f4dad32a48e5d0b88253f917653bb9674ac1feb1
[ghc-base.git] / Data / Set.hs
1 -----------------------------------------------------------------------------
2 -- |
3 -- Module      :  Data.Set
4 -- Copyright   :  (c) The University of Glasgow 2001
5 -- License     :  BSD-style (see the file libraries/core/LICENSE)
6 -- 
7 -- Maintainer  :  libraries@haskell.org
8 -- Stability   :  provisional
9 -- Portability :  portable
10 --
11 -- This implementation of sets sits squarely upon Data.FiniteMap.
12 --
13 -----------------------------------------------------------------------------
14
15 module Data.Set (
16         Set,            -- abstract, instance of: Eq
17
18         emptySet,       -- :: Set a
19         mkSet,          -- :: Ord a => [a]  -> Set a
20         setToList,      -- :: Set a -> [a] 
21         unitSet,        -- :: a -> Set a
22
23         union,          -- :: Ord a => Set a -> Set a -> Set a
24         unionManySets,  -- :: Ord a => [Set a] -> Set a
25         minusSet,       -- :: Ord a => Set a -> Set a -> Set a
26         mapSet,         -- :: Ord a => (b -> a) -> Set b -> Set a
27         intersect,      -- :: Ord a => Set a -> Set a -> Set a
28         addToSet,       -- :: Ord a => Set a -> a -> Set a
29         delFromSet,     -- :: Ord a => Set a -> a -> Set a
30
31         elementOf,      -- :: Ord a => a -> Set a -> Bool
32         isEmptySet,     -- :: Set a -> Bool
33         
34         cardinality     -- :: Set a -> Int
35     ) where
36
37 import Prelude
38
39 import Data.FiniteMap
40 import Data.Maybe
41
42 -- This can't be a type synonym if you want to use constructor classes.
43 newtype Set a = MkSet (FiniteMap a ())
44
45 emptySet :: Set a
46 emptySet = MkSet emptyFM
47
48 unitSet :: a -> Set a
49 unitSet x = MkSet (unitFM x ())
50
51 setToList :: Set a -> [a]
52 setToList (MkSet set) = keysFM set
53
54 mkSet :: Ord a => [a]  -> Set a
55 mkSet xs = MkSet (listToFM [ (x, ()) | x <- xs])
56
57 union :: Ord a => Set a -> Set a -> Set a
58 union (MkSet set1) (MkSet set2) = MkSet (plusFM set1 set2)
59
60 unionManySets :: Ord a => [Set a] -> Set a
61 unionManySets ss = foldr union emptySet ss
62
63 minusSet  :: Ord a => Set a -> Set a -> Set a
64 minusSet (MkSet set1) (MkSet set2) = MkSet (minusFM set1 set2)
65
66 intersect :: Ord a => Set a -> Set a -> Set a
67 intersect (MkSet set1) (MkSet set2) = MkSet (intersectFM set1 set2)
68
69 addToSet :: Ord a => Set a -> a -> Set a
70 addToSet (MkSet set) a = MkSet (addToFM set a ())
71
72 delFromSet :: Ord a => Set a -> a -> Set a
73 delFromSet (MkSet set) a = MkSet (delFromFM set a)
74
75 elementOf :: Ord a => a -> Set a -> Bool
76 elementOf x (MkSet set) = isJust (lookupFM set x)
77
78 isEmptySet :: Set a -> Bool
79 isEmptySet (MkSet set) = sizeFM set == 0
80
81 mapSet :: Ord a => (b -> a) -> Set b -> Set a
82 mapSet f (MkSet set) = MkSet (listToFM [ (f key, ()) | key <- keysFM set ])
83
84 cardinality :: Set a -> Int
85 cardinality (MkSet set) = sizeFM set
86
87 -- fair enough...
88 instance (Eq a) => Eq (Set a) where
89   (MkSet set_1) == (MkSet set_2) = set_1 == set_2
90   (MkSet set_1) /= (MkSet set_2) = set_1 /= set_2
91
92 -- but not so clear what the right thing to do is:
93 {- NO:
94 instance (Ord a) => Ord (Set a) where
95   (MkSet set_1) <= (MkSet set_2) = set_1 <= set_2
96 -}