Split syb off into its own package
[ghc-base.git] / Data / Complex.hs
1 -----------------------------------------------------------------------------
2 -- |
3 -- Module      :  Data.Complex
4 -- Copyright   :  (c) The University of Glasgow 2001
5 -- License     :  BSD-style (see the file libraries/base/LICENSE)
6 -- 
7 -- Maintainer  :  libraries@haskell.org
8 -- Stability   :  provisional
9 -- Portability :  portable
10 --
11 -- Complex numbers.
12 --
13 -----------------------------------------------------------------------------
14
15 module Data.Complex
16         (
17         -- * Rectangular form
18           Complex((:+))
19
20         , realPart      -- :: (RealFloat a) => Complex a -> a
21         , imagPart      -- :: (RealFloat a) => Complex a -> a
22         -- * Polar form
23         , mkPolar       -- :: (RealFloat a) => a -> a -> Complex a
24         , cis           -- :: (RealFloat a) => a -> Complex a
25         , polar         -- :: (RealFloat a) => Complex a -> (a,a)
26         , magnitude     -- :: (RealFloat a) => Complex a -> a
27         , phase         -- :: (RealFloat a) => Complex a -> a
28         -- * Conjugate
29         , conjugate     -- :: (RealFloat a) => Complex a -> Complex a
30
31         -- Complex instances:
32         --
33         --  (RealFloat a) => Eq         (Complex a)
34         --  (RealFloat a) => Read       (Complex a)
35         --  (RealFloat a) => Show       (Complex a)
36         --  (RealFloat a) => Num        (Complex a)
37         --  (RealFloat a) => Fractional (Complex a)
38         --  (RealFloat a) => Floating   (Complex a)
39         -- 
40         -- Implementation checked wrt. Haskell 98 lib report, 1/99.
41
42         )  where
43
44 import Prelude
45
46 import Data.Typeable
47
48 #ifdef __HUGS__
49 import Hugs.Prelude(Num(fromInt), Fractional(fromDouble))
50 #endif
51
52 infix  6  :+
53
54 -- -----------------------------------------------------------------------------
55 -- The Complex type
56
57 -- | Complex numbers are an algebraic type.
58 --
59 -- For a complex number @z@, @'abs' z@ is a number with the magnitude of @z@,
60 -- but oriented in the positive real direction, whereas @'signum' z@
61 -- has the phase of @z@, but unit magnitude.
62 data (RealFloat a) => Complex a
63   = !a :+ !a    -- ^ forms a complex number from its real and imaginary
64                 -- rectangular components.
65         deriving (Eq, Show, Read)
66
67 -- -----------------------------------------------------------------------------
68 -- Functions over Complex
69
70 -- | Extracts the real part of a complex number.
71 realPart :: (RealFloat a) => Complex a -> a
72 realPart (x :+ _) =  x
73
74 -- | Extracts the imaginary part of a complex number.
75 imagPart :: (RealFloat a) => Complex a -> a
76 imagPart (_ :+ y) =  y
77
78 -- | The conjugate of a complex number.
79 {-# SPECIALISE conjugate :: Complex Double -> Complex Double #-}
80 conjugate        :: (RealFloat a) => Complex a -> Complex a
81 conjugate (x:+y) =  x :+ (-y)
82
83 -- | Form a complex number from polar components of magnitude and phase.
84 {-# SPECIALISE mkPolar :: Double -> Double -> Complex Double #-}
85 mkPolar          :: (RealFloat a) => a -> a -> Complex a
86 mkPolar r theta  =  r * cos theta :+ r * sin theta
87
88 -- | @'cis' t@ is a complex value with magnitude @1@
89 -- and phase @t@ (modulo @2*'pi'@).
90 {-# SPECIALISE cis :: Double -> Complex Double #-}
91 cis              :: (RealFloat a) => a -> Complex a
92 cis theta        =  cos theta :+ sin theta
93
94 -- | The function 'polar' takes a complex number and
95 -- returns a (magnitude, phase) pair in canonical form:
96 -- the magnitude is nonnegative, and the phase in the range @(-'pi', 'pi']@;
97 -- if the magnitude is zero, then so is the phase.
98 {-# SPECIALISE polar :: Complex Double -> (Double,Double) #-}
99 polar            :: (RealFloat a) => Complex a -> (a,a)
100 polar z          =  (magnitude z, phase z)
101
102 -- | The nonnegative magnitude of a complex number.
103 {-# SPECIALISE magnitude :: Complex Double -> Double #-}
104 magnitude :: (RealFloat a) => Complex a -> a
105 magnitude (x:+y) =  scaleFloat k
106                      (sqrt ((scaleFloat mk x)^(2::Int) + (scaleFloat mk y)^(2::Int)))
107                     where k  = max (exponent x) (exponent y)
108                           mk = - k
109
110 -- | The phase of a complex number, in the range @(-'pi', 'pi']@.
111 -- If the magnitude is zero, then so is the phase.
112 {-# SPECIALISE phase :: Complex Double -> Double #-}
113 phase :: (RealFloat a) => Complex a -> a
114 phase (0 :+ 0)   = 0            -- SLPJ July 97 from John Peterson
115 phase (x:+y)     = atan2 y x
116
117
118 -- -----------------------------------------------------------------------------
119 -- Instances of Complex
120
121 #include "Typeable.h"
122 INSTANCE_TYPEABLE1(Complex,complexTc,"Complex")
123
124 instance  (RealFloat a) => Num (Complex a)  where
125     {-# SPECIALISE instance Num (Complex Float) #-}
126     {-# SPECIALISE instance Num (Complex Double) #-}
127     (x:+y) + (x':+y')   =  (x+x') :+ (y+y')
128     (x:+y) - (x':+y')   =  (x-x') :+ (y-y')
129     (x:+y) * (x':+y')   =  (x*x'-y*y') :+ (x*y'+y*x')
130     negate (x:+y)       =  negate x :+ negate y
131     abs z               =  magnitude z :+ 0
132     signum (0:+0)       =  0
133     signum z@(x:+y)     =  x/r :+ y/r  where r = magnitude z
134     fromInteger n       =  fromInteger n :+ 0
135 #ifdef __HUGS__
136     fromInt n           =  fromInt n :+ 0
137 #endif
138
139 instance  (RealFloat a) => Fractional (Complex a)  where
140     {-# SPECIALISE instance Fractional (Complex Float) #-}
141     {-# SPECIALISE instance Fractional (Complex Double) #-}
142     (x:+y) / (x':+y')   =  (x*x''+y*y'') / d :+ (y*x''-x*y'') / d
143                            where x'' = scaleFloat k x'
144                                  y'' = scaleFloat k y'
145                                  k   = - max (exponent x') (exponent y')
146                                  d   = x'*x'' + y'*y''
147
148     fromRational a      =  fromRational a :+ 0
149 #ifdef __HUGS__
150     fromDouble a        =  fromDouble a :+ 0
151 #endif
152
153 instance  (RealFloat a) => Floating (Complex a) where
154     {-# SPECIALISE instance Floating (Complex Float) #-}
155     {-# SPECIALISE instance Floating (Complex Double) #-}
156     pi             =  pi :+ 0
157     exp (x:+y)     =  expx * cos y :+ expx * sin y
158                       where expx = exp x
159     log z          =  log (magnitude z) :+ phase z
160
161     sqrt (0:+0)    =  0
162     sqrt z@(x:+y)  =  u :+ (if y < 0 then -v else v)
163                       where (u,v) = if x < 0 then (v',u') else (u',v')
164                             v'    = abs y / (u'*2)
165                             u'    = sqrt ((magnitude z + abs x) / 2)
166
167     sin (x:+y)     =  sin x * cosh y :+ cos x * sinh y
168     cos (x:+y)     =  cos x * cosh y :+ (- sin x * sinh y)
169     tan (x:+y)     =  (sinx*coshy:+cosx*sinhy)/(cosx*coshy:+(-sinx*sinhy))
170                       where sinx  = sin x
171                             cosx  = cos x
172                             sinhy = sinh y
173                             coshy = cosh y
174
175     sinh (x:+y)    =  cos y * sinh x :+ sin  y * cosh x
176     cosh (x:+y)    =  cos y * cosh x :+ sin y * sinh x
177     tanh (x:+y)    =  (cosy*sinhx:+siny*coshx)/(cosy*coshx:+siny*sinhx)
178                       where siny  = sin y
179                             cosy  = cos y
180                             sinhx = sinh x
181                             coshx = cosh x
182
183     asin z@(x:+y)  =  y':+(-x')
184                       where  (x':+y') = log (((-y):+x) + sqrt (1 - z*z))
185     acos z         =  y'':+(-x'')
186                       where (x'':+y'') = log (z + ((-y'):+x'))
187                             (x':+y')   = sqrt (1 - z*z)
188     atan z@(x:+y)  =  y':+(-x')
189                       where (x':+y') = log (((1-y):+x) / sqrt (1+z*z))
190
191     asinh z        =  log (z + sqrt (1+z*z))
192     acosh z        =  log (z + (z+1) * sqrt ((z-1)/(z+1)))
193     atanh z        =  log ((1+z) / sqrt (1-z*z))