Super-monster patch implementing the new typechecker -- at last
[ghc-hetmet.git] / compiler / coreSyn / CoreSyn.lhs
1 %
2 % (c) The University of Glasgow 2006
3 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
4 %
5
6 \begin{code}
7 {-# LANGUAGE DeriveDataTypeable #-}
8
9 -- | CoreSyn holds all the main data types for use by for the Glasgow Haskell Compiler midsection
10 module CoreSyn (
11         -- * Main data types
12         Expr(..), Alt, Bind(..), AltCon(..), Arg, Note(..),
13         CoreExpr, CoreAlt, CoreBind, CoreArg, CoreBndr,
14         TaggedExpr, TaggedAlt, TaggedBind, TaggedArg, TaggedBndr(..),
15
16         -- ** 'Expr' construction
17         mkLets, mkLams,
18         mkApps, mkTyApps, mkVarApps,
19         
20         mkIntLit, mkIntLitInt,
21         mkWordLit, mkWordLitWord,
22         mkCharLit, mkStringLit,
23         mkFloatLit, mkFloatLitFloat,
24         mkDoubleLit, mkDoubleLitDouble,
25         
26         mkConApp, mkTyBind,
27         varToCoreExpr, varsToCoreExprs,
28
29         isTyCoVar, isId, cmpAltCon, cmpAlt, ltAlt,
30         
31         -- ** Simple 'Expr' access functions and predicates
32         bindersOf, bindersOfBinds, rhssOfBind, rhssOfAlts, 
33         collectBinders, collectTyBinders, collectValBinders, collectTyAndValBinders,
34         collectArgs, coreExprCc, flattenBinds, 
35
36         isValArg, isTypeArg, valArgCount, valBndrCount, isRuntimeArg, isRuntimeVar,
37
38         -- * Unfolding data types
39         Unfolding(..),  UnfoldingGuidance(..), UnfoldingSource(..),
40                 -- Abstract everywhere but in CoreUnfold.lhs
41         
42         -- ** Constructing 'Unfolding's
43         noUnfolding, evaldUnfolding, mkOtherCon,
44         unSaturatedOk, needSaturated, boringCxtOk, boringCxtNotOk,
45         
46         -- ** Predicates and deconstruction on 'Unfolding'
47         unfoldingTemplate, setUnfoldingTemplate, expandUnfolding_maybe,
48         maybeUnfoldingTemplate, otherCons, unfoldingArity,
49         isValueUnfolding, isEvaldUnfolding, isCheapUnfolding,
50         isExpandableUnfolding, isConLikeUnfolding, isCompulsoryUnfolding,
51         isInlineRule, isInlineRule_maybe, isClosedUnfolding, hasSomeUnfolding, 
52         isStableUnfolding, canUnfold, neverUnfoldGuidance, isInlineRuleSource,
53
54         -- * Strictness
55         seqExpr, seqExprs, seqUnfolding, 
56
57         -- * Annotated expression data types
58         AnnExpr, AnnExpr'(..), AnnBind(..), AnnAlt,
59         
60         -- ** Operations on annotations
61         deAnnotate, deAnnotate', deAnnAlt, collectAnnBndrs,
62
63         -- * Core rule data types
64         CoreRule(..),   -- CoreSubst, CoreTidy, CoreFVs, PprCore only
65         RuleName, IdUnfoldingFun,
66         
67         -- ** Operations on 'CoreRule's 
68         seqRules, ruleArity, ruleName, ruleIdName, ruleActivation_maybe,
69         setRuleIdName,
70         isBuiltinRule, isLocalRule
71     ) where
72
73 #include "HsVersions.h"
74
75 import CostCentre
76 import Var
77 import Type
78 import Coercion
79 import Name
80 import Literal
81 import DataCon
82 import BasicTypes
83 import FastString
84 import Outputable
85 import Util
86
87 import Data.Data
88 import Data.Word
89
90 infixl 4 `mkApps`, `mkTyApps`, `mkVarApps`, `App`
91 -- Left associative, so that we can say (f `mkTyApps` xs `mkVarApps` ys)
92 \end{code}
93
94 %************************************************************************
95 %*                                                                      *
96 \subsection{The main data types}
97 %*                                                                      *
98 %************************************************************************
99
100 These data types are the heart of the compiler
101
102 \begin{code}
103 -- | This is the data type that represents GHCs core intermediate language. Currently
104 -- GHC uses System FC <http://research.microsoft.com/~simonpj/papers/ext-f/> for this purpose,
105 -- which is closely related to the simpler and better known System F <http://en.wikipedia.org/wiki/System_F>.
106 --
107 -- We get from Haskell source to this Core language in a number of stages:
108 --
109 -- 1. The source code is parsed into an abstract syntax tree, which is represented
110 --    by the data type 'HsExpr.HsExpr' with the names being 'RdrName.RdrNames'
111 --
112 -- 2. This syntax tree is /renamed/, which attaches a 'Unique.Unique' to every 'RdrName.RdrName'
113 --    (yielding a 'Name.Name') to disambiguate identifiers which are lexically identical. 
114 --    For example, this program:
115 --
116 -- @
117 --      f x = let f x = x + 1
118 --            in f (x - 2)
119 -- @
120 --
121 --    Would be renamed by having 'Unique's attached so it looked something like this:
122 --
123 -- @
124 --      f_1 x_2 = let f_3 x_4 = x_4 + 1
125 --                in f_3 (x_2 - 2)
126 -- @
127 --
128 -- 3. The resulting syntax tree undergoes type checking (which also deals with instantiating
129 --    type class arguments) to yield a 'HsExpr.HsExpr' type that has 'Id.Id' as it's names.
130 --
131 -- 4. Finally the syntax tree is /desugared/ from the expressive 'HsExpr.HsExpr' type into
132 --    this 'Expr' type, which has far fewer constructors and hence is easier to perform
133 --    optimization, analysis and code generation on.
134 --
135 -- The type parameter @b@ is for the type of binders in the expression tree.
136 data Expr b
137   = Var   Id                            -- ^ Variables
138
139   | Lit   Literal                       -- ^ Primitive literals
140
141   | App   (Expr b) (Arg b)              -- ^ Applications: note that the argument may be a 'Type'.
142                                         --
143                                         -- See "CoreSyn#let_app_invariant" for another invariant
144
145   | Lam   b (Expr b)                    -- ^ Lambda abstraction
146
147   | Let   (Bind b) (Expr b)             -- ^ Recursive and non recursive @let@s. Operationally
148                                         -- this corresponds to allocating a thunk for the things
149                                         -- bound and then executing the sub-expression.
150                                         -- 
151                                         -- #top_level_invariant#
152                                         -- #letrec_invariant#
153                                         --
154                                         -- The right hand sides of all top-level and recursive @let@s
155                                         -- /must/ be of lifted type (see "Type#type_classification" for
156                                         -- the meaning of /lifted/ vs. /unlifted/).
157                                         --
158                                         -- #let_app_invariant#
159                                         -- The right hand side of of a non-recursive 'Let' 
160                                         -- _and_ the argument of an 'App',
161                                         -- /may/ be of unlifted type, but only if the expression 
162                                         -- is ok-for-speculation.  This means that the let can be floated 
163                                         -- around without difficulty. For example, this is OK:
164                                         --
165                                         -- > y::Int# = x +# 1#
166                                         --
167                                         -- But this is not, as it may affect termination if the 
168                                         -- expression is floated out:
169                                         --
170                                         -- > y::Int# = fac 4#
171                                         --
172                                         -- In this situation you should use @case@ rather than a @let@. The function
173                                         -- 'CoreUtils.needsCaseBinding' can help you determine which to generate, or
174                                         -- alternatively use 'MkCore.mkCoreLet' rather than this constructor directly,
175                                         -- which will generate a @case@ if necessary
176                                         --
177                                         -- #type_let#
178                                         -- We allow a /non-recursive/ let to bind a type variable, thus:
179                                         --
180                                         -- > Let (NonRec tv (Type ty)) body
181                                         --
182                                         -- This can be very convenient for postponing type substitutions until
183                                         -- the next run of the simplifier.
184                                         --
185                                         -- At the moment, the rest of the compiler only deals with type-let
186                                         -- in a Let expression, rather than at top level.  We may want to revist
187                                         -- this choice.
188
189   | Case  (Expr b) b Type [Alt b]       -- ^ Case split. Operationally this corresponds to evaluating
190                                         -- the scrutinee (expression examined) to weak head normal form
191                                         -- and then examining at most one level of resulting constructor (i.e. you
192                                         -- cannot do nested pattern matching directly with this).
193                                         --
194                                         -- The binder gets bound to the value of the scrutinee,
195                                         -- and the 'Type' must be that of all the case alternatives
196                                         --
197                                         -- #case_invariants#
198                                         -- This is one of the more complicated elements of the Core language, 
199                                         -- and comes with a number of restrictions:
200                                         --
201                                         -- The 'DEFAULT' case alternative must be first in the list, 
202                                         -- if it occurs at all.
203                                         --
204                                         -- The remaining cases are in order of increasing 
205                                         --      tag     (for 'DataAlts') or
206                                         --      lit     (for 'LitAlts').
207                                         -- This makes finding the relevant constructor easy, 
208                                         -- and makes comparison easier too.
209                                         --
210                                         -- The list of alternatives must be exhaustive. An /exhaustive/ case 
211                                         -- does not necessarily mention all constructors:
212                                         --
213                                         -- @
214                                         --      data Foo = Red | Green | Blue
215                                         -- ... case x of 
216                                         --      Red   -> True
217                                         --      other -> f (case x of 
218                                         --                      Green -> ...
219                                         --                      Blue  -> ... ) ...
220                                         -- @
221                                         --
222                                         -- The inner case does not need a @Red@ alternative, because @x@ 
223                                         -- can't be @Red@ at that program point.
224
225   | Cast  (Expr b) Coercion             -- ^ Cast an expression to a particular type. 
226                                         -- This is used to implement @newtype@s (a @newtype@ constructor or 
227                                         -- destructor just becomes a 'Cast' in Core) and GADTs.
228
229   | Note  Note (Expr b)                 -- ^ Notes. These allow general information to be
230                                         -- added to expressions in the syntax tree
231
232   | Type  Type                          -- ^ A type: this should only show up at the top
233                                         -- level of an Arg
234   deriving (Data, Typeable)
235
236 -- | Type synonym for expressions that occur in function argument positions.
237 -- Only 'Arg' should contain a 'Type' at top level, general 'Expr' should not
238 type Arg b = Expr b
239
240 -- | A case split alternative. Consists of the constructor leading to the alternative,
241 -- the variables bound from the constructor, and the expression to be executed given that binding.
242 -- The default alternative is @(DEFAULT, [], rhs)@
243 type Alt b = (AltCon, [b], Expr b)
244
245 -- | A case alternative constructor (i.e. pattern match)
246 data AltCon = DataAlt DataCon   -- ^ A plain data constructor: @case e of { Foo x -> ... }@.
247                                 -- Invariant: the 'DataCon' is always from a @data@ type, and never from a @newtype@
248             | LitAlt  Literal   -- ^ A literal: @case e of { 1 -> ... }@
249             | DEFAULT           -- ^ Trivial alternative: @case e of { _ -> ... }@
250          deriving (Eq, Ord, Data, Typeable)
251
252 -- | Binding, used for top level bindings in a module and local bindings in a @let@.
253 data Bind b = NonRec b (Expr b)
254             | Rec [(b, (Expr b))]
255   deriving (Data, Typeable)
256 \end{code}
257
258 -------------------------- CoreSyn INVARIANTS ---------------------------
259
260 Note [CoreSyn top-level invariant]
261 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
262 See #toplevel_invariant#
263
264 Note [CoreSyn letrec invariant]
265 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
266 See #letrec_invariant#
267
268 Note [CoreSyn let/app invariant]
269 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
270 See #let_app_invariant#
271
272 This is intially enforced by DsUtils.mkCoreLet and mkCoreApp
273
274 Note [CoreSyn case invariants]
275 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
276 See #case_invariants#
277
278 Note [CoreSyn let goal]
279 ~~~~~~~~~~~~~~~~~~~~~~~
280 * The simplifier tries to ensure that if the RHS of a let is a constructor
281   application, its arguments are trivial, so that the constructor can be
282   inlined vigorously.
283
284
285 Note [Type let]
286 ~~~~~~~~~~~~~~~
287 See #type_let#
288
289 \begin{code}
290
291 -- | Allows attaching extra information to points in expressions rather than e.g. identifiers.
292 data Note
293   = SCC CostCentre      -- ^ A cost centre annotation for profiling
294   | CoreNote String     -- ^ A generic core annotation, propagated but not used by GHC
295   deriving (Data, Typeable)
296 \end{code}
297
298
299 %************************************************************************
300 %*                                                                      *
301 \subsection{Transformation rules}
302 %*                                                                      *
303 %************************************************************************
304
305 The CoreRule type and its friends are dealt with mainly in CoreRules,
306 but CoreFVs, Subst, PprCore, CoreTidy also inspect the representation.
307
308 \begin{code}
309 -- | A 'CoreRule' is:
310 --
311 -- * \"Local\" if the function it is a rule for is defined in the
312 --   same module as the rule itself.
313 --
314 -- * \"Orphan\" if nothing on the LHS is defined in the same module
315 --   as the rule itself
316 data CoreRule
317   = Rule { 
318         ru_name :: RuleName,            -- ^ Name of the rule, for communication with the user
319         ru_act  :: Activation,          -- ^ When the rule is active
320         
321         -- Rough-matching stuff
322         -- see comments with InstEnv.Instance( is_cls, is_rough )
323         ru_fn    :: Name,               -- ^ Name of the 'Id.Id' at the head of this rule
324         ru_rough :: [Maybe Name],       -- ^ Name at the head of each argument to the left hand side
325         
326         -- Proper-matching stuff
327         -- see comments with InstEnv.Instance( is_tvs, is_tys )
328         ru_bndrs :: [CoreBndr],         -- ^ Variables quantified over
329         ru_args  :: [CoreExpr],         -- ^ Left hand side arguments
330         
331         -- And the right-hand side
332         ru_rhs   :: CoreExpr,           -- ^ Right hand side of the rule
333                                         -- Occurrence info is guaranteed correct
334                                         -- See Note [OccInfo in unfoldings and rules]
335
336         -- Locality
337         ru_local :: Bool        -- ^ @True@ iff the fn at the head of the rule is
338                                 -- defined in the same module as the rule
339                                 -- and is not an implicit 'Id' (like a record selector,
340                                 -- class operation, or data constructor)
341
342                 -- NB: ru_local is *not* used to decide orphan-hood
343                 --      c.g. MkIface.coreRuleToIfaceRule
344     }
345
346   -- | Built-in rules are used for constant folding
347   -- and suchlike.  They have no free variables.
348   | BuiltinRule {               
349         ru_name  :: RuleName,   -- ^ As above
350         ru_fn    :: Name,       -- ^ As above
351         ru_nargs :: Int,        -- ^ Number of arguments that 'ru_try' consumes,
352                                 -- if it fires, including type arguments
353         ru_try  :: IdUnfoldingFun -> [CoreExpr] -> Maybe CoreExpr
354                 -- ^ This function does the rewrite.  It given too many
355                 -- arguments, it simply discards them; the returned 'CoreExpr'
356                 -- is just the rewrite of 'ru_fn' applied to the first 'ru_nargs' args
357     }
358                 -- See Note [Extra args in rule matching] in Rules.lhs
359
360 type IdUnfoldingFun = Id -> Unfolding
361 -- A function that embodies how to unfold an Id if you need
362 -- to do that in the Rule.  The reason we need to pass this info in
363 -- is that whether an Id is unfoldable depends on the simplifier phase
364
365 isBuiltinRule :: CoreRule -> Bool
366 isBuiltinRule (BuiltinRule {}) = True
367 isBuiltinRule _                = False
368
369 -- | The number of arguments the 'ru_fn' must be applied 
370 -- to before the rule can match on it
371 ruleArity :: CoreRule -> Int
372 ruleArity (BuiltinRule {ru_nargs = n}) = n
373 ruleArity (Rule {ru_args = args})      = length args
374
375 ruleName :: CoreRule -> RuleName
376 ruleName = ru_name
377
378 ruleActivation_maybe :: CoreRule -> Maybe Activation
379 ruleActivation_maybe (BuiltinRule { })       = Nothing
380 ruleActivation_maybe (Rule { ru_act = act }) = Just act
381
382 -- | The 'Name' of the 'Id.Id' at the head of the rule left hand side
383 ruleIdName :: CoreRule -> Name
384 ruleIdName = ru_fn
385
386 isLocalRule :: CoreRule -> Bool
387 isLocalRule = ru_local
388
389 -- | Set the 'Name' of the 'Id.Id' at the head of the rule left hand side
390 setRuleIdName :: Name -> CoreRule -> CoreRule
391 setRuleIdName nm ru = ru { ru_fn = nm }
392 \end{code}
393
394
395 %************************************************************************
396 %*                                                                      *
397                 Unfoldings
398 %*                                                                      *
399 %************************************************************************
400
401 The @Unfolding@ type is declared here to avoid numerous loops
402
403 \begin{code}
404 -- | Records the /unfolding/ of an identifier, which is approximately the form the
405 -- identifier would have if we substituted its definition in for the identifier.
406 -- This type should be treated as abstract everywhere except in "CoreUnfold"
407 data Unfolding
408   = NoUnfolding        -- ^ We have no information about the unfolding
409
410   | OtherCon [AltCon]  -- ^ It ain't one of these constructors.
411                        -- @OtherCon xs@ also indicates that something has been evaluated
412                        -- and hence there's no point in re-evaluating it.
413                        -- @OtherCon []@ is used even for non-data-type values
414                        -- to indicated evaluated-ness.  Notably:
415                        --
416                        -- > data C = C !(Int -> Int)
417                        -- > case x of { C f -> ... }
418                        --
419                        -- Here, @f@ gets an @OtherCon []@ unfolding.
420
421   | DFunUnfolding       -- The Unfolding of a DFunId  
422                         -- See Note [DFun unfoldings]
423                         --     df = /\a1..am. \d1..dn. MkD (op1 a1..am d1..dn)
424                         --                                 (op2 a1..am d1..dn)
425
426         Arity           -- Arity = m+n, the *total* number of args 
427                         --   (unusually, both type and value) to the dfun
428
429         DataCon         -- The dictionary data constructor (possibly a newtype datacon)
430
431         [CoreExpr]      -- The [CoreExpr] are the superclasses and methods [op1,op2], 
432                         -- in positional order.
433                         -- They are usually variables, but can be trivial expressions
434                         -- instead (e.g. a type application).  
435
436   | CoreUnfolding {             -- An unfolding for an Id with no pragma, or perhaps a NOINLINE pragma
437                                 -- (For NOINLINE, the phase, if any, is in the InlinePragInfo for this Id.)
438         uf_tmpl       :: CoreExpr,        -- Template; occurrence info is correct
439         uf_src        :: UnfoldingSource, -- Where the unfolding came from
440         uf_is_top     :: Bool,          -- True <=> top level binding
441         uf_arity      :: Arity,         -- Number of value arguments expected
442         uf_is_value   :: Bool,          -- exprIsHNF template (cached); it is ok to discard a `seq` on
443                                         --      this variable
444         uf_is_conlike :: Bool,          -- True <=> application of constructor or CONLIKE function
445                                         --      Cached version of exprIsConLike
446         uf_is_cheap   :: Bool,          -- True <=> doesn't waste (much) work to expand inside an inlining
447                                         --      Cached version of exprIsCheap
448         uf_expandable :: Bool,          -- True <=> can expand in RULE matching
449                                         --      Cached version of exprIsExpandable
450         uf_guidance   :: UnfoldingGuidance      -- Tells about the *size* of the template.
451     }
452   -- ^ An unfolding with redundant cached information. Parameters:
453   --
454   --  uf_tmpl: Template used to perform unfolding; 
455   --           NB: Occurrence info is guaranteed correct: 
456   --               see Note [OccInfo in unfoldings and rules]
457   --
458   --  uf_is_top: Is this a top level binding?
459   --
460   --  uf_is_value: 'exprIsHNF' template (cached); it is ok to discard a 'seq' on
461   --     this variable
462   --
463   --  uf_is_cheap:  Does this waste only a little work if we expand it inside an inlining?
464   --     Basically this is a cached version of 'exprIsCheap'
465   --
466   --  uf_guidance:  Tells us about the /size/ of the unfolding template
467
468 ------------------------------------------------
469 data UnfoldingSource 
470   = InlineCompulsory   -- Something that *has* no binding, so you *must* inline it
471                        -- Only a few primop-like things have this property 
472                        -- (see MkId.lhs, calls to mkCompulsoryUnfolding).
473                        -- Inline absolutely always, however boring the context.
474
475   | InlineRule         -- From an {-# INLINE #-} pragma; See Note [InlineRules]
476
477   | InlineWrapper Id   -- This unfolding is a the wrapper in a 
478                        --     worker/wrapper split from the strictness analyser
479                        -- The Id is the worker-id
480                        -- Used to abbreviate the uf_tmpl in interface files
481                        --       which don't need to contain the RHS; 
482                        --       it can be derived from the strictness info
483
484   | InlineRhs          -- The current rhs of the function
485
486    -- For InlineRhs, the uf_tmpl is replaced each time around
487    -- For all the others we leave uf_tmpl alone
488
489
490 -- | 'UnfoldingGuidance' says when unfolding should take place
491 data UnfoldingGuidance
492   = UnfWhen {   -- Inline without thinking about the *size* of the uf_tmpl
493                 -- Used (a) for small *and* cheap unfoldings
494                 --      (b) for INLINE functions 
495                 -- See Note [INLINE for small functions] in CoreUnfold
496       ug_unsat_ok  :: Bool,     -- True <=> ok to inline even if unsaturated
497       ug_boring_ok :: Bool      -- True <=> ok to inline even if the context is boring
498                 -- So True,True means "always"
499     }
500
501   | UnfIfGoodArgs {     -- Arose from a normal Id; the info here is the
502                         -- result of a simple analysis of the RHS
503
504       ug_args ::  [Int],  -- Discount if the argument is evaluated.
505                           -- (i.e., a simplification will definitely
506                           -- be possible).  One elt of the list per *value* arg.
507
508       ug_size :: Int,     -- The "size" of the unfolding.
509
510       ug_res :: Int       -- Scrutinee discount: the discount to substract if the thing is in
511     }                     -- a context (case (thing args) of ...),
512                           -- (where there are the right number of arguments.)
513
514   | UnfNever        -- The RHS is big, so don't inline it
515 \end{code}
516
517
518 Note [DFun unfoldings]
519 ~~~~~~~~~~~~~~~~~~~~~~
520 The Arity in a DFunUnfolding is total number of args (type and value)
521 that the DFun needs to produce a dictionary.  That's not necessarily 
522 related to the ordinary arity of the dfun Id, esp if the class has
523 one method, so the dictionary is represented by a newtype.  Example
524
525      class C a where { op :: a -> Int }
526      instance C a -> C [a] where op xs = op (head xs)
527
528 The instance translates to
529
530      $dfCList :: forall a. C a => C [a]  -- Arity 2!
531      $dfCList = /\a.\d. $copList {a} d |> co
532  
533      $copList :: forall a. C a => [a] -> Int  -- Arity 2!
534      $copList = /\a.\d.\xs. op {a} d (head xs)
535
536 Now we might encounter (op (dfCList {ty} d) a1 a2)
537 and we want the (op (dfList {ty} d)) rule to fire, because $dfCList
538 has all its arguments, even though its (value) arity is 2.  That's
539 why we cache the number of expected 
540
541
542 \begin{code}
543 -- Constants for the UnfWhen constructor
544 needSaturated, unSaturatedOk :: Bool
545 needSaturated = False
546 unSaturatedOk = True
547
548 boringCxtNotOk, boringCxtOk :: Bool
549 boringCxtOk    = True
550 boringCxtNotOk = False
551
552 ------------------------------------------------
553 noUnfolding :: Unfolding
554 -- ^ There is no known 'Unfolding'
555 evaldUnfolding :: Unfolding
556 -- ^ This unfolding marks the associated thing as being evaluated
557
558 noUnfolding    = NoUnfolding
559 evaldUnfolding = OtherCon []
560
561 mkOtherCon :: [AltCon] -> Unfolding
562 mkOtherCon = OtherCon
563
564 seqUnfolding :: Unfolding -> ()
565 seqUnfolding (CoreUnfolding { uf_tmpl = e, uf_is_top = top, 
566                 uf_is_value = b1, uf_is_cheap = b2, 
567                 uf_expandable = b3, uf_is_conlike = b4,
568                 uf_arity = a, uf_guidance = g})
569   = seqExpr e `seq` top `seq` b1 `seq` a `seq` b2 `seq` b3 `seq` b4 `seq` seqGuidance g
570
571 seqUnfolding _ = ()
572
573 seqGuidance :: UnfoldingGuidance -> ()
574 seqGuidance (UnfIfGoodArgs ns n b) = n `seq` sum ns `seq` b `seq` ()
575 seqGuidance _                      = ()
576 \end{code}
577
578 \begin{code}
579 isInlineRuleSource :: UnfoldingSource -> Bool
580 isInlineRuleSource InlineCompulsory   = True
581 isInlineRuleSource InlineRule         = True
582 isInlineRuleSource (InlineWrapper {}) = True
583 isInlineRuleSource InlineRhs          = False
584  
585 -- | Retrieves the template of an unfolding: panics if none is known
586 unfoldingTemplate :: Unfolding -> CoreExpr
587 unfoldingTemplate = uf_tmpl
588
589 setUnfoldingTemplate :: Unfolding -> CoreExpr -> Unfolding
590 setUnfoldingTemplate unf rhs = unf { uf_tmpl = rhs }
591
592 -- | Retrieves the template of an unfolding if possible
593 maybeUnfoldingTemplate :: Unfolding -> Maybe CoreExpr
594 maybeUnfoldingTemplate (CoreUnfolding { uf_tmpl = expr })       = Just expr
595 maybeUnfoldingTemplate _                                        = Nothing
596
597 -- | The constructors that the unfolding could never be: 
598 -- returns @[]@ if no information is available
599 otherCons :: Unfolding -> [AltCon]
600 otherCons (OtherCon cons) = cons
601 otherCons _               = []
602
603 -- | Determines if it is certainly the case that the unfolding will
604 -- yield a value (something in HNF): returns @False@ if unsure
605 isValueUnfolding :: Unfolding -> Bool
606         -- Returns False for OtherCon
607 isValueUnfolding (CoreUnfolding { uf_is_value = is_evald }) = is_evald
608 isValueUnfolding _                                          = False
609
610 -- | Determines if it possibly the case that the unfolding will
611 -- yield a value. Unlike 'isValueUnfolding' it returns @True@
612 -- for 'OtherCon'
613 isEvaldUnfolding :: Unfolding -> Bool
614         -- Returns True for OtherCon
615 isEvaldUnfolding (OtherCon _)                               = True
616 isEvaldUnfolding (CoreUnfolding { uf_is_value = is_evald }) = is_evald
617 isEvaldUnfolding _                                          = False
618
619 -- | @True@ if the unfolding is a constructor application, the application
620 -- of a CONLIKE function or 'OtherCon'
621 isConLikeUnfolding :: Unfolding -> Bool
622 isConLikeUnfolding (OtherCon _)                             = True
623 isConLikeUnfolding (CoreUnfolding { uf_is_conlike = con })  = con
624 isConLikeUnfolding _                                        = False
625
626 -- | Is the thing we will unfold into certainly cheap?
627 isCheapUnfolding :: Unfolding -> Bool
628 isCheapUnfolding (CoreUnfolding { uf_is_cheap = is_cheap }) = is_cheap
629 isCheapUnfolding _                                          = False
630
631 isExpandableUnfolding :: Unfolding -> Bool
632 isExpandableUnfolding (CoreUnfolding { uf_expandable = is_expable }) = is_expable
633 isExpandableUnfolding _                                              = False
634
635 expandUnfolding_maybe :: Unfolding -> Maybe CoreExpr
636 -- Expand an expandable unfolding; this is used in rule matching 
637 --   See Note [Expanding variables] in Rules.lhs
638 -- The key point here is that CONLIKE things can be expanded
639 expandUnfolding_maybe (CoreUnfolding { uf_expandable = True, uf_tmpl = rhs }) = Just rhs
640 expandUnfolding_maybe _                                                       = Nothing
641
642 isInlineRule :: Unfolding -> Bool
643 isInlineRule (CoreUnfolding { uf_src = src }) = isInlineRuleSource src
644 isInlineRule _                                = False
645
646 isInlineRule_maybe :: Unfolding -> Maybe (UnfoldingSource, Bool)
647 isInlineRule_maybe (CoreUnfolding { uf_src = src, uf_guidance = guide }) 
648    | isInlineRuleSource src
649    = Just (src, unsat_ok)
650    where
651      unsat_ok = case guide of
652                   UnfWhen unsat_ok _ -> unsat_ok
653                   _                  -> needSaturated
654 isInlineRule_maybe _ = Nothing
655
656 isCompulsoryUnfolding :: Unfolding -> Bool
657 isCompulsoryUnfolding (CoreUnfolding { uf_src = InlineCompulsory }) = True
658 isCompulsoryUnfolding _                                             = False
659
660 isStableUnfolding :: Unfolding -> Bool
661 -- True of unfoldings that should not be overwritten 
662 -- by a CoreUnfolding for the RHS of a let-binding
663 isStableUnfolding (CoreUnfolding { uf_src = src }) = isInlineRuleSource src
664 isStableUnfolding (DFunUnfolding {})               = True
665 isStableUnfolding _                                = False
666
667 unfoldingArity :: Unfolding -> Arity
668 unfoldingArity (CoreUnfolding { uf_arity = arity }) = arity
669 unfoldingArity _                                    = panic "unfoldingArity"
670
671 isClosedUnfolding :: Unfolding -> Bool          -- No free variables
672 isClosedUnfolding (CoreUnfolding {}) = False
673 isClosedUnfolding (DFunUnfolding {}) = False
674 isClosedUnfolding _                  = True
675
676 -- | Only returns False if there is no unfolding information available at all
677 hasSomeUnfolding :: Unfolding -> Bool
678 hasSomeUnfolding NoUnfolding = False
679 hasSomeUnfolding _           = True
680
681 neverUnfoldGuidance :: UnfoldingGuidance -> Bool
682 neverUnfoldGuidance UnfNever = True
683 neverUnfoldGuidance _        = False
684
685 canUnfold :: Unfolding -> Bool
686 canUnfold (CoreUnfolding { uf_guidance = g }) = not (neverUnfoldGuidance g)
687 canUnfold _                                   = False
688 \end{code}
689
690 Note [InlineRules]
691 ~~~~~~~~~~~~~~~~~
692 When you say 
693       {-# INLINE f #-}
694       f x = <rhs>
695 you intend that calls (f e) are replaced by <rhs>[e/x] So we
696 should capture (\x.<rhs>) in the Unfolding of 'f', and never meddle
697 with it.  Meanwhile, we can optimise <rhs> to our heart's content,
698 leaving the original unfolding intact in Unfolding of 'f'. For example
699         all xs = foldr (&&) True xs
700         any p = all . map p  {-# INLINE any #-}
701 We optimise any's RHS fully, but leave the InlineRule saying "all . map p",
702 which deforests well at the call site.
703
704 So INLINE pragma gives rise to an InlineRule, which captures the original RHS.
705
706 Moreover, it's only used when 'f' is applied to the
707 specified number of arguments; that is, the number of argument on 
708 the LHS of the '=' sign in the original source definition. 
709 For example, (.) is now defined in the libraries like this
710    {-# INLINE (.) #-}
711    (.) f g = \x -> f (g x)
712 so that it'll inline when applied to two arguments. If 'x' appeared
713 on the left, thus
714    (.) f g x = f (g x)
715 it'd only inline when applied to three arguments.  This slightly-experimental
716 change was requested by Roman, but it seems to make sense.
717
718 See also Note [Inlining an InlineRule] in CoreUnfold.
719
720
721 Note [OccInfo in unfoldings and rules]
722 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
723 In unfoldings and rules, we guarantee that the template is occ-analysed,
724 so that the occurence info on the binders is correct.  This is important,
725 because the Simplifier does not re-analyse the template when using it. If
726 the occurrence info is wrong
727   - We may get more simpifier iterations than necessary, because
728     once-occ info isn't there
729   - More seriously, we may get an infinite loop if there's a Rec
730     without a loop breaker marked
731
732
733 %************************************************************************
734 %*                                                                      *
735 \subsection{The main data type}
736 %*                                                                      *
737 %************************************************************************
738
739 \begin{code}
740 -- The Ord is needed for the FiniteMap used in the lookForConstructor
741 -- in SimplEnv.  If you declared that lookForConstructor *ignores*
742 -- constructor-applications with LitArg args, then you could get
743 -- rid of this Ord.
744
745 instance Outputable AltCon where
746   ppr (DataAlt dc) = ppr dc
747   ppr (LitAlt lit) = ppr lit
748   ppr DEFAULT      = ptext (sLit "__DEFAULT")
749
750 instance Show AltCon where
751   showsPrec p con = showsPrecSDoc p (ppr con)
752
753 cmpAlt :: Alt b -> Alt b -> Ordering
754 cmpAlt (con1, _, _) (con2, _, _) = con1 `cmpAltCon` con2
755
756 ltAlt :: Alt b -> Alt b -> Bool
757 ltAlt a1 a2 = (a1 `cmpAlt` a2) == LT
758
759 cmpAltCon :: AltCon -> AltCon -> Ordering
760 -- ^ Compares 'AltCon's within a single list of alternatives
761 cmpAltCon DEFAULT      DEFAULT     = EQ
762 cmpAltCon DEFAULT      _           = LT
763
764 cmpAltCon (DataAlt d1) (DataAlt d2) = dataConTag d1 `compare` dataConTag d2
765 cmpAltCon (DataAlt _)  DEFAULT      = GT
766 cmpAltCon (LitAlt  l1) (LitAlt  l2) = l1 `compare` l2
767 cmpAltCon (LitAlt _)   DEFAULT      = GT
768
769 cmpAltCon con1 con2 = WARN( True, text "Comparing incomparable AltCons" <+> 
770                                   ppr con1 <+> ppr con2 )
771                       LT
772 \end{code}
773
774 %************************************************************************
775 %*                                                                      *
776 \subsection{Useful synonyms}
777 %*                                                                      *
778 %************************************************************************
779
780 \begin{code}
781 -- | The common case for the type of binders and variables when
782 -- we are manipulating the Core language within GHC
783 type CoreBndr = Var
784 -- | Expressions where binders are 'CoreBndr's
785 type CoreExpr = Expr CoreBndr
786 -- | Argument expressions where binders are 'CoreBndr's
787 type CoreArg  = Arg  CoreBndr
788 -- | Binding groups where binders are 'CoreBndr's
789 type CoreBind = Bind CoreBndr
790 -- | Case alternatives where binders are 'CoreBndr's
791 type CoreAlt  = Alt  CoreBndr
792 \end{code}
793
794 %************************************************************************
795 %*                                                                      *
796 \subsection{Tagging}
797 %*                                                                      *
798 %************************************************************************
799
800 \begin{code}
801 -- | Binders are /tagged/ with a t
802 data TaggedBndr t = TB CoreBndr t       -- TB for "tagged binder"
803
804 type TaggedBind t = Bind (TaggedBndr t)
805 type TaggedExpr t = Expr (TaggedBndr t)
806 type TaggedArg  t = Arg  (TaggedBndr t)
807 type TaggedAlt  t = Alt  (TaggedBndr t)
808
809 instance Outputable b => Outputable (TaggedBndr b) where
810   ppr (TB b l) = char '<' <> ppr b <> comma <> ppr l <> char '>'
811
812 instance Outputable b => OutputableBndr (TaggedBndr b) where
813   pprBndr _ b = ppr b   -- Simple
814 \end{code}
815
816
817 %************************************************************************
818 %*                                                                      *
819 \subsection{Core-constructing functions with checking}
820 %*                                                                      *
821 %************************************************************************
822
823 \begin{code}
824 -- | Apply a list of argument expressions to a function expression in a nested fashion. Prefer to
825 -- use 'CoreUtils.mkCoreApps' if possible
826 mkApps    :: Expr b -> [Arg b]  -> Expr b
827 -- | Apply a list of type argument expressions to a function expression in a nested fashion
828 mkTyApps  :: Expr b -> [Type]   -> Expr b
829 -- | Apply a list of type or value variables to a function expression in a nested fashion
830 mkVarApps :: Expr b -> [Var] -> Expr b
831 -- | Apply a list of argument expressions to a data constructor in a nested fashion. Prefer to
832 -- use 'MkCore.mkCoreConApps' if possible
833 mkConApp      :: DataCon -> [Arg b] -> Expr b
834
835 mkApps    f args = foldl App                       f args
836 mkTyApps  f args = foldl (\ e a -> App e (Type a)) f args
837 mkVarApps f vars = foldl (\ e a -> App e (varToCoreExpr a)) f vars
838 mkConApp con args = mkApps (Var (dataConWorkId con)) args
839
840
841 -- | Create a machine integer literal expression of type @Int#@ from an @Integer@.
842 -- If you want an expression of type @Int@ use 'MkCore.mkIntExpr'
843 mkIntLit      :: Integer -> Expr b
844 -- | Create a machine integer literal expression of type @Int#@ from an @Int@.
845 -- If you want an expression of type @Int@ use 'MkCore.mkIntExpr'
846 mkIntLitInt   :: Int     -> Expr b
847
848 mkIntLit    n = Lit (mkMachInt n)
849 mkIntLitInt n = Lit (mkMachInt (toInteger n))
850
851 -- | Create a machine word literal expression of type  @Word#@ from an @Integer@.
852 -- If you want an expression of type @Word@ use 'MkCore.mkWordExpr'
853 mkWordLit     :: Integer -> Expr b
854 -- | Create a machine word literal expression of type  @Word#@ from a @Word@.
855 -- If you want an expression of type @Word@ use 'MkCore.mkWordExpr'
856 mkWordLitWord :: Word -> Expr b
857
858 mkWordLit     w = Lit (mkMachWord w)
859 mkWordLitWord w = Lit (mkMachWord (toInteger w))
860
861 -- | Create a machine character literal expression of type @Char#@.
862 -- If you want an expression of type @Char@ use 'MkCore.mkCharExpr'
863 mkCharLit :: Char -> Expr b
864 -- | Create a machine string literal expression of type @Addr#@.
865 -- If you want an expression of type @String@ use 'MkCore.mkStringExpr'
866 mkStringLit :: String -> Expr b
867
868 mkCharLit   c = Lit (mkMachChar c)
869 mkStringLit s = Lit (mkMachString s)
870
871 -- | Create a machine single precision literal expression of type @Float#@ from a @Rational@.
872 -- If you want an expression of type @Float@ use 'MkCore.mkFloatExpr'
873 mkFloatLit :: Rational -> Expr b
874 -- | Create a machine single precision literal expression of type @Float#@ from a @Float@.
875 -- If you want an expression of type @Float@ use 'MkCore.mkFloatExpr'
876 mkFloatLitFloat :: Float -> Expr b
877
878 mkFloatLit      f = Lit (mkMachFloat f)
879 mkFloatLitFloat f = Lit (mkMachFloat (toRational f))
880
881 -- | Create a machine double precision literal expression of type @Double#@ from a @Rational@.
882 -- If you want an expression of type @Double@ use 'MkCore.mkDoubleExpr'
883 mkDoubleLit :: Rational -> Expr b
884 -- | Create a machine double precision literal expression of type @Double#@ from a @Double@.
885 -- If you want an expression of type @Double@ use 'MkCore.mkDoubleExpr'
886 mkDoubleLitDouble :: Double -> Expr b
887
888 mkDoubleLit       d = Lit (mkMachDouble d)
889 mkDoubleLitDouble d = Lit (mkMachDouble (toRational d))
890
891 -- | Bind all supplied binding groups over an expression in a nested let expression. Prefer to
892 -- use 'CoreUtils.mkCoreLets' if possible
893 mkLets        :: [Bind b] -> Expr b -> Expr b
894 -- | Bind all supplied binders over an expression in a nested lambda expression. Prefer to
895 -- use 'CoreUtils.mkCoreLams' if possible
896 mkLams        :: [b] -> Expr b -> Expr b
897
898 mkLams binders body = foldr Lam body binders
899 mkLets binds body   = foldr Let body binds
900
901
902 -- | Create a binding group where a type variable is bound to a type. Per "CoreSyn#type_let",
903 -- this can only be used to bind something in a non-recursive @let@ expression
904 mkTyBind :: TyVar -> Type -> CoreBind
905 mkTyBind tv ty      = NonRec tv (Type ty)
906
907 -- | Convert a binder into either a 'Var' or 'Type' 'Expr' appropriately
908 varToCoreExpr :: CoreBndr -> Expr b
909 varToCoreExpr v | isId v = Var v
910                 | otherwise = Type (mkTyVarTy v)
911
912 varsToCoreExprs :: [CoreBndr] -> [Expr b]
913 varsToCoreExprs vs = map varToCoreExpr vs
914 \end{code}
915
916
917 %************************************************************************
918 %*                                                                      *
919 \subsection{Simple access functions}
920 %*                                                                      *
921 %************************************************************************
922
923 \begin{code}
924 -- | Extract every variable by this group
925 bindersOf  :: Bind b -> [b]
926 bindersOf (NonRec binder _) = [binder]
927 bindersOf (Rec pairs)       = [binder | (binder, _) <- pairs]
928
929 -- | 'bindersOf' applied to a list of binding groups
930 bindersOfBinds :: [Bind b] -> [b]
931 bindersOfBinds binds = foldr ((++) . bindersOf) [] binds
932
933 rhssOfBind :: Bind b -> [Expr b]
934 rhssOfBind (NonRec _ rhs) = [rhs]
935 rhssOfBind (Rec pairs)    = [rhs | (_,rhs) <- pairs]
936
937 rhssOfAlts :: [Alt b] -> [Expr b]
938 rhssOfAlts alts = [e | (_,_,e) <- alts]
939
940 -- | Collapse all the bindings in the supplied groups into a single
941 -- list of lhs\/rhs pairs suitable for binding in a 'Rec' binding group
942 flattenBinds :: [Bind b] -> [(b, Expr b)]
943 flattenBinds (NonRec b r : binds) = (b,r) : flattenBinds binds
944 flattenBinds (Rec prs1   : binds) = prs1 ++ flattenBinds binds
945 flattenBinds []                   = []
946 \end{code}
947
948 \begin{code}
949 -- | We often want to strip off leading lambdas before getting down to
950 -- business. This function is your friend.
951 collectBinders               :: Expr b -> ([b],         Expr b)
952 -- | Collect as many type bindings as possible from the front of a nested lambda
953 collectTyBinders             :: CoreExpr -> ([TyVar],     CoreExpr)
954 -- | Collect as many value bindings as possible from the front of a nested lambda
955 collectValBinders            :: CoreExpr -> ([Id],        CoreExpr)
956 -- | Collect type binders from the front of the lambda first, 
957 -- then follow up by collecting as many value bindings as possible
958 -- from the resulting stripped expression
959 collectTyAndValBinders       :: CoreExpr -> ([TyVar], [Id], CoreExpr)
960
961 collectBinders expr
962   = go [] expr
963   where
964     go bs (Lam b e) = go (b:bs) e
965     go bs e          = (reverse bs, e)
966
967 collectTyAndValBinders expr
968   = (tvs, ids, body)
969   where
970     (tvs, body1) = collectTyBinders expr
971     (ids, body)  = collectValBinders body1
972
973 collectTyBinders expr
974   = go [] expr
975   where
976     go tvs (Lam b e) | isTyCoVar b = go (b:tvs) e
977     go tvs e                     = (reverse tvs, e)
978
979 collectValBinders expr
980   = go [] expr
981   where
982     go ids (Lam b e) | isId b = go (b:ids) e
983     go ids body               = (reverse ids, body)
984 \end{code}
985
986 \begin{code}
987 -- | Takes a nested application expression and returns the the function
988 -- being applied and the arguments to which it is applied
989 collectArgs :: Expr b -> (Expr b, [Arg b])
990 collectArgs expr
991   = go expr []
992   where
993     go (App f a) as = go f (a:as)
994     go e         as = (e, as)
995 \end{code}
996
997 \begin{code}
998 -- | Gets the cost centre enclosing an expression, if any.
999 -- It looks inside lambdas because @(scc \"foo\" \\x.e) = \\x. scc \"foo\" e@
1000 coreExprCc :: Expr b -> CostCentre
1001 coreExprCc (Note (SCC cc) _)   = cc
1002 coreExprCc (Note _ e)          = coreExprCc e
1003 coreExprCc (Lam _ e)           = coreExprCc e
1004 coreExprCc _                   = noCostCentre
1005 \end{code}
1006
1007 %************************************************************************
1008 %*                                                                      *
1009 \subsection{Predicates}
1010 %*                                                                      *
1011 %************************************************************************
1012
1013 At one time we optionally carried type arguments through to runtime.
1014 @isRuntimeVar v@ returns if (Lam v _) really becomes a lambda at runtime,
1015 i.e. if type applications are actual lambdas because types are kept around
1016 at runtime.  Similarly isRuntimeArg.  
1017
1018 \begin{code}
1019 -- | Will this variable exist at runtime?
1020 isRuntimeVar :: Var -> Bool
1021 isRuntimeVar = isId 
1022
1023 -- | Will this argument expression exist at runtime?
1024 isRuntimeArg :: CoreExpr -> Bool
1025 isRuntimeArg = isValArg
1026
1027 -- | Returns @False@ iff the expression is a 'Type' expression at its top level
1028 isValArg :: Expr b -> Bool
1029 isValArg (Type _) = False
1030 isValArg _        = True
1031
1032 -- | Returns @True@ iff the expression is a 'Type' expression at its top level
1033 isTypeArg :: Expr b -> Bool
1034 isTypeArg (Type _) = True
1035 isTypeArg _        = False
1036
1037 -- | The number of binders that bind values rather than types
1038 valBndrCount :: [CoreBndr] -> Int
1039 valBndrCount = count isId
1040
1041 -- | The number of argument expressions that are values rather than types at their top level
1042 valArgCount :: [Arg b] -> Int
1043 valArgCount = count isValArg
1044 \end{code}
1045
1046
1047 %************************************************************************
1048 %*                                                                      *
1049 \subsection{Seq stuff}
1050 %*                                                                      *
1051 %************************************************************************
1052
1053 \begin{code}
1054 seqExpr :: CoreExpr -> ()
1055 seqExpr (Var v)         = v `seq` ()
1056 seqExpr (Lit lit)       = lit `seq` ()
1057 seqExpr (App f a)       = seqExpr f `seq` seqExpr a
1058 seqExpr (Lam b e)       = seqBndr b `seq` seqExpr e
1059 seqExpr (Let b e)       = seqBind b `seq` seqExpr e
1060 seqExpr (Case e b t as) = seqExpr e `seq` seqBndr b `seq` seqType t `seq` seqAlts as
1061 seqExpr (Cast e co)     = seqExpr e `seq` seqType co
1062 seqExpr (Note n e)      = seqNote n `seq` seqExpr e
1063 seqExpr (Type t)        = seqType t
1064
1065 seqExprs :: [CoreExpr] -> ()
1066 seqExprs [] = ()
1067 seqExprs (e:es) = seqExpr e `seq` seqExprs es
1068
1069 seqNote :: Note -> ()
1070 seqNote (CoreNote s)   = s `seq` ()
1071 seqNote _              = ()
1072
1073 seqBndr :: CoreBndr -> ()
1074 seqBndr b = b `seq` ()
1075
1076 seqBndrs :: [CoreBndr] -> ()
1077 seqBndrs [] = ()
1078 seqBndrs (b:bs) = seqBndr b `seq` seqBndrs bs
1079
1080 seqBind :: Bind CoreBndr -> ()
1081 seqBind (NonRec b e) = seqBndr b `seq` seqExpr e
1082 seqBind (Rec prs)    = seqPairs prs
1083
1084 seqPairs :: [(CoreBndr, CoreExpr)] -> ()
1085 seqPairs [] = ()
1086 seqPairs ((b,e):prs) = seqBndr b `seq` seqExpr e `seq` seqPairs prs
1087
1088 seqAlts :: [CoreAlt] -> ()
1089 seqAlts [] = ()
1090 seqAlts ((c,bs,e):alts) = c `seq` seqBndrs bs `seq` seqExpr e `seq` seqAlts alts
1091
1092 seqRules :: [CoreRule] -> ()
1093 seqRules [] = ()
1094 seqRules (Rule { ru_bndrs = bndrs, ru_args = args, ru_rhs = rhs } : rules) 
1095   = seqBndrs bndrs `seq` seqExprs (rhs:args) `seq` seqRules rules
1096 seqRules (BuiltinRule {} : rules) = seqRules rules
1097 \end{code}
1098
1099 %************************************************************************
1100 %*                                                                      *
1101 \subsection{Annotated core}
1102 %*                                                                      *
1103 %************************************************************************
1104
1105 \begin{code}
1106 -- | Annotated core: allows annotation at every node in the tree
1107 type AnnExpr bndr annot = (annot, AnnExpr' bndr annot)
1108
1109 -- | A clone of the 'Expr' type but allowing annotation at every tree node
1110 data AnnExpr' bndr annot
1111   = AnnVar      Id
1112   | AnnLit      Literal
1113   | AnnLam      bndr (AnnExpr bndr annot)
1114   | AnnApp      (AnnExpr bndr annot) (AnnExpr bndr annot)
1115   | AnnCase     (AnnExpr bndr annot) bndr Type [AnnAlt bndr annot]
1116   | AnnLet      (AnnBind bndr annot) (AnnExpr bndr annot)
1117   | AnnCast     (AnnExpr bndr annot) Coercion
1118   | AnnNote     Note (AnnExpr bndr annot)
1119   | AnnType     Type
1120
1121 -- | A clone of the 'Alt' type but allowing annotation at every tree node
1122 type AnnAlt bndr annot = (AltCon, [bndr], AnnExpr bndr annot)
1123
1124 -- | A clone of the 'Bind' type but allowing annotation at every tree node
1125 data AnnBind bndr annot
1126   = AnnNonRec bndr (AnnExpr bndr annot)
1127   | AnnRec    [(bndr, AnnExpr bndr annot)]
1128 \end{code}
1129
1130 \begin{code}
1131 deAnnotate :: AnnExpr bndr annot -> Expr bndr
1132 deAnnotate (_, e) = deAnnotate' e
1133
1134 deAnnotate' :: AnnExpr' bndr annot -> Expr bndr
1135 deAnnotate' (AnnType t)           = Type t
1136 deAnnotate' (AnnVar  v)           = Var v
1137 deAnnotate' (AnnLit  lit)         = Lit lit
1138 deAnnotate' (AnnLam  binder body) = Lam binder (deAnnotate body)
1139 deAnnotate' (AnnApp  fun arg)     = App (deAnnotate fun) (deAnnotate arg)
1140 deAnnotate' (AnnCast e co)        = Cast (deAnnotate e) co
1141 deAnnotate' (AnnNote note body)   = Note note (deAnnotate body)
1142
1143 deAnnotate' (AnnLet bind body)
1144   = Let (deAnnBind bind) (deAnnotate body)
1145   where
1146     deAnnBind (AnnNonRec var rhs) = NonRec var (deAnnotate rhs)
1147     deAnnBind (AnnRec pairs) = Rec [(v,deAnnotate rhs) | (v,rhs) <- pairs]
1148
1149 deAnnotate' (AnnCase scrut v t alts)
1150   = Case (deAnnotate scrut) v t (map deAnnAlt alts)
1151
1152 deAnnAlt :: AnnAlt bndr annot -> Alt bndr
1153 deAnnAlt (con,args,rhs) = (con,args,deAnnotate rhs)
1154 \end{code}
1155
1156 \begin{code}
1157 -- | As 'collectBinders' but for 'AnnExpr' rather than 'Expr'
1158 collectAnnBndrs :: AnnExpr bndr annot -> ([bndr], AnnExpr bndr annot)
1159 collectAnnBndrs e
1160   = collect [] e
1161   where
1162     collect bs (_, AnnLam b body) = collect (b:bs) body
1163     collect bs body               = (reverse bs, body)
1164 \end{code}