checkpoint
[fleet.git] / ships / Memory.ship
1 ship: Memory
2
3 == Ports ===========================================================
4 data  in:    inCBD
5 data  in:    inAddrRead
6 data  in:    inAddrWrite
7 data  in:    inDataWrite
8 data  in:    inStride
9 data  in:    inCount
10
11 data  out:   out
12
13 == TeX ==============================================================
14
15 The {\tt Memory} ship represents an interface to a storage space,
16 which can be used to read from it or write to it.  This storage space
17 might be a fast on-chip cache, off chip DRAM, or perhaps even a disk drive.
18
19 There may be multiple {\tt Memory} ships which interface to the same
20 physical storage space.  An implementation of Fleet must provide
21 additional documentation to the programmer indicating which {\tt
22 Memory} ships correspond to which storage spaces.  A single {\tt
23 Memory} ship may also access a ``virtual storage space'' formed by
24 concatenating multiple physical storage spaces.
25
26 \subsection*{Code Bag Fetch}
27
28 When a word appears at the {\tt inCBD} port, it is treated as a {\it
29 code bag descriptor}, as shown below:
30
31 \begin{center}
32 \setlength{\bitwidth}{3mm}
33 {\tt
34 \begin{bytefield}{37}
35   \bitheader[b]{36,6,5,0}\\
36   \bitbox{31}{Address} 
37   \bitbox{6}{size} 
38 \end{bytefield}
39 }
40 \end{center}
41
42 When a word arrives at the {\tt inCBD} port, it is treated as a memory
43 read with {\tt inAddrRead=Address}, {\tt inStride=1}, and {\tt
44 inCount=size}.
45
46 \subsection*{Reading}
47
48 When a word is delivered to {\tt inAddrRead}, the word residing in
49 memory at that address is provided at {\tt out}.
50
51 \subsection*{Writing}
52
53 When a word is delivered to {\tt inAddrWrite} and {\tt inDataWrite},
54 the word at {\tt inDataWrite} is written to the address specified by
55 {\tt inAddrWrite}.  Once the word is successfully committed to memory,
56 the value {\tt inAddr+inStride} is provided at {\tt out} (that is, the
57 address of the next word to be written).
58
59 \subsection*{To Do}
60
61 Stride and count are not implemented.
62
63 We need a way to do an ``unordered fetch'' -- a way to tell the memory
64 unit to retrieve some block of words in any order it likes.  This can
65 considerably accelerate fetches when the first word of the region is
66 not cached, but other parts are cached.  This can also be used for
67 dispatching codebags efficiently -- but how will we make sure that
68 instructions destined for a given pump are dispatched in the correct
69 order (source sequence guarantee)?
70
71 A more advanced form would be ``unordered fetch of ordered records''
72 -- the ability to specify a record size (in words), the offset of the
73 first record, and the number of records to be fetched.  The memory
74 unit would then fetch the records in any order it likes, but would be
75 sure to return the words comprising a record in the order in which
76 they appear in memory.  This feature could be used to solve the source
77 sequence guarantee problem mentioned in the previous paragraph.
78
79 == Fleeterpreter ====================================================
80     private long[] mem = new long[0];
81     public long readMem(int addr) { return mem[addr]; }
82     public void writeMem(int addr, long val) {
83         if (addr >= mem.length) {
84             long[] newmem = new long[addr * 2 + 1];
85             System.arraycopy(mem, 0, newmem, 0, mem.length);
86             mem = newmem;
87         }
88         mem[addr] = val;
89     }
90
91     public void dispatch(int addr, int size) {
92         for(int i=addr; i<addr+size; i++) {
93             Instruction instr = ((Interpreter)getFleet()).readInstruction(readMem(i));
94             ((Interpreter)getFleet()).dispatch(instr, i);
95         }
96     }
97
98     public void boot(byte[] instructions) {
99         Interpreter fleet = (Interpreter)getFleet();
100         // load the iscratch and take note of the 0-address INCBD
101         long launch = 0;
102         for(int i=0; i<instructions.length; i+=6) {
103             long word = 0;
104             for(int j=0; j<6; j++)
105                 word = (word << 8) | (instructions[i+j] & 0xff);
106             writeMem(i/6, word);
107             if (i==0) launch = word;
108         }
109
110         // dispatch the 0-address INCBD
111         int base = (int)(launch >> 6);
112         base = base & ~(0xffffffff << 18);
113         int size = (int)launch;
114         size = size & ~(0xffffffff <<  6);
115         dispatch(base, size);
116     }
117
118     private long stride = 0;
119     private long count = 0;
120     private long addr = 0;
121     private boolean writing = false;
122
123     public void service() {
124         if (box_inCBD.dataReadyForShip()) {
125             long val = box_inCBD.removeDataForShip();
126             long addr = val >> 6;
127             long size = val & 0x3f;
128             dispatch((int)addr, (int)size);
129         }
130         if (count > 0) {
131             if (writing) {
132               if (box_inDataWrite.dataReadyForShip() && box_out.readyForDataFromShip()) {
133                  writeMem((int)addr, box_inDataWrite.removeDataForShip());
134                  box_out.addDataFromShip(0);
135                  count--;
136                  addr += stride;
137               }
138             } else {
139               if (box_out.readyForDataFromShip()) {
140                  box_out.addDataFromShip(readMem((int)addr));
141                  count--;
142                  addr += stride;
143               }
144             }
145
146         } else if (box_inAddrRead.dataReadyForShip()) {
147             addr = box_inAddrRead.removeDataForShip();
148             stride = 0;
149             count = 1;
150             writing = false;
151
152         } else if (box_inAddrWrite.dataReadyForShip()) {
153             addr = box_inAddrWrite.peekPacketForShip().value;
154             box_inAddrWrite.removeDataForShip();
155             stride = 0;
156             count = 1;
157             writing = true;
158         }
159     }
160
161 == FleetSim ==============================================================
162
163 == FPGA ==============================================================
164 `include "macros.v"
165 `define BRAM_ADDR_WIDTH 14
166 `define BRAM_DATA_WIDTH `INSTRUCTION_WIDTH
167 `define BRAM_NAME some_bram
168
169 /* bram.inc */
170 module `BRAM_NAME(clk, rst, we, a, dpra, di, spo, dpo); 
171     input  clk; 
172     input  rst; 
173     input  we; 
174     input  [(`BRAM_ADDR_WIDTH-1):0] a; 
175     input  [(`BRAM_ADDR_WIDTH-1):0] dpra; 
176     input  [(`BRAM_DATA_WIDTH-1):0] di; 
177     output [(`BRAM_DATA_WIDTH-1):0] spo; 
178     output [(`BRAM_DATA_WIDTH-1):0] dpo; 
179     reg    [(`BRAM_DATA_WIDTH-1):0] ram [((1<<(`BRAM_ADDR_WIDTH))-1):0];
180     reg    [(`BRAM_ADDR_WIDTH-1):0] read_a; 
181     reg    [(`BRAM_ADDR_WIDTH-1):0] read_dpra; 
182     always @(posedge clk) begin 
183         if (we) 
184             ram[a] <= di; 
185         read_a <= a; 
186         read_dpra <= dpra; 
187     end
188     assign spo = ram[read_a]; 
189     assign dpo = ram[read_dpra]; 
190 endmodule 
191 /* bram.inc */
192
193 module memory (clk, rst,
194                cbd_r,          cbd_a_,         cbd_d,
195                in_addr_r,      in_addr_a_,     in_addr_d,
196                write_addr_r,   write_addr_a_,  write_addr_d,
197                write_data_r,   write_data_a_,  write_data_d,
198                stride_r,       stride_a_,      stride_d,
199                count_r,        count_a_,       count_d,
200                out_r_,         out_a,          out_d_,
201                preload_r,      preload_a_,     preload_d,
202                ihorn_r_,       ihorn_a,        ihorn_d_,
203                dhorn_r_,       dhorn_a,        dhorn_d_
204               );
205
206   input  clk;
207   input  rst;
208   `input(in_addr_r,      in_addr_a,     in_addr_a_,     [(2+`DATAWIDTH-1):0],       in_addr_d)
209   `input(write_addr_r,   write_addr_a,  write_addr_a_,  [(2+`DATAWIDTH-1):0],       write_addr_d)
210   `input(write_data_r,   write_data_a,  write_data_a_,  [(`DATAWIDTH-1):0],         write_data_d)
211   `input(stride_r,       stride_a,      stride_a_,      [(`DATAWIDTH-1):0],         stride_d)
212   `input(count_r,        count_a,       count_a_,       [(`DATAWIDTH-1):0],         count_d)
213   `output(out_r,         out_r_,        out_a,          [(`DATAWIDTH-1):0],         out_d_)
214   `input(preload_r,      preload_a,     preload_a_,     [(`DATAWIDTH-1):0],         preload_d)
215   `input(cbd_r,          cbd_a,         cbd_a_,         [(`DATAWIDTH-1):0],         cbd_d)
216   `output(ihorn_r,       ihorn_r_,      ihorn_a,        [(`PACKET_WIDTH-1):0], ihorn_d_)
217   `defreg(ihorn_d_,                                     [(`PACKET_WIDTH-1):0], ihorn_d)
218   `output(dhorn_r,       dhorn_r_,      dhorn_a,        [(`PACKET_WIDTH-1):0],      dhorn_d_)
219   `defreg(dhorn_d_,                                     [(`PACKET_WIDTH-1):0],      dhorn_d)
220
221   reg ihorn_full;
222   initial ihorn_full = 0;
223   reg dhorn_full;
224   initial dhorn_full = 0;
225   reg command_valid;
226   initial command_valid = 0;
227
228   reg [(`BRAM_ADDR_WIDTH-1):0]    preload_pos;
229   reg [(`BRAM_ADDR_WIDTH-1):0]    preload_size;
230   initial preload_size = 0;
231
232   reg [(`BRAM_ADDR_WIDTH-1):0]    current_instruction_read_from;
233   reg [(`BRAM_ADDR_WIDTH-1):0]    temp_base;
234   reg [(`CODEBAG_SIZE_BITS-1):0]  temp_size;
235   reg [(`BRAM_ADDR_WIDTH-1):0]    cbd_base;
236   reg [(`CODEBAG_SIZE_BITS-1):0]  cbd_size;
237   reg [(`CODEBAG_SIZE_BITS-1):0]  cbd_pos;
238   reg [(`INSTRUCTION_WIDTH-1):0]  command;
239   reg [(`BRAM_DATA_WIDTH-1):0]    ram [((1<<(`BRAM_ADDR_WIDTH))-1):0];
240   reg                             send_done;
241   reg                             send_read;
242
243   reg [(`INSTRUCTION_WIDTH-(2+`DESTINATION_ADDRESS_BITS)):0] temp;
244   reg [(`DATAWIDTH-1):0]                                     data;
245
246   reg                             write_flag;
247   reg [(`BRAM_ADDR_WIDTH-1):0]    in_addr;
248   reg [(`BRAM_DATA_WIDTH-1):0]    write_data;
249
250   wire [(`BRAM_DATA_WIDTH-1):0]   ramread;
251
252   reg command_valid_read;
253   initial command_valid_read = 0;
254
255   reg launched;
256   initial launched = 0;
257
258   some_bram mybram(clk, rst, write_flag, in_addr, current_instruction_read_from, write_data, not_connected, ramread);
259   assign out_d_ = ramread;
260
261   always @(posedge clk /*or negedge rst*/) begin
262
263     if (!rst) begin
264       ihorn_full <= 0;
265       dhorn_full <= 0;
266       command_valid <= 0;
267 /*
268       preload_size <= 0;
269 */
270       launched <= 0;
271       command_valid_read <= 0;
272       write_flag <= 0;
273
274       dhorn_r <= 0;
275       ihorn_r <= 0;
276       out_r <= 0;
277
278     end else begin
279
280     write_flag <= 0;
281
282     if (!in_addr_r && in_addr_a) in_addr_a = 0;
283     if (!write_data_r && write_data_a) write_data_a = 0;
284     if (!write_addr_r && write_addr_a) write_addr_a = 0;
285
286     if (command_valid_read) begin
287       command_valid_read  <= 0;
288       command_valid       <= 1;
289
290     end else  if (send_done) begin
291       `onwrite(out_r, out_a)
292         send_done <= 0;
293       end
294
295     end else  if (send_read) begin
296       `onwrite(out_r, out_a)
297         send_read <= 0;
298       end
299
300     end else if (in_addr_r) begin
301       in_addr_a                        = 1;
302       send_read                       <= 1;
303       current_instruction_read_from   <= in_addr_d[(`DATAWIDTH-1):0];
304
305     end else if (write_addr_r && write_data_r) begin
306       write_addr_a       = 1;
307       write_data_a       = 1;
308       send_done         <= 1;
309       write_flag        <= 1;
310       in_addr           <= write_addr_d[(`DATAWIDTH-1):0];
311       write_data        <= write_data_d;
312
313     end else if (ihorn_full && launched) begin
314       `onwrite(ihorn_r, ihorn_a)
315         ihorn_full <= 0;
316       end
317
318     end else if (dhorn_full) begin
319       `onwrite(dhorn_r, dhorn_a)
320         dhorn_full <= 0;
321       end
322
323     end else if (command_valid) begin
324       command_valid <= 0;
325       command = ramread;
326       ihorn_full  <= 1;
327       `packet_data(ihorn_d) <= `instruction_data(command);
328       `packet_dest(ihorn_d) <= `instruction_dest(command);
329
330     end else if (cbd_pos < cbd_size) begin
331       current_instruction_read_from <= cbd_base+cbd_pos;
332       command_valid_read            <= 1;
333       cbd_pos                       <= cbd_pos + 1;
334
335     end else begin
336       `onread(cbd_r, cbd_a)
337         cbd_pos       <= 0;
338         cbd_size      <= cbd_d[(`CODEBAG_SIZE_BITS-1):0];
339         cbd_base      <= cbd_d[(`INSTRUCTION_WIDTH-1):(`CODEBAG_SIZE_BITS)];
340
341       end else begin
342         `onread(preload_r, preload_a)
343           if (preload_size == 0) begin
344             preload_size     <= preload_d;
345           end else if (!launched) begin
346             write_flag <= 1;
347             write_data <= preload_d;
348             in_addr <= preload_pos;
349             if (preload_pos == 0) begin
350               temp_base = preload_d[(`INSTRUCTION_WIDTH-(3+`DESTINATION_ADDRESS_BITS)):(`CODEBAG_SIZE_BITS)];
351               temp_size = preload_d[(`CODEBAG_SIZE_BITS-1):0];
352             end
353             if ((preload_pos+1) == preload_size) begin
354               cbd_pos  <= 0;
355               cbd_base <= temp_base;
356               cbd_size <= temp_size;
357               launched <= 1;
358             end
359             preload_pos      <= preload_pos + 1;
360           end
361         end
362       end
363
364     end
365
366     end
367   end
368 endmodule
369
370   
371
372
373
374 == Test ==============================================================
375 // expected output
376 #expect 12
377 #expect 13
378 #expect 14
379
380 // ships required in order to run this code
381 #ship debug          : Debug
382 #ship memory         : Memory
383
384 // instructions not in any codebag are part of the "root codebag"
385 // which is dispatched when the code is loaded
386
387 memory.inCBD:
388   literal BOB;
389   deliver;
390
391 BOB: {
392   debug.in:
393     literal 12; deliver;
394     literal 13; deliver;
395     literal 14; deliver;
396 }
397
398
399 == Constants ========================================================
400
401 == Contributors =========================================================
402 Adam Megacz <megacz@cs.berkeley.edu>