                for(State<Token> state : all_states) {
+                    state.oreductions = state.reductions.optimize(((IntegerTopology)top).functor());
+                    state.oshifts = state.shifts.optimize(((IntegerTopology)top).functor());
+                }
 
-            public boolean lame() {
-                for(Position p : this)
-                    for(Position p2 = p; p2!=null; p2=p2.next())
-                        if (p2.isLast() && !p2.owner().lame)
-                            return false;
-                return true;
-            }
-            /*
-            public boolean isResolvable(Token t) {
-                boolean found = false;
-                for(Reduction r : getReductions(t)) {
-                    Position p = r.position;
-                    if (!p.isRightNullable(cache)) continue;
-                    if (p.owner().firstp()==p) continue;
-                    if (found) {
-                        // found two items meeting criteria #1
-                        return false;
-                    } else {
-                        found = true;
-                        continue;
+            // crude algorithm to assing an ordinal ordering to every position
+            // al will be sorted in DECREASING order (al[0] >= al[1])
+            ArrayList<Sequence.Position> al = new ArrayList<Sequence.Position>();
+            for(State s : all_states) {
+                for(Object po : s) {
+                    Sequence.Position p = (Sequence.Position)po;
+                    if (al.contains(p)) continue;
+                    int i=0;
+                    for(; i<al.size(); i++) {
+                        if (comparePositions(p, al.get(i)) < 0)
+                            break;
                     }
-                    if (p.element()==null) continue;
-                    Topology first = new Walk.First(top(), cache).walk(p.element());
-                    if (first.contains(t))
+                    al.add(i, p);
                 }
             }
+            // FIXME: this actually pollutes the "pure" objects (the ones that should not be modified by the Parser)
+            // sort in increasing order...
+            OUTER: while(true) {
+                for(int i=0; i<al.size(); i++)
+                    for(int j=i+1; j<al.size(); j++)
+                        if (comparePositions(al.get(i), al.get(j)) > 0) {
+                            Sequence.Position p = al.remove(j);
+                            al.add(i, p);
+                            continue OUTER;
+                        }
+                break;
+            }
+
+            int j = 1;
+            int pk = 0;
+            for(int i=0; i<al.size(); i++) {
+                boolean inc = false;
+                for(int k=pk; k<i; k++) {
+                    if (comparePositions(al.get(k), al.get(i)) > 0)
+                        { inc = true; break; }
+                }
+                inc = true;
+                if (inc) {
+                    j++;
+                    pk = i;
+                }
+                al.get(i).ord = j;
+            }
+
+            /*
+            for(int i=0; i<al.size(); i++)
+                if (isRightNullable(al.get(i)))
+                    System.out.println(al.get(i).ord + "   " + al.get(i));
             */
+            //mastercache = this;
+        }
 
+        /** a single state in the LR table and the transitions possible from it */
+        class State<Token> implements IntegerMappable, Iterable<Position> {
+        
             public  final     int               idx    = master_state_idx++;
             private final     HashSet<Position> hs;
+            public HashSet<State<Token>> also = new HashSet<State<Token>>();
 
-            private transient HashMap<Element,State>          gotoSetNonTerminals = new HashMap<Element,State>();
-            private transient TopologicalBag<Token,State>     gotoSetTerminals    = new TopologicalBag<Token,State>();
+            public  transient HashMap<Sequence,State<Token>>         gotoSetNonTerminals = new HashMap<Sequence,State<Token>>();
+            private transient TopologicalBag<Token,State<Token>>     gotoSetTerminals    = new TopologicalBag<Token,State<Token>>();
 
-            private           TopologicalBag<Token,Reduction> reductions          = new TopologicalBag<Token,Reduction>();
-            private           HashSet<Reduction>              eofReductions       = new HashSet<Reduction>();
-            private           TopologicalBag<Token,State>     shifts              = new TopologicalBag<Token,State>();
-            private           boolean                         accept              = false;
+            private           TopologicalBag<Token,Position>      reductions          = new TopologicalBag<Token,Position>();
+            private           HashSet<Position>                   eofReductions       = new HashSet<Position>();
+            private           TopologicalBag<Token,State<Token>>  shifts              = new TopologicalBag<Token,State<Token>>();
+            private           boolean                             accept              = false;
 
-            private VisitableMap<Token,State> oshifts = null;
-            private VisitableMap<Token,Reduction> oreductions = null;
+            private VisitableMap<Token,State<Token>> oshifts     = null;
+            private VisitableMap<Token,Position>     oreductions = null;
 
             // Interface Methods //////////////////////////////////////////////////////////////////////////////
 
-            public boolean             isAccepting()               { return accept; }
-
-            public boolean             canShift(Token t)           { return oshifts.contains(t); }
-            public boolean             canReduce(Token t)          { return t==null ? eofReductions.size()>0 : oreductions.contains(t); }
-
-            public Iterator<Position>  iterator()                  { return hs.iterator(); }
-
-            public <B,C> void          invokeShifts(Token t, Invokable<State,B,C> irbc, B b, C c) {
-                oshifts.invoke(t, irbc, b, c);
+            boolean                    isAccepting()           { return accept; }
+            public Iterator<Position>  iterator()              { return hs.iterator(); }
+            boolean                    canShift(Token t)       { return oshifts!=null && oshifts.contains(t); }
+            void                       invokeShifts(Token t, GSS.Phase phase, Result r) { oshifts.invoke(t, phase, r); }
+            boolean                    canReduce(Token t)        {
+                return oreductions != null && (t==null ? eofReductions.size()>0 : oreductions.contains(t)); }
+            void          invokeEpsilonReductions(Token t, Node node) {
+                if (t==null) for(Position r : eofReductions) node.invoke(r, null);
+                else         oreductions.invoke(t, node, null);
             }
-            public <B,C> void          invokeReductions(Token t, Invokable<Reduction,B,C> irbc, B b, C c) {
-                if (t==null) for(Reduction r : eofReductions) irbc.invoke(r, b, c);
-                else         oreductions.invoke(t, irbc, b, c);
+            void          invokeReductions(Token t, Node node, Result b) {
+                //System.err.println("\rinvokage:  " + this);
+                if (t==null) for(Position r : eofReductions) node.invoke(r, b);
+                else         oreductions.invoke(t, node, b);
             }
 
             // Constructor //////////////////////////////////////////////////////////////////////////////
@@ -208,8 +235,7 @@ public abstract class Parser<T extends Token, R> {
             /**
              *  create a new state consisting of all the <tt>Position</tt>s in <tt>hs</tt>
              *  @param hs           the set of <tt>Position</tt>s comprising this <tt>State</tt>
-             *  @param all_states   the set of states already constructed (to avoid recreating states)
-             *  @param all_elements the set of all elements (Atom instances need not be included)
+             *  @param all the set of all elements (Atom instances need not be included)
              *  
              *   In principle these two steps could be merged, but they
              *   are written separately to highlight these two facts:
@@ -227,15 +253,32 @@ public abstract class Parser<T extends Token, R> {
              *      for non-Atom Elements.
              *  </ul>
              */
-            public State(HashSet<Position> hs,
-                         HashMap<HashSet<Position>,State> all_states,
-                         HashSet<Element> all_elements) {
+            public State(HashSet<Position> hs) { this(hs, false); }
+            public boolean doomed;
+            public State(HashSet<Position> hs, boolean doomed) {
                 this.hs = hs;
+                this.doomed = doomed;
 
                 // register ourselves in the all_states hash so that no
                 // two states are ever created with an identical position set
-                all_states.put(hs, this);
-                for(Position p : hs) byPosition.add(p,this);
+                ((HashMap)(doomed ? doomed_states : normal_states)).put(hs, this);
+                ((HashSet)all_states).add(this);
+                
+                for(Position p : hs) {
+                    if (!p.isFirst()) continue;
+                    for(Sequence s : p.owner().needs()) {
+                        if (hs.contains(s.firstp())) continue;
+                        HashSet<Position> h2 = new HashSet<Position>();
+                        reachable(s, h2);
+                        also.add(mkstate(h2, true));
+                    }
+                    for(Sequence s : p.owner().hates()) {
+                        if (hs.contains(s.firstp())) continue;
+                        HashSet<Position> h2 = new HashSet<Position>();
+                        reachable(s, h2);
+                        also.add(mkstate(h2, true));
+                    }
+                }
 
                 // Step 1a: examine all Position's in this state and compute the mappings from
                 //          sets of follow tokens (tokens which could follow this position) to sets
@@ -248,7 +291,7 @@ public abstract class Parser<T extends Token, R> {
                     Atom a = (Atom)position.element();
                     HashSet<Position> hp = new HashSet<Position>();
                     reachable(position.next(), hp);
-                    bag0.addAll(a, hp);
+                    bag0.addAll(a.getTokenTopology(), hp);
                 }
 
                 // Step 1b: for each _minimal, contiguous_ set of characters having an identical next-position
@@ -258,144 +301,104 @@ public abstract class Parser<T extends Token, R> {
                 for(Topology<Token> r : bag0) {
                     HashSet<Position> h = new HashSet<Position>();
                     for(Position p : bag0.getAll(r)) h.add(p);
-                    gotoSetTerminals.put(r, all_states.get(h) == null ? new State(h, all_states, all_elements) : all_states.get(h));
+                    ((TopologicalBag)gotoSetTerminals).put(r, mkstate(h, doomed));
                 }
 
-                // Step 2: for every non-Atom element (ie every Element which has a corresponding reduction),
-                //         compute the closure over every position in this set which is followed by a symbol
-                //         which could yield the Element in question.
+                // Step 2: for every Sequence, compute the closure over every position in this set which
+                //         is followed by a symbol which could yield the Sequence.
                 //
                 //         "yields" [in one or more step] is used instead of "produces" [in exactly one step]
                 //         to avoid having to iteratively construct our set of States as shown in most
                 //         expositions of the algorithm (ie "keep doing XYZ until things stop changing").
-                /*
-                for(Element e : all_elements) {
-                    if (e instanceof Atom) continue;
-                    HashSet<Position> h = new Walk.Closure(null, g.cache).closure(e, hs);
-                    State s = all_states.get(h) == null ? new State(h, all_states, all_elements) : all_states.get(h);
-                    if (gotoSetNonTerminals.get(e) != null)
-                        throw new Error("this should not happen");
-                    gotoSetNonTerminals.put(e, s);
-                }
-                */
-                HashMapBag<Element,Position> move = new HashMapBag<Element,Position>();
-                for(Position p : hs) {
-                    Element e = p.element();
-                    if (e==null) continue;
-                    HashSet<Element> ys = cache.ys.get(e);
-                    if (ys != null) {
-                        for(Element y : ys) {
+
+                HashMapBag<Sequence,Position> move = new HashMapBag<Sequence,Position>();
+                for(Position p : hs)
+                    if (!p.isLast() && p.element() instanceof Union)
+                        for(Sequence s : ((Union)p.element())) {
                             HashSet<Position> hp = new HashSet<Position>();
                             reachable(p.next(), hp);
-                            move.addAll(y, hp);
+                            move.addAll(s, hp);
                         }
-                    }
-                }
-                for(Element y : move) {
+                OUTER: for(Sequence y : move) {
+                    // if a reduction is "lame", it should wind up in the dead_state after reducing
                     HashSet<Position> h = move.getAll(y);
-                    State s = all_states.get(h) == null ? new State(h, all_states, all_elements) : all_states.get(h);
+                    State<Token> s = mkstate(h, doomed);
+                    for(Position p : hs)
+                        if (p.element() != null && (p.element() instanceof Union))
+                            for(Sequence seq : ((Union)p.element()))
+                                if (seq.needs.contains(y) || seq.hates.contains(y)) {
+                                    // FIXME: assumption that no sequence is ever both usefully (non-lamely) matched
+                                    //        and also directly lamely matched
+                                    ((HashMap)gotoSetNonTerminals).put(y, dead_state);
+                                    continue OUTER;
+                                }
                     gotoSetNonTerminals.put(y, s);
                 }
             }
 
+            private State<Token> mkstate(HashSet<Position> h, boolean b) {
+                if (b) return doomed_states.get(h) == null ? (State)new State<Token>(h,b) : (State)doomed_states.get(h);
+                else   return normal_states.get(h) == null ? (State)new State<Token>(h,b) : (State)normal_states.get(h);
+            }
+
+            public String toStringx() {
+                StringBuffer st = new StringBuffer();
+                for(Position p : this) {
+                    if (st.length() > 0) st.append("\n");
+                    st.append(p);
+                }
+                return st.toString();
+            }
+
             public String toString() {
-                //return "state["+idx+"]";
                 StringBuffer ret = new StringBuffer();
                 ret.append("state["+idx+"]: ");
                 for(Position p : this) ret.append("{"+p+"}  ");
                 return ret.toString();
             }
 
-            public int compareTo(Table.State s) { return idx==s.idx ? 0 : idx < s.idx ? -1 : 1; }
+            public int toInt() { return idx; }
         }
 
-        /**
-         *  the information needed to perform a reduction; copied here to
-         *  avoid keeping references to <tt>Element</tt> objects in a Table
-         */
-        public class Reduction {
-            // FIXME: cleanup; almost everything in here could go in either Sequence.Position.getRewrite() or else in GSS.Reduct
-            public final int numPop;
-            /*private*/ final Position position;
-            private final Forest[] holder;    // to avoid constant reallocation
-            public int hashCode() { return position.hashCode(); }
-            public boolean equals(Object o) {
-                if (o==null) return false;
-                if (o==this) return true;
-                if (!(o instanceof Reduction)) return false;
-                Reduction r = (Reduction)o;
-                return r.position == position;
-            }
-            public Reduction(Position p) {
-                this.position = p;
-                this.numPop = p.pos;
-                this.holder = new Forest[numPop];
-            }
-            public String toString() { return "[reduce " + position + "]"; }
-
-            private Forest zero = null;
-            public Forest zero() {
-                if (zero != null) return zero;
-                if (numPop > 0) throw new Error();
-                return zero = position.rewrite(null);
-            }
-
-            public void reduce(GSS.Phase.Node parent) {
-                if (numPop==0) finish(parent, zero(), parent.phase());
-                else           reduce(parent, numPop-1, parent.phase());
-            }
-
-            public void reduce(GSS.Phase.Node parent, GSS.Phase.Node onlychild) {
-                if (numPop<=0) throw new Error("called wrong form of reduce()");
-                int pos = numPop-1;
-                Forest old = holder[pos];
-                holder[pos] = parent.pending();
-                if (pos==0) {
-                    System.arraycopy(holder, 0, position.holder, 0, holder.length);
-                    finish(onlychild, position.rewrite(parent.phase().getLocation()), parent.phase());
-                } else {
-                    reduce(onlychild, pos-1, parent.phase());
+        public String toString() {
+            StringBuffer sb = new StringBuffer();
+            sb.append("parse table");
+            for(State<Token> state : all_states) {
+                sb.append("  " + state + "\n");
+                for(Topology<Token> t : state.shifts) {
+                    sb.append("      shift  \""+
+                              new edu.berkeley.sbp.chr.CharTopology((IntegerTopology<Character>)t)+"\" => ");
+                    for(State st : state.shifts.getAll(t))
+                        sb.append(st.idx+"  ");
+                    sb.append("\n");
                 }
-                holder[pos] = old;
-            }
-
-            // FIXME: this could be more elegant and/or cleaner and/or somewhere else
-            private void reduce(GSS.Phase.Node parent, int pos, GSS.Phase target) {
-                Forest old = holder[pos];
-                holder[pos] = parent.pending();
-                if (pos==0) {
-                    System.arraycopy(holder, 0, position.holder, 0, holder.length);
-                    for(int i=0; i<position.pos; i++) if (position.holder[i]==null) throw new Error("realbad");
-                    Forest rex = position.rewrite(target.getLocation());
-                    for(GSS.Phase.Node child : parent.parents()) finish(child, rex, target);
-                } else {
-                    for(GSS.Phase.Node child : parent.parents()) reduce(child, pos-1, target);
-                }
-                holder[pos] = old;
-            }
-            private void finish(GSS.Phase.Node parent, Forest result, GSS.Phase target) {
-                State state = parent.state.gotoSetNonTerminals.get(position.owner());
-                if (result==null) throw new Error();
-                if (state!=null)
-                    target.newNode(parent, result, state, numPop<=0, this);
+                for(Topology<Token> t : state.reductions)
+                    sb.append("      reduce \""+
+                              new edu.berkeley.sbp.chr.CharTopology((IntegerTopology<Character>)t)+"\" => " +
+                              state.reductions.getAll(t) + "\n");
+                for(Sequence s : state.gotoSetNonTerminals.keySet())
+                    sb.append("      goto   "+state.gotoSetNonTerminals.get(s)+" from " + s + "\n");
             }
+            return sb.toString();
         }
     }
 
-    private static final Forest[] emptyForestArray = new Forest[0];
-
-
     // Helpers //////////////////////////////////////////////////////////////////////////////
-
+    
+    private static void reachable(Sequence s, HashSet<Position> h) {
+        reachable(s.firstp(), h);
+        //for(Sequence ss : s.needs()) reachable(ss, h);
+        //for(Sequence ss : s.hates()) reachable(ss, h);
+    }
     private static void reachable(Element e, HashSet<Position> h) {
         if (e instanceof Atom) return;
         for(Sequence s : ((Union)e))
-            reachable(s.firstp(), h);
+            reachable(s, h);
     }
     private static void reachable(Position p, HashSet<Position> h) {
         if (h.contains(p)) return;
         h.add(p);
         if (p.element() != null) reachable(p.element(), h);
     }
-
+    //public static Cache mastercache = null;
 }