checkpoint
[anneal.git] / src / edu / berkeley / qfat / Mesh.java
index c057f33..fb99488 100644 (file)
@@ -14,21 +14,22 @@ public class Mesh implements Iterable<Mesh.T> {
     public static final float EPSILON = (float)0.0001;
     public static final Random random = new Random();
 
-    private RTree<T> tris = new RTree<T>();
-    private PointSet<Vertex> vertices = new PointSet<Vertex>();
+    private RTree<T>         triangles = new RTree<T>();
+    private PointSet<Vertex> vertices  = new PointSet<Vertex>();
 
-    public boolean tilemesh = false;
-    public boolean ignorecollision = false;
-    public Mesh score_against = null;
-    public double score = 0;
+    public boolean immutableVertices;
+    public boolean ignorecollision    = false;
+    public Mesh    score_against      = null;
+    public double  score              = 0;
+
+    public Mesh(boolean immutableVertices) { this.immutableVertices = immutableVertices; }
+
+    public void makeVerticesImmutable() { this.immutableVertices = true; }
     public float score() { return (float)score; }
 
     public int size() { return vertices.size(); }
     public Iterable<Vertex> vertices() { return vertices; }
-
-    public Iterator<T> iterator() {
-        return tris.iterator();
-    }
+    public Iterator<T> iterator() { return triangles.iterator(); }
 
     public void rebindPoints() {
         // unbind all points
@@ -45,38 +46,6 @@ public class Mesh implements Iterable<Mesh.T> {
         }
     }
 
-    public void unApplyQuadricToNeighborAll() {
-        HashSet<Vertex> done = new HashSet<Vertex>();
-        for(T t : this)
-            for(Vertex p : new Vertex[] { t.v1(), t.v2(), t.v3() }) {
-                if (done.contains(p)) continue;
-                done.add(p);
-                p.unApplyQuadricToNeighbor();
-            }
-    }
-    public void recomputeAllFundamentalQuadrics() {
-        HashSet<Vertex> done = new HashSet<Vertex>();
-        for(T t : this)
-            for(Vertex p : new Vertex[] { t.v1(), t.v2(), t.v3() }) {
-                if (done.contains(p)) continue;
-                done.add(p);
-                p.recomputeFundamentalQuadric();
-            }
-    }
-    public float applyQuadricToNeighborAll() {
-        int num = 0;
-        double dist = 0;
-        HashSet<Vertex> done = new HashSet<Vertex>();
-        for(T t : this)
-            for(Vertex p : new Vertex[] { t.v1(), t.v2(), t.v3() }) {
-                if (done.contains(p)) continue;
-                done.add(p);
-                p.applyQuadricToNeighbor();
-                
-            }
-        return (float)(dist/num);
-    }
-
     public void transform(Matrix m) {
         ArrayList<Vertex> set = new ArrayList<Vertex>();
         for(Vertex v : vertices) set.add(v);
@@ -104,7 +73,8 @@ public class Mesh implements Iterable<Mesh.T> {
 
     // Vertexices //////////////////////////////////////////////////////////////////////////////
 
-    public final class Vertex extends HasPoint {
+    /** a vertex in the mesh */
+    public final class Vertex extends HasPoint implements Visitor<T> {
         public String toString() { return p.toString(); }
         public Point p;
         E e;                // some edge *leaving* this point
@@ -116,8 +86,8 @@ public class Mesh implements Iterable<Mesh.T> {
         /** the total error quadric (contributions from all vertices in other mesh for which this is nearest) */
         Matrix quadric = Matrix.ZERO;
 
-        Vertex bound_to = this;
         Matrix binding = Matrix.ONE;
+        Vertex bound_to = this;
         float oldscore = 0;
         boolean quadricStale = false;
 
@@ -143,19 +113,18 @@ public class Mesh implements Iterable<Mesh.T> {
         }
 
         public void recomputeFundamentalQuadric() {
-            //if (!quadricStale && fundamentalQuadric != null) return;
-            quadricStale = false;
             unApplyQuadricToNeighbor();
-            Matrix m = Matrix.ZERO;
-            E e = this.e;
-            int count = 0;
-            do {
-                T t = e.t;
-                m = m.plus(t.norm().fundamentalQuadric(t.centroid()));
-                count++;
-                e = e.pair.next;
-            } while(e != this.e);
-            fundamentalQuadric = m.times(1/(float)count);
+            if (quadricStale || fundamentalQuadric==null) {
+                Matrix m = Matrix.ZERO;
+                int count = 0;
+                for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) {
+                    T t = e.t;
+                    m = m.plus(t.norm().fundamentalQuadric(t.centroid()));
+                    count++;
+                }
+                quadricStale = false;
+                fundamentalQuadric = m.times(1/(float)count);
+            }
             applyQuadricToNeighbor();
         }
 
@@ -197,11 +166,8 @@ public class Mesh implements Iterable<Mesh.T> {
         public void reComputeErrorAround() {
             reComputeError();
             if (nearest_in_other_mesh != null) nearest_in_other_mesh.reComputeError();
-            E e = this.e;
-            do {
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next)
                 e.p2.reComputeError();
-                e = e.pair.next;
-            } while (e != this.e);
         }
         public void reComputeError() {
             unComputeError();
@@ -212,145 +178,79 @@ public class Mesh implements Iterable<Mesh.T> {
             oldscore = 0;
         }
         public void computeError() {
-            if (quadric_count == 0) {
-                if (!tilemesh) {
-                } else if (nearest_in_other_mesh == null) {
-                    if (score_against != null) {
-                        Vertex ne = score_against.nearest(p);
-                        oldscore = ne.fundamentalQuadric().preAndPostMultiply(p) * 100 * 10;
-                    } else {
-                        oldscore = 0;
-                    }
-                } else {
-                    oldscore = nearest_in_other_mesh.fundamentalQuadric().preAndPostMultiply(p) * 100 * 10;
-                }
-            } else {
-                oldscore = (quadric.preAndPostMultiply(p) * 100) / quadric_count;
-            }
-
-            oldscore = oldscore;
-
-            int numaspects = 0;
-            float aspects = 0;
-            E e = this.e;
-            do {
-                //double ang = Math.abs(e.crossAngle());
+            oldscore =
+                quadric_count != 0
+                ? (quadric.preAndPostMultiply(p) * 100) / quadric_count
+                : immutableVertices
+                ? oldscore
+                : nearest_in_other_mesh != null
+                ? nearest_in_other_mesh.fundamentalQuadric().preAndPostMultiply(p) * 100 * 10
+                : score_against != null
+                ? score_against.nearest(p).fundamentalQuadric().preAndPostMultiply(p) * 100 * 10
+                : 0;
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) {
                 double ang = Math.abs(e.crossAngle());
                 if (ang > Math.PI) throw new Error();
-                /*
-                if (e.t != null) {
-                    numaspects++;
-                    aspects += e.t.aspect()*e.t.aspect();
-                }
-                */
-
                 float minangle = (float)(Math.PI * 0.8);
                 if (ang > minangle)
                     oldscore += (ang - minangle);
-
-                e = e.pair.next;
-            } while (e != this.e);
-            if (numaspects > 0) oldscore += (aspects / numaspects);
-
-            //System.out.println(oldscore);
-            //oldscore = oldscore*oldscore;
+            }
             score += oldscore;
         }
 
         private void removeTrianglesFromRTree() {
-            E e = this.e;
-            do {
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next)
                 if (e.t != null) e.t.removeFromRTree();
-                e = e.pair.next;
-            } while(e != this.e);
         }
         private void addTrianglesToRTree() {
-            E e = this.e;
-            do {
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next)
                 if (e.t != null) e.t.addToRTree();
-                e = e.pair.next;
-            } while(e != this.e);
         }
 
         /** does NOT update bound pairs! */
         public boolean transform(Matrix m) {
+            if (immutableVertices) throw new Error();
+
             unApplyQuadricToNeighbor();
             Point oldp = this.p;
-            try {
-                if (vertices.get(this.p)==null) throw new Error();
-                vertices.remove(this);
-                removeTrianglesFromRTree();
-                float newx = m.a*p.x + m.b*p.y + m.c*p.z + m.d;
-                float newy = m.e*p.x + m.f*p.y + m.g*p.z + m.h;
-                float newz = m.i*p.x + m.j*p.y + m.k*p.z + m.l;
-                this.p = new Point(newx, newy, newz);
-                addTrianglesToRTree();
-                vertices.add(this);
-            } catch (Exception e) {
-                throw new RuntimeException(e);
-            }
+
+            if (vertices.get(this.p)==null) throw new Error();
+            vertices.remove(this);
+            removeTrianglesFromRTree();
+            float newx = m.a*p.x + m.b*p.y + m.c*p.z + m.d;
+            float newy = m.e*p.x + m.f*p.y + m.g*p.z + m.h;
+            float newz = m.i*p.x + m.j*p.y + m.k*p.z + m.l;
+            this.p = new Point(newx, newy, newz);
+            addTrianglesToRTree();
+            vertices.add(this);
+
             applyQuadricToNeighbor();
 
-            // FIXME: intersection test needed?
             good = true;
 
-            // should recompute fundamental quadrics of all vertices sharing a face, but we defer...
-            E e = this.e;
-            do {
-                /*
-                if (Math.abs(e.crossAngle()) > (Math.PI * 0.9) ||
-                    Math.abs(e.next.crossAngle()) > (Math.PI * 0.9)) {
-                    good = false;
-                }
-                if (e.t.aspect() < 0.1) {
-                    good = false;
-                }
-                */
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next) {
+                if (Math.abs(e.crossAngle()) > (Math.PI * 0.9) || Math.abs(e.next.crossAngle()) > (Math.PI * 0.9)) good = false;
+                if (e.t.aspect() < 0.1) good = false;
                 e.p2.quadricStale = true;
-                e = e.pair.next;
-            } while(e != this.e);
-
-
-            if (!ignorecollision && good) {
-
-                tris.range(new Segment(oldp, this.p),
-                            new Visitor<T>() {
-                                public void visit(T t) {
-                                    if (!good) return;
-                                    E e = Vertex.this.e;
-                                    do {
-                                        if (!t.has(e.p1) && !t.has(e.p2) && e.intersects(t)) { good = false; }
-                                        if (e.t != null) {
-                                            if (!e.t.has(t.e1().p1) && !e.t.has(t.e1().p2) && t.e1().intersects(e.t)) { good = false; }
-                                            if (!e.t.has(t.e2().p1) && !e.t.has(t.e2().p2) && t.e2().intersects(e.t)) { good = false; }
-                                            if (!e.t.has(t.e3().p1) && !e.t.has(t.e3().p2) && t.e3().intersects(e.t)) { good = false; }
-                                        }
-                                        e = e.pair.next;
-                                    } while(e != Vertex.this.e);
-                                }
-                            });
-
-                /*
-                for(T t : Mesh.this) {
-                    if (!good) break;
-                    e = this.e;
-                    do {
-                        if (!t.has(e.p1) && !t.has(e.p2) && e.intersects(t)) { good = false; break; }
-                        if (e.t != null) {
-                            if (!e.t.has(t.e1().p1) && !e.t.has(t.e1().p2) && t.e1().intersects(e.t)) { good = false; break; }
-                            if (!e.t.has(t.e2().p1) && !e.t.has(t.e2().p2) && t.e2().intersects(e.t)) { good = false; break; }
-                            if (!e.t.has(t.e3().p1) && !e.t.has(t.e3().p2) && t.e3().intersects(e.t)) { good = false; break; }
-                        }
-                        e = e.pair.next;
-                    } while(e != this.e);
-                }
-                */
             }
 
+            if (!ignorecollision && good) triangles.range(oldp, this.p, (Visitor<T>)this);
 
             reComputeErrorAround();
             return good;
         }
+
+        public void visit(T t) {
+            if (!good) return;
+            for(E e = Vertex.this.e; e!=null; e=e.pair.next==Vertex.this.e?null:e.pair.next) {
+                if (!t.has(e.p1) && !t.has(e.p2) && e.intersects(t)) { good = false; }
+                if (e.t != null) {
+                    if (!e.t.has(t.e1().p1) && !e.t.has(t.e1().p2) && t.e1().intersects(e.t)) { good = false; }
+                    if (!e.t.has(t.e2().p1) && !e.t.has(t.e2().p2) && t.e2().intersects(e.t)) { good = false; }
+                    if (!e.t.has(t.e3().p1) && !e.t.has(t.e3().p2) && t.e3().intersects(e.t)) { good = false; }
+                }
+            }
+        }
         private boolean good;
 
         public boolean move(Vec v) {
@@ -367,24 +267,15 @@ public class Mesh implements Iterable<Mesh.T> {
         public E getFreeIncident() {
             E ret = getFreeIncident(e, e);
             if (ret != null) return ret;
-            ret = getFreeIncident(e.pair.next, e.pair.next);
-            if (ret == null) {
-                E ex = e;
-                do {
-                    System.out.println(ex + " " + ex.t);
-                    ex = ex.pair.next;
-                } while (ex != e);
-                throw new Error("unable to find free incident to " + this);
-            }
-            return ret;
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next)
+                System.out.println(e + " " + e.t);
+            throw new Error("unable to find free incident to " + this);
         }
 
         public E getFreeIncident(E start, E before) {
-            E e = start;
-            do {
-                if (e.pair.p2 == this && e.pair.t == null && e.pair.next.t == null) return e.pair;
-                e = e.pair.next;
-            } while(e != before);
+            for(E e = start; e!=null; e=e.pair.next==before?null:e.pair.next)
+                if (e.pair.p2 == this && e.pair.t == null && e.pair.next.t == null)
+                    return e.pair;
             return null;
         }
 
@@ -394,33 +285,26 @@ public class Mesh implements Iterable<Mesh.T> {
             return getE(v);
         }
         public E getE(Vertex p2) {
-            E e = this.e;
-            do {
-                if (e==null) return null;
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next)
                 if (e.p1 == this && e.p2 == p2) return e;
-                e = e.pair.next;
-            } while (e!=this.e);
             return null;
         }
 
         public Vec norm() {
             Vec norm = new Vec(0, 0, 0);
-            E e = this.e;
-            do {
-                if (e.t != null) norm = norm.plus(e.t.norm().times((float)e.prev.angle()));
-                e = e.pair.next;
-            } while(e != this.e);
+            for(E e = this.e; e!=null; e=e.pair.next==this.e?null:e.pair.next)
+                if (e.t != null)
+                    norm = norm.plus(e.t.norm().times((float)e.prev.angle()));
             return norm.norm();
         }
 
         public boolean isBoundTo(Vertex p) {
-            Vertex px = p;
-            do {
-                if (px==this) return true;
-                px = px.bound_to;
-            } while(px != p);
+            for(Vertex px = p; px!=null; px=(px.bound_to==p?null:px.bound_to))
+                if (px==this)
+                    return true;
             return false;
         }
+
         public void unbind() { bound_to = this; binding = Matrix.ONE; }
         public void bind(Vertex p) { bind(p, Matrix.ONE); }
         public void bind(Vertex p, Matrix binding) {
@@ -489,20 +373,7 @@ public class Mesh implements Iterable<Mesh.T> {
         public boolean intersects(T t) { return t.intersects(p1.p, p2.p); }
         public float comparator() {
             Vertex nearest = score_against.nearest(midpoint());
-            //if (t==null) return length();
-            /*
-            double ang = Math.abs(crossAngle());
-            float minangle = (float)(Math.PI * 0.9);
-            if (ang > minangle)
-                return 300;
-            */
-            /*
-            if ((length() * length()) / t.area() > 10)
-                return (float)(length()*Math.sqrt(t.area()));
-            return length()*t.area();
-            */
             return (float)Math.max(length(), midpoint().distance(nearest.p));
-            //return length();
         }
         public int compareTo(E e) {
             return e.comparator() > comparator() ? 1 : -1;
@@ -709,10 +580,10 @@ public class Mesh implements Iterable<Mesh.T> {
         public final int color;
         public final int colorclass;
 
-        public void removeFromRTree() { tris.remove(this); }
-        public void addToRTree() { tris.insert(this); }
+        public void removeFromRTree() { triangles.remove(this); }
+        public void addToRTree() { triangles.insert(this); }
 
-        public void destroy() { tris.remove(this); }
+        public void destroy() { triangles.remove(this); }
 
         T(E e1, int colorclass) {
             this.e1 = e1;
@@ -737,7 +608,7 @@ public class Mesh implements Iterable<Mesh.T> {
             }
             this.color = color;
             this.colorclass = colorclass;
-            tris.add(this);
+            triangles.add(this);
         }
         public E e1() { return e1; }
         public E e2() { return e1.next; }