checkpoint
[anneal.git] / src / edu / berkeley / qfat / Mesh.java
index d1fda3c..efeb89b 100644 (file)
@@ -11,8 +11,8 @@ import edu.berkeley.qfat.geom.Point;
 
 public class Mesh implements Iterable<Mesh.T> {
 
-    public static float EPSILON = (float)0.0001;
-    public static Random random = new Random();
+    public static final float EPSILON = (float)0.0001;
+    public static final Random random = new Random();
 
     private PointSet<Vert> pointset = new PointSet<Vert>();
 
@@ -98,7 +98,6 @@ public class Mesh implements Iterable<Mesh.T> {
         return (float)total;
     }
 
-
     public class BindingGroup {
         public HashSet<E> es = new HashSet<E>();
         public BindingGroup() { }
@@ -124,64 +123,93 @@ public class Mesh implements Iterable<Mesh.T> {
 
     public final class Vert extends HasPoint {
         public Point p;
+        E e;                // some edge *leaving* this point
+
+        Vert bound_to = this;
+
+        /** the nearest vertex in the "score_against" mesh */
+        Vert   nearest_in_other_mesh;
+        /** the number of vertices in the other mesh for which this is the nearest_in_other_mesh */
+        int    quadric_count;
+        /** the total error quadric (contributions from all vertices in other mesh for which this is nearest) */
+        Matrix quadric = Matrix.ZERO;
+
+        Matrix binding = new Matrix();
+        float oldscore = 0;
+        boolean inserted = false;
+
+        public Matrix errorQuadric() { return quadric; }
+
+        private Matrix fundamentalQuadric = null;
+        public Matrix fundamentalQuadric() {
+            if (fundamentalQuadric == null) recomputeFundamentalQuadric();
+            return fundamentalQuadric;
+        }
+
         public Point getPoint() { return p; }
-        private Vert(Point p, E e) { this(p); }
         private Vert(Point p) {
             this.p = p;
             if (pointset.get(p) != null) throw new Error();
             pointset.add(this);
         }
         public float score() { return oldscore; }
+
+        public void recomputeFundamentalQuadric() {
+            unscore();
+            Matrix m = Matrix.ZERO;
+            E e = this.e;
+            do {
+                T t = e.t;
+                m = m.plus(t.norm().fundamentalQuadric(t.centroid()));
+                e = e.pair.next;
+            } while(e != this.e);
+            fundamentalQuadric = m;
+            rescore();
+        }
+
         public void unscore() {
-            if (watch == null) return;
-            watch.watch_x -= p.x;
-            watch.watch_y -= p.y;
-            watch.watch_z -= p.z;
-            watch.watch_count--;
-            if (watch.watch_count==0) {
-                watch.watch_x = 0;
-                watch.watch_y = 0;
-                watch.watch_z = 0;
-            }
-            watch = null;
+            if (nearest_in_other_mesh == null) return;
+            if (fundamentalQuadric == null) return;
+            nearest_in_other_mesh.quadric = nearest_in_other_mesh.quadric.minus(fundamentalQuadric);
+            nearest_in_other_mesh.quadric_count--;
+            if (nearest_in_other_mesh.quadric_count==0)
+                nearest_in_other_mesh.quadric = Matrix.ZERO;
+            nearest_in_other_mesh = null;
         }
-        public Vert partner() { return watch==null ? this : watch; }
-        public Point watchback() { return watch_count==0 ? partner().p :
-                new Point(watch_x/watch_count, watch_y/watch_count, watch_z/watch_count); }
+
         public void rescore() {
             if (score_against == null) return;
 
             score -= oldscore;
             oldscore = 0;
 
-            if (watch != null) unscore();
-            Vert po = this;
-            if (watch == null) {
-                watch = score_against.nearest(po.p);
+            if (nearest_in_other_mesh != null) unscore();
+            if (nearest_in_other_mesh == null) {
+                nearest_in_other_mesh = score_against.nearest(p);
 
                 // don't attract to vertices that face the other way
-                if (watch.e == null || watch.norm().dot(norm()) < 0) {
-                    watch = null;
+                if (nearest_in_other_mesh.e == null || nearest_in_other_mesh.norm().dot(norm()) < 0) {
+                    nearest_in_other_mesh = null;
                 } else {
-                    watch.watch_x += po.p.x;
-                    watch.watch_y += po.p.y;
-                    watch.watch_z += po.p.z;
-                    watch.watch_count++;
+                    nearest_in_other_mesh.quadric = nearest_in_other_mesh.quadric.plus(fundamentalQuadric());
+                    nearest_in_other_mesh.quadric_count++;
                 }
             }
 
+            /*
             double s1, s2;
-            if (watch_count==0) s1 = 0;
-            else                s1 = p.distance(watch_x/watch_count, watch_y/watch_count, watch_z/watch_count);
-            s2 = watch==null ? 0 : po.p.distance(watch.p);
+            if (quadric_count==0) s1 = 0;
+            else                  s1 = p.distance(quadric_x/quadric_count, quadric_y/quadric_count, quadric_z/quadric_count);
+            s2 = quadric==null ? 0 : po.p.distance(quadric.p);
             oldscore = (float)(s1 + s2);
+            */
+            oldscore = quadric.preAndPostMultiply(p);
+
             score += oldscore;
         }
 
         /** does NOT update bound pairs! */
         public boolean transform(Matrix m) {
-            // FIXME: screws up kdtree 
-            // FIXME: screws up hashmap
             unscore();
             try {
                 if (pointset.get(this.p)==null) throw new Error();
@@ -190,12 +218,22 @@ public class Mesh implements Iterable<Mesh.T> {
                 float newy = m.e*p.x + m.f*p.y + m.g*p.z + m.h;
                 float newz = m.i*p.x + m.j*p.y + m.k*p.z + m.l;
                 this.p = new Point(newx, newy, newz);
-                // FIXME: what if we move onto exactly where another point is?
                 pointset.add(this);
             } catch (Exception e) {
                 throw new RuntimeException(e);
             }
+            fundamentalQuadric = fundamentalQuadric();
             rescore();
+
+            // recompute fundamental quadrics of all vertices sharing a face
+            E e = this.e;
+            do {
+                e.t.v1().recomputeFundamentalQuadric();
+                e.t.v2().recomputeFundamentalQuadric();
+                e.t.v3().recomputeFundamentalQuadric();
+                e = e.pair.next;
+            } while(e != this.e);
+            
             boolean good = true;
             /*
             for(T t : this) {
@@ -286,17 +324,6 @@ public class Mesh implements Iterable<Mesh.T> {
             } while(e != this.e);
             return norm.norm();
         }
-
-        Vert bound_to = this;
-        int watch_count;
-        float watch_x;
-        float watch_y;
-        float watch_z;
-        Vert watch;
-        E e;                // some edge *leaving* this point
-        Matrix binding = new Matrix();
-        float oldscore = 0;
-        boolean inserted = false;
     }
 
     /** [UNIQUE] an edge */
@@ -308,6 +335,7 @@ public class Mesh implements Iterable<Mesh.T> {
         E next;  // next half-edge
         E pair;  // partner half-edge
         public BindingGroup bg = new BindingGroup(this);
+        boolean shattered = false;
 
         public int compareTo(E e) { return e.length() > length() ? 1 : -1; }
 
@@ -323,7 +351,6 @@ public class Mesh implements Iterable<Mesh.T> {
             }
         }
 
-        boolean shattered = false;
         public Point shatter() { return shatter(midpoint(), null, null); }
         public Point shatter(Point mid, BindingGroup bg1, BindingGroup bg2) {
             if (shattered) return mid;
@@ -419,9 +446,11 @@ public class Mesh implements Iterable<Mesh.T> {
         public E(Point p1, Point p2) {
             if (pointset.get(p1) != null) throw new Error();
             if (pointset.get(p2) != null) throw new Error();
-            this.p1 = new Vert(p1, this);
-            this.p2 = new Vert(p2, this);
+            this.p1 = new Vert(p1);
+            this.p2 = new Vert(p2);
             this.prev = this.next = this.pair = new E(this, this, this);
+            this.p1.e = this;
+            this.p2.e = this.pair;
             sync();
         }
 
@@ -429,7 +458,7 @@ public class Mesh implements Iterable<Mesh.T> {
         public E(E prev, Point p) {
             Vert p2;
             p2 = pointset.get(p);
-            if (p2 == null) p2 = new Vert(p, this);
+            if (p2 == null) p2 = new Vert(p);
             this.p1 = prev.p2;
             this.p2 = p2;
             this.prev = prev;
@@ -444,6 +473,7 @@ public class Mesh implements Iterable<Mesh.T> {
                 this.prev.next = this;
                 this.pair = new E(q, this, z);
             }
+            if (p2.e==null) p2.e = this.pair;
             sync();
         }
 
@@ -532,10 +562,6 @@ public class Mesh implements Iterable<Mesh.T> {
         }
     }
 
-    private Vert register(Point p) {
-        Vert v = pointset.get(p);
-        return v==null ? new Vert(p) : v;
-    }
     public E makeE(Point p1, Point p2) {
         Vert v1 = pointset.get(p1);
         Vert v2 = pointset.get(p2);