e732f010311615567d9ca4fbb880474033bbd1b3
[ghc-hetmet.git] / ghc / compiler / typecheck / TcBinds.lhs
1 %
2 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
3 %
4 \section[TcBinds]{TcBinds}
5
6 \begin{code}
7 module TcBinds ( tcLocalBinds, tcTopBinds, 
8                  tcHsBootSigs, tcMonoBinds, 
9                  TcPragFun, tcSpecPrag, tcPrags, mkPragFun,
10                  TcSigInfo(..),
11                  badBootDeclErr ) where
12
13 #include "HsVersions.h"
14
15 import {-# SOURCE #-} TcMatches ( tcGRHSsPat, tcMatchesFun )
16 import {-# SOURCE #-} TcExpr  ( tcMonoExpr )
17
18 import DynFlags         ( DynFlag(Opt_MonomorphismRestriction, Opt_GlasgowExts) )
19 import HsSyn            ( HsExpr(..), HsBind(..), LHsBinds, LHsBind, Sig(..),
20                           HsLocalBinds(..), HsValBinds(..), HsIPBinds(..),
21                           LSig, Match(..), IPBind(..), Prag(..),
22                           HsType(..), LHsType, HsExplicitForAll(..), hsLTyVarNames, 
23                           isVanillaLSig, sigName, placeHolderNames, isPragLSig,
24                           LPat, GRHSs, MatchGroup(..), pprLHsBinds, mkHsCoerce,
25                           collectHsBindBinders, collectPatBinders, pprPatBind
26                         )
27 import TcHsSyn          ( zonkId )
28
29 import TcRnMonad
30 import Inst             ( newDictsAtLoc, newIPDict, instToId )
31 import TcEnv            ( tcExtendIdEnv, tcExtendIdEnv2, tcExtendTyVarEnv2, 
32                           pprBinders, tcLookupLocalId_maybe, tcLookupId,
33                           tcGetGlobalTyVars )
34 import TcUnify          ( tcInfer, tcSubExp, unifyTheta, 
35                           bleatEscapedTvs, sigCtxt )
36 import TcSimplify       ( tcSimplifyInfer, tcSimplifyInferCheck, 
37                           tcSimplifyRestricted, tcSimplifyIPs )
38 import TcHsType         ( tcHsSigType, UserTypeCtxt(..) )
39 import TcPat            ( tcPat, PatCtxt(..) )
40 import TcSimplify       ( bindInstsOfLocalFuns )
41 import TcMType          ( newFlexiTyVarTy, zonkQuantifiedTyVar, zonkSigTyVar,
42                           tcInstSigTyVars, tcInstSkolTyVars, tcInstType, 
43                           zonkTcType, zonkTcTypes, zonkTcTyVars )
44 import TcType           ( TcType, TcTyVar, TcThetaType, 
45                           SkolemInfo(SigSkol), UserTypeCtxt(FunSigCtxt), 
46                           TcTauType, TcSigmaType, isUnboxedTupleType,
47                           mkTyVarTy, mkForAllTys, mkFunTys, exactTyVarsOfType, 
48                           mkForAllTy, isUnLiftedType, tcGetTyVar, 
49                           mkTyVarTys, tidyOpenTyVar )
50 import Kind             ( argTypeKind )
51 import VarEnv           ( TyVarEnv, emptyVarEnv, lookupVarEnv, extendVarEnv ) 
52 import TysWiredIn       ( unitTy )
53 import TysPrim          ( alphaTyVar )
54 import Id               ( Id, mkLocalId, mkVanillaGlobal )
55 import IdInfo           ( vanillaIdInfo )
56 import Var              ( TyVar, idType, idName )
57 import Name             ( Name, getSrcLoc )
58 import NameSet
59 import NameEnv
60 import VarSet
61 import SrcLoc           ( Located(..), unLoc, getLoc )
62 import Bag
63 import ErrUtils         ( Message )
64 import Digraph          ( SCC(..), stronglyConnComp )
65 import Maybes           ( fromJust, isJust, isNothing, orElse )
66 import Util             ( singleton )
67 import BasicTypes       ( TopLevelFlag(..), isTopLevel, isNotTopLevel,
68                           RecFlag(..), isNonRec, InlineSpec, defaultInlineSpec )
69 import Outputable
70 \end{code}
71
72
73 %************************************************************************
74 %*                                                                      *
75 \subsection{Type-checking bindings}
76 %*                                                                      *
77 %************************************************************************
78
79 @tcBindsAndThen@ typechecks a @HsBinds@.  The "and then" part is because
80 it needs to know something about the {\em usage} of the things bound,
81 so that it can create specialisations of them.  So @tcBindsAndThen@
82 takes a function which, given an extended environment, E, typechecks
83 the scope of the bindings returning a typechecked thing and (most
84 important) an LIE.  It is this LIE which is then used as the basis for
85 specialising the things bound.
86
87 @tcBindsAndThen@ also takes a "combiner" which glues together the
88 bindings and the "thing" to make a new "thing".
89
90 The real work is done by @tcBindWithSigsAndThen@.
91
92 Recursive and non-recursive binds are handled in essentially the same
93 way: because of uniques there are no scoping issues left.  The only
94 difference is that non-recursive bindings can bind primitive values.
95
96 Even for non-recursive binding groups we add typings for each binder
97 to the LVE for the following reason.  When each individual binding is
98 checked the type of its LHS is unified with that of its RHS; and
99 type-checking the LHS of course requires that the binder is in scope.
100
101 At the top-level the LIE is sure to contain nothing but constant
102 dictionaries, which we resolve at the module level.
103
104 \begin{code}
105 tcTopBinds :: HsValBinds Name -> TcM (LHsBinds TcId, TcLclEnv)
106         -- Note: returning the TcLclEnv is more than we really
107         --       want.  The bit we care about is the local bindings
108         --       and the free type variables thereof
109 tcTopBinds binds
110   = do  { (ValBindsOut prs _, env) <- tcValBinds TopLevel binds getLclEnv
111         ; return (foldr (unionBags . snd) emptyBag prs, env) }
112         -- The top level bindings are flattened into a giant 
113         -- implicitly-mutually-recursive LHsBinds
114
115 tcHsBootSigs :: HsValBinds Name -> TcM [Id]
116 -- A hs-boot file has only one BindGroup, and it only has type
117 -- signatures in it.  The renamer checked all this
118 tcHsBootSigs (ValBindsOut binds sigs)
119   = do  { checkTc (null binds) badBootDeclErr
120         ; mapM (addLocM tc_boot_sig) (filter isVanillaLSig sigs) }
121   where
122     tc_boot_sig (TypeSig (L _ name) ty)
123       = do { sigma_ty <- tcHsSigType (FunSigCtxt name) ty
124            ; return (mkVanillaGlobal name sigma_ty vanillaIdInfo) }
125         -- Notice that we make GlobalIds, not LocalIds
126 tcHsBootSigs groups = pprPanic "tcHsBootSigs" (ppr groups)
127
128 badBootDeclErr :: Message
129 badBootDeclErr = ptext SLIT("Illegal declarations in an hs-boot file")
130
131 ------------------------
132 tcLocalBinds :: HsLocalBinds Name -> TcM thing
133              -> TcM (HsLocalBinds TcId, thing)
134
135 tcLocalBinds EmptyLocalBinds thing_inside 
136   = do  { thing <- thing_inside
137         ; return (EmptyLocalBinds, thing) }
138
139 tcLocalBinds (HsValBinds binds) thing_inside
140   = do  { (binds', thing) <- tcValBinds NotTopLevel binds thing_inside
141         ; return (HsValBinds binds', thing) }
142
143 tcLocalBinds (HsIPBinds (IPBinds ip_binds _)) thing_inside
144   = do  { (thing, lie) <- getLIE thing_inside
145         ; (avail_ips, ip_binds') <- mapAndUnzipM (wrapLocSndM tc_ip_bind) ip_binds
146
147         -- If the binding binds ?x = E, we  must now 
148         -- discharge any ?x constraints in expr_lie
149         ; dict_binds <- tcSimplifyIPs avail_ips lie
150         ; return (HsIPBinds (IPBinds ip_binds' dict_binds), thing) }
151   where
152         -- I wonder if we should do these one at at time
153         -- Consider     ?x = 4
154         --              ?y = ?x + 1
155     tc_ip_bind (IPBind ip expr)
156       = newFlexiTyVarTy argTypeKind             `thenM` \ ty ->
157         newIPDict (IPBindOrigin ip) ip ty       `thenM` \ (ip', ip_inst) ->
158         tcMonoExpr expr ty                      `thenM` \ expr' ->
159         returnM (ip_inst, (IPBind ip' expr'))
160
161 ------------------------
162 tcValBinds :: TopLevelFlag 
163            -> HsValBinds Name -> TcM thing
164            -> TcM (HsValBinds TcId, thing) 
165
166 tcValBinds top_lvl (ValBindsIn binds sigs) thing_inside
167   = pprPanic "tcValBinds" (ppr binds)
168
169 tcValBinds top_lvl (ValBindsOut binds sigs) thing_inside
170   = do  {       -- Typecheck the signature
171         ; let { prag_fn = mkPragFun sigs
172               ; ty_sigs = filter isVanillaLSig sigs
173               ; sig_fn  = mkSigFun ty_sigs }
174
175         ; poly_ids <- mapM tcTySig ty_sigs
176
177                 -- Extend the envt right away with all 
178                 -- the Ids declared with type signatures
179         ; (binds', thing) <- tcExtendIdEnv poly_ids $
180                              tc_val_binds top_lvl sig_fn prag_fn 
181                                           binds thing_inside
182
183         ; return (ValBindsOut binds' sigs, thing) }
184
185 ------------------------
186 tc_val_binds :: TopLevelFlag -> TcSigFun -> TcPragFun
187              -> [(RecFlag, LHsBinds Name)] -> TcM thing
188              -> TcM ([(RecFlag, LHsBinds TcId)], thing)
189 -- Typecheck a whole lot of value bindings,
190 -- one strongly-connected component at a time
191
192 tc_val_binds top_lvl sig_fn prag_fn [] thing_inside
193   = do  { thing <- thing_inside
194         ; return ([], thing) }
195
196 tc_val_binds top_lvl sig_fn prag_fn (group : groups) thing_inside
197   = do  { (group', (groups', thing))
198                 <- tc_group top_lvl sig_fn prag_fn group $ 
199                    tc_val_binds top_lvl sig_fn prag_fn groups thing_inside
200         ; return (group' ++ groups', thing) }
201
202 ------------------------
203 tc_group :: TopLevelFlag -> TcSigFun -> TcPragFun
204          -> (RecFlag, LHsBinds Name) -> TcM thing
205          -> TcM ([(RecFlag, LHsBinds TcId)], thing)
206
207 -- Typecheck one strongly-connected component of the original program.
208 -- We get a list of groups back, because there may 
209 -- be specialisations etc as well
210
211 tc_group top_lvl sig_fn prag_fn (NonRecursive, binds) thing_inside
212   =     -- A single non-recursive binding
213         -- We want to keep non-recursive things non-recursive
214         -- so that we desugar unlifted bindings correctly
215     do  { (binds, thing) <- tcPolyBinds top_lvl NonRecursive NonRecursive
216                                         sig_fn prag_fn binds thing_inside
217         ; return ([(NonRecursive, b) | b <- binds], thing) }
218
219 tc_group top_lvl sig_fn prag_fn (Recursive, binds) thing_inside
220   =     -- A recursive strongly-connected component
221         -- To maximise polymorphism (with -fglasgow-exts), we do a new 
222         -- strongly-connected-component analysis, this time omitting 
223         -- any references to variables with type signatures.
224         --
225         -- Then we bring into scope all the variables with type signatures
226     do  { traceTc (text "tc_group rec" <+> pprLHsBinds binds)
227         ; gla_exts     <- doptM Opt_GlasgowExts
228         ; (binds,thing) <- if gla_exts 
229                            then go new_sccs
230                            else tc_binds Recursive binds thing_inside
231         ; return ([(Recursive, unionManyBags binds)], thing) }
232                 -- Rec them all together
233   where
234     new_sccs :: [SCC (LHsBind Name)]
235     new_sccs = stronglyConnComp (mkEdges sig_fn binds)
236
237 --  go :: SCC (LHsBind Name) -> TcM ([LHsBind TcId], thing)
238     go (scc:sccs) = do  { (binds1, (binds2, thing)) <- go1 scc (go sccs)
239                         ; return (binds1 ++ binds2, thing) }
240     go []         = do  { thing <- thing_inside; return ([], thing) }
241
242     go1 (AcyclicSCC bind) = tc_binds NonRecursive (unitBag bind)
243     go1 (CyclicSCC binds) = tc_binds Recursive    (listToBag binds)
244
245     tc_binds rec_tc binds = tcPolyBinds top_lvl Recursive rec_tc sig_fn prag_fn binds
246
247 ------------------------
248 mkEdges :: TcSigFun -> LHsBinds Name
249         -> [(LHsBind Name, BKey, [BKey])]
250
251 type BKey  = Int -- Just number off the bindings
252
253 mkEdges sig_fn binds
254   = [ (bind, key, [fromJust mb_key | n <- nameSetToList (bind_fvs (unLoc bind)),
255                                      let mb_key = lookupNameEnv key_map n,
256                                      isJust mb_key,
257                                      no_sig n ])
258     | (bind, key) <- keyd_binds
259     ]
260   where
261     no_sig :: Name -> Bool
262     no_sig n = isNothing (sig_fn n)
263
264     keyd_binds = bagToList binds `zip` [0::BKey ..]
265
266     key_map :: NameEnv BKey     -- Which binding it comes from
267     key_map = mkNameEnv [(bndr, key) | (L _ bind, key) <- keyd_binds
268                                      , bndr <- bindersOfHsBind bind ]
269
270 bindersOfHsBind :: HsBind Name -> [Name]
271 bindersOfHsBind (PatBind { pat_lhs = pat })  = collectPatBinders pat
272 bindersOfHsBind (FunBind { fun_id = L _ f }) = [f]
273
274 ------------------------
275 tcPolyBinds :: TopLevelFlag 
276             -> RecFlag                  -- Whether the group is really recursive
277             -> RecFlag                  -- Whether it's recursive for typechecking purposes
278             -> TcSigFun -> TcPragFun
279             -> LHsBinds Name
280             -> TcM thing
281             -> TcM ([LHsBinds TcId], thing)
282
283 -- Typechecks a single bunch of bindings all together, 
284 -- and generalises them.  The bunch may be only part of a recursive
285 -- group, because we use type signatures to maximise polymorphism
286 --
287 -- Deals with the bindInstsOfLocalFuns thing too
288 --
289 -- Returns a list because the input may be a single non-recursive binding,
290 -- in which case the dependency order of the resulting bindings is
291 -- important.  
292
293 tcPolyBinds top_lvl rec_group rec_tc sig_fn prag_fn scc thing_inside
294   =     -- NB: polymorphic recursion means that a function
295         -- may use an instance of itself, we must look at the LIE arising
296         -- from the function's own right hand side.  Hence the getLIE
297         -- encloses the tc_poly_binds. 
298     do  { traceTc (text "tcPolyBinds" <+> ppr scc)
299         ; ((binds1, poly_ids, thing), lie) <- getLIE $ 
300                 do { (binds1, poly_ids) <- tc_poly_binds top_lvl rec_group rec_tc
301                                                          sig_fn prag_fn scc
302                    ; thing <- tcExtendIdEnv poly_ids thing_inside
303                    ; return (binds1, poly_ids, thing) }
304
305         ; if isTopLevel top_lvl 
306           then          -- For the top level don't bother will all this
307                         -- bindInstsOfLocalFuns stuff. All the top level 
308                         -- things are rec'd together anyway, so it's fine to
309                         -- leave them to the tcSimplifyTop, 
310                         -- and quite a bit faster too
311                 do { extendLIEs lie; return (binds1, thing) }
312
313           else do       -- Nested case
314                 { lie_binds <- bindInstsOfLocalFuns lie poly_ids
315                 ; return (binds1 ++ [lie_binds], thing) }}
316
317 ------------------------
318 tc_poly_binds :: TopLevelFlag           -- See comments on tcPolyBinds
319               -> RecFlag -> RecFlag
320               -> TcSigFun -> TcPragFun
321               -> LHsBinds Name
322               -> TcM ([LHsBinds TcId], [TcId])
323 -- Typechecks the bindings themselves
324 -- Knows nothing about the scope of the bindings
325
326 tc_poly_binds top_lvl rec_group rec_tc sig_fn prag_fn binds
327   = let 
328         binder_names = collectHsBindBinders binds
329         bind_list    = bagToList binds
330
331         loc = getLoc (head bind_list)
332                 -- TODO: location a bit awkward, but the mbinds have been
333                 --       dependency analysed and may no longer be adjacent
334     in
335         -- SET UP THE MAIN RECOVERY; take advantage of any type sigs
336     setSrcSpan loc                              $
337     recoverM (recoveryCode binder_names)        $ do 
338
339   { traceTc (ptext SLIT("------------------------------------------------"))
340   ; traceTc (ptext SLIT("Bindings for") <+> ppr binder_names)
341
342         -- TYPECHECK THE BINDINGS
343   ; ((binds', mono_bind_infos), lie_req) 
344         <- getLIE (tcMonoBinds bind_list sig_fn rec_tc)
345
346         -- CHECK FOR UNLIFTED BINDINGS
347         -- These must be non-recursive etc, and are not generalised
348         -- They desugar to a case expression in the end
349   ; zonked_mono_tys <- zonkTcTypes (map getMonoType mono_bind_infos)
350   ; if any isUnLiftedType zonked_mono_tys then
351     do  {       -- Unlifted bindings
352           checkUnliftedBinds top_lvl rec_group binds' mono_bind_infos
353         ; extendLIEs lie_req
354         ; let exports  = zipWith mk_export mono_bind_infos zonked_mono_tys
355               mk_export (name, Nothing,  mono_id) mono_ty = ([], mkLocalId name mono_ty, mono_id, [])
356               mk_export (name, Just sig, mono_id) mono_ty = ([], sig_id sig,             mono_id, [])
357                         -- ToDo: prags for unlifted bindings
358
359         ; return ( [unitBag $ L loc $ AbsBinds [] [] exports binds'],
360                    [poly_id | (_, poly_id, _, _) <- exports]) } -- Guaranteed zonked
361
362     else do     -- The normal lifted case: GENERALISE
363   { is_unres <- isUnRestrictedGroup bind_list sig_fn
364   ; (tyvars_to_gen, dict_binds, dict_ids)
365         <- addErrCtxt (genCtxt (bndrNames mono_bind_infos)) $
366            generalise top_lvl is_unres mono_bind_infos lie_req
367
368         -- FINALISE THE QUANTIFIED TYPE VARIABLES
369         -- The quantified type variables often include meta type variables
370         -- we want to freeze them into ordinary type variables, and
371         -- default their kind (e.g. from OpenTypeKind to TypeKind)
372   ; tyvars_to_gen' <- mappM zonkQuantifiedTyVar tyvars_to_gen
373
374         -- BUILD THE POLYMORPHIC RESULT IDs
375   ; exports <- mapM (mkExport prag_fn tyvars_to_gen' (map idType dict_ids))
376                     mono_bind_infos
377
378         -- ZONK THE poly_ids, because they are used to extend the type 
379         -- environment; see the invariant on TcEnv.tcExtendIdEnv 
380   ; let poly_ids = [poly_id | (_, poly_id, _, _) <- exports]
381   ; zonked_poly_ids <- mappM zonkId poly_ids
382
383   ; traceTc (text "binding:" <+> ppr (zonked_poly_ids `zip` map idType zonked_poly_ids))
384
385   ; let abs_bind = L loc $ AbsBinds tyvars_to_gen'
386                                     dict_ids exports
387                                     (dict_binds `unionBags` binds')
388
389   ; return ([unitBag abs_bind], zonked_poly_ids)
390   } }
391
392
393 --------------
394 mkExport :: TcPragFun -> [TyVar] -> [TcType] -> MonoBindInfo
395          -> TcM ([TyVar], Id, Id, [Prag])
396 mkExport prag_fn inferred_tvs dict_tys (poly_name, mb_sig, mono_id)
397   = case mb_sig of
398       Nothing  -> do { prags <- tcPrags poly_id (prag_fn poly_name)
399                      ; return (inferred_tvs, poly_id, mono_id, prags) }
400           where
401             poly_id = mkLocalId poly_name poly_ty
402             poly_ty = mkForAllTys inferred_tvs
403                                        $ mkFunTys dict_tys 
404                                        $ idType mono_id
405
406       Just sig -> do { let poly_id = sig_id sig
407                      ; prags <- tcPrags poly_id (prag_fn poly_name)
408                      ; sig_tys <- zonkTcTyVars (sig_tvs sig)
409                      ; let sig_tvs' = map (tcGetTyVar "mkExport") sig_tys
410                      ; return (sig_tvs', poly_id, mono_id, prags) }
411                 -- We zonk the sig_tvs here so that the export triple
412                 -- always has zonked type variables; 
413                 -- a convenient invariant
414
415
416 ------------------------
417 type TcPragFun = Name -> [LSig Name]
418
419 mkPragFun :: [LSig Name] -> TcPragFun
420 mkPragFun sigs = \n -> lookupNameEnv env n `orElse` []
421         where
422           prs = [(fromJust (sigName sig), sig) | sig <- sigs, isPragLSig sig]
423           env = foldl add emptyNameEnv prs
424           add env (n,p) = extendNameEnv_Acc (:) singleton env n p
425
426 tcPrags :: Id -> [LSig Name] -> TcM [Prag]
427 tcPrags poly_id prags = mapM tc_prag prags
428   where
429     tc_prag (L loc prag) = setSrcSpan loc $ 
430                            addErrCtxt (pragSigCtxt prag) $ 
431                            tcPrag poly_id prag
432
433 pragSigCtxt prag = hang (ptext SLIT("In the pragma")) 2 (ppr prag)
434
435 tcPrag :: TcId -> Sig Name -> TcM Prag
436 tcPrag poly_id (SpecSig orig_name hs_ty inl) = tcSpecPrag poly_id hs_ty inl
437 tcPrag poly_id (SpecInstSig hs_ty)           = tcSpecPrag poly_id hs_ty defaultInlineSpec
438 tcPrag poly_id (InlineSig v inl)             = return (InlinePrag inl)
439
440
441 tcSpecPrag :: TcId -> LHsType Name -> InlineSpec -> TcM Prag
442 tcSpecPrag poly_id hs_ty inl
443   = do  { spec_ty <- tcHsSigType (FunSigCtxt (idName poly_id)) hs_ty
444         ; (co_fn, lie) <- getLIE (tcSubExp (idType poly_id) spec_ty)
445         ; extendLIEs lie
446         ; let const_dicts = map instToId lie
447         ; return (SpecPrag (mkHsCoerce co_fn (HsVar poly_id)) spec_ty const_dicts inl) }
448   
449 --------------
450 -- If typechecking the binds fails, then return with each
451 -- signature-less binder given type (forall a.a), to minimise 
452 -- subsequent error messages
453 recoveryCode binder_names
454   = do  { traceTc (text "tcBindsWithSigs: error recovery" <+> ppr binder_names)
455         ; poly_ids <- mapM mk_dummy binder_names
456         ; return ([], poly_ids) }
457   where
458     mk_dummy name = do { mb_id <- tcLookupLocalId_maybe name
459                         ; case mb_id of
460                               Just id -> return id              -- Had signature, was in envt
461                               Nothing -> return (mkLocalId name forall_a_a) }    -- No signature
462
463 forall_a_a :: TcType
464 forall_a_a = mkForAllTy alphaTyVar (mkTyVarTy alphaTyVar)
465
466
467 -- Check that non-overloaded unlifted bindings are
468 --      a) non-recursive,
469 --      b) not top level, 
470 --      c) not a multiple-binding group (more or less implied by (a))
471
472 checkUnliftedBinds :: TopLevelFlag -> RecFlag
473                    -> LHsBinds TcId -> [MonoBindInfo] -> TcM ()
474 checkUnliftedBinds top_lvl rec_group mbind infos
475   = do  { checkTc (isNotTopLevel top_lvl)
476                   (unliftedBindErr "Top-level" mbind)
477         ; checkTc (isNonRec rec_group)
478                   (unliftedBindErr "Recursive" mbind)
479         ; checkTc (isSingletonBag mbind)
480                   (unliftedBindErr "Multiple" mbind) 
481         ; mapM_ check_sig infos }
482   where
483     check_sig (_, Just sig, _) = checkTc (null (sig_tvs sig) && null (sig_theta sig))
484                                          (badUnliftedSig sig)
485     check_sig other            = return ()
486 \end{code}
487
488
489 %************************************************************************
490 %*                                                                      *
491 \subsection{tcMonoBind}
492 %*                                                                      *
493 %************************************************************************
494
495 @tcMonoBinds@ deals with a perhaps-recursive group of HsBinds.
496 The signatures have been dealt with already.
497
498 \begin{code}
499 tcMonoBinds :: [LHsBind Name]
500             -> TcSigFun
501             -> RecFlag  -- True <=> the binding is recursive for typechecking purposes
502                         --          i.e. the binders are mentioned in their RHSs, and
503                         --               we are not resuced by a type signature
504             -> TcM (LHsBinds TcId, [MonoBindInfo])
505
506 tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
507                                 fun_matches = matches, bind_fvs = fvs })]
508             sig_fn              -- Single function binding,
509             NonRecursive        -- binder isn't mentioned in RHS,
510   | Nothing <- sig_fn name      -- ...with no type signature
511   =     -- In this very special case we infer the type of the
512         -- right hand side first (it may have a higher-rank type)
513         -- and *then* make the monomorphic Id for the LHS
514         -- e.g.         f = \(x::forall a. a->a) -> <body>
515         --      We want to infer a higher-rank type for f
516     setSrcSpan b_loc    $
517     do  { ((co_fn, matches'), rhs_ty) <- tcInfer (tcMatchesFun name matches)
518
519                 -- Check for an unboxed tuple type
520                 --      f = (# True, False #)
521                 -- Zonk first just in case it's hidden inside a meta type variable
522                 -- (This shows up as a (more obscure) kind error 
523                 --  in the 'otherwise' case of tcMonoBinds.)
524         ; zonked_rhs_ty <- zonkTcType rhs_ty
525         ; checkTc (not (isUnboxedTupleType zonked_rhs_ty))
526                   (unboxedTupleErr name zonked_rhs_ty)
527
528         ; mono_name <- newLocalName name
529         ; let mono_id = mkLocalId mono_name zonked_rhs_ty
530         ; return (unitBag (L b_loc (FunBind { fun_id = L nm_loc mono_id, fun_infix = inf,
531                                               fun_matches = matches', bind_fvs = fvs,
532                                               fun_co_fn = co_fn })),
533                   [(name, Nothing, mono_id)]) }
534
535 tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
536                                 fun_matches = matches, bind_fvs = fvs })]
537             sig_fn              -- Single function binding
538             non_rec     
539   | Just sig <- sig_fn name     -- ...with a type signature
540   =     -- When we have a single function binding, with a type signature
541         -- we can (a) use genuine, rigid skolem constants for the type variables
542         --        (b) bring (rigid) scoped type variables into scope
543     setSrcSpan b_loc    $
544     do  { tc_sig <- tcInstSig True sig
545         ; mono_name <- newLocalName name
546         ; let mono_ty = sig_tau tc_sig
547               mono_id = mkLocalId mono_name mono_ty
548               rhs_tvs = [ (name, mkTyVarTy tv)
549                         | (name, tv) <- sig_scoped tc_sig `zip` sig_tvs tc_sig ]
550
551         ; (co_fn, matches') <- tcExtendTyVarEnv2 rhs_tvs    $
552                                tcMatchesFun mono_name matches mono_ty
553
554         ; let fun_bind' = FunBind { fun_id = L nm_loc mono_id, 
555                                     fun_infix = inf, fun_matches = matches',
556                                     bind_fvs = placeHolderNames, fun_co_fn = co_fn }
557         ; return (unitBag (L b_loc fun_bind'),
558                   [(name, Just tc_sig, mono_id)]) }
559
560 tcMonoBinds binds sig_fn non_rec
561   = do  { tc_binds <- mapM (wrapLocM (tcLhs sig_fn)) binds
562
563         -- Bring the monomorphic Ids, into scope for the RHSs
564         ; let mono_info  = getMonoBindInfo tc_binds
565               rhs_id_env = [(name,mono_id) | (name, Nothing, mono_id) <- mono_info]
566                                 -- A monomorphic binding for each term variable that lacks 
567                                 -- a type sig.  (Ones with a sig are already in scope.)
568
569         ; binds' <- tcExtendIdEnv2    rhs_id_env $
570                     traceTc (text "tcMonoBinds" <+> vcat [ ppr n <+> ppr id <+> ppr (idType id) 
571                                                          | (n,id) <- rhs_id_env]) `thenM_`
572                     mapM (wrapLocM tcRhs) tc_binds
573         ; return (listToBag binds', mono_info) }
574
575 ------------------------
576 -- tcLhs typechecks the LHS of the bindings, to construct the environment in which
577 -- we typecheck the RHSs.  Basically what we are doing is this: for each binder:
578 --      if there's a signature for it, use the instantiated signature type
579 --      otherwise invent a type variable
580 -- You see that quite directly in the FunBind case.
581 -- 
582 -- But there's a complication for pattern bindings:
583 --      data T = MkT (forall a. a->a)
584 --      MkT f = e
585 -- Here we can guess a type variable for the entire LHS (which will be refined to T)
586 -- but we want to get (f::forall a. a->a) as the RHS environment.
587 -- The simplest way to do this is to typecheck the pattern, and then look up the
588 -- bound mono-ids.  Then we want to retain the typechecked pattern to avoid re-doing
589 -- it; hence the TcMonoBind data type in which the LHS is done but the RHS isn't
590
591 data TcMonoBind         -- Half completed; LHS done, RHS not done
592   = TcFunBind  MonoBindInfo  (Located TcId) Bool (MatchGroup Name) 
593   | TcPatBind [MonoBindInfo] (LPat TcId) (GRHSs Name) TcSigmaType
594
595 type MonoBindInfo = (Name, Maybe TcSigInfo, TcId)
596         -- Type signature (if any), and
597         -- the monomorphic bound things
598
599 bndrNames :: [MonoBindInfo] -> [Name]
600 bndrNames mbi = [n | (n,_,_) <- mbi]
601
602 getMonoType :: MonoBindInfo -> TcTauType
603 getMonoType (_,_,mono_id) = idType mono_id
604
605 tcLhs :: TcSigFun -> HsBind Name -> TcM TcMonoBind
606 tcLhs sig_fn (FunBind { fun_id = L nm_loc name, fun_infix = inf, fun_matches = matches })
607   = do  { mb_sig <- tcInstSig_maybe (sig_fn name)
608         ; mono_name <- newLocalName name
609         ; mono_ty   <- mk_mono_ty mb_sig
610         ; let mono_id = mkLocalId mono_name mono_ty
611         ; return (TcFunBind (name, mb_sig, mono_id) (L nm_loc mono_id) inf matches) }
612   where
613     mk_mono_ty (Just sig) = return (sig_tau sig)
614     mk_mono_ty Nothing    = newFlexiTyVarTy argTypeKind
615
616 tcLhs sig_fn bind@(PatBind { pat_lhs = pat, pat_rhs = grhss })
617   = do  { mb_sigs <- mapM (tcInstSig_maybe . sig_fn) names
618
619         ; let nm_sig_prs  = names `zip` mb_sigs
620               tau_sig_env = mkNameEnv [ (name, sig_tau sig) | (name, Just sig) <- nm_sig_prs]
621               sig_tau_fn  = lookupNameEnv tau_sig_env
622
623               tc_pat exp_ty = tcPat (LetPat sig_tau_fn) pat exp_ty unitTy $ \ _ ->
624                               mapM lookup_info nm_sig_prs
625                 -- The unitTy is a bit bogus; it's the "result type" for lookup_info.  
626
627                 -- After typechecking the pattern, look up the binder
628                 -- names, which the pattern has brought into scope.
629               lookup_info :: (Name, Maybe TcSigInfo) -> TcM MonoBindInfo
630               lookup_info (name, mb_sig) = do { mono_id <- tcLookupId name
631                                               ; return (name, mb_sig, mono_id) }
632
633         ; ((pat', infos), pat_ty) <- addErrCtxt (patMonoBindsCtxt pat grhss) $
634                                      tcInfer tc_pat
635
636         ; return (TcPatBind infos pat' grhss pat_ty) }
637   where
638     names = collectPatBinders pat
639
640
641 tcLhs sig_fn other_bind = pprPanic "tcLhs" (ppr other_bind)
642         -- AbsBind, VarBind impossible
643
644 -------------------
645 tcRhs :: TcMonoBind -> TcM (HsBind TcId)
646 tcRhs (TcFunBind info fun'@(L _ mono_id) inf matches)
647   = do  { (co_fn, matches') <- tcMatchesFun (idName mono_id) matches 
648                                             (idType mono_id)
649         ; return (FunBind { fun_id = fun', fun_infix = inf, fun_matches = matches',
650                             bind_fvs = placeHolderNames, fun_co_fn = co_fn }) }
651
652 tcRhs bind@(TcPatBind _ pat' grhss pat_ty)
653   = do  { grhss' <- addErrCtxt (patMonoBindsCtxt pat' grhss) $
654                     tcGRHSsPat grhss pat_ty
655         ; return (PatBind { pat_lhs = pat', pat_rhs = grhss', pat_rhs_ty = pat_ty, 
656                             bind_fvs = placeHolderNames }) }
657
658
659 ---------------------
660 getMonoBindInfo :: [Located TcMonoBind] -> [MonoBindInfo]
661 getMonoBindInfo tc_binds
662   = foldr (get_info . unLoc) [] tc_binds
663   where
664     get_info (TcFunBind info _ _ _)  rest = info : rest
665     get_info (TcPatBind infos _ _ _) rest = infos ++ rest
666 \end{code}
667
668
669 %************************************************************************
670 %*                                                                      *
671                 Generalisation
672 %*                                                                      *
673 %************************************************************************
674
675 \begin{code}
676 generalise :: TopLevelFlag -> Bool 
677            -> [MonoBindInfo] -> [Inst]
678            -> TcM ([TcTyVar], TcDictBinds, [TcId])
679 generalise top_lvl is_unrestricted mono_infos lie_req
680   | not is_unrestricted -- RESTRICTED CASE
681   =     -- Check signature contexts are empty 
682     do  { checkTc (all is_mono_sig sigs)
683                   (restrictedBindCtxtErr bndrs)
684
685         -- Now simplify with exactly that set of tyvars
686         -- We have to squash those Methods
687         ; (qtvs, binds) <- tcSimplifyRestricted doc top_lvl bndrs 
688                                                 tau_tvs lie_req
689
690         -- Check that signature type variables are OK
691         ; final_qtvs <- checkSigsTyVars qtvs sigs
692
693         ; return (final_qtvs, binds, []) }
694
695   | null sigs   -- UNRESTRICTED CASE, NO TYPE SIGS
696   = tcSimplifyInfer doc tau_tvs lie_req
697
698   | otherwise   -- UNRESTRICTED CASE, WITH TYPE SIGS
699   = do  { sig_lie <- unifyCtxts sigs    -- sigs is non-empty
700         ; let   -- The "sig_avails" is the stuff available.  We get that from
701                 -- the context of the type signature, BUT ALSO the lie_avail
702                 -- so that polymorphic recursion works right (see Note [Polymorphic recursion])
703                 local_meths = [mkMethInst sig mono_id | (_, Just sig, mono_id) <- mono_infos]
704                 sig_avails = sig_lie ++ local_meths
705
706         -- Check that the needed dicts can be
707         -- expressed in terms of the signature ones
708         ; (forall_tvs, dict_binds) <- tcSimplifyInferCheck doc tau_tvs sig_avails lie_req
709         
710         -- Check that signature type variables are OK
711         ; final_qtvs <- checkSigsTyVars forall_tvs sigs
712
713         ; returnM (final_qtvs, dict_binds, map instToId sig_lie) }
714   where
715     bndrs   = bndrNames mono_infos
716     sigs    = [sig | (_, Just sig, _) <- mono_infos]
717     tau_tvs = foldr (unionVarSet . exactTyVarsOfType . getMonoType) emptyVarSet mono_infos
718                 -- NB: exactTyVarsOfType; see Note [Silly type synonym] 
719                 --     near defn of TcType.exactTyVarsOfType
720     is_mono_sig sig = null (sig_theta sig)
721     doc = ptext SLIT("type signature(s) for") <+> pprBinders bndrs
722
723     mkMethInst (TcSigInfo { sig_id = poly_id, sig_tvs = tvs, 
724                             sig_theta = theta, sig_loc = loc }) mono_id
725       = Method mono_id poly_id (mkTyVarTys tvs) theta loc
726 \end{code}
727
728 unifyCtxts checks that all the signature contexts are the same
729 The type signatures on a mutually-recursive group of definitions
730 must all have the same context (or none).
731
732 The trick here is that all the signatures should have the same
733 context, and we want to share type variables for that context, so that
734 all the right hand sides agree a common vocabulary for their type
735 constraints
736
737 We unify them because, with polymorphic recursion, their types
738 might not otherwise be related.  This is a rather subtle issue.
739
740 \begin{code}
741 unifyCtxts :: [TcSigInfo] -> TcM [Inst]
742 unifyCtxts (sig1 : sigs)        -- Argument is always non-empty
743   = do  { mapM unify_ctxt sigs
744         ; newDictsAtLoc (sig_loc sig1) (sig_theta sig1) }
745   where
746     theta1 = sig_theta sig1
747     unify_ctxt :: TcSigInfo -> TcM ()
748     unify_ctxt sig@(TcSigInfo { sig_theta = theta })
749         = setSrcSpan (instLocSrcSpan (sig_loc sig))     $
750           addErrCtxt (sigContextsCtxt sig1 sig)         $
751           unifyTheta theta1 theta
752
753 checkSigsTyVars :: [TcTyVar] -> [TcSigInfo] -> TcM [TcTyVar]
754 checkSigsTyVars qtvs sigs 
755   = do  { gbl_tvs <- tcGetGlobalTyVars
756         ; sig_tvs_s <- mappM (check_sig gbl_tvs) sigs
757
758         ; let   -- Sigh.  Make sure that all the tyvars in the type sigs
759                 -- appear in the returned ty var list, which is what we are
760                 -- going to generalise over.  Reason: we occasionally get
761                 -- silly types like
762                 --      type T a = () -> ()
763                 --      f :: T a
764                 --      f () = ()
765                 -- Here, 'a' won't appear in qtvs, so we have to add it
766                 sig_tvs = foldl extendVarSetList emptyVarSet sig_tvs_s
767                 all_tvs = varSetElems (extendVarSetList sig_tvs qtvs)
768         ; returnM all_tvs }
769   where
770     check_sig gbl_tvs (TcSigInfo {sig_id = id, sig_tvs = tvs, 
771                                   sig_theta = theta, sig_tau = tau})
772       = addErrCtxt (ptext SLIT("In the type signature for") <+> quotes (ppr id))        $
773         addErrCtxtM (sigCtxt id tvs theta tau)                                          $
774         do { tvs' <- checkDistinctTyVars tvs
775            ; ifM (any (`elemVarSet` gbl_tvs) tvs')
776                  (bleatEscapedTvs gbl_tvs tvs tvs') 
777            ; return tvs' }
778
779 checkDistinctTyVars :: [TcTyVar] -> TcM [TcTyVar]
780 -- (checkDistinctTyVars tvs) checks that the tvs from one type signature
781 -- are still all type variables, and all distinct from each other.  
782 -- It returns a zonked set of type variables.
783 -- For example, if the type sig is
784 --      f :: forall a b. a -> b -> b
785 -- we want to check that 'a' and 'b' haven't 
786 --      (a) been unified with a non-tyvar type
787 --      (b) been unified with each other (all distinct)
788
789 checkDistinctTyVars sig_tvs
790   = do  { zonked_tvs <- mapM zonkSigTyVar sig_tvs
791         ; foldlM check_dup emptyVarEnv (sig_tvs `zip` zonked_tvs)
792         ; return zonked_tvs }
793   where
794     check_dup :: TyVarEnv TcTyVar -> (TcTyVar, TcTyVar) -> TcM (TyVarEnv TcTyVar)
795         -- The TyVarEnv maps each zonked type variable back to its
796         -- corresponding user-written signature type variable
797     check_dup acc (sig_tv, zonked_tv)
798         = case lookupVarEnv acc zonked_tv of
799                 Just sig_tv' -> bomb_out sig_tv sig_tv'
800
801                 Nothing -> return (extendVarEnv acc zonked_tv sig_tv)
802
803     bomb_out sig_tv1 sig_tv2
804        = do { env0 <- tcInitTidyEnv
805             ; let (env1, tidy_tv1) = tidyOpenTyVar env0 sig_tv1
806                   (env2, tidy_tv2) = tidyOpenTyVar env1 sig_tv2
807                   msg = ptext SLIT("Quantified type variable") <+> quotes (ppr tidy_tv1) 
808                          <+> ptext SLIT("is unified with another quantified type variable") 
809                          <+> quotes (ppr tidy_tv2)
810             ; failWithTcM (env2, msg) }
811        where
812 \end{code}    
813
814
815 @getTyVarsToGen@ decides what type variables to generalise over.
816
817 For a "restricted group" -- see the monomorphism restriction
818 for a definition -- we bind no dictionaries, and
819 remove from tyvars_to_gen any constrained type variables
820
821 *Don't* simplify dicts at this point, because we aren't going
822 to generalise over these dicts.  By the time we do simplify them
823 we may well know more.  For example (this actually came up)
824         f :: Array Int Int
825         f x = array ... xs where xs = [1,2,3,4,5]
826 We don't want to generate lots of (fromInt Int 1), (fromInt Int 2)
827 stuff.  If we simplify only at the f-binding (not the xs-binding)
828 we'll know that the literals are all Ints, and we can just produce
829 Int literals!
830
831 Find all the type variables involved in overloading, the
832 "constrained_tyvars".  These are the ones we *aren't* going to
833 generalise.  We must be careful about doing this:
834
835  (a) If we fail to generalise a tyvar which is not actually
836         constrained, then it will never, ever get bound, and lands
837         up printed out in interface files!  Notorious example:
838                 instance Eq a => Eq (Foo a b) where ..
839         Here, b is not constrained, even though it looks as if it is.
840         Another, more common, example is when there's a Method inst in
841         the LIE, whose type might very well involve non-overloaded
842         type variables.
843   [NOTE: Jan 2001: I don't understand the problem here so I'm doing 
844         the simple thing instead]
845
846  (b) On the other hand, we mustn't generalise tyvars which are constrained,
847         because we are going to pass on out the unmodified LIE, with those
848         tyvars in it.  They won't be in scope if we've generalised them.
849
850 So we are careful, and do a complete simplification just to find the
851 constrained tyvars. We don't use any of the results, except to
852 find which tyvars are constrained.
853
854 Note [Polymorphic recursion]
855 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
856 The game plan for polymorphic recursion in the code above is 
857
858         * Bind any variable for which we have a type signature
859           to an Id with a polymorphic type.  Then when type-checking 
860           the RHSs we'll make a full polymorphic call.
861
862 This fine, but if you aren't a bit careful you end up with a horrendous
863 amount of partial application and (worse) a huge space leak. For example:
864
865         f :: Eq a => [a] -> [a]
866         f xs = ...f...
867
868 If we don't take care, after typechecking we get
869
870         f = /\a -> \d::Eq a -> let f' = f a d
871                                in
872                                \ys:[a] -> ...f'...
873
874 Notice the the stupid construction of (f a d), which is of course
875 identical to the function we're executing.  In this case, the
876 polymorphic recursion isn't being used (but that's a very common case).
877 This can lead to a massive space leak, from the following top-level defn
878 (post-typechecking)
879
880         ff :: [Int] -> [Int]
881         ff = f Int dEqInt
882
883 Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
884 f' is another thunk which evaluates to the same thing... and you end
885 up with a chain of identical values all hung onto by the CAF ff.
886
887         ff = f Int dEqInt
888
889            = let f' = f Int dEqInt in \ys. ...f'...
890
891            = let f' = let f' = f Int dEqInt in \ys. ...f'...
892                       in \ys. ...f'...
893
894 Etc.
895
896 NOTE: a bit of arity anaysis would push the (f a d) inside the (\ys...),
897 which would make the space leak go away in this case
898
899 Solution: when typechecking the RHSs we always have in hand the
900 *monomorphic* Ids for each binding.  So we just need to make sure that
901 if (Method f a d) shows up in the constraints emerging from (...f...)
902 we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
903 to the "givens" when simplifying constraints.  That's what the "lies_avail"
904 is doing.
905
906 Then we get
907
908         f = /\a -> \d::Eq a -> letrec
909                                  fm = \ys:[a] -> ...fm...
910                                in
911                                fm
912
913
914
915 %************************************************************************
916 %*                                                                      *
917                 Signatures
918 %*                                                                      *
919 %************************************************************************
920
921 Type signatures are tricky.  See Note [Signature skolems] in TcType
922
923 @tcSigs@ checks the signatures for validity, and returns a list of
924 {\em freshly-instantiated} signatures.  That is, the types are already
925 split up, and have fresh type variables installed.  All non-type-signature
926 "RenamedSigs" are ignored.
927
928 The @TcSigInfo@ contains @TcTypes@ because they are unified with
929 the variable's type, and after that checked to see whether they've
930 been instantiated.
931
932 \begin{code}
933 type TcSigFun = Name -> Maybe (LSig Name)
934
935 mkSigFun :: [LSig Name] -> TcSigFun
936 -- Search for a particular type signature
937 -- Precondition: the sigs are all type sigs
938 -- Precondition: no duplicates
939 mkSigFun sigs = lookupNameEnv env
940   where
941     env = mkNameEnv [(fromJust (sigName sig), sig) | sig <- sigs]
942
943 ---------------
944 data TcSigInfo
945   = TcSigInfo {
946         sig_id     :: TcId,             --  *Polymorphic* binder for this value...
947
948         sig_scoped :: [Name],           -- Names for any scoped type variables
949                                         -- Invariant: correspond 1-1 with an initial
950                                         -- segment of sig_tvs (see Note [Scoped])
951
952         sig_tvs    :: [TcTyVar],        -- Instantiated type variables
953                                         -- See Note [Instantiate sig]
954
955         sig_theta  :: TcThetaType,      -- Instantiated theta
956         sig_tau    :: TcTauType,        -- Instantiated tau
957         sig_loc    :: InstLoc           -- The location of the signature
958     }
959
960 --      Note [Scoped]
961 -- There may be more instantiated type variables than scoped 
962 -- ones.  For example:
963 --      type T a = forall b. b -> (a,b)
964 --      f :: forall c. T c
965 -- Here, the signature for f will have one scoped type variable, c,
966 -- but two instantiated type variables, c' and b'.  
967 --
968 -- We assume that the scoped ones are at the *front* of sig_tvs,
969 -- and remember the names from the original HsForAllTy in sig_scoped
970
971 --      Note [Instantiate sig]
972 -- It's vital to instantiate a type signature with fresh variable.
973 -- For example:
974 --      type S = forall a. a->a
975 --      f,g :: S
976 --      f = ...
977 --      g = ...
978 -- Here, we must use distinct type variables when checking f,g's right hand sides.
979 -- (Instantiation is only necessary because of type synonyms.  Otherwise,
980 -- it's all cool; each signature has distinct type variables from the renamer.)
981
982 instance Outputable TcSigInfo where
983     ppr (TcSigInfo { sig_id = id, sig_tvs = tyvars, sig_theta = theta, sig_tau = tau})
984         = ppr id <+> ptext SLIT("::") <+> ppr tyvars <+> ppr theta <+> ptext SLIT("=>") <+> ppr tau
985 \end{code}
986
987 \begin{code}
988 tcTySig :: LSig Name -> TcM TcId
989 tcTySig (L span (TypeSig (L _ name) ty))
990   = setSrcSpan span             $
991     do  { sigma_ty <- tcHsSigType (FunSigCtxt name) ty
992         ; return (mkLocalId name sigma_ty) }
993
994 -------------------
995 tcInstSig_maybe :: Maybe (LSig Name) -> TcM (Maybe TcSigInfo)
996 -- Instantiate with *meta* type variables; 
997 -- this signature is part of a multi-signature group
998 tcInstSig_maybe Nothing    = return Nothing
999 tcInstSig_maybe (Just sig) = do { tc_sig <- tcInstSig False sig
1000                                 ; return (Just tc_sig) }
1001
1002 tcInstSig :: Bool -> LSig Name -> TcM TcSigInfo
1003 -- Instantiate the signature, with either skolems or meta-type variables
1004 -- depending on the use_skols boolean
1005 --
1006 -- We always instantiate with freshs uniques,
1007 -- although we keep the same print-name
1008 --      
1009 --      type T = forall a. [a] -> [a]
1010 --      f :: T; 
1011 --      f = g where { g :: T; g = <rhs> }
1012 --
1013 -- We must not use the same 'a' from the defn of T at both places!!
1014
1015 tcInstSig use_skols (L loc (TypeSig (L _ name) hs_ty))
1016   = setSrcSpan loc $
1017     do  { poly_id <- tcLookupId name    -- Cannot fail; the poly ids are put into 
1018                                         -- scope when starting the binding group
1019         ; let skol_info = SigSkol (FunSigCtxt name)
1020               inst_tyvars | use_skols = tcInstSkolTyVars skol_info
1021                           | otherwise = tcInstSigTyVars  skol_info
1022         ; (tvs, theta, tau) <- tcInstType inst_tyvars (idType poly_id)
1023         ; loc <- getInstLoc (SigOrigin skol_info)
1024         ; return (TcSigInfo { sig_id = poly_id,
1025                               sig_tvs = tvs, sig_theta = theta, sig_tau = tau, 
1026                               sig_scoped = scoped_names, sig_loc = loc }) }
1027                 -- Note that the scoped_names and the sig_tvs will have
1028                 -- different Names. That's quite ok; when we bring the 
1029                 -- scoped_names into scope, we just bind them to the sig_tvs
1030   where
1031         -- The scoped names are the ones explicitly mentioned
1032         -- in the HsForAll.  (There may be more in sigma_ty, because
1033         -- of nested type synonyms.  See Note [Scoped] with TcSigInfo.)
1034         -- We also only have scoped type variables when we are instantiating
1035         -- with true skolems
1036     scoped_names = case (use_skols, hs_ty) of
1037                      (True, L _ (HsForAllTy Explicit tvs _ _)) -> hsLTyVarNames tvs
1038                      other                                     -> []
1039
1040 -------------------
1041 isUnRestrictedGroup :: [LHsBind Name] -> TcSigFun -> TcM Bool
1042 isUnRestrictedGroup binds sig_fn
1043   = do  { mono_restriction <- doptM Opt_MonomorphismRestriction
1044         ; return (not mono_restriction || all_unrestricted) }
1045   where 
1046     all_unrestricted = all (unrestricted . unLoc) binds
1047     has_sig n = isJust (sig_fn n)
1048
1049     unrestricted (PatBind {})                                    = False
1050     unrestricted (VarBind { var_id = v })                        = has_sig v
1051     unrestricted (FunBind { fun_id = v, fun_matches = matches }) = unrestricted_match matches 
1052                                                                  || has_sig (unLoc v)
1053
1054     unrestricted_match (MatchGroup (L _ (Match [] _ _) : _) _) = False
1055         -- No args => like a pattern binding
1056     unrestricted_match other              = True
1057         -- Some args => a function binding
1058 \end{code}
1059
1060
1061 %************************************************************************
1062 %*                                                                      *
1063 \subsection[TcBinds-errors]{Error contexts and messages}
1064 %*                                                                      *
1065 %************************************************************************
1066
1067
1068 \begin{code}
1069 -- This one is called on LHS, when pat and grhss are both Name 
1070 -- and on RHS, when pat is TcId and grhss is still Name
1071 patMonoBindsCtxt pat grhss
1072   = hang (ptext SLIT("In a pattern binding:")) 4 (pprPatBind pat grhss)
1073
1074 -----------------------------------------------
1075 sigContextsCtxt sig1 sig2
1076   = vcat [ptext SLIT("When matching the contexts of the signatures for"), 
1077           nest 2 (vcat [ppr id1 <+> dcolon <+> ppr (idType id1),
1078                         ppr id2 <+> dcolon <+> ppr (idType id2)]),
1079           ptext SLIT("The signature contexts in a mutually recursive group should all be identical")]
1080   where
1081     id1 = sig_id sig1
1082     id2 = sig_id sig2
1083
1084
1085 -----------------------------------------------
1086 unliftedBindErr flavour mbind
1087   = hang (text flavour <+> ptext SLIT("bindings for unlifted types aren't allowed:"))
1088          4 (ppr mbind)
1089
1090 badUnliftedSig sig
1091   = hang (ptext SLIT("Illegal polymorphic signature in an unlifted binding"))
1092          4 (ppr sig)
1093
1094 -----------------------------------------------
1095 unboxedTupleErr name ty
1096   = hang (ptext SLIT("Illegal binding of unboxed tuple"))
1097          4 (ppr name <+> dcolon <+> ppr ty)
1098
1099 -----------------------------------------------
1100 restrictedBindCtxtErr binder_names
1101   = hang (ptext SLIT("Illegal overloaded type signature(s)"))
1102        4 (vcat [ptext SLIT("in a binding group for") <+> pprBinders binder_names,
1103                 ptext SLIT("that falls under the monomorphism restriction")])
1104
1105 genCtxt binder_names
1106   = ptext SLIT("When generalising the type(s) for") <+> pprBinders binder_names
1107 \end{code}