include post-reduction gotos in Parser.Table.toString()
[sbp.git] / src / edu / berkeley / sbp / Parser.java
index 58d0bc2..130ece9 100644 (file)
+// Copyright 2006 all rights reserved; see LICENSE file for BSD-style license
+
 package edu.berkeley.sbp;
 import edu.berkeley.sbp.*;
 import edu.berkeley.sbp.util.*;
-import edu.berkeley.sbp.*;
 import edu.berkeley.sbp.Sequence.Position;
-import edu.berkeley.sbp.*;
 import java.io.*;
 import java.util.*;
-import java.lang.reflect.*;
 
-/** a parser which translates streams of Tokens of type T into a Forest<R> */
-public abstract class Parser<T extends Token, R> {
+/** a parser which translates an Input&lt;Token&gt; into a Forest&lt;NodeType&gt; */
+public abstract class Parser<Token, NodeType> {
 
-    private final Table pt;
+    protected final Table<Token> pt;
 
     /** create a parser to parse the grammar with start symbol <tt>u</tt> */
-    protected Parser(Union u)  { this.pt = new Table(u, top()); }
-    protected Parser(Table pt) { this.pt = pt; }
-
-    public abstract Forest<R> shiftedToken(T t, Token.Location loc);
-    public abstract Topology<T> top();
-
-
-    /** parse <tt>input</tt> for a exactly one unique result, throwing <tt>Ambiguous</tt> if not unique or <tt>Failed</tt> if none */
-    public Tree<R> parse1(Token.Stream<T> input) throws IOException, Failed, Ambiguous {
-        Forest<R> ret = parse(input);
-        try { return ret.expand1(); }
-        catch (Ambiguous a) {
-            System.out.println("while expanding:");
-            System.out.println(ret);
-            throw a;
-        }
-    }
-
-    /** parse <tt>input</tt>, using the table <tt>pt</tt> to drive the parser */
-    public Forest<R> parse(Token.Stream<T> input) throws IOException, Failed {
-        GSS gss = new GSS();
-        Token.Location loc = input.getLocation();
-        GSS.Phase current = gss.new Phase(null, input.next(), loc);
-        current.newNode(null, null, pt.start, true, null);
-        for(;;) {
-            loc = input.getLocation();
-            GSS.Phase next = gss.new Phase(current, input.next(), loc);
+    public Parser(Union u, Topology<Token> top)  { this.pt = new Table<Token>(u, top); }
+    Parser(Table<Token> pt)               { this.pt = pt; }
+
+    /** implement this method to create the output forest corresponding to a lone shifted input token */
+    public abstract Forest<NodeType> shiftToken(Token t, Input.Location newloc);
+
+    boolean helpgc = true;
+
+    public String toString() { return pt.toString(); }
+
+    /** parse <tt>input</tt>, and return the shared packed parse forest (or throw an exception) */
+    public Forest<NodeType> parse(Input<Token> input) throws IOException, ParseFailed {
+        GSS gss = new GSS(input);
+        Input.Location loc = input.getLocation();
+        Token tok = input.next();
+        GSS.Phase current = gss.new Phase<Token>(null, null, tok, loc, input.getLocation(), null);
+        current.newNode(new Result(Forest.create(loc.createRegion(loc), null, null, false), null, null), pt.start, true);
+        int count = 1;
+        for(int idx=0;;idx++) {
+            Input.Location oldloc = loc;
             current.reduce();
-            Forest forest = current.token==null ? null : shiftedToken((T)current.token, loc);
-            current.shift(next, forest);
-            if (current.isDone()) return (Forest<R>)current.finalResult;
-            current.checkFailure();
+            Forest forest = current.token==null ? null : shiftToken((Token)current.token, loc);
+            loc = input.getLocation();
+            Token nextToken = input.next();
+            GSS.Phase next = gss.new Phase<Token>(current, current, nextToken, loc, input.getLocation(), forest);
+            if (!helpgc) {
+                FileOutputStream fos = new FileOutputStream("out-"+idx+".dot");
+                PrintWriter p = new PrintWriter(new OutputStreamWriter(fos));
+                GraphViz gv = new GraphViz();
+                for(Object n : next)
+                    ((Node)n).toGraphViz(gv);
+                gv.dump(p);
+                p.flush();
+                p.close();
+            }
+            count = next.size();
+            if (current.isDone()) return (Forest<NodeType>)gss.finalResult;
             current = next;
         }
     }
-    
 
-    // Exceptions //////////////////////////////////////////////////////////////////////////////
+    // Table //////////////////////////////////////////////////////////////////////////////
 
-    public static class Failed extends Exception {
-        private final Token.Location location;
-        private final String         message;
-        public Failed() { this("", null); }
-        public Failed(String message, Token.Location loc) { this.location = loc; this.message = message; }
-        public Token.Location getLocation() { return location; }
-        public String toString() { return message + (location==null ? "" : (" at " + location)); }
-    }
+    /** an SLR(1) parse table which may contain conflicts */
+    static class Table<Token> extends Walk.Cache {
 
-    public static class Ambiguous extends RuntimeException {
-        public final Forest ambiguity;
-        public Ambiguous(Forest ambiguity) { this.ambiguity = ambiguity; }
         public String toString() {
             StringBuffer sb = new StringBuffer();
-            sb.append("unresolved ambiguity "/*"at " + ambiguity.getLocation() + ":"*/);
-            for(Object result : ambiguity.expand(false))
-                sb.append("\n    " + result);
+            sb.append("parse table");
+            for(State<Token> state : all_states.values()) {
+                sb.append("  " + state + "\n");
+                for(Topology<Token> t : state.shifts) {
+                    sb.append("      shift  \""+
+                              new edu.berkeley.sbp.chr.CharTopology((IntegerTopology<Character>)t)+"\" => ");
+                    for(State st : state.shifts.getAll(t))
+                        sb.append(st.idx+"  ");
+                    sb.append("\n");
+                }
+                for(Topology<Token> t : state.reductions)
+                    sb.append("      reduce \""+
+                              new edu.berkeley.sbp.chr.CharTopology((IntegerTopology<Character>)t)+"\" => " +
+                              state.reductions.getAll(t) + "\n");
+                for(Sequence s : state.gotoSetNonTerminals.keySet())
+                    sb.append("      goto   "+state.gotoSetNonTerminals.get(s)+" from " + s + "\n");
+            }
             return sb.toString();
         }
-    }
-
-
-    // Table //////////////////////////////////////////////////////////////////////////////
-
-    /** an SLR(1) parse table which may contain conflicts */
-    static class Table extends Walk.Cache {
 
         public final Walk.Cache cache = this;
-        
-        private void walk(Element e, HashSet<Element> hs) {
+
+        private void walk(Element e, HashSet<SequenceOrElement> hs) {
             if (e==null) return;
             if (hs.contains(e)) return;
             hs.add(e);
             if (e instanceof Atom) return;
-            for(Sequence s : (Union)e) {
-                hs.add(s);
-                for(Position p = s.firstp(); p != null; p = p.next())
-                    walk(p.element(), hs);
-            }
+            for(Sequence s : (Union)e)
+                walk(s, hs);
+        }
+        private void walk(Sequence s, HashSet<SequenceOrElement> hs) {
+            hs.add(s);
+            for(Position p = s.firstp(); p != null; p = p.next())
+                walk(p.element(), hs);
+            for(Sequence ss : s.needs()) walk(ss, hs);
+            for(Sequence ss : s.hates()) walk(ss, hs);
         }
 
         /** the start state */
-        public final State   start;
+        public  final State<Token>   start;
+
+        /** the state from which no reductions can be done */
+        private final State<Token>   dead_state;
 
         /** used to generate unique values for State.idx */
         private int master_state_idx = 0;
+        HashMap<HashSet<Position>,State<Token>>   all_states    = new HashMap<HashSet<Position>,State<Token>>();
+        HashSet<SequenceOrElement>                all_elements  = new HashSet<SequenceOrElement>();
 
         /** construct a parse table for the given grammar */
         public Table(Topology top) { this("s", top); }
         public Table(String startSymbol, Topology top) { this(new Union(startSymbol), top); }
         public Table(Union ux, Topology top) {
             Union start0 = new Union("0");
-            start0.add(new Sequence.Singleton(ux, null, null));
+            start0.add(new Sequence.Singleton(ux));
 
             for(Sequence s : start0) cache.eof.put(s, true);
             cache.eof.put(start0, true);
 
             // construct the set of states
-            HashMap<HashSet<Position>,State>   all_states    = new HashMap<HashSet<Position>,State>();
-            HashSet<Element>                   all_elements  = new HashSet<Element>();
             walk(start0, all_elements);
-            for(Element e : all_elements)
-                cache.ys.put(e, new Walk.YieldSet(e, cache).walk());
+            for(SequenceOrElement e : all_elements)
+                cache.ys.addAll(e, new Walk.YieldSet(e, cache).walk());
+            for(SequenceOrElement e : all_elements)
+                cache.ys2.addAll(e, new Walk.YieldSet2(e, cache).walk());
             HashSet<Position> hp = new HashSet<Position>();
             reachable(start0, hp);
-            this.start = new State(hp, all_states, all_elements);
+
+            this.dead_state = new State<Token>(new HashSet<Position>());
+            this.start = new State<Token>(hp);
 
             // for each state, fill in the corresponding "row" of the parse table
-            for(State state : all_states.values())
+            for(State<Token> state : all_states.values())
                 for(Position p : state.hs) {
 
                     // the Grammar's designated "last position" is the only accepting state
                     if (start0.contains(p.owner()) && p.next()==null)
                         state.accept = true;
 
-                    // FIXME: how does right-nullability interact with follow restrictions?
-                    // all right-nullable rules get a reduction [Johnstone 2000]
-                    if (p.isRightNullable(cache)) {
+                    if (isRightNullable(p)) {
                         Walk.Follow wf = new Walk.Follow(top.empty(), p.owner(), all_elements, cache);
-                        Reduction red = new Reduction(p);
-                        state.reductions.put(wf.walk(p.owner()), red);
-                        if (wf.includesEof()) state.eofReductions.add(red, true);
+                        Topology follow = wf.walk(p.owner());
+                        for(Position p2 = p; p2 != null && p2.element() != null; p2 = p2.next()) {
+                            Atom set = new Walk.EpsilonFollowSet(new edu.berkeley.sbp.chr.CharAtom(top.empty().complement()),
+                                                                 new edu.berkeley.sbp.chr.CharAtom(top.empty()),
+                                                                 cache).walk(p2.element());
+                            follow = follow.intersect(new Walk.Follow(top.empty(), p2.element(), all_elements, cache).walk(p2.element()));
+                            if (set != null) follow = follow.intersect(set.getTokenTopology());
+                        }
+                        state.reductions.put(follow, p);
+                        if (wf.includesEof()) state.eofReductions.add(p);
                     }
 
                     // if the element following this position is an atom, copy the corresponding
                     // set of rows out of the "master" goto table and into this state's shift table
                     if (p.element() != null && p.element() instanceof Atom)
-                        state.shifts.addAll(state.gotoSetTerminals.subset(((Atom)p.element())));
+                        state.shifts.addAll(state.gotoSetTerminals.subset(((Atom)p.element()).getTokenTopology()));
                 }
+            if (top instanceof IntegerTopology)
+                for(State<Token> state : all_states.values()) {
+                    state.oreductions = state.reductions.optimize(((IntegerTopology)top).functor());
+                    state.oshifts = state.shifts.optimize(((IntegerTopology)top).functor());
+                }
+        }
+
+        private boolean isRightNullable(Position p) {
+            if (p.isLast()) return true;
+            if (!possiblyEpsilon(p.element())) return false;
+            return isRightNullable(p.next());
         }
 
         /** a single state in the LR table and the transitions possible from it */
-        public class State implements Comparable<Table.State>, Iterable<Position> {
-        
-            /*
-            public boolean isResolvable(Token t) {
-                boolean found = false;
-                for(Reduction r : getReductions(t)) {
-                    Position p = r.position;
-                    if (!p.isRightNullable(cache)) continue;
-                    if (p.owner().firstp()==p) continue;
-                    if (found) {
-                        // found two items meeting criteria #1
-                        return false;
-                    } else {
-                        found = true;
-                        continue;
-                    }
-                    if (p.element()==null) continue;
-                    Topology first = new Walk.First(top(), cache).walk(p.element());
-                    if (first.contains(t))
-                }
-            }
-            */
 
-            public final      int               idx    = master_state_idx++;
+        class State<Token> implements IntegerMappable, Iterable<Position> {
+        
+            public  final     int               idx    = master_state_idx++;
             private final     HashSet<Position> hs;
+            public HashSet<State<Token>> also = new HashSet<State<Token>>();
 
-            private transient HashMap<Element,State>          gotoSetNonTerminals = new HashMap<Element,State>();
-            private transient TopologicalBag<Token,State>     gotoSetTerminals    = new TopologicalBag<Token,State>();
+            public transient HashMap<Sequence,State<Token>>         gotoSetNonTerminals = new HashMap<Sequence,State<Token>>();
+            private transient TopologicalBag<Token,State<Token>>     gotoSetTerminals    = new TopologicalBag<Token,State<Token>>();
 
-            private           TopologicalBag<Token,Reduction> reductions          = new TopologicalBag<Token,Reduction>();
-            private           FastSet<Reduction>              eofReductions       = new FastSet<Reduction>();
-            private           TopologicalBag<Token,State>     shifts              = new TopologicalBag<Token,State>();
+            private           TopologicalBag<Token,Position> reductions          = new TopologicalBag<Token,Position>();
+            private           HashSet<Position>              eofReductions       = new HashSet<Position>();
+            private           TopologicalBag<Token,State<Token>>     shifts              = new TopologicalBag<Token,State<Token>>();
             private           boolean                         accept              = false;
 
+            private VisitableMap<Token,State<Token>> oshifts = null;
+            private VisitableMap<Token,Position> oreductions = null;
+
             // Interface Methods //////////////////////////////////////////////////////////////////////////////
 
-            public boolean             canShift(Token t)           { return shifts.contains(t); }
-            public Iterable<State>     getShifts(Token t)          { return shifts.get(t); }
-            public boolean             isAccepting()               { return accept; }
-            public Iterable<Reduction> getReductions(Token t)      { return reductions.get(t); }
-            public Iterable<Reduction> getEofReductions()          { return eofReductions; }
-            public Iterator<Position>  iterator()                  { return hs.iterator(); }
+            boolean             isAccepting()           { return accept; }
+            public Iterator<Position>  iterator()       { return hs.iterator(); }
+
+            boolean             canShift(Token t)         { return oshifts!=null && oshifts.contains(t); }
+            <B,C> void          invokeShifts(Token t, Invokable<State<Token>,B,C> irbc, B b, C c) {
+                oshifts.invoke(t, irbc, b, c);
+            }
+
+            boolean             canReduce(Token t)        { return oreductions != null && (t==null ? eofReductions.size()>0 : oreductions.contains(t)); }
+            <B,C> void          invokeReductions(Token t, Invokable<Position,B,C> irbc, B b, C c) {
+                if (t==null) for(Position r : eofReductions) irbc.invoke(r, b, c);
+                else         oreductions.invoke(t, irbc, b, c);
+            }
 
             // Constructor //////////////////////////////////////////////////////////////////////////////
 
             /**
              *  create a new state consisting of all the <tt>Position</tt>s in <tt>hs</tt>
              *  @param hs           the set of <tt>Position</tt>s comprising this <tt>State</tt>
-             *  @param all_states   the set of states already constructed (to avoid recreating states)
              *  @param all_elements the set of all elements (Atom instances need not be included)
              *  
              *   In principle these two steps could be merged, but they
@@ -212,14 +230,31 @@ public abstract class Parser<T extends Token, R> {
              *      for non-Atom Elements.
              *  </ul>
              */
-            public State(HashSet<Position> hs,
-                         HashMap<HashSet<Position>,State> all_states,
-                         HashSet<Element> all_elements) {
+            public State(HashSet<Position> hs) { this(hs, false); }
+            public boolean special;
+            public State(HashSet<Position> hs, boolean special) {
                 this.hs = hs;
+                this.special = special;
 
                 // register ourselves in the all_states hash so that no
                 // two states are ever created with an identical position set
-                all_states.put(hs, this);
+                ((HashMap)all_states).put(hs, this);
+
+                for(Position p : hs) {
+                    if (!p.isFirst()) continue;
+                    for(Sequence s : p.owner().needs()) {
+                        if (hs.contains(s.firstp())) continue;
+                        HashSet<Position> h2 = new HashSet<Position>();
+                        reachable(s.firstp(), h2);
+                        also.add((State<Token>)(all_states.get(h2) == null ? (State)new State<Token>(h2,true) : (State)all_states.get(h2)));
+                    }
+                    for(Sequence s : p.owner().hates()) {
+                        if (hs.contains(s.firstp())) continue;
+                        HashSet<Position> h2 = new HashSet<Position>();
+                        reachable(s, h2);
+                        also.add((State<Token>)(all_states.get(h2) == null ? (State)new State<Token>(h2,true) : (State)all_states.get(h2)));
+                    }
+                }
 
                 // Step 1a: examine all Position's in this state and compute the mappings from
                 //          sets of follow tokens (tokens which could follow this position) to sets
@@ -232,7 +267,7 @@ public abstract class Parser<T extends Token, R> {
                     Atom a = (Atom)position.element();
                     HashSet<Position> hp = new HashSet<Position>();
                     reachable(position.next(), hp);
-                    bag0.addAll(a, hp);
+                    bag0.addAll(a.getTokenTopology(), hp);
                 }
 
                 // Step 1b: for each _minimal, contiguous_ set of characters having an identical next-position
@@ -242,7 +277,8 @@ public abstract class Parser<T extends Token, R> {
                 for(Topology<Token> r : bag0) {
                     HashSet<Position> h = new HashSet<Position>();
                     for(Position p : bag0.getAll(r)) h.add(p);
-                    gotoSetTerminals.put(r, all_states.get(h) == null ? new State(h, all_states, all_elements) : all_states.get(h));
+                    ((TopologicalBag)gotoSetTerminals).put(r, all_states.get(h) == null
+                                                           ? new State<Token>(h) : all_states.get(h));
                 }
 
                 // Step 2: for every non-Atom element (ie every Element which has a corresponding reduction),
@@ -252,111 +288,70 @@ public abstract class Parser<T extends Token, R> {
                 //         "yields" [in one or more step] is used instead of "produces" [in exactly one step]
                 //         to avoid having to iteratively construct our set of States as shown in most
                 //         expositions of the algorithm (ie "keep doing XYZ until things stop changing").
-                /*
-                for(Element e : all_elements) {
-                    if (e instanceof Atom) continue;
-                    HashSet<Position> h = new Walk.Closure(null, g.cache).closure(e, hs);
-                    State s = all_states.get(h) == null ? new State(h, all_states, all_elements) : all_states.get(h);
-                    if (gotoSetNonTerminals.get(e) != null)
-                        throw new Error("this should not happen");
-                    gotoSetNonTerminals.put(e, s);
-                }
-                */
-                HashMapBag<Element,Position> move = new HashMapBag<Element,Position>();
+
+                HashMapBag<SequenceOrElement,Position> move = new HashMapBag<SequenceOrElement,Position>();
                 for(Position p : hs) {
                     Element e = p.element();
                     if (e==null) continue;
-                    HashSet<Element> ys = cache.ys.get(e);
-                    if (ys != null) {
-                        for(Element y : ys) {
-                            HashSet<Position> hp = new HashSet<Position>();
-                            reachable(p.next(), hp);
-                            move.addAll(y, hp);
-                        }
+                    for(SequenceOrElement y : cache.ys2.getAll(e)) {
+                        //System.out.println(e + " yields " + y);
+                        HashSet<Position> hp = new HashSet<Position>();
+                        reachable(p.next(), hp);
+                        move.addAll(y, hp);
                     }
                 }
-                for(Element y : move) {
+                OUTER: for(SequenceOrElement y : move) {
                     HashSet<Position> h = move.getAll(y);
-                    State s = all_states.get(h) == null ? new State(h, all_states, all_elements) : all_states.get(h);
-                    gotoSetNonTerminals.put(y, s);
+                    State<Token> s = all_states.get(h) == null ? (State)new State<Token>(h) : (State)all_states.get(h);
+                    // if a reduction is "lame", it should wind up in the dead_state after reducing
+                    if (y instanceof Sequence) {
+                        for(Position p : hs) {
+                            if (p.element() != null && (p.element() instanceof Union)) {
+                                Union u = (Union)p.element();
+                                for(Sequence seq : u)
+                                    if (seq.needs.contains((Sequence)y) || seq.hates.contains((Sequence)y)) {
+                                        // FIXME: what if there are two "routes" to get to the sequence?
+                                        ((HashMap)gotoSetNonTerminals).put((Sequence)y, dead_state);
+                                        continue OUTER;
+                                    }
+                            }
+                        }
+                        gotoSetNonTerminals.put((Sequence)y, s);
+                    }
                 }
             }
 
-            public String toString() { return "state["+idx+"]"; }
-
-            public int compareTo(Table.State s) { return idx==s.idx ? 0 : idx < s.idx ? -1 : 1; }
-        }
-
-        /**
-         *  the information needed to perform a reduction; copied here to
-         *  avoid keeping references to <tt>Element</tt> objects in a Table
-         */
-        public class Reduction {
-            // FIXME: cleanup; almost everything in here could go in either Sequence.Position.getRewrite() or else in GSS.Reduct
-            public final int numPop;
-            /*private*/ final Position position;
-            private final Forest[] holder;    // to avoid constant reallocation
-            public int hashCode() { return position.hashCode(); }
-            public boolean equals(Object o) {
-                if (o==null) return false;
-                if (o==this) return true;
-                if (!(o instanceof Reduction)) return false;
-                Reduction r = (Reduction)o;
-                return r.position == position;
-            }
-            public Reduction(Position p) {
-                this.position = p;
-                this.numPop = p.pos;
-                this.holder = new Forest[numPop];
-            }
-            public String toString() { return "[reduce " + position + "]"; }
-            public Forest reduce(Forest f, GSS.Phase.Node parent, GSS.Phase.Node onlychild, GSS.Phase target, Forest rex) {
-                holder[numPop-1] = f;
-                return reduce(parent, numPop-2, rex, onlychild, target);                
-            }
-            public Forest reduce(GSS.Phase.Node parent, GSS.Phase.Node onlychild, GSS.Phase target, Forest rex) {
-                return reduce(parent, numPop-1, rex, onlychild, target);
+            public String toStringx() {
+                StringBuffer st = new StringBuffer();
+                for(Position p : this) {
+                    if (st.length() > 0) st.append("\n");
+                    st.append(p);
+                }
+                return st.toString();
             }
-
-            private Forest zero = null;
-            public Forest zero() {
-                if (zero != null) return zero;
-                if (numPop > 0) throw new Error();
-                return zero = position.rewrite(null);
+            public String toString() {
+                StringBuffer ret = new StringBuffer();
+                ret.append("state["+idx+"]: ");
+                for(Position p : this) ret.append("{"+p+"}  ");
+                return ret.toString();
             }
 
-            // FIXME: this could be more elegant and/or cleaner and/or somewhere else
-            private Forest reduce(GSS.Phase.Node parent, int pos, Forest rex, GSS.Phase.Node onlychild, GSS.Phase target) {
-                if (pos>=0) holder[pos] = parent.pending();
-                if (pos<=0 && rex==null) {
-                    System.arraycopy(holder, 0, position.holder, 0, holder.length);
-                    rex = position.rewrite(target.getLocation());
-                }
-                if (pos >=0) {
-                    if (onlychild != null)
-                        reduce(onlychild, pos-1, rex, null, target);
-                    else 
-                        for(GSS.Phase.Node child : parent.parents())
-                            reduce(child, pos-1, rex, null, target);
-                } else {
-                    State state = parent.state.gotoSetNonTerminals.get(position.owner());
-                    if (state!=null)
-                        target.newNode(parent, rex, state, numPop<=0, parent.phase);
-                }
-                return rex;
-            }
+            public Walk.Cache cache() { return cache; }
+            public int toInt() { return idx; }
         }
     }
 
-    private static final Forest[] emptyForestArray = new Forest[0];
-
-
     // Helpers //////////////////////////////////////////////////////////////////////////////
-
+    
+    private static void reachable(Sequence s, HashSet<Position> h) {
+        reachable(s.firstp(), h);
+        //for(Sequence ss : s.needs()) reachable(ss, h);
+        //for(Sequence ss : s.hates()) reachable(ss, h);
+    }
     private static void reachable(Element e, HashSet<Position> h) {
         if (e instanceof Atom) return;
         for(Sequence s : ((Union)e))
-            reachable(s.firstp(), h);
+            reachable(s, h);
     }
     private static void reachable(Position p, HashSet<Position> h) {
         if (h.contains(p)) return;