[project @ 2003-03-07 13:36:59 by simonpj]
[ghc-hetmet.git] / ghc / docs / users_guide / glasgow_exts.sgml
1 <para>
2 <indexterm><primary>language, GHC</primary></indexterm>
3 <indexterm><primary>extensions, GHC</primary></indexterm>
4 As with all known Haskell systems, GHC implements some extensions to
5 the language.  To use them, you'll need to give a <option>-fglasgow-exts</option>
6 <indexterm><primary>-fglasgow-exts option</primary></indexterm> option.
7 </para>
8
9 <para>
10 Virtually all of the Glasgow extensions serve to give you access to
11 the underlying facilities with which we implement Haskell.  Thus, you
12 can get at the Raw Iron, if you are willing to write some non-standard
13 code at a more primitive level.  You need not be &ldquo;stuck&rdquo; on
14 performance because of the implementation costs of Haskell's
15 &ldquo;high-level&rdquo; features&mdash;you can always code &ldquo;under&rdquo; them.  In an extreme case, you can write all your time-critical code in C, and then just glue it together with Haskell!
16 </para>
17
18 <para>
19 Before you get too carried away working at the lowest level (e.g.,
20 sloshing <literal>MutableByteArray&num;</literal>s around your
21 program), you may wish to check if there are libraries that provide a
22 &ldquo;Haskellised veneer&rdquo; over the features you want.  The
23 separate libraries documentation describes all the libraries that come
24 with GHC.
25 </para>
26
27 <!-- LANGUAGE OPTIONS -->
28   <sect1 id="options-language">
29     <title>Language options</title>
30
31     <indexterm><primary>language</primary><secondary>option</secondary>
32     </indexterm>
33     <indexterm><primary>options</primary><secondary>language</secondary>
34     </indexterm>
35     <indexterm><primary>extensions</primary><secondary>options controlling</secondary>
36     </indexterm>
37
38     <para> These flags control what variation of the language are
39     permitted.  Leaving out all of them gives you standard Haskell
40     98.</para>
41
42     <variablelist>
43
44       <varlistentry>
45         <term><option>-fglasgow-exts</option>:</term>
46         <indexterm><primary><option>-fglasgow-exts</option></primary></indexterm>
47         <listitem>
48           <para>This simultaneously enables all of the extensions to
49           Haskell 98 described in <xref
50           linkend="ghc-language-features">, except where otherwise
51           noted. </para>
52         </listitem>
53       </varlistentry>
54
55       <varlistentry>
56         <term><option>-ffi</option> and <option>-fffi</option>:</term>
57         <indexterm><primary><option>-ffi</option></primary></indexterm>
58         <indexterm><primary><option>-fffi</option></primary></indexterm>
59         <listitem>
60           <para>This option enables the language extension defined in the
61           Haskell 98 Foreign Function Interface Addendum plus deprecated
62           syntax of previous versions of the FFI for backwards
63           compatibility.</para> 
64         </listitem>
65       </varlistentry>
66
67       <varlistentry>
68         <term><option>-fwith</option>:</term>
69         <indexterm><primary><option>-fwith</option></primary></indexterm>
70         <listitem>
71           <para>This option enables the deprecated <literal>with</literal>
72           keyword for implicit parameters; it is merely provided for backwards
73           compatibility.
74           It is independent of the <option>-fglasgow-exts</option>
75           flag. </para>
76         </listitem>
77       </varlistentry>
78
79       <varlistentry>
80         <term><option>-fno-monomorphism-restriction</option>:</term>
81         <indexterm><primary><option>-fno-monomorphism-restriction</option></primary></indexterm>
82         <listitem>
83           <para> Switch off the Haskell 98 monomorphism restriction.
84           Independent of the <option>-fglasgow-exts</option>
85           flag. </para>
86         </listitem>
87       </varlistentry>
88
89       <varlistentry>
90         <term><option>-fallow-overlapping-instances</option></term>
91         <term><option>-fallow-undecidable-instances</option></term>
92         <term><option>-fallow-incoherent-instances</option></term>
93         <term><option>-fcontext-stack</option></term>
94         <indexterm><primary><option>-fallow-overlapping-instances</option></primary></indexterm>
95         <indexterm><primary><option>-fallow-undecidable-instances</option></primary></indexterm>
96         <indexterm><primary><option>-fcontext-stack</option></primary></indexterm>
97         <listitem>
98           <para> See <xref LinkEnd="instance-decls">.  Only relevant
99           if you also use <option>-fglasgow-exts</option>.</para>
100         </listitem>
101       </varlistentry>
102
103       <varlistentry>
104         <term><option>-finline-phase</option></term>
105         <indexterm><primary><option>-finline-phase</option></primary></indexterm>
106         <listitem>
107           <para>See <xref LinkEnd="rewrite-rules">.  Only relevant if
108           you also use <option>-fglasgow-exts</option>.</para>
109         </listitem>
110       </varlistentry>
111
112       <varlistentry>
113         <term><option>-fgenerics</option></term>
114         <indexterm><primary><option>-fgenerics</option></primary></indexterm>
115         <listitem>
116           <para>See <xref LinkEnd="generic-classes">.  Independent of
117           <option>-fglasgow-exts</option>.</para>
118         </listitem>
119       </varlistentry>
120
121         <varlistentry>
122           <term><option>-fno-implicit-prelude</option></term>
123           <listitem>
124             <para><indexterm><primary>-fno-implicit-prelude
125             option</primary></indexterm> GHC normally imports
126             <filename>Prelude.hi</filename> files for you.  If you'd
127             rather it didn't, then give it a
128             <option>-fno-implicit-prelude</option> option.  The idea
129             is that you can then import a Prelude of your own.  (But
130             don't call it <literal>Prelude</literal>; the Haskell
131             module namespace is flat, and you must not conflict with
132             any Prelude module.)</para>
133
134             <para>Even though you have not imported the Prelude, most of
135             the built-in syntax still refers to the built-in Haskell
136             Prelude types and values, as specified by the Haskell
137             Report.  For example, the type <literal>[Int]</literal>
138             still means <literal>Prelude.[] Int</literal>; tuples
139             continue to refer to the standard Prelude tuples; the
140             translation for list comprehensions continues to use
141             <literal>Prelude.map</literal> etc.</para>
142
143             <para>However, <option>-fno-implicit-prelude</option> does
144             change the handling of certain built-in syntax: see
145             <xref LinkEnd="rebindable-syntax">.</para>
146
147           </listitem>
148         </varlistentry>
149
150     </variablelist>
151   </sect1>
152
153 <!-- UNBOXED TYPES AND PRIMITIVE OPERATIONS -->
154 <!--    included from primitives.sgml  -->
155 <!-- &primitives; -->
156 <sect1 id="primitives">
157   <title>Unboxed types and primitive operations</title>
158
159 <para>GHC is built on a raft of primitive data types and operations.
160 While you really can use this stuff to write fast code,
161   we generally find it a lot less painful, and more satisfying in the
162   long run, to use higher-level language features and libraries.  With
163   any luck, the code you write will be optimised to the efficient
164   unboxed version in any case.  And if it isn't, we'd like to know
165   about it.</para>
166
167 <para>We do not currently have good, up-to-date documentation about the
168 primitives, perhaps because they are mainly intended for internal use.
169 There used to be a long section about them here in the User Guide, but it
170 became out of date, and wrong information is worse than none.</para>
171
172 <para>The Real Truth about what primitive types there are, and what operations
173 work over those types, is held in the file
174 <filename>fptools/ghc/compiler/prelude/primops.txt</filename>.
175 This file is used directly to generate GHC's primitive-operation definitions, so
176 it is always correct!  It is also intended for processing into text.</para>
177
178 <para> Indeed,
179 the result of such processing is part of the description of the 
180  <ulink
181       url="http://haskell.cs.yale.edu/ghc/docs/papers/core.ps.gz">External
182          Core language</ulink>.
183 So that document is a good place to look for a type-set version.
184 We would be very happy if someone wanted to volunteer to produce an SGML
185 back end to the program that processes <filename>primops.txt</filename> so that
186 we could include the results here in the User Guide.</para>
187
188 <para>What follows here is a brief summary of some main points.</para>
189   
190 <sect2 id="glasgow-unboxed">
191 <title>Unboxed types
192 </title>
193
194 <para>
195 <indexterm><primary>Unboxed types (Glasgow extension)</primary></indexterm>
196 </para>
197
198 <para>Most types in GHC are <firstterm>boxed</firstterm>, which means
199 that values of that type are represented by a pointer to a heap
200 object.  The representation of a Haskell <literal>Int</literal>, for
201 example, is a two-word heap object.  An <firstterm>unboxed</firstterm>
202 type, however, is represented by the value itself, no pointers or heap
203 allocation are involved.
204 </para>
205
206 <para>
207 Unboxed types correspond to the &ldquo;raw machine&rdquo; types you
208 would use in C: <literal>Int&num;</literal> (long int),
209 <literal>Double&num;</literal> (double), <literal>Addr&num;</literal>
210 (void *), etc.  The <emphasis>primitive operations</emphasis>
211 (PrimOps) on these types are what you might expect; e.g.,
212 <literal>(+&num;)</literal> is addition on
213 <literal>Int&num;</literal>s, and is the machine-addition that we all
214 know and love&mdash;usually one instruction.
215 </para>
216
217 <para>
218 Primitive (unboxed) types cannot be defined in Haskell, and are
219 therefore built into the language and compiler.  Primitive types are
220 always unlifted; that is, a value of a primitive type cannot be
221 bottom.  We use the convention that primitive types, values, and
222 operations have a <literal>&num;</literal> suffix.
223 </para>
224
225 <para>
226 Primitive values are often represented by a simple bit-pattern, such
227 as <literal>Int&num;</literal>, <literal>Float&num;</literal>,
228 <literal>Double&num;</literal>.  But this is not necessarily the case:
229 a primitive value might be represented by a pointer to a
230 heap-allocated object.  Examples include
231 <literal>Array&num;</literal>, the type of primitive arrays.  A
232 primitive array is heap-allocated because it is too big a value to fit
233 in a register, and would be too expensive to copy around; in a sense,
234 it is accidental that it is represented by a pointer.  If a pointer
235 represents a primitive value, then it really does point to that value:
236 no unevaluated thunks, no indirections&hellip;nothing can be at the
237 other end of the pointer than the primitive value.
238 </para>
239
240 <para>
241 There are some restrictions on the use of primitive types, the main
242 one being that you can't pass a primitive value to a polymorphic
243 function or store one in a polymorphic data type.  This rules out
244 things like <literal>[Int&num;]</literal> (i.e. lists of primitive
245 integers).  The reason for this restriction is that polymorphic
246 arguments and constructor fields are assumed to be pointers: if an
247 unboxed integer is stored in one of these, the garbage collector would
248 attempt to follow it, leading to unpredictable space leaks.  Or a
249 <function>seq</function> operation on the polymorphic component may
250 attempt to dereference the pointer, with disastrous results.  Even
251 worse, the unboxed value might be larger than a pointer
252 (<literal>Double&num;</literal> for instance).
253 </para>
254
255 <para>
256 Nevertheless, A numerically-intensive program using unboxed types can
257 go a <emphasis>lot</emphasis> faster than its &ldquo;standard&rdquo;
258 counterpart&mdash;we saw a threefold speedup on one example.
259 </para>
260
261 </sect2>
262
263 <sect2 id="unboxed-tuples">
264 <title>Unboxed Tuples
265 </title>
266
267 <para>
268 Unboxed tuples aren't really exported by <literal>GHC.Exts</literal>,
269 they're available by default with <option>-fglasgow-exts</option>.  An
270 unboxed tuple looks like this:
271 </para>
272
273 <para>
274
275 <programlisting>
276 (# e_1, ..., e_n #)
277 </programlisting>
278
279 </para>
280
281 <para>
282 where <literal>e&lowbar;1..e&lowbar;n</literal> are expressions of any
283 type (primitive or non-primitive).  The type of an unboxed tuple looks
284 the same.
285 </para>
286
287 <para>
288 Unboxed tuples are used for functions that need to return multiple
289 values, but they avoid the heap allocation normally associated with
290 using fully-fledged tuples.  When an unboxed tuple is returned, the
291 components are put directly into registers or on the stack; the
292 unboxed tuple itself does not have a composite representation.  Many
293 of the primitive operations listed in this section return unboxed
294 tuples.
295 </para>
296
297 <para>
298 There are some pretty stringent restrictions on the use of unboxed tuples:
299 </para>
300
301 <para>
302
303 <itemizedlist>
304 <listitem>
305
306 <para>
307  Unboxed tuple types are subject to the same restrictions as
308 other unboxed types; i.e. they may not be stored in polymorphic data
309 structures or passed to polymorphic functions.
310
311 </para>
312 </listitem>
313 <listitem>
314
315 <para>
316  Unboxed tuples may only be constructed as the direct result of
317 a function, and may only be deconstructed with a <literal>case</literal> expression.
318 eg. the following are valid:
319
320
321 <programlisting>
322 f x y = (# x+1, y-1 #)
323 g x = case f x x of { (# a, b #) -&#62; a + b }
324 </programlisting>
325
326
327 but the following are invalid:
328
329
330 <programlisting>
331 f x y = g (# x, y #)
332 g (# x, y #) = x + y
333 </programlisting>
334
335
336 </para>
337 </listitem>
338 <listitem>
339
340 <para>
341  No variable can have an unboxed tuple type.  This is illegal:
342
343
344 <programlisting>
345 f :: (# Int, Int #) -&#62; (# Int, Int #)
346 f x = x
347 </programlisting>
348
349
350 because <literal>x</literal> has an unboxed tuple type.
351
352 </para>
353 </listitem>
354
355 </itemizedlist>
356
357 </para>
358
359 <para>
360 Note: we may relax some of these restrictions in the future.
361 </para>
362
363 <para>
364 The <literal>IO</literal> and <literal>ST</literal> monads use unboxed
365 tuples to avoid unnecessary allocation during sequences of operations.
366 </para>
367
368 </sect2>
369 </sect1>
370
371
372 <!-- ====================== SYNTACTIC EXTENSIONS =======================  -->
373
374 <sect1 id="syntax-extns">
375 <title>Syntactic extensions</title>
376  
377     <!-- ====================== HIERARCHICAL MODULES =======================  -->
378
379     <sect2 id="hierarchical-modules">
380       <title>Hierarchical Modules</title>
381
382       <para>GHC supports a small extension to the syntax of module
383       names: a module name is allowed to contain a dot
384       <literal>&lsquo;.&rsquo;</literal>.  This is also known as the
385       &ldquo;hierarchical module namespace&rdquo; extension, because
386       it extends the normally flat Haskell module namespace into a
387       more flexible hierarchy of modules.</para>
388
389       <para>This extension has very little impact on the language
390       itself; modules names are <emphasis>always</emphasis> fully
391       qualified, so you can just think of the fully qualified module
392       name as <quote>the module name</quote>.  In particular, this
393       means that the full module name must be given after the
394       <literal>module</literal> keyword at the beginning of the
395       module; for example, the module <literal>A.B.C</literal> must
396       begin</para>
397
398 <programlisting>module A.B.C</programlisting>
399
400
401       <para>It is a common strategy to use the <literal>as</literal>
402       keyword to save some typing when using qualified names with
403       hierarchical modules.  For example:</para>
404
405 <programlisting>
406 import qualified Control.Monad.ST.Strict as ST
407 </programlisting>
408
409       <para>Hierarchical modules have an impact on the way that GHC
410       searches for files.  For a description, see <xref
411       linkend="finding-hierarchical-modules">.</para>
412
413       <para>GHC comes with a large collection of libraries arranged
414       hierarchically; see the accompanying library documentation.
415       There is an ongoing project to create and maintain a stable set
416       of <quote>core</quote> libraries used by several Haskell
417       compilers, and the libraries that GHC comes with represent the
418       current status of that project.  For more details, see <ulink
419       url="http://www.haskell.org/~simonmar/libraries/libraries.html">Haskell
420       Libraries</ulink>.</para>
421
422     </sect2>
423
424     <!-- ====================== PATTERN GUARDS =======================  -->
425
426 <sect2 id="pattern-guards">
427 <title>Pattern guards</title>
428
429 <para>
430 <indexterm><primary>Pattern guards (Glasgow extension)</primary></indexterm>
431 The discussion that follows is an abbreviated version of Simon Peyton Jones's original <ULink URL="http://research.microsoft.com/~simonpj/Haskell/guards.html">proposal</ULink>. (Note that the proposal was written before pattern guards were implemented, so refers to them as unimplemented.)
432 </para>
433
434 <para>
435 Suppose we have an abstract data type of finite maps, with a
436 lookup operation:
437
438 <programlisting>
439 lookup :: FiniteMap -> Int -> Maybe Int
440 </programlisting>
441
442 The lookup returns <function>Nothing</function> if the supplied key is not in the domain of the mapping, and <function>(Just v)</function> otherwise,
443 where <VarName>v</VarName> is the value that the key maps to.  Now consider the following definition:
444 </para>
445
446 <programlisting>
447 clunky env var1 var2 | ok1 && ok2 = val1 + val2
448 | otherwise  = var1 + var2
449 where
450   m1 = lookup env var1
451   m2 = lookup env var2
452   ok1 = maybeToBool m1
453   ok2 = maybeToBool m2
454   val1 = expectJust m1
455   val2 = expectJust m2
456 </programlisting>
457
458 <para>
459 The auxiliary functions are 
460 </para>
461
462 <programlisting>
463 maybeToBool :: Maybe a -&gt; Bool
464 maybeToBool (Just x) = True
465 maybeToBool Nothing  = False
466
467 expectJust :: Maybe a -&gt; a
468 expectJust (Just x) = x
469 expectJust Nothing  = error "Unexpected Nothing"
470 </programlisting>
471
472 <para>
473 What is <function>clunky</function> doing? The guard <literal>ok1 &&
474 ok2</literal> checks that both lookups succeed, using
475 <function>maybeToBool</function> to convert the <function>Maybe</function>
476 types to booleans. The (lazily evaluated) <function>expectJust</function>
477 calls extract the values from the results of the lookups, and binds the
478 returned values to <VarName>val1</VarName> and <VarName>val2</VarName>
479 respectively.  If either lookup fails, then clunky takes the
480 <literal>otherwise</literal> case and returns the sum of its arguments.
481 </para>
482
483 <para>
484 This is certainly legal Haskell, but it is a tremendously verbose and
485 un-obvious way to achieve the desired effect.  Arguably, a more direct way
486 to write clunky would be to use case expressions:
487 </para>
488
489 <programlisting>
490 clunky env var1 var1 = case lookup env var1 of
491   Nothing -&gt; fail
492   Just val1 -&gt; case lookup env var2 of
493     Nothing -&gt; fail
494     Just val2 -&gt; val1 + val2
495 where
496   fail = val1 + val2
497 </programlisting>
498
499 <para>
500 This is a bit shorter, but hardly better.  Of course, we can rewrite any set
501 of pattern-matching, guarded equations as case expressions; that is
502 precisely what the compiler does when compiling equations! The reason that
503 Haskell provides guarded equations is because they allow us to write down
504 the cases we want to consider, one at a time, independently of each other. 
505 This structure is hidden in the case version.  Two of the right-hand sides
506 are really the same (<function>fail</function>), and the whole expression
507 tends to become more and more indented. 
508 </para>
509
510 <para>
511 Here is how I would write clunky:
512 </para>
513
514 <programlisting>
515 clunky env var1 var1
516   | Just val1 &lt;- lookup env var1
517   , Just val2 &lt;- lookup env var2
518   = val1 + val2
519 ...other equations for clunky...
520 </programlisting>
521
522 <para>
523 The semantics should be clear enough.  The qualifers are matched in order. 
524 For a <literal>&lt;-</literal> qualifier, which I call a pattern guard, the
525 right hand side is evaluated and matched against the pattern on the left. 
526 If the match fails then the whole guard fails and the next equation is
527 tried.  If it succeeds, then the appropriate binding takes place, and the
528 next qualifier is matched, in the augmented environment.  Unlike list
529 comprehensions, however, the type of the expression to the right of the
530 <literal>&lt;-</literal> is the same as the type of the pattern to its
531 left.  The bindings introduced by pattern guards scope over all the
532 remaining guard qualifiers, and over the right hand side of the equation.
533 </para>
534
535 <para>
536 Just as with list comprehensions, boolean expressions can be freely mixed
537 with among the pattern guards.  For example:
538 </para>
539
540 <programlisting>
541 f x | [y] <- x
542     , y > 3
543     , Just z <- h y
544     = ...
545 </programlisting>
546
547 <para>
548 Haskell's current guards therefore emerge as a special case, in which the
549 qualifier list has just one element, a boolean expression.
550 </para>
551 </sect2>
552
553     <!-- ===================== Recursive do-notation ===================  -->
554
555 <sect2 id="mdo-notation">
556 <title>The recursive do-notation
557 </title>
558
559 <para> The recursive do-notation (also known as mdo-notation) is implemented as described in
560 "A recursive do for Haskell",
561 Levent Erkok, John Launchbury",
562 Haskell Workshop 2002, pages: 29-37. Pittsburgh, Pennsylvania. 
563 </para>
564 <para>
565 The do-notation of Haskell does not allow <emphasis>recursive bindings</emphasis>,
566 that is, the variables bound in a do-expression are visible only in the textually following 
567 code block. Compare this to a let-expression, where bound variables are visible in the entire binding
568 group. It turns out that several applications can benefit from recursive bindings in
569 the do-notation, and this extension provides the necessary syntactic support.
570 </para>
571 <para>
572 Here is a simple (yet contrived) example:
573 </para>
574 <programlisting>
575 import Control.Monad.Fix
576
577 justOnes = mdo xs <- Just (1:xs)
578                return xs
579 </programlisting>
580 <para>
581 As you can guess <literal>justOnes</literal> will evaluate to <literal>Just [1,1,1,...</literal>.
582 </para>
583
584 <para>
585 The Control.Monad.Fix library introduces the <literal>MonadFix</literal> class. It's definition is:
586 </para>
587 <programlisting>
588 class Monad m => MonadFix m where
589    mfix :: (a -> m a) -> m a
590 </programlisting>
591 <para>
592 The function <literal>mfix</literal>
593 dictates how the required recursion operation should be performed. If recursive bindings are required for a monad,
594 then that monad must be declared an instance of the <literal>MonadFix</literal> class.
595 For details, see the above mentioned reference.
596 </para>
597 <para>
598 The following instances of <literal>MonadFix</literal> are automatically provided: List, Maybe, IO. 
599 Furthermore, the Control.Monad.ST and Control.Monad.ST.Lazy modules provide the instances of the MonadFix class 
600 for Haskell's internal state monad (strict and lazy, respectively).
601 </para>
602 <para>
603 There are three important points in using the recursive-do notation:
604 <itemizedlist>
605 <listitem><para>
606 The recursive version of the do-notation uses the keyword <literal>mdo</literal> (rather
607 than <literal>do</literal>).
608 </para></listitem>
609
610 <listitem><para>
611 You should <literal>import Control.Monad.Fix</literal>.
612 (Note: Strictly speaking, this import is required only when you need to refer to the name
613 <literal>MonadFix</literal> in your program, but the import is always safe, and the programmers
614 are encouraged to always import this module when using the mdo-notation.)
615 </para></listitem>
616
617 <listitem><para>
618 As with other extensions, ghc should be given the flag <literal>-fglasgow-exts</literal>
619 </para></listitem>
620 </itemizedlist>
621 </para>
622
623 <para>
624 The web page: <ulink url="http://www.cse.ogi.edu/PacSoft/projects/rmb">http://www.cse.ogi.edu/PacSoft/projects/rmb</ulink>
625 contains up to date information on recursive monadic bindings.
626 </para>
627
628 <para>
629 Historical note: The old implementation of the mdo-notation (and most
630 of the existing documents) used the name
631 <literal>MonadRec</literal> for the class and the corresponding library.
632 This name is not supported by GHC.
633 </para>
634
635 </sect2>
636
637
638 <sect2> <title> Infix type constructors </title>
639
640 <para>GHC supports infix type constructors, much as it supports infix data constructors.  For example:
641 <programlisting>
642   infixl 5 :+:
643
644   data a :+: b = Inl a | Inr b
645
646   f :: a `Either` b -> a :+: b
647   f (Left x) = Inl x
648 </programlisting>
649 </para>
650 <para>The lexical 
651 syntax of an infix type constructor is just like that of an infix data constructor: either
652 it's an operator beginning with ":", or it is an ordinary (alphabetic) type constructor enclosed in
653 back-quotes.</para>
654
655 <para>
656 When you give a fixity declaration, the fixity applies to both the data constructor and the
657 type constructor with the specified name.  You cannot give different fixities to the type constructor T
658 and the data constructor T.
659 </para>
660
661
662 </sect2>
663
664    <!-- ===================== PARALLEL LIST COMPREHENSIONS ===================  -->
665
666   <sect2 id="parallel-list-comprehensions">
667     <title>Parallel List Comprehensions</title>
668     <indexterm><primary>list comprehensions</primary><secondary>parallel</secondary>
669     </indexterm>
670     <indexterm><primary>parallel list comprehensions</primary>
671     </indexterm>
672
673     <para>Parallel list comprehensions are a natural extension to list
674     comprehensions.  List comprehensions can be thought of as a nice
675     syntax for writing maps and filters.  Parallel comprehensions
676     extend this to include the zipWith family.</para>
677
678     <para>A parallel list comprehension has multiple independent
679     branches of qualifier lists, each separated by a `|' symbol.  For
680     example, the following zips together two lists:</para>
681
682 <programlisting>
683    [ (x, y) | x <- xs | y <- ys ] 
684 </programlisting>
685
686     <para>The behavior of parallel list comprehensions follows that of
687     zip, in that the resulting list will have the same length as the
688     shortest branch.</para>
689
690     <para>We can define parallel list comprehensions by translation to
691     regular comprehensions.  Here's the basic idea:</para>
692
693     <para>Given a parallel comprehension of the form: </para>
694
695 <programlisting>
696    [ e | p1 <- e11, p2 <- e12, ... 
697        | q1 <- e21, q2 <- e22, ... 
698        ... 
699    ] 
700 </programlisting>
701
702     <para>This will be translated to: </para>
703
704 <programlisting>
705    [ e | ((p1,p2), (q1,q2), ...) <- zipN [(p1,p2) | p1 <- e11, p2 <- e12, ...] 
706                                          [(q1,q2) | q1 <- e21, q2 <- e22, ...] 
707                                          ... 
708    ] 
709 </programlisting>
710
711     <para>where `zipN' is the appropriate zip for the given number of
712     branches.</para>
713
714   </sect2>
715
716 <sect2 id="rebindable-syntax">
717 <title>Rebindable syntax</title>
718
719
720       <para>GHC allows most kinds of built-in syntax to be rebound by
721       the user, to facilitate replacing the <literal>Prelude</literal>
722       with a home-grown version, for example.</para>
723
724             <para>You may want to define your own numeric class
725             hierarchy.  It completely defeats that purpose if the
726             literal "1" means "<literal>Prelude.fromInteger
727             1</literal>", which is what the Haskell Report specifies.
728             So the <option>-fno-implicit-prelude</option> flag causes
729             the following pieces of built-in syntax to refer to
730             <emphasis>whatever is in scope</emphasis>, not the Prelude
731             versions:</para>
732
733             <itemizedlist>
734               <listitem>
735                 <para>Integer and fractional literals mean
736                 "<literal>fromInteger 1</literal>" and
737                 "<literal>fromRational 3.2</literal>", not the
738                 Prelude-qualified versions; both in expressions and in
739                 patterns. </para>
740                 <para>However, the standard Prelude <literal>Eq</literal> class
741                 is still used for the equality test necessary for literal patterns.</para>
742               </listitem>
743
744               <listitem>
745                 <para>Negation (e.g. "<literal>- (f x)</literal>")
746                 means "<literal>negate (f x)</literal>" (not
747                 <literal>Prelude.negate</literal>).</para>
748               </listitem>
749
750               <listitem>
751                 <para>In an n+k pattern, the standard Prelude
752                 <literal>Ord</literal> class is still used for comparison,
753                 but the necessary subtraction uses whatever
754                 "<literal>(-)</literal>" is in scope (not
755                 "<literal>Prelude.(-)</literal>").</para>
756               </listitem>
757
758               <listitem>
759           <para>"Do" notation is translated using whatever
760               functions <literal>(>>=)</literal>,
761               <literal>(>>)</literal>, <literal>fail</literal>, and
762               <literal>return</literal>, are in scope (not the Prelude
763               versions).  List comprehensions, and parallel array
764               comprehensions, are unaffected.  </para></listitem>
765             </itemizedlist>
766
767              <para>Be warned: this is an experimental facility, with fewer checks than
768              usual.  In particular, it is essential that the functions GHC finds in scope
769              must have the appropriate types, namely:
770              <screen>
771                 fromInteger  :: forall a. (...) => Integer  -> a
772                 fromRational :: forall a. (...) => Rational -> a
773                 negate       :: forall a. (...) => a -> a
774                 (-)          :: forall a. (...) => a -> a -> a
775                 (>>=)        :: forall m a. (...) => m a -> (a -> m b) -> m b
776                 (>>)         :: forall m a. (...) => m a -> m b -> m b
777                 return       :: forall m a. (...) => a      -> m a
778                 fail         :: forall m a. (...) => String -> m a
779              </screen>
780              (The (...) part can be any context including the empty context; that part 
781              is up to you.)
782              If the functions don't have the right type, very peculiar things may 
783              happen.  Use <literal>-dcore-lint</literal> to
784              typecheck the desugared program.  If Core Lint is happy you should be all right.</para>
785
786 </sect2>
787 </sect1>
788
789
790 <!-- TYPE SYSTEM EXTENSIONS -->
791 <sect1 id="type-extensions">
792 <title>Type system extensions</title>
793
794 <sect2 id="nullary-types">
795 <title>Data types with no constructors</title>
796
797 <para>With the <option>-fglasgow-exts</option> flag, GHC lets you declare
798 a data type with no constructors.  For example:</para>
799
800 <programlisting>
801   data S      -- S :: *
802   data T a    -- T :: * -> *
803 </programlisting>
804
805 <para>Syntactically, the declaration lacks the "= constrs" part.  The 
806 type can be parameterised over types of any kind, but if the kind is
807 not <literal>*</literal> then an explicit kind annotation must be used
808 (see <xref linkend="sec-kinding">).</para>
809
810 <para>Such data types have only one value, namely bottom.
811 Nevertheless, they can be useful when defining "phantom types".</para>
812 </sect2>
813
814 <sect2 id="infix-tycons">
815 <title>Infix type constructors</title>
816
817 <para>
818 GHC allows type constructors to be operators, and to be written infix, very much 
819 like expressions.  More specifically:
820 <itemizedlist>
821 <listitem><para>
822   A type constructor can be an operator, beginning with a colon; e.g. <literal>:*:</literal>.
823   The lexical syntax is the same as that for data constructors.
824   </para></listitem>
825 <listitem><para>
826   Types can be written infix.  For example <literal>Int :*: Bool</literal>.  
827   </para></listitem>
828 <listitem><para>
829   Back-quotes work
830   as for expressions, both for type constructors and type variables;  e.g. <literal>Int `Either` Bool</literal>, or
831   <literal>Int `a` Bool</literal>.  Similarly, parentheses work the same; e.g.  <literal>(:*:) Int Bool</literal>.
832   </para></listitem>
833 <listitem><para>
834   Fixities may be declared for type constructors just as for data constructors.  However,
835   one cannot distinguish between the two in a fixity declaration; a fixity declaration
836   sets the fixity for a data constructor and the corresponding type constructor.  For example:
837 <screen>
838   infixl 7 T, :*:
839 </screen>
840   sets the fixity for both type constructor <literal>T</literal> and data constructor <literal>T</literal>,
841   and similarly for <literal>:*:</literal>.
842   <literal>Int `a` Bool</literal>.
843   </para></listitem>
844 <listitem><para>
845   Function arrow is <literal>infixr</literal> with fixity 0.  (This might change; I'm not sure what it should be.)
846   </para></listitem>
847 <listitem><para>
848   Data type and type-synonym declarations can be written infix.  E.g.
849 <screen>
850   data a :*: b = Foo a b
851   type a :+: b = Either a b
852 </screen>
853   </para></listitem>
854 <listitem><para>
855   The only thing that differs between operators in types and operators in expressions is that
856   ordinary non-constructor operators, such as <literal>+</literal> and <literal>*</literal>
857   are not allowed in types. Reason: the uniform thing to do would be to make them type
858   variables, but that's not very useful.  A less uniform but more useful thing would be to
859   allow them to be type <emphasis>constructors</emphasis>.  But that gives trouble in export
860   lists.  So for now we just exclude them.
861   </para></listitem>
862
863 </itemizedlist>
864 </para>
865 </sect2>
866
867 <sect2 id="sec-kinding">
868 <title>Explicitly-kinded quantification</title>
869
870 <para>
871 Haskell infers the kind of each type variable.  Sometimes it is nice to be able
872 to give the kind explicitly as (machine-checked) documentation, 
873 just as it is nice to give a type signature for a function.  On some occasions,
874 it is essential to do so.  For example, in his paper "Restricted Data Types in Haskell" (Haskell Workshop 1999)
875 John Hughes had to define the data type:
876 <Screen>
877      data Set cxt a = Set [a]
878                     | Unused (cxt a -> ())
879 </Screen>
880 The only use for the <literal>Unused</literal> constructor was to force the correct
881 kind for the type variable <literal>cxt</literal>.
882 </para>
883 <para>
884 GHC now instead allows you to specify the kind of a type variable directly, wherever
885 a type variable is explicitly bound.  Namely:
886 <itemizedlist>
887 <listitem><para><literal>data</literal> declarations:
888 <Screen>
889   data Set (cxt :: * -> *) a = Set [a]
890 </Screen></para></listitem>
891 <listitem><para><literal>type</literal> declarations:
892 <Screen>
893   type T (f :: * -> *) = f Int
894 </Screen></para></listitem>
895 <listitem><para><literal>class</literal> declarations:
896 <Screen>
897   class (Eq a) => C (f :: * -> *) a where ...
898 </Screen></para></listitem>
899 <listitem><para><literal>forall</literal>'s in type signatures:
900 <Screen>
901   f :: forall (cxt :: * -> *). Set cxt Int
902 </Screen></para></listitem>
903 </itemizedlist>
904 </para>
905
906 <para>
907 The parentheses are required.  Some of the spaces are required too, to
908 separate the lexemes.  If you write <literal>(f::*->*)</literal> you
909 will get a parse error, because "<literal>::*->*</literal>" is a
910 single lexeme in Haskell.
911 </para>
912
913 <para>
914 As part of the same extension, you can put kind annotations in types
915 as well.  Thus:
916 <Screen>
917    f :: (Int :: *) -> Int
918    g :: forall a. a -> (a :: *)
919 </Screen>
920 The syntax is
921 <Screen>
922    atype ::= '(' ctype '::' kind ')
923 </Screen>
924 The parentheses are required.
925 </para>
926 </sect2>
927
928
929 <sect2 id="class-method-types">
930 <title>Class method types
931 </title>
932 <para>
933 Haskell 98 prohibits class method types to mention constraints on the
934 class type variable, thus:
935 <programlisting>
936   class Seq s a where
937     fromList :: [a] -> s a
938     elem     :: Eq a => a -> s a -> Bool
939 </programlisting>
940 The type of <literal>elem</literal> is illegal in Haskell 98, because it
941 contains the constraint <literal>Eq a</literal>, constrains only the 
942 class type variable (in this case <literal>a</literal>).
943 </para>
944 <para>
945 With the <option>-fglasgow-exts</option> GHC lifts this restriction.
946 </para>
947
948 </sect2>
949
950 <sect2 id="multi-param-type-classes">
951 <title>Multi-parameter type classes
952 </title>
953
954 <para>
955 This section documents GHC's implementation of multi-parameter type
956 classes.  There's lots of background in the paper <ULink
957 URL="http://research.microsoft.com/~simonpj/multi.ps.gz" >Type
958 classes: exploring the design space</ULink > (Simon Peyton Jones, Mark
959 Jones, Erik Meijer).
960 </para>
961
962
963 <sect3 id="type-restrictions">
964 <title>Types</title>
965
966 <para>
967 GHC imposes the following restrictions on the form of a qualified
968 type, whether declared in a type signature
969 or inferred. Consider the type:
970
971 <programlisting>
972   forall tv1..tvn (c1, ...,cn) => type
973 </programlisting>
974
975 (Here, I write the "foralls" explicitly, although the Haskell source
976 language omits them; in Haskell 1.4, all the free type variables of an
977 explicit source-language type signature are universally quantified,
978 except for the class type variables in a class declaration.  However,
979 in GHC, you can give the foralls if you want.  See <xref LinkEnd="universal-quantification">).
980 </para>
981
982 <para>
983
984 <OrderedList>
985 <listitem>
986
987 <para>
988  <emphasis>Each universally quantified type variable
989 <literal>tvi</literal> must be reachable from <literal>type</literal></emphasis>.
990
991 A type variable is "reachable" if it it is functionally dependent
992 (see <xref linkend="functional-dependencies">)
993 on the type variables free in <literal>type</literal>.
994 The reason for this is that a value with a type that does not obey
995 this restriction could not be used without introducing
996 ambiguity. 
997 Here, for example, is an illegal type:
998
999
1000 <programlisting>
1001   forall a. Eq a => Int
1002 </programlisting>
1003
1004
1005 When a value with this type was used, the constraint <literal>Eq tv</literal>
1006 would be introduced where <literal>tv</literal> is a fresh type variable, and
1007 (in the dictionary-translation implementation) the value would be
1008 applied to a dictionary for <literal>Eq tv</literal>.  The difficulty is that we
1009 can never know which instance of <literal>Eq</literal> to use because we never
1010 get any more information about <literal>tv</literal>.
1011
1012 </para>
1013 </listitem>
1014 <listitem>
1015
1016 <para>
1017  <emphasis>Every constraint <literal>ci</literal> must mention at least one of the
1018 universally quantified type variables <literal>tvi</literal></emphasis>.
1019
1020 For example, this type is OK because <literal>C a b</literal> mentions the
1021 universally quantified type variable <literal>b</literal>:
1022
1023
1024 <programlisting>
1025   forall a. C a b => burble
1026 </programlisting>
1027
1028
1029 The next type is illegal because the constraint <literal>Eq b</literal> does not
1030 mention <literal>a</literal>:
1031
1032
1033 <programlisting>
1034   forall a. Eq b => burble
1035 </programlisting>
1036
1037
1038 The reason for this restriction is milder than the other one.  The
1039 excluded types are never useful or necessary (because the offending
1040 context doesn't need to be witnessed at this point; it can be floated
1041 out).  Furthermore, floating them out increases sharing. Lastly,
1042 excluding them is a conservative choice; it leaves a patch of
1043 territory free in case we need it later.
1044
1045 </para>
1046 </listitem>
1047
1048 </OrderedList>
1049
1050 </para>
1051
1052
1053 <para>
1054 Unlike Haskell 1.4, constraints in types do <emphasis>not</emphasis> have to be of
1055 the form <emphasis>(class type-variables)</emphasis>.  Thus, these type signatures
1056 are perfectly OK
1057 </para>
1058
1059 <para>
1060
1061 <programlisting>
1062   f :: Eq (m a) => [m a] -> [m a]
1063   g :: Eq [a] => ...
1064 </programlisting>
1065
1066 </para>
1067
1068 <para>
1069 This choice recovers principal types, a property that Haskell 1.4 does not have.
1070 </para>
1071
1072 </sect3>
1073
1074 <sect3>
1075 <title>Class declarations</title>
1076
1077 <para>
1078
1079 <OrderedList>
1080 <listitem>
1081
1082 <para>
1083  <emphasis>Multi-parameter type classes are permitted</emphasis>. For example:
1084
1085
1086 <programlisting>
1087   class Collection c a where
1088     union :: c a -> c a -> c a
1089     ...etc.
1090 </programlisting>
1091
1092
1093
1094 </para>
1095 </listitem>
1096 <listitem>
1097
1098 <para>
1099  <emphasis>The class hierarchy must be acyclic</emphasis>.  However, the definition
1100 of "acyclic" involves only the superclass relationships.  For example,
1101 this is OK:
1102
1103
1104 <programlisting>
1105   class C a where {
1106     op :: D b => a -> b -> b
1107   }
1108
1109   class C a => D a where { ... }
1110 </programlisting>
1111
1112
1113 Here, <literal>C</literal> is a superclass of <literal>D</literal>, but it's OK for a
1114 class operation <literal>op</literal> of <literal>C</literal> to mention <literal>D</literal>.  (It
1115 would not be OK for <literal>D</literal> to be a superclass of <literal>C</literal>.)
1116
1117 </para>
1118 </listitem>
1119 <listitem>
1120
1121 <para>
1122  <emphasis>There are no restrictions on the context in a class declaration
1123 (which introduces superclasses), except that the class hierarchy must
1124 be acyclic</emphasis>.  So these class declarations are OK:
1125
1126
1127 <programlisting>
1128   class Functor (m k) => FiniteMap m k where
1129     ...
1130
1131   class (Monad m, Monad (t m)) => Transform t m where
1132     lift :: m a -> (t m) a
1133 </programlisting>
1134
1135
1136 </para>
1137 </listitem>
1138
1139 <listitem>
1140
1141 <para>
1142  <emphasis>All of the class type variables must be reachable (in the sense 
1143 mentioned in <xref linkend="type-restrictions">)
1144 from the free varibles of each method type
1145 </emphasis>.  For example:
1146
1147
1148 <programlisting>
1149   class Coll s a where
1150     empty  :: s
1151     insert :: s -> a -> s
1152 </programlisting>
1153
1154
1155 is not OK, because the type of <literal>empty</literal> doesn't mention
1156 <literal>a</literal>.  This rule is a consequence of Rule 1(a), above, for
1157 types, and has the same motivation.
1158
1159 Sometimes, offending class declarations exhibit misunderstandings.  For
1160 example, <literal>Coll</literal> might be rewritten
1161
1162
1163 <programlisting>
1164   class Coll s a where
1165     empty  :: s a
1166     insert :: s a -> a -> s a
1167 </programlisting>
1168
1169
1170 which makes the connection between the type of a collection of
1171 <literal>a</literal>'s (namely <literal>(s a)</literal>) and the element type <literal>a</literal>.
1172 Occasionally this really doesn't work, in which case you can split the
1173 class like this:
1174
1175
1176 <programlisting>
1177   class CollE s where
1178     empty  :: s
1179
1180   class CollE s => Coll s a where
1181     insert :: s -> a -> s
1182 </programlisting>
1183
1184
1185 </para>
1186 </listitem>
1187
1188 </OrderedList>
1189
1190 </para>
1191
1192 </sect3>
1193
1194 <sect3 id="instance-decls">
1195 <title>Instance declarations</title>
1196
1197 <para>
1198
1199 <OrderedList>
1200 <listitem>
1201
1202 <para>
1203  <emphasis>Instance declarations may not overlap</emphasis>.  The two instance
1204 declarations
1205
1206
1207 <programlisting>
1208   instance context1 => C type1 where ...
1209   instance context2 => C type2 where ...
1210 </programlisting>
1211
1212
1213 "overlap" if <literal>type1</literal> and <literal>type2</literal> unify
1214
1215 However, if you give the command line option
1216 <option>-fallow-overlapping-instances</option><indexterm><primary>-fallow-overlapping-instances
1217 option</primary></indexterm> then overlapping instance declarations are permitted.
1218 However, GHC arranges never to commit to using an instance declaration
1219 if another instance declaration also applies, either now or later.
1220
1221 <itemizedlist>
1222 <listitem>
1223
1224 <para>
1225  EITHER <literal>type1</literal> and <literal>type2</literal> do not unify
1226 </para>
1227 </listitem>
1228 <listitem>
1229
1230 <para>
1231  OR <literal>type2</literal> is a substitution instance of <literal>type1</literal>
1232 (but not identical to <literal>type1</literal>), or vice versa.
1233 </para>
1234 </listitem>
1235 </itemizedlist>
1236 Notice that these rules
1237 <itemizedlist>
1238 <listitem>
1239
1240 <para>
1241  make it clear which instance decl to use
1242 (pick the most specific one that matches)
1243
1244 </para>
1245 </listitem>
1246 <listitem>
1247
1248 <para>
1249  do not mention the contexts <literal>context1</literal>, <literal>context2</literal>
1250 Reason: you can pick which instance decl
1251 "matches" based on the type.
1252 </para>
1253 </listitem>
1254
1255 </itemizedlist>
1256 However the rules are over-conservative.  Two instance declarations can overlap,
1257 but it can still be clear in particular situations which to use.  For example:
1258 <programlisting>
1259   instance C (Int,a) where ...
1260   instance C (a,Bool) where ...
1261 </programlisting>
1262 These are rejected by GHC's rules, but it is clear what to do when trying
1263 to solve the constraint <literal>C (Int,Int)</literal> because the second instance
1264 cannot apply.  Yell if this restriction bites you.
1265 </para>
1266 <para>
1267 GHC is also conservative about committing to an overlapping instance.  For example:
1268 <programlisting>
1269   class C a where { op :: a -> a }
1270   instance C [Int] where ...
1271   instance C a => C [a] where ...
1272   
1273   f :: C b => [b] -> [b]
1274   f x = op x
1275 </programlisting>
1276 From the RHS of f we get the constraint <literal>C [b]</literal>.  But
1277 GHC does not commit to the second instance declaration, because in a paricular
1278 call of f, b might be instantiate to Int, so the first instance declaration
1279 would be appropriate.  So GHC rejects the program.  If you add <option>-fallow-incoherent-instances</option>
1280 GHC will instead silently pick the second instance, without complaining about 
1281 the problem of subsequent instantiations.
1282 </para>
1283 <para>
1284 Regrettably, GHC doesn't guarantee to detect overlapping instance
1285 declarations if they appear in different modules.  GHC can "see" the
1286 instance declarations in the transitive closure of all the modules
1287 imported by the one being compiled, so it can "see" all instance decls
1288 when it is compiling <literal>Main</literal>.  However, it currently chooses not
1289 to look at ones that can't possibly be of use in the module currently
1290 being compiled, in the interests of efficiency.  (Perhaps we should
1291 change that decision, at least for <literal>Main</literal>.)
1292
1293 </para>
1294 </listitem>
1295 <listitem>
1296
1297 <para>
1298  <emphasis>There are no restrictions on the type in an instance
1299 <emphasis>head</emphasis>, except that at least one must not be a type variable</emphasis>.
1300 The instance "head" is the bit after the "=>" in an instance decl. For
1301 example, these are OK:
1302
1303
1304 <programlisting>
1305   instance C Int a where ...
1306
1307   instance D (Int, Int) where ...
1308
1309   instance E [[a]] where ...
1310 </programlisting>
1311
1312
1313 Note that instance heads <emphasis>may</emphasis> contain repeated type variables.
1314 For example, this is OK:
1315
1316
1317 <programlisting>
1318   instance Stateful (ST s) (MutVar s) where ...
1319 </programlisting>
1320
1321
1322 The "at least one not a type variable" restriction is to ensure that
1323 context reduction terminates: each reduction step removes one type
1324 constructor.  For example, the following would make the type checker
1325 loop if it wasn't excluded:
1326
1327
1328 <programlisting>
1329   instance C a => C a where ...
1330 </programlisting>
1331
1332
1333 There are two situations in which the rule is a bit of a pain. First,
1334 if one allows overlapping instance declarations then it's quite
1335 convenient to have a "default instance" declaration that applies if
1336 something more specific does not:
1337
1338
1339 <programlisting>
1340   instance C a where
1341     op = ... -- Default
1342 </programlisting>
1343
1344
1345 Second, sometimes you might want to use the following to get the
1346 effect of a "class synonym":
1347
1348
1349 <programlisting>
1350   class (C1 a, C2 a, C3 a) => C a where { }
1351
1352   instance (C1 a, C2 a, C3 a) => C a where { }
1353 </programlisting>
1354
1355
1356 This allows you to write shorter signatures:
1357
1358
1359 <programlisting>
1360   f :: C a => ...
1361 </programlisting>
1362
1363
1364 instead of
1365
1366
1367 <programlisting>
1368   f :: (C1 a, C2 a, C3 a) => ...
1369 </programlisting>
1370
1371
1372 I'm on the lookout for a simple rule that preserves decidability while
1373 allowing these idioms.  The experimental flag
1374 <option>-fallow-undecidable-instances</option><indexterm><primary>-fallow-undecidable-instances
1375 option</primary></indexterm> lifts this restriction, allowing all the types in an
1376 instance head to be type variables.
1377
1378 </para>
1379 </listitem>
1380 <listitem>
1381
1382 <para>
1383  <emphasis>Unlike Haskell 1.4, instance heads may use type
1384 synonyms</emphasis>.  As always, using a type synonym is just shorthand for
1385 writing the RHS of the type synonym definition.  For example:
1386
1387
1388 <programlisting>
1389   type Point = (Int,Int)
1390   instance C Point   where ...
1391   instance C [Point] where ...
1392 </programlisting>
1393
1394
1395 is legal.  However, if you added
1396
1397
1398 <programlisting>
1399   instance C (Int,Int) where ...
1400 </programlisting>
1401
1402
1403 as well, then the compiler will complain about the overlapping
1404 (actually, identical) instance declarations.  As always, type synonyms
1405 must be fully applied.  You cannot, for example, write:
1406
1407
1408 <programlisting>
1409   type P a = [[a]]
1410   instance Monad P where ...
1411 </programlisting>
1412
1413
1414 This design decision is independent of all the others, and easily
1415 reversed, but it makes sense to me.
1416
1417 </para>
1418 </listitem>
1419 <listitem>
1420
1421 <para>
1422 <emphasis>The types in an instance-declaration <emphasis>context</emphasis> must all
1423 be type variables</emphasis>. Thus
1424
1425
1426 <programlisting>
1427 instance C a b => Eq (a,b) where ...
1428 </programlisting>
1429
1430
1431 is OK, but
1432
1433
1434 <programlisting>
1435 instance C Int b => Foo b where ...
1436 </programlisting>
1437
1438
1439 is not OK.  Again, the intent here is to make sure that context
1440 reduction terminates.
1441
1442 Voluminous correspondence on the Haskell mailing list has convinced me
1443 that it's worth experimenting with a more liberal rule.  If you use
1444 the flag <option>-fallow-undecidable-instances</option> can use arbitrary
1445 types in an instance context.  Termination is ensured by having a
1446 fixed-depth recursion stack.  If you exceed the stack depth you get a
1447 sort of backtrace, and the opportunity to increase the stack depth
1448 with <option>-fcontext-stack</option><emphasis>N</emphasis>.
1449
1450 </para>
1451 </listitem>
1452
1453 </OrderedList>
1454
1455 </para>
1456
1457 </sect3>
1458
1459 </sect2>
1460
1461 <sect2 id="implicit-parameters">
1462 <title>Implicit parameters
1463 </title>
1464
1465 <para> Implicit paramters are implemented as described in 
1466 "Implicit parameters: dynamic scoping with static types", 
1467 J Lewis, MB Shields, E Meijer, J Launchbury,
1468 27th ACM Symposium on Principles of Programming Languages (POPL'00),
1469 Boston, Jan 2000.
1470 </para>
1471 <para>(Most of the following, stil rather incomplete, documentation is due to Jeff Lewis.)</para>
1472 <para>
1473 A variable is called <emphasis>dynamically bound</emphasis> when it is bound by the calling
1474 context of a function and <emphasis>statically bound</emphasis> when bound by the callee's
1475 context. In Haskell, all variables are statically bound. Dynamic
1476 binding of variables is a notion that goes back to Lisp, but was later
1477 discarded in more modern incarnations, such as Scheme. Dynamic binding
1478 can be very confusing in an untyped language, and unfortunately, typed
1479 languages, in particular Hindley-Milner typed languages like Haskell,
1480 only support static scoping of variables.
1481 </para>
1482 <para>
1483 However, by a simple extension to the type class system of Haskell, we
1484 can support dynamic binding. Basically, we express the use of a
1485 dynamically bound variable as a constraint on the type. These
1486 constraints lead to types of the form <literal>(?x::t') => t</literal>, which says "this
1487 function uses a dynamically-bound variable <literal>?x</literal> 
1488 of type <literal>t'</literal>". For
1489 example, the following expresses the type of a sort function,
1490 implicitly parameterized by a comparison function named <literal>cmp</literal>.
1491 <programlisting>
1492   sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]
1493 </programlisting>
1494 The dynamic binding constraints are just a new form of predicate in the type class system.
1495 </para>
1496 <para>
1497 An implicit parameter occurs in an expression using the special form <literal>?x</literal>, 
1498 where <literal>x</literal> is
1499 any valid identifier (e.g. <literal>ord ?x</literal> is a valid expression). 
1500 Use of this construct also introduces a new
1501 dynamic-binding constraint in the type of the expression. 
1502 For example, the following definition
1503 shows how we can define an implicitly parameterized sort function in
1504 terms of an explicitly parameterized <literal>sortBy</literal> function:
1505 <programlisting>
1506   sortBy :: (a -> a -> Bool) -> [a] -> [a]
1507
1508   sort   :: (?cmp :: a -> a -> Bool) => [a] -> [a]
1509   sort    = sortBy ?cmp
1510 </programlisting>
1511 </para>
1512
1513 <sect3>
1514 <title>Implicit-parameter type constraints</title>
1515 <para>
1516 Dynamic binding constraints behave just like other type class
1517 constraints in that they are automatically propagated. Thus, when a
1518 function is used, its implicit parameters are inherited by the
1519 function that called it. For example, our <literal>sort</literal> function might be used
1520 to pick out the least value in a list:
1521 <programlisting>
1522   least   :: (?cmp :: a -> a -> Bool) => [a] -> a
1523   least xs = fst (sort xs)
1524 </programlisting>
1525 Without lifting a finger, the <literal>?cmp</literal> parameter is
1526 propagated to become a parameter of <literal>least</literal> as well. With explicit
1527 parameters, the default is that parameters must always be explicit
1528 propagated. With implicit parameters, the default is to always
1529 propagate them.
1530 </para>
1531 <para>
1532 An implicit-parameter type constraint differs from other type class constraints in the
1533 following way: All uses of a particular implicit parameter must have
1534 the same type. This means that the type of <literal>(?x, ?x)</literal> 
1535 is <literal>(?x::a) => (a,a)</literal>, and not 
1536 <literal>(?x::a, ?x::b) => (a, b)</literal>, as would be the case for type
1537 class constraints.
1538 </para>
1539
1540 <para> You can't have an implicit parameter in the context of a class or instance
1541 declaration.  For example, both these declarations are illegal:
1542 <programlisting>
1543   class (?x::Int) => C a where ...
1544   instance (?x::a) => Foo [a] where ...
1545 </programlisting>
1546 Reason: exactly which implicit parameter you pick up depends on exactly where
1547 you invoke a function. But the ``invocation'' of instance declarations is done
1548 behind the scenes by the compiler, so it's hard to figure out exactly where it is done.
1549 Easiest thing is to outlaw the offending types.</para>
1550 <para>
1551 Implicit-parameter constraints do not cause ambiguity.  For example, consider:
1552 <programlisting>
1553    f :: (?x :: [a]) => Int -> Int
1554    f n = n + length ?x
1555
1556    g :: (Read a, Show a) => String -> String
1557    g s = show (read s)
1558 </programlisting>
1559 Here, <literal>g</literal> has an ambiguous type, and is rejected, but <literal>f</literal>
1560 is fine.  The binding for <literal>?x</literal> at <literal>f</literal>'s call site is 
1561 quite unambiguous, and fixes the type <literal>a</literal>.
1562 </para>
1563 </sect3>
1564
1565 <sect3>
1566 <title>Implicit-parameter bindings</title>
1567
1568 <para>
1569 An implicit parameter is <emphasis>bound</emphasis> using the standard
1570 <literal>let</literal> or <literal>where</literal> binding forms.
1571 For example, we define the <literal>min</literal> function by binding
1572 <literal>cmp</literal>.
1573 <programlisting>
1574   min :: [a] -> a
1575   min  = let ?cmp = (<=) in least
1576 </programlisting>
1577 </para>
1578 <para>
1579 A group of implicit-parameter bindings may occur anywhere a normal group of Haskell
1580 bindings can occur, except at top level.  That is, they can occur in a <literal>let</literal> 
1581 (including in a list comprehension, or do-notation, or pattern guards), 
1582 or a <literal>where</literal> clause.
1583 Note the following points:
1584 <itemizedlist>
1585 <listitem><para>
1586 An implicit-parameter binding group must be a
1587 collection of simple bindings to implicit-style variables (no
1588 function-style bindings, and no type signatures); these bindings are
1589 neither polymorphic or recursive.  
1590 </para></listitem>
1591 <listitem><para>
1592 You may not mix implicit-parameter bindings with ordinary bindings in a 
1593 single <literal>let</literal>
1594 expression; use two nested <literal>let</literal>s instead.
1595 (In the case of <literal>where</literal> you are stuck, since you can't nest <literal>where</literal> clauses.)
1596 </para></listitem>
1597
1598 <listitem><para>
1599 You may put multiple implicit-parameter bindings in a
1600 single binding group; but they are <emphasis>not</emphasis> treated
1601 as a mutually recursive group (as ordinary <literal>let</literal> bindings are).
1602 Instead they are treated as a non-recursive group, simultaneously binding all the implicit
1603 parameter.  The bindings are not nested, and may be re-ordered without changing
1604 the meaning of the program.
1605 For example, consider:
1606 <programlisting>
1607   f t = let { ?x = t; ?y = ?x+(1::Int) } in ?x + ?y
1608 </programlisting>
1609 The use of <literal>?x</literal> in the binding for <literal>?y</literal> does not "see"
1610 the binding for <literal>?x</literal>, so the type of <literal>f</literal> is
1611 <programlisting>
1612   f :: (?x::Int) => Int -> Int
1613 </programlisting>
1614 </para></listitem>
1615 </itemizedlist>
1616 </para>
1617
1618 </sect3>
1619 </sect2>
1620
1621 <sect2 id="linear-implicit-parameters">
1622 <title>Linear implicit parameters
1623 </title>
1624 <para>
1625 Linear implicit parameters are an idea developed by Koen Claessen,
1626 Mark Shields, and Simon PJ.  They address the long-standing
1627 problem that monads seem over-kill for certain sorts of problem, notably:
1628 </para>
1629 <itemizedlist>
1630 <listitem> <para> distributing a supply of unique names </para> </listitem>
1631 <listitem> <para> distributing a suppply of random numbers </para> </listitem>
1632 <listitem> <para> distributing an oracle (as in QuickCheck) </para> </listitem>
1633 </itemizedlist>
1634
1635 <para>
1636 Linear implicit parameters are just like ordinary implicit parameters,
1637 except that they are "linear" -- that is, they cannot be copied, and
1638 must be explicitly "split" instead.  Linear implicit parameters are
1639 written '<literal>%x</literal>' instead of '<literal>?x</literal>'.  
1640 (The '/' in the '%' suggests the split!)
1641 </para>
1642 <para>
1643 For example:
1644 <programlisting>
1645     import GHC.Exts( Splittable )
1646
1647     data NameSupply = ...
1648     
1649     splitNS :: NameSupply -> (NameSupply, NameSupply)
1650     newName :: NameSupply -> Name
1651
1652     instance Splittable NameSupply where
1653         split = splitNS
1654
1655
1656     f :: (%ns :: NameSupply) => Env -> Expr -> Expr
1657     f env (Lam x e) = Lam x' (f env e)
1658                     where
1659                       x'   = newName %ns
1660                       env' = extend env x x'
1661     ...more equations for f...
1662 </programlisting>
1663 Notice that the implicit parameter %ns is consumed 
1664 <itemizedlist>
1665 <listitem> <para> once by the call to <literal>newName</literal> </para> </listitem>
1666 <listitem> <para> once by the recursive call to <literal>f</literal> </para></listitem>
1667 </itemizedlist>
1668 </para>
1669 <para>
1670 So the translation done by the type checker makes
1671 the parameter explicit:
1672 <programlisting>
1673     f :: NameSupply -> Env -> Expr -> Expr
1674     f ns env (Lam x e) = Lam x' (f ns1 env e)
1675                        where
1676                          (ns1,ns2) = splitNS ns
1677                          x' = newName ns2
1678                          env = extend env x x'
1679 </programlisting>
1680 Notice the call to 'split' introduced by the type checker.
1681 How did it know to use 'splitNS'?  Because what it really did
1682 was to introduce a call to the overloaded function 'split',
1683 defined by the class <literal>Splittable</literal>:
1684 <programlisting>
1685         class Splittable a where
1686           split :: a -> (a,a)
1687 </programlisting>
1688 The instance for <literal>Splittable NameSupply</literal> tells GHC how to implement
1689 split for name supplies.  But we can simply write
1690 <programlisting>
1691         g x = (x, %ns, %ns)
1692 </programlisting>
1693 and GHC will infer
1694 <programlisting>
1695         g :: (Splittable a, %ns :: a) => b -> (b,a,a)
1696 </programlisting>
1697 The <literal>Splittable</literal> class is built into GHC.  It's exported by module 
1698 <literal>GHC.Exts</literal>.
1699 </para>
1700 <para>
1701 Other points:
1702 <itemizedlist>
1703 <listitem> <para> '<literal>?x</literal>' and '<literal>%x</literal>' 
1704 are entirely distinct implicit parameters: you 
1705   can use them together and they won't intefere with each other. </para>
1706 </listitem>
1707
1708 <listitem> <para> You can bind linear implicit parameters in 'with' clauses. </para> </listitem>
1709
1710 <listitem> <para>You cannot have implicit parameters (whether linear or not)
1711   in the context of a class or instance declaration. </para></listitem>
1712 </itemizedlist>
1713 </para>
1714
1715 <sect3><title>Warnings</title>
1716
1717 <para>
1718 The monomorphism restriction is even more important than usual.
1719 Consider the example above:
1720 <programlisting>
1721     f :: (%ns :: NameSupply) => Env -> Expr -> Expr
1722     f env (Lam x e) = Lam x' (f env e)
1723                     where
1724                       x'   = newName %ns
1725                       env' = extend env x x'
1726 </programlisting>
1727 If we replaced the two occurrences of x' by (newName %ns), which is
1728 usually a harmless thing to do, we get:
1729 <programlisting>
1730     f :: (%ns :: NameSupply) => Env -> Expr -> Expr
1731     f env (Lam x e) = Lam (newName %ns) (f env e)
1732                     where
1733                       env' = extend env x (newName %ns)
1734 </programlisting>
1735 But now the name supply is consumed in <emphasis>three</emphasis> places
1736 (the two calls to newName,and the recursive call to f), so
1737 the result is utterly different.  Urk!  We don't even have 
1738 the beta rule.
1739 </para>
1740 <para>
1741 Well, this is an experimental change.  With implicit
1742 parameters we have already lost beta reduction anyway, and
1743 (as John Launchbury puts it) we can't sensibly reason about
1744 Haskell programs without knowing their typing.
1745 </para>
1746
1747 </sect3>
1748
1749 <sect3><title>Recursive functions</title>
1750 <para>Linear implicit parameters can be particularly tricky when you have a recursive function
1751 Consider
1752 <programlisting>
1753         foo :: %x::T => Int -> [Int]
1754         foo 0 = []
1755         foo n = %x : foo (n-1)
1756 </programlisting>
1757 where T is some type in class Splittable.</para>
1758 <para>
1759 Do you get a list of all the same T's or all different T's
1760 (assuming that split gives two distinct T's back)?
1761 </para><para>
1762 If you supply the type signature, taking advantage of polymorphic
1763 recursion, you get what you'd probably expect.  Here's the
1764 translated term, where the implicit param is made explicit:
1765 <programlisting>
1766         foo x 0 = []
1767         foo x n = let (x1,x2) = split x
1768                   in x1 : foo x2 (n-1)
1769 </programlisting>
1770 But if you don't supply a type signature, GHC uses the Hindley
1771 Milner trick of using a single monomorphic instance of the function
1772 for the recursive calls. That is what makes Hindley Milner type inference
1773 work.  So the translation becomes
1774 <programlisting>
1775         foo x = let
1776                   foom 0 = []
1777                   foom n = x : foom (n-1)
1778                 in
1779                 foom
1780 </programlisting>
1781 Result: 'x' is not split, and you get a list of identical T's.  So the
1782 semantics of the program depends on whether or not foo has a type signature.
1783 Yikes!
1784 </para><para>
1785 You may say that this is a good reason to dislike linear implicit parameters
1786 and you'd be right.  That is why they are an experimental feature. 
1787 </para>
1788 </sect3>
1789
1790 </sect2>
1791
1792 <sect2 id="functional-dependencies">
1793 <title>Functional dependencies
1794 </title>
1795
1796 <para> Functional dependencies are implemented as described by Mark Jones
1797 in &ldquo;<ulink url="http://www.cse.ogi.edu/~mpj/pubs/fundeps.html">Type Classes with Functional Dependencies</ulink>&rdquo;, Mark P. Jones, 
1798 In Proceedings of the 9th European Symposium on Programming, 
1799 ESOP 2000, Berlin, Germany, March 2000, Springer-Verlag LNCS 1782,
1800 .
1801 </para>
1802
1803 <para>
1804 There should be more documentation, but there isn't (yet).  Yell if you need it.
1805 </para>
1806 </sect2>
1807
1808
1809 <sect2 id="universal-quantification">
1810 <title>Arbitrary-rank polymorphism
1811 </title>
1812
1813 <para>
1814 Haskell type signatures are implicitly quantified.  The new keyword <literal>forall</literal>
1815 allows us to say exactly what this means.  For example:
1816 </para>
1817 <para>
1818 <programlisting>
1819         g :: b -> b
1820 </programlisting>
1821 means this:
1822 <programlisting>
1823         g :: forall b. (b -> b)
1824 </programlisting>
1825 The two are treated identically.
1826 </para>
1827
1828 <para>
1829 However, GHC's type system supports <emphasis>arbitrary-rank</emphasis> 
1830 explicit universal quantification in
1831 types. 
1832 For example, all the following types are legal:
1833 <programlisting>
1834     f1 :: forall a b. a -> b -> a
1835     g1 :: forall a b. (Ord a, Eq  b) => a -> b -> a
1836
1837     f2 :: (forall a. a->a) -> Int -> Int
1838     g2 :: (forall a. Eq a => [a] -> a -> Bool) -> Int -> Int
1839
1840     f3 :: ((forall a. a->a) -> Int) -> Bool -> Bool
1841 </programlisting>
1842 Here, <literal>f1</literal> and <literal>g1</literal> are rank-1 types, and
1843 can be written in standard Haskell (e.g. <literal>f1 :: a->b->a</literal>).
1844 The <literal>forall</literal> makes explicit the universal quantification that
1845 is implicitly added by Haskell.
1846 </para>
1847 <para>
1848 The functions <literal>f2</literal> and <literal>g2</literal> have rank-2 types;
1849 the <literal>forall</literal> is on the left of a function arrrow.  As <literal>g2</literal>
1850 shows, the polymorphic type on the left of the function arrow can be overloaded.
1851 </para>
1852 <para>
1853 The functions <literal>f3</literal> and <literal>g3</literal> have rank-3 types;
1854 they have rank-2 types on the left of a function arrow.
1855 </para>
1856 <para>
1857 GHC allows types of arbitrary rank; you can nest <literal>forall</literal>s
1858 arbitrarily deep in function arrows.   (GHC used to be restricted to rank 2, but
1859 that restriction has now been lifted.)
1860 In particular, a forall-type (also called a "type scheme"),
1861 including an operational type class context, is legal:
1862 <itemizedlist>
1863 <listitem> <para> On the left of a function arrow </para> </listitem>
1864 <listitem> <para> On the right of a function arrow (see <xref linkend="hoist">) </para> </listitem>
1865 <listitem> <para> As the argument of a constructor, or type of a field, in a data type declaration. For
1866 example, any of the <literal>f1,f2,f3,g1,g2,g3</literal> above would be valid
1867 field type signatures.</para> </listitem>
1868 <listitem> <para> As the type of an implicit parameter </para> </listitem>
1869 <listitem> <para> In a pattern type signature (see <xref linkend="scoped-type-variables">) </para> </listitem>
1870 </itemizedlist>
1871 There is one place you cannot put a <literal>forall</literal>:
1872 you cannot instantiate a type variable with a forall-type.  So you cannot 
1873 make a forall-type the argument of a type constructor.  So these types are illegal:
1874 <programlisting>
1875     x1 :: [forall a. a->a]
1876     x2 :: (forall a. a->a, Int)
1877     x3 :: Maybe (forall a. a->a)
1878 </programlisting>
1879 Of course <literal>forall</literal> becomes a keyword; you can't use <literal>forall</literal> as
1880 a type variable any more!
1881 </para>
1882
1883
1884 <sect3 id="univ">
1885 <title>Examples
1886 </title>
1887
1888 <para>
1889 In a <literal>data</literal> or <literal>newtype</literal> declaration one can quantify
1890 the types of the constructor arguments.  Here are several examples:
1891 </para>
1892
1893 <para>
1894
1895 <programlisting>
1896 data T a = T1 (forall b. b -> b -> b) a
1897
1898 data MonadT m = MkMonad { return :: forall a. a -> m a,
1899                           bind   :: forall a b. m a -> (a -> m b) -> m b
1900                         }
1901
1902 newtype Swizzle = MkSwizzle (Ord a => [a] -> [a])
1903 </programlisting>
1904
1905 </para>
1906
1907 <para>
1908 The constructors have rank-2 types:
1909 </para>
1910
1911 <para>
1912
1913 <programlisting>
1914 T1 :: forall a. (forall b. b -> b -> b) -> a -> T a
1915 MkMonad :: forall m. (forall a. a -> m a)
1916                   -> (forall a b. m a -> (a -> m b) -> m b)
1917                   -> MonadT m
1918 MkSwizzle :: (Ord a => [a] -> [a]) -> Swizzle
1919 </programlisting>
1920
1921 </para>
1922
1923 <para>
1924 Notice that you don't need to use a <literal>forall</literal> if there's an
1925 explicit context.  For example in the first argument of the
1926 constructor <function>MkSwizzle</function>, an implicit "<literal>forall a.</literal>" is
1927 prefixed to the argument type.  The implicit <literal>forall</literal>
1928 quantifies all type variables that are not already in scope, and are
1929 mentioned in the type quantified over.
1930 </para>
1931
1932 <para>
1933 As for type signatures, implicit quantification happens for non-overloaded
1934 types too.  So if you write this:
1935
1936 <programlisting>
1937   data T a = MkT (Either a b) (b -> b)
1938 </programlisting>
1939
1940 it's just as if you had written this:
1941
1942 <programlisting>
1943   data T a = MkT (forall b. Either a b) (forall b. b -> b)
1944 </programlisting>
1945
1946 That is, since the type variable <literal>b</literal> isn't in scope, it's
1947 implicitly universally quantified.  (Arguably, it would be better
1948 to <emphasis>require</emphasis> explicit quantification on constructor arguments
1949 where that is what is wanted.  Feedback welcomed.)
1950 </para>
1951
1952 <para>
1953 You construct values of types <literal>T1, MonadT, Swizzle</literal> by applying
1954 the constructor to suitable values, just as usual.  For example,
1955 </para>
1956
1957 <para>
1958
1959 <programlisting>
1960     a1 :: T Int
1961     a1 = T1 (\xy->x) 3
1962     
1963     a2, a3 :: Swizzle
1964     a2 = MkSwizzle sort
1965     a3 = MkSwizzle reverse
1966     
1967     a4 :: MonadT Maybe
1968     a4 = let r x = Just x
1969              b m k = case m of
1970                        Just y -> k y
1971                        Nothing -> Nothing
1972          in
1973          MkMonad r b
1974
1975     mkTs :: (forall b. b -> b -> b) -> a -> [T a]
1976     mkTs f x y = [T1 f x, T1 f y]
1977 </programlisting>
1978
1979 </para>
1980
1981 <para>
1982 The type of the argument can, as usual, be more general than the type
1983 required, as <literal>(MkSwizzle reverse)</literal> shows.  (<function>reverse</function>
1984 does not need the <literal>Ord</literal> constraint.)
1985 </para>
1986
1987 <para>
1988 When you use pattern matching, the bound variables may now have
1989 polymorphic types.  For example:
1990 </para>
1991
1992 <para>
1993
1994 <programlisting>
1995     f :: T a -> a -> (a, Char)
1996     f (T1 w k) x = (w k x, w 'c' 'd')
1997
1998     g :: (Ord a, Ord b) => Swizzle -> [a] -> (a -> b) -> [b]
1999     g (MkSwizzle s) xs f = s (map f (s xs))
2000
2001     h :: MonadT m -> [m a] -> m [a]
2002     h m [] = return m []
2003     h m (x:xs) = bind m x          $ \y ->
2004                  bind m (h m xs)   $ \ys ->
2005                  return m (y:ys)
2006 </programlisting>
2007
2008 </para>
2009
2010 <para>
2011 In the function <function>h</function> we use the record selectors <literal>return</literal>
2012 and <literal>bind</literal> to extract the polymorphic bind and return functions
2013 from the <literal>MonadT</literal> data structure, rather than using pattern
2014 matching.
2015 </para>
2016 </sect3>
2017
2018 <sect3>
2019 <title>Type inference</title>
2020
2021 <para>
2022 In general, type inference for arbitrary-rank types is undecideable.
2023 GHC uses an algorithm proposed by Odersky and Laufer ("Putting type annotations to work", POPL'96)
2024 to get a decidable algorithm by requiring some help from the programmer.
2025 We do not yet have a formal specification of "some help" but the rule is this:
2026 </para>
2027 <para>
2028 <emphasis>For a lambda-bound or case-bound variable, x, either the programmer
2029 provides an explicit polymorphic type for x, or GHC's type inference will assume
2030 that x's type has no foralls in it</emphasis>.
2031 </para>
2032 <para>
2033 What does it mean to "provide" an explicit type for x?  You can do that by 
2034 giving a type signature for x directly, using a pattern type signature
2035 (<xref linkend="scoped-type-variables">), thus:
2036 <programlisting>
2037      \ f :: (forall a. a->a) -> (f True, f 'c')
2038 </programlisting>
2039 Alternatively, you can give a type signature to the enclosing
2040 context, which GHC can "push down" to find the type for the variable:
2041 <programlisting>
2042      (\ f -> (f True, f 'c')) :: (forall a. a->a) -> (Bool,Char)
2043 </programlisting>
2044 Here the type signature on the expression can be pushed inwards
2045 to give a type signature for f.  Similarly, and more commonly,
2046 one can give a type signature for the function itself:
2047 <programlisting>
2048      h :: (forall a. a->a) -> (Bool,Char)
2049      h f = (f True, f 'c')
2050 </programlisting>
2051 You don't need to give a type signature if the lambda bound variable
2052 is a constructor argument.  Here is an example we saw earlier:
2053 <programlisting>
2054     f :: T a -> a -> (a, Char)
2055     f (T1 w k) x = (w k x, w 'c' 'd')
2056 </programlisting>
2057 Here we do not need to give a type signature to <literal>w</literal>, because
2058 it is an argument of constructor <literal>T1</literal> and that tells GHC all
2059 it needs to know.
2060 </para>
2061
2062 </sect3>
2063
2064
2065 <sect3 id="implicit-quant">
2066 <title>Implicit quantification</title>
2067
2068 <para>
2069 GHC performs implicit quantification as follows.  <emphasis>At the top level (only) of 
2070 user-written types, if and only if there is no explicit <literal>forall</literal>,
2071 GHC finds all the type variables mentioned in the type that are not already
2072 in scope, and universally quantifies them.</emphasis>  For example, the following pairs are 
2073 equivalent:
2074 <programlisting>
2075   f :: a -> a
2076   f :: forall a. a -> a
2077
2078   g (x::a) = let
2079                 h :: a -> b -> b
2080                 h x y = y
2081              in ...
2082   g (x::a) = let
2083                 h :: forall b. a -> b -> b
2084                 h x y = y
2085              in ...
2086 </programlisting>
2087 </para>
2088 <para>
2089 Notice that GHC does <emphasis>not</emphasis> find the innermost possible quantification
2090 point.  For example:
2091 <programlisting>
2092   f :: (a -> a) -> Int
2093            -- MEANS
2094   f :: forall a. (a -> a) -> Int
2095            -- NOT
2096   f :: (forall a. a -> a) -> Int
2097
2098
2099   g :: (Ord a => a -> a) -> Int
2100            -- MEANS the illegal type
2101   g :: forall a. (Ord a => a -> a) -> Int
2102            -- NOT
2103   g :: (forall a. Ord a => a -> a) -> Int
2104 </programlisting>
2105 The latter produces an illegal type, which you might think is silly,
2106 but at least the rule is simple.  If you want the latter type, you
2107 can write your for-alls explicitly.  Indeed, doing so is strongly advised
2108 for rank-2 types.
2109 </para>
2110 </sect3>
2111 </sect2>
2112
2113 <sect2 id="type-synonyms">
2114 <title>Liberalised type synonyms 
2115 </title>
2116
2117 <para>
2118 Type synonmys are like macros at the type level, and
2119 GHC does validity checking on types <emphasis>only after expanding type synonyms</emphasis>.
2120 That means that GHC can be very much more liberal about type synonyms than Haskell 98:
2121 <itemizedlist>
2122 <listitem> <para>You can write a <literal>forall</literal> (including overloading)
2123 in a type synonym, thus:
2124 <programlisting>
2125   type Discard a = forall b. Show b => a -> b -> (a, String)
2126
2127   f :: Discard a
2128   f x y = (x, show y)
2129
2130   g :: Discard Int -> (Int,Bool)    -- A rank-2 type
2131   g f = f Int True
2132 </programlisting>
2133 </para>
2134 </listitem>
2135
2136 <listitem><para>
2137 You can write an unboxed tuple in a type synonym:
2138 <programlisting>
2139   type Pr = (# Int, Int #)
2140
2141   h :: Int -> Pr
2142   h x = (# x, x #)
2143 </programlisting>
2144 </para></listitem>
2145
2146 <listitem><para>
2147 You can apply a type synonym to a forall type:
2148 <programlisting>
2149   type Foo a = a -> a -> Bool
2150  
2151   f :: Foo (forall b. b->b)
2152 </programlisting>
2153 After expanding the synonym, <literal>f</literal> has the legal (in GHC) type:
2154 <programlisting>
2155   f :: (forall b. b->b) -> (forall b. b->b) -> Bool
2156 </programlisting>
2157 </para></listitem>
2158
2159 <listitem><para>
2160 You can apply a type synonym to a partially applied type synonym:
2161 <programlisting>
2162   type Generic i o = forall x. i x -> o x
2163   type Id x = x
2164   
2165   foo :: Generic Id []
2166 </programlisting>
2167 After epxanding the synonym, <literal>foo</literal> has the legal (in GHC) type:
2168 <programlisting>
2169   foo :: forall x. x -> [x]
2170 </programlisting>
2171 </para></listitem>
2172
2173 </itemizedlist>
2174 </para>
2175
2176 <para>
2177 GHC currently does kind checking before expanding synonyms (though even that
2178 could be changed.)
2179 </para>
2180 <para>
2181 After expanding type synonyms, GHC does validity checking on types, looking for
2182 the following mal-formedness which isn't detected simply by kind checking:
2183 <itemizedlist>
2184 <listitem><para>
2185 Type constructor applied to a type involving for-alls.
2186 </para></listitem>
2187 <listitem><para>
2188 Unboxed tuple on left of an arrow.
2189 </para></listitem>
2190 <listitem><para>
2191 Partially-applied type synonym.
2192 </para></listitem>
2193 </itemizedlist>
2194 So, for example,
2195 this will be rejected:
2196 <programlisting>
2197   type Pr = (# Int, Int #)
2198
2199   h :: Pr -> Int
2200   h x = ...
2201 </programlisting>
2202 because GHC does not allow  unboxed tuples on the left of a function arrow.
2203 </para>
2204 </sect2>
2205
2206 <sect2 id="hoist">
2207 <title>For-all hoisting</title>
2208 <para>
2209 It is often convenient to use generalised type synonyms at the right hand
2210 end of an arrow, thus:
2211 <programlisting>
2212   type Discard a = forall b. a -> b -> a
2213
2214   g :: Int -> Discard Int
2215   g x y z = x+y
2216 </programlisting>
2217 Simply expanding the type synonym would give
2218 <programlisting>
2219   g :: Int -> (forall b. Int -> b -> Int)
2220 </programlisting>
2221 but GHC "hoists" the <literal>forall</literal> to give the isomorphic type
2222 <programlisting>
2223   g :: forall b. Int -> Int -> b -> Int
2224 </programlisting>
2225 In general, the rule is this: <emphasis>to determine the type specified by any explicit
2226 user-written type (e.g. in a type signature), GHC expands type synonyms and then repeatedly
2227 performs the transformation:</emphasis>
2228 <programlisting>
2229   <emphasis>type1</emphasis> -> forall a1..an. <emphasis>context2</emphasis> => <emphasis>type2</emphasis>
2230 ==>
2231   forall a1..an. <emphasis>context2</emphasis> => <emphasis>type1</emphasis> -> <emphasis>type2</emphasis>
2232 </programlisting>
2233 (In fact, GHC tries to retain as much synonym information as possible for use in
2234 error messages, but that is a usability issue.)  This rule applies, of course, whether
2235 or not the <literal>forall</literal> comes from a synonym. For example, here is another
2236 valid way to write <literal>g</literal>'s type signature:
2237 <programlisting>
2238   g :: Int -> Int -> forall b. b -> Int
2239 </programlisting>
2240 </para>
2241 <para>
2242 When doing this hoisting operation, GHC eliminates duplicate constraints.  For
2243 example:
2244 <programlisting>
2245   type Foo a = (?x::Int) => Bool -> a
2246   g :: Foo (Foo Int)
2247 </programlisting>
2248 means
2249 <programlisting>
2250   g :: (?x::Int) => Bool -> Bool -> Int
2251 </programlisting>
2252 </para>
2253 </sect2>
2254
2255
2256 <sect2 id="existential-quantification">
2257 <title>Existentially quantified data constructors
2258 </title>
2259
2260 <para>
2261 The idea of using existential quantification in data type declarations
2262 was suggested by Laufer (I believe, thought doubtless someone will
2263 correct me), and implemented in Hope+. It's been in Lennart
2264 Augustsson's <Command>hbc</Command> Haskell compiler for several years, and
2265 proved very useful.  Here's the idea.  Consider the declaration:
2266 </para>
2267
2268 <para>
2269
2270 <programlisting>
2271   data Foo = forall a. MkFoo a (a -> Bool)
2272            | Nil
2273 </programlisting>
2274
2275 </para>
2276
2277 <para>
2278 The data type <literal>Foo</literal> has two constructors with types:
2279 </para>
2280
2281 <para>
2282
2283 <programlisting>
2284   MkFoo :: forall a. a -> (a -> Bool) -> Foo
2285   Nil   :: Foo
2286 </programlisting>
2287
2288 </para>
2289
2290 <para>
2291 Notice that the type variable <literal>a</literal> in the type of <function>MkFoo</function>
2292 does not appear in the data type itself, which is plain <literal>Foo</literal>.
2293 For example, the following expression is fine:
2294 </para>
2295
2296 <para>
2297
2298 <programlisting>
2299   [MkFoo 3 even, MkFoo 'c' isUpper] :: [Foo]
2300 </programlisting>
2301
2302 </para>
2303
2304 <para>
2305 Here, <literal>(MkFoo 3 even)</literal> packages an integer with a function
2306 <function>even</function> that maps an integer to <literal>Bool</literal>; and <function>MkFoo 'c'
2307 isUpper</function> packages a character with a compatible function.  These
2308 two things are each of type <literal>Foo</literal> and can be put in a list.
2309 </para>
2310
2311 <para>
2312 What can we do with a value of type <literal>Foo</literal>?.  In particular,
2313 what happens when we pattern-match on <function>MkFoo</function>?
2314 </para>
2315
2316 <para>
2317
2318 <programlisting>
2319   f (MkFoo val fn) = ???
2320 </programlisting>
2321
2322 </para>
2323
2324 <para>
2325 Since all we know about <literal>val</literal> and <function>fn</function> is that they
2326 are compatible, the only (useful) thing we can do with them is to
2327 apply <function>fn</function> to <literal>val</literal> to get a boolean.  For example:
2328 </para>
2329
2330 <para>
2331
2332 <programlisting>
2333   f :: Foo -> Bool
2334   f (MkFoo val fn) = fn val
2335 </programlisting>
2336
2337 </para>
2338
2339 <para>
2340 What this allows us to do is to package heterogenous values
2341 together with a bunch of functions that manipulate them, and then treat
2342 that collection of packages in a uniform manner.  You can express
2343 quite a bit of object-oriented-like programming this way.
2344 </para>
2345
2346 <sect3 id="existential">
2347 <title>Why existential?
2348 </title>
2349
2350 <para>
2351 What has this to do with <emphasis>existential</emphasis> quantification?
2352 Simply that <function>MkFoo</function> has the (nearly) isomorphic type
2353 </para>
2354
2355 <para>
2356
2357 <programlisting>
2358   MkFoo :: (exists a . (a, a -> Bool)) -> Foo
2359 </programlisting>
2360
2361 </para>
2362
2363 <para>
2364 But Haskell programmers can safely think of the ordinary
2365 <emphasis>universally</emphasis> quantified type given above, thereby avoiding
2366 adding a new existential quantification construct.
2367 </para>
2368
2369 </sect3>
2370
2371 <sect3>
2372 <title>Type classes</title>
2373
2374 <para>
2375 An easy extension (implemented in <Command>hbc</Command>) is to allow
2376 arbitrary contexts before the constructor.  For example:
2377 </para>
2378
2379 <para>
2380
2381 <programlisting>
2382 data Baz = forall a. Eq a => Baz1 a a
2383          | forall b. Show b => Baz2 b (b -> b)
2384 </programlisting>
2385
2386 </para>
2387
2388 <para>
2389 The two constructors have the types you'd expect:
2390 </para>
2391
2392 <para>
2393
2394 <programlisting>
2395 Baz1 :: forall a. Eq a => a -> a -> Baz
2396 Baz2 :: forall b. Show b => b -> (b -> b) -> Baz
2397 </programlisting>
2398
2399 </para>
2400
2401 <para>
2402 But when pattern matching on <function>Baz1</function> the matched values can be compared
2403 for equality, and when pattern matching on <function>Baz2</function> the first matched
2404 value can be converted to a string (as well as applying the function to it).
2405 So this program is legal:
2406 </para>
2407
2408 <para>
2409
2410 <programlisting>
2411   f :: Baz -> String
2412   f (Baz1 p q) | p == q    = "Yes"
2413                | otherwise = "No"
2414   f (Baz2 v fn)            = show (fn v)
2415 </programlisting>
2416
2417 </para>
2418
2419 <para>
2420 Operationally, in a dictionary-passing implementation, the
2421 constructors <function>Baz1</function> and <function>Baz2</function> must store the
2422 dictionaries for <literal>Eq</literal> and <literal>Show</literal> respectively, and
2423 extract it on pattern matching.
2424 </para>
2425
2426 <para>
2427 Notice the way that the syntax fits smoothly with that used for
2428 universal quantification earlier.
2429 </para>
2430
2431 </sect3>
2432
2433 <sect3>
2434 <title>Restrictions</title>
2435
2436 <para>
2437 There are several restrictions on the ways in which existentially-quantified
2438 constructors can be use.
2439 </para>
2440
2441 <para>
2442
2443 <itemizedlist>
2444 <listitem>
2445
2446 <para>
2447  When pattern matching, each pattern match introduces a new,
2448 distinct, type for each existential type variable.  These types cannot
2449 be unified with any other type, nor can they escape from the scope of
2450 the pattern match.  For example, these fragments are incorrect:
2451
2452
2453 <programlisting>
2454 f1 (MkFoo a f) = a
2455 </programlisting>
2456
2457
2458 Here, the type bound by <function>MkFoo</function> "escapes", because <literal>a</literal>
2459 is the result of <function>f1</function>.  One way to see why this is wrong is to
2460 ask what type <function>f1</function> has:
2461
2462
2463 <programlisting>
2464   f1 :: Foo -> a             -- Weird!
2465 </programlisting>
2466
2467
2468 What is this "<literal>a</literal>" in the result type? Clearly we don't mean
2469 this:
2470
2471
2472 <programlisting>
2473   f1 :: forall a. Foo -> a   -- Wrong!
2474 </programlisting>
2475
2476
2477 The original program is just plain wrong.  Here's another sort of error
2478
2479
2480 <programlisting>
2481   f2 (Baz1 a b) (Baz1 p q) = a==q
2482 </programlisting>
2483
2484
2485 It's ok to say <literal>a==b</literal> or <literal>p==q</literal>, but
2486 <literal>a==q</literal> is wrong because it equates the two distinct types arising
2487 from the two <function>Baz1</function> constructors.
2488
2489
2490 </para>
2491 </listitem>
2492 <listitem>
2493
2494 <para>
2495 You can't pattern-match on an existentially quantified
2496 constructor in a <literal>let</literal> or <literal>where</literal> group of
2497 bindings. So this is illegal:
2498
2499
2500 <programlisting>
2501   f3 x = a==b where { Baz1 a b = x }
2502 </programlisting>
2503
2504 Instead, use a <literal>case</literal> expression:
2505
2506 <programlisting>
2507   f3 x = case x of Baz1 a b -> a==b
2508 </programlisting>
2509
2510 In general, you can only pattern-match
2511 on an existentially-quantified constructor in a <literal>case</literal> expression or
2512 in the patterns of a function definition.
2513
2514 The reason for this restriction is really an implementation one.
2515 Type-checking binding groups is already a nightmare without
2516 existentials complicating the picture.  Also an existential pattern
2517 binding at the top level of a module doesn't make sense, because it's
2518 not clear how to prevent the existentially-quantified type "escaping".
2519 So for now, there's a simple-to-state restriction.  We'll see how
2520 annoying it is.
2521
2522 </para>
2523 </listitem>
2524 <listitem>
2525
2526 <para>
2527 You can't use existential quantification for <literal>newtype</literal>
2528 declarations.  So this is illegal:
2529
2530
2531 <programlisting>
2532   newtype T = forall a. Ord a => MkT a
2533 </programlisting>
2534
2535
2536 Reason: a value of type <literal>T</literal> must be represented as a pair
2537 of a dictionary for <literal>Ord t</literal> and a value of type <literal>t</literal>.
2538 That contradicts the idea that <literal>newtype</literal> should have no
2539 concrete representation.  You can get just the same efficiency and effect
2540 by using <literal>data</literal> instead of <literal>newtype</literal>.  If there is no
2541 overloading involved, then there is more of a case for allowing
2542 an existentially-quantified <literal>newtype</literal>, because the <literal>data</literal>
2543 because the <literal>data</literal> version does carry an implementation cost,
2544 but single-field existentially quantified constructors aren't much
2545 use.  So the simple restriction (no existential stuff on <literal>newtype</literal>)
2546 stands, unless there are convincing reasons to change it.
2547
2548
2549 </para>
2550 </listitem>
2551 <listitem>
2552
2553 <para>
2554  You can't use <literal>deriving</literal> to define instances of a
2555 data type with existentially quantified data constructors.
2556
2557 Reason: in most cases it would not make sense. For example:&num;
2558
2559 <programlisting>
2560 data T = forall a. MkT [a] deriving( Eq )
2561 </programlisting>
2562
2563 To derive <literal>Eq</literal> in the standard way we would need to have equality
2564 between the single component of two <function>MkT</function> constructors:
2565
2566 <programlisting>
2567 instance Eq T where
2568   (MkT a) == (MkT b) = ???
2569 </programlisting>
2570
2571 But <VarName>a</VarName> and <VarName>b</VarName> have distinct types, and so can't be compared.
2572 It's just about possible to imagine examples in which the derived instance
2573 would make sense, but it seems altogether simpler simply to prohibit such
2574 declarations.  Define your own instances!
2575 </para>
2576 </listitem>
2577
2578 </itemizedlist>
2579
2580 </para>
2581
2582 </sect3>
2583
2584 </sect2>
2585
2586 <sect2 id="scoped-type-variables">
2587 <title>Scoped type variables
2588 </title>
2589
2590 <para>
2591 A <emphasis>pattern type signature</emphasis> can introduce a <emphasis>scoped type
2592 variable</emphasis>.  For example
2593 </para>
2594
2595 <para>
2596
2597 <programlisting>
2598 f (xs::[a]) = ys ++ ys
2599            where
2600               ys :: [a]
2601               ys = reverse xs
2602 </programlisting>
2603
2604 </para>
2605
2606 <para>
2607 The pattern <literal>(xs::[a])</literal> includes a type signature for <VarName>xs</VarName>.
2608 This brings the type variable <literal>a</literal> into scope; it scopes over
2609 all the patterns and right hand sides for this equation for <function>f</function>.
2610 In particular, it is in scope at the type signature for <VarName>y</VarName>.
2611 </para>
2612
2613 <para>
2614  Pattern type signatures are completely orthogonal to ordinary, separate
2615 type signatures.  The two can be used independently or together.
2616 At ordinary type signatures, such as that for <VarName>ys</VarName>, any type variables
2617 mentioned in the type signature <emphasis>that are not in scope</emphasis> are
2618 implicitly universally quantified.  (If there are no type variables in
2619 scope, all type variables mentioned in the signature are universally
2620 quantified, which is just as in Haskell 98.)  In this case, since <VarName>a</VarName>
2621 is in scope, it is not universally quantified, so the type of <VarName>ys</VarName> is
2622 the same as that of <VarName>xs</VarName>.  In Haskell 98 it is not possible to declare
2623 a type for <VarName>ys</VarName>; a major benefit of scoped type variables is that
2624 it becomes possible to do so.
2625 </para>
2626
2627 <para>
2628 Scoped type variables are implemented in both GHC and Hugs.  Where the
2629 implementations differ from the specification below, those differences
2630 are noted.
2631 </para>
2632
2633 <para>
2634 So much for the basic idea.  Here are the details.
2635 </para>
2636
2637 <sect3>
2638 <title>What a pattern type signature means</title>
2639 <para>
2640 A type variable brought into scope by a pattern type signature is simply
2641 the name for a type.   The restriction they express is that all occurrences
2642 of the same name mean the same type.  For example:
2643 <programlisting>
2644   f :: [Int] -> Int -> Int
2645   f (xs::[a]) (y::a) = (head xs + y) :: a
2646 </programlisting>
2647 The pattern type signatures on the left hand side of
2648 <literal>f</literal> express the fact that <literal>xs</literal>
2649 must be a list of things of some type <literal>a</literal>; and that <literal>y</literal>
2650 must have this same type.  The type signature on the expression <literal>(head xs)</literal>
2651 specifies that this expression must have the same type <literal>a</literal>.
2652 <emphasis>There is no requirement that the type named by "<literal>a</literal>" is
2653 in fact a type variable</emphasis>.  Indeed, in this case, the type named by "<literal>a</literal>" is
2654 <literal>Int</literal>.  (This is a slight liberalisation from the original rather complex
2655 rules, which specified that a pattern-bound type variable should be universally quantified.)
2656 For example, all of these are legal:</para>
2657
2658 <programlisting>
2659   t (x::a) (y::a) = x+y*2
2660
2661   f (x::a) (y::b) = [x,y]       -- a unifies with b
2662
2663   g (x::a) = x + 1::Int         -- a unifies with Int
2664
2665   h x = let k (y::a) = [x,y]    -- a is free in the
2666         in k x                  -- environment
2667
2668   k (x::a) True    = ...        -- a unifies with Int
2669   k (x::Int) False = ...
2670
2671   w :: [b] -> [b]
2672   w (x::a) = x                  -- a unifies with [b]
2673 </programlisting>
2674
2675 </sect3>
2676
2677 <sect3>
2678 <title>Scope and implicit quantification</title>
2679
2680 <para>
2681
2682 <itemizedlist>
2683 <listitem>
2684
2685 <para>
2686 All the type variables mentioned in a pattern,
2687 that are not already in scope,
2688 are brought into scope by the pattern.  We describe this set as
2689 the <emphasis>type variables bound by the pattern</emphasis>.
2690 For example:
2691 <programlisting>
2692   f (x::a) = let g (y::(a,b)) = fst y
2693              in
2694              g (x,True)
2695 </programlisting>
2696 The pattern <literal>(x::a)</literal> brings the type variable
2697 <literal>a</literal> into scope, as well as the term 
2698 variable <literal>x</literal>.  The pattern <literal>(y::(a,b))</literal>
2699 contains an occurrence of the already-in-scope type variable <literal>a</literal>,
2700 and brings into scope the type variable <literal>b</literal>.
2701 </para>
2702 </listitem>
2703
2704 <listitem>
2705 <para>
2706 The type variable(s) bound by the pattern have the same scope
2707 as the term variable(s) bound by the pattern.  For example:
2708 <programlisting>
2709   let
2710     f (x::a) = <...rhs of f...>
2711     (p::b, q::b) = (1,2)
2712   in <...body of let...>
2713 </programlisting>
2714 Here, the type variable <literal>a</literal> scopes over the right hand side of <literal>f</literal>,
2715 just like <literal>x</literal> does; while the type variable <literal>b</literal> scopes over the
2716 body of the <literal>let</literal>, and all the other definitions in the <literal>let</literal>,
2717 just like <literal>p</literal> and <literal>q</literal> do.
2718 Indeed, the newly bound type variables also scope over any ordinary, separate
2719 type signatures in the <literal>let</literal> group.
2720 </para>
2721 </listitem>
2722
2723
2724 <listitem>
2725 <para>
2726 The type variables bound by the pattern may be 
2727 mentioned in ordinary type signatures or pattern 
2728 type signatures anywhere within their scope.
2729
2730 </para>
2731 </listitem>
2732
2733 <listitem>
2734 <para>
2735  In ordinary type signatures, any type variable mentioned in the
2736 signature that is in scope is <emphasis>not</emphasis> universally quantified.
2737
2738 </para>
2739 </listitem>
2740
2741 <listitem>
2742
2743 <para>
2744  Ordinary type signatures do not bring any new type variables
2745 into scope (except in the type signature itself!). So this is illegal:
2746
2747 <programlisting>
2748   f :: a -> a
2749   f x = x::a
2750 </programlisting>
2751
2752 It's illegal because <VarName>a</VarName> is not in scope in the body of <function>f</function>,
2753 so the ordinary signature <literal>x::a</literal> is equivalent to <literal>x::forall a.a</literal>;
2754 and that is an incorrect typing.
2755
2756 </para>
2757 </listitem>
2758
2759 <listitem>
2760 <para>
2761 The pattern type signature is a monotype:
2762 </para>
2763
2764 <itemizedlist>
2765 <listitem> <para> 
2766 A pattern type signature cannot contain any explicit <literal>forall</literal> quantification.
2767 </para> </listitem>
2768
2769 <listitem>  <para> 
2770 The type variables bound by a pattern type signature can only be instantiated to monotypes,
2771 not to type schemes.
2772 </para> </listitem>
2773
2774 <listitem>  <para> 
2775 There is no implicit universal quantification on pattern type signatures (in contrast to
2776 ordinary type signatures).
2777 </para> </listitem>
2778
2779 </itemizedlist>
2780
2781 </listitem>
2782
2783 <listitem>
2784 <para>
2785
2786 The type variables in the head of a <literal>class</literal> or <literal>instance</literal> declaration
2787 scope over the methods defined in the <literal>where</literal> part.  For example:
2788
2789
2790 <programlisting>
2791   class C a where
2792     op :: [a] -> a
2793
2794     op xs = let ys::[a]
2795                 ys = reverse xs
2796             in
2797             head ys
2798 </programlisting>
2799
2800
2801 (Not implemented in Hugs yet, Dec 98).
2802 </para>
2803 </listitem>
2804
2805 </itemizedlist>
2806
2807 </para>
2808
2809 </sect3>
2810
2811 <sect3>
2812 <title>Where a pattern type signature can occur</title>
2813
2814 <para>
2815 A pattern type signature can occur in any pattern.  For example:
2816 <itemizedlist>
2817
2818 <listitem>
2819 <para>
2820 A pattern type signature can be on an arbitrary sub-pattern, not
2821 ust on a variable:
2822
2823
2824 <programlisting>
2825   f ((x,y)::(a,b)) = (y,x) :: (b,a)
2826 </programlisting>
2827
2828
2829 </para>
2830 </listitem>
2831 <listitem>
2832
2833 <para>
2834  Pattern type signatures, including the result part, can be used
2835 in lambda abstractions:
2836
2837 <programlisting>
2838   (\ (x::a, y) :: a -> x)
2839 </programlisting>
2840 </para>
2841 </listitem>
2842 <listitem>
2843
2844 <para>
2845  Pattern type signatures, including the result part, can be used
2846 in <literal>case</literal> expressions:
2847
2848
2849 <programlisting>
2850   case e of { (x::a, y) :: a -> x }
2851 </programlisting>
2852
2853 </para>
2854 </listitem>
2855
2856 <listitem>
2857 <para>
2858 To avoid ambiguity, the type after the &ldquo;<literal>::</literal>&rdquo; in a result
2859 pattern signature on a lambda or <literal>case</literal> must be atomic (i.e. a single
2860 token or a parenthesised type of some sort).  To see why,
2861 consider how one would parse this:
2862
2863
2864 <programlisting>
2865   \ x :: a -> b -> x
2866 </programlisting>
2867
2868
2869 </para>
2870 </listitem>
2871
2872 <listitem>
2873
2874 <para>
2875  Pattern type signatures can bind existential type variables.
2876 For example:
2877
2878
2879 <programlisting>
2880   data T = forall a. MkT [a]
2881
2882   f :: T -> T
2883   f (MkT [t::a]) = MkT t3
2884                  where
2885                    t3::[a] = [t,t,t]
2886 </programlisting>
2887
2888
2889 </para>
2890 </listitem>
2891
2892
2893 <listitem>
2894
2895 <para>
2896 Pattern type signatures 
2897 can be used in pattern bindings:
2898
2899 <programlisting>
2900   f x = let (y, z::a) = x in ...
2901   f1 x                = let (y, z::Int) = x in ...
2902   f2 (x::(Int,a))     = let (y, z::a)   = x in ...
2903   f3 :: (b->b)        = \x -> x
2904 </programlisting>
2905
2906 In all such cases, the binding is not generalised over the pattern-bound
2907 type variables.  Thus <literal>f3</literal> is monomorphic; <literal>f3</literal>
2908 has type <literal>b -&gt; b</literal> for some type <literal>b</literal>, 
2909 and <emphasis>not</emphasis> <literal>forall b. b -&gt; b</literal>.
2910 In contrast, the binding
2911 <programlisting>
2912   f4 :: b->b
2913   f4 = \x -> x
2914 </programlisting>
2915 makes a polymorphic function, but <literal>b</literal> is not in scope anywhere
2916 in <literal>f4</literal>'s scope.
2917
2918 </para>
2919 </listitem>
2920 </itemizedlist>
2921 </para>
2922
2923 </sect3>
2924
2925 <sect3>
2926 <title>Result type signatures</title>
2927
2928 <para>
2929 The result type of a function can be given a signature, thus:
2930
2931
2932 <programlisting>
2933   f (x::a) :: [a] = [x,x,x]
2934 </programlisting>
2935
2936
2937 The final <literal>:: [a]</literal> after all the patterns gives a signature to the
2938 result type.  Sometimes this is the only way of naming the type variable
2939 you want:
2940
2941
2942 <programlisting>
2943   f :: Int -> [a] -> [a]
2944   f n :: ([a] -> [a]) = let g (x::a, y::a) = (y,x)
2945                         in \xs -> map g (reverse xs `zip` xs)
2946 </programlisting>
2947
2948 </para>
2949 <para>
2950 The type variables bound in a result type signature scope over the right hand side
2951 of the definition. However, consider this corner-case:
2952 <programlisting>
2953   rev1 :: [a] -> [a] = \xs -> reverse xs
2954
2955   foo ys = rev (ys::[a])
2956 </programlisting>
2957 The signature on <literal>rev1</literal> is considered a pattern type signature, not a result
2958 type signature, and the type variables it binds have the same scope as <literal>rev1</literal>
2959 itself (i.e. the right-hand side of <literal>rev1</literal> and the rest of the module too).
2960 In particular, the expression <literal>(ys::[a])</literal> is OK, because the type variable <literal>a</literal>
2961 is in scope (otherwise it would mean <literal>(ys::forall a.[a])</literal>, which would be rejected).  
2962 </para>
2963 <para>
2964 As mentioned above, <literal>rev1</literal> is made monomorphic by this scoping rule.
2965 For example, the following program would be rejected, because it claims that <literal>rev1</literal>
2966 is polymorphic:
2967 <programlisting>
2968   rev1 :: [b] -> [b]
2969   rev1 :: [a] -> [a] = \xs -> reverse xs
2970 </programlisting>
2971 </para>
2972
2973 <para>
2974 Result type signatures are not yet implemented in Hugs.
2975 </para>
2976
2977 </sect3>
2978
2979 </sect2>
2980
2981 <sect2 id="newtype-deriving">
2982 <title>Generalised derived instances for newtypes</title>
2983
2984 <para>
2985 When you define an abstract type using <literal>newtype</literal>, you may want
2986 the new type to inherit some instances from its representation. In
2987 Haskell 98, you can inherit instances of <literal>Eq</literal>, <literal>Ord</literal>,
2988 <literal>Enum</literal> and <literal>Bounded</literal> by deriving them, but for any
2989 other classes you have to write an explicit instance declaration. For
2990 example, if you define
2991
2992 <programlisting> 
2993   newtype Dollars = Dollars Int 
2994 </programlisting> 
2995
2996 and you want to use arithmetic on <literal>Dollars</literal>, you have to
2997 explicitly define an instance of <literal>Num</literal>:
2998
2999 <programlisting> 
3000   instance Num Dollars where
3001     Dollars a + Dollars b = Dollars (a+b)
3002     ...
3003 </programlisting>
3004 All the instance does is apply and remove the <literal>newtype</literal>
3005 constructor. It is particularly galling that, since the constructor
3006 doesn't appear at run-time, this instance declaration defines a
3007 dictionary which is <emphasis>wholly equivalent</emphasis> to the <literal>Int</literal>
3008 dictionary, only slower!
3009 </para>
3010
3011
3012 <sect3> <title> Generalising the deriving clause </title>
3013 <para>
3014 GHC now permits such instances to be derived instead, so one can write 
3015 <programlisting> 
3016   newtype Dollars = Dollars Int deriving (Eq,Show,Num)
3017 </programlisting> 
3018
3019 and the implementation uses the <emphasis>same</emphasis> <literal>Num</literal> dictionary
3020 for <literal>Dollars</literal> as for <literal>Int</literal>. Notionally, the compiler
3021 derives an instance declaration of the form
3022
3023 <programlisting> 
3024   instance Num Int => Num Dollars
3025 </programlisting> 
3026
3027 which just adds or removes the <literal>newtype</literal> constructor according to the type.
3028 </para>
3029 <para>
3030
3031 We can also derive instances of constructor classes in a similar
3032 way. For example, suppose we have implemented state and failure monad
3033 transformers, such that
3034
3035 <programlisting> 
3036   instance Monad m => Monad (State s m) 
3037   instance Monad m => Monad (Failure m)
3038 </programlisting> 
3039 In Haskell 98, we can define a parsing monad by 
3040 <programlisting> 
3041   type Parser tok m a = State [tok] (Failure m) a
3042 </programlisting> 
3043
3044 which is automatically a monad thanks to the instance declarations
3045 above. With the extension, we can make the parser type abstract,
3046 without needing to write an instance of class <literal>Monad</literal>, via
3047
3048 <programlisting> 
3049   newtype Parser tok m a = Parser (State [tok] (Failure m) a)
3050                          deriving Monad
3051 </programlisting>
3052 In this case the derived instance declaration is of the form 
3053 <programlisting> 
3054   instance Monad (State [tok] (Failure m)) => Monad (Parser tok m) 
3055 </programlisting> 
3056
3057 Notice that, since <literal>Monad</literal> is a constructor class, the
3058 instance is a <emphasis>partial application</emphasis> of the new type, not the
3059 entire left hand side. We can imagine that the type declaration is
3060 ``eta-converted'' to generate the context of the instance
3061 declaration.
3062 </para>
3063 <para>
3064
3065 We can even derive instances of multi-parameter classes, provided the
3066 newtype is the last class parameter. In this case, a ``partial
3067 application'' of the class appears in the <literal>deriving</literal>
3068 clause. For example, given the class
3069
3070 <programlisting> 
3071   class StateMonad s m | m -> s where ... 
3072   instance Monad m => StateMonad s (State s m) where ... 
3073 </programlisting> 
3074 then we can derive an instance of <literal>StateMonad</literal> for <literal>Parser</literal>s by 
3075 <programlisting> 
3076   newtype Parser tok m a = Parser (State [tok] (Failure m) a)
3077                          deriving (Monad, StateMonad [tok])
3078 </programlisting>
3079
3080 The derived instance is obtained by completing the application of the
3081 class to the new type:
3082
3083 <programlisting> 
3084   instance StateMonad [tok] (State [tok] (Failure m)) =>
3085            StateMonad [tok] (Parser tok m)
3086 </programlisting>
3087 </para>
3088 <para>
3089
3090 As a result of this extension, all derived instances in newtype
3091 declarations are treated uniformly (and implemented just by reusing
3092 the dictionary for the representation type), <emphasis>except</emphasis>
3093 <literal>Show</literal> and <literal>Read</literal>, which really behave differently for
3094 the newtype and its representation.
3095 </para>
3096 </sect3>
3097
3098 <sect3> <title> A more precise specification </title>
3099 <para>
3100 Derived instance declarations are constructed as follows. Consider the
3101 declaration (after expansion of any type synonyms)
3102
3103 <programlisting> 
3104   newtype T v1...vn = T' (S t1...tk vk+1...vn) deriving (c1...cm) 
3105 </programlisting> 
3106
3107 where 
3108  <itemizedlist>
3109 <listitem><para>
3110   <literal>S</literal> is a type constructor, 
3111 </para></listitem>
3112 <listitem><para>
3113   <literal>t1...tk</literal> are types,
3114 </para></listitem>
3115 <listitem><para>
3116   <literal>vk+1...vn</literal> are type variables which do not occur in any of
3117   the <literal>ti</literal>, and
3118 </para></listitem>
3119 <listitem><para>
3120   the <literal>ci</literal> are partial applications of
3121   classes of the form <literal>C t1'...tj'</literal>, where the arity of <literal>C</literal>
3122   is exactly <literal>j+1</literal>.  That is, <literal>C</literal> lacks exactly one type argument.
3123 </para></listitem>
3124 </itemizedlist>
3125 Then, for each <literal>ci</literal>, the derived instance
3126 declaration is:
3127 <programlisting> 
3128   instance ci (S t1...tk vk+1...v) => ci (T v1...vp)
3129 </programlisting>
3130 where <literal>p</literal> is chosen so that <literal>T v1...vp</literal> is of the 
3131 right <emphasis>kind</emphasis> for the last parameter of class <literal>Ci</literal>.
3132 </para>
3133 <para>
3134
3135 As an example which does <emphasis>not</emphasis> work, consider 
3136 <programlisting> 
3137   newtype NonMonad m s = NonMonad (State s m s) deriving Monad 
3138 </programlisting> 
3139 Here we cannot derive the instance 
3140 <programlisting> 
3141   instance Monad (State s m) => Monad (NonMonad m) 
3142 </programlisting> 
3143
3144 because the type variable <literal>s</literal> occurs in <literal>State s m</literal>,
3145 and so cannot be "eta-converted" away. It is a good thing that this
3146 <literal>deriving</literal> clause is rejected, because <literal>NonMonad m</literal> is
3147 not, in fact, a monad --- for the same reason. Try defining
3148 <literal>>>=</literal> with the correct type: you won't be able to.
3149 </para>
3150 <para>
3151
3152 Notice also that the <emphasis>order</emphasis> of class parameters becomes
3153 important, since we can only derive instances for the last one. If the
3154 <literal>StateMonad</literal> class above were instead defined as
3155
3156 <programlisting> 
3157   class StateMonad m s | m -> s where ... 
3158 </programlisting>
3159
3160 then we would not have been able to derive an instance for the
3161 <literal>Parser</literal> type above. We hypothesise that multi-parameter
3162 classes usually have one "main" parameter for which deriving new
3163 instances is most interesting.
3164 </para>
3165 </sect3>
3166
3167 </sect2>
3168
3169
3170 </sect1>
3171 <!-- ==================== End of type system extensions =================  -->
3172   
3173 <!-- ====================== TEMPLATE HASKELL =======================  -->
3174
3175 <sect1 id="template-haskell">
3176 <title>Template Haskell</title>
3177
3178 <para>Template Haskell allows you to do compile-time meta-programming in Haskell.  The background 
3179 the main technical innovations are discussed in "<ulink
3180 url="http://research.microsoft.com/~simonpj/papers/meta-haskell">
3181 Template Meta-programming for Haskell</ulink>", in 
3182 Proc Haskell Workshop 2002.
3183 </para>
3184
3185 <para> The first example from that paper is set out below as a worked example to help get you started. 
3186 </para>
3187
3188 <para>
3189 The documentation here describes the realisation in GHC.  (It's rather sketchy just now;
3190 Tim Sheard is going to expand it.)
3191 </para>
3192
3193 <sect2>  <title> Syntax </title>
3194 <para>
3195     Template Haskell has the following new syntactic constructions.  You need to use the flag  
3196                 <literal>-fglasgow-exts</literal> to switch these syntactic extensions on.
3197
3198         <itemizedlist>
3199               <listitem><para>
3200                   A splice is written <literal>$x</literal>, where <literal>x</literal> is an
3201                   identifier, or <literal>$(...)</literal>, where the "..." is an arbitrary expression.
3202                   There must be no space between the "$" and the identifier or parenthesis.  This use
3203                   of "$" overrides its meaning as an infix operator, just as "M.x" overrides the meaning
3204                   of "." as an infix operator.  If you want the infix operator, put spaces around it.
3205                   </para>
3206               <para> A splice can occur in place of 
3207                   <itemizedlist>
3208                     <listitem><para> an expression; the spliced expression must have type <literal>Expr</literal></para></listitem>
3209                     <listitem><para> a list of top-level declarations; ; the spliced expression must have type <literal>Q [Dec]</literal></para></listitem>
3210                     <listitem><para> a type; the spliced expression must have type <literal>Type</literal>.</para></listitem>
3211                     </itemizedlist>
3212            (Note that the syntax for a declaration splice uses "<literal>$</literal>" not "<literal>splice</literal>" as in
3213         the paper. Also the type of the enclosed expression must be  <literal>Q [Dec]</literal>, not  <literal>[Q Dec]</literal>
3214         as in the paper.)
3215                 </para></listitem>
3216
3217
3218               <listitem><para>
3219                   A expression quotation is written in Oxford brackets, thus:
3220                   <itemizedlist>
3221                     <listitem><para> <literal>[| ... |]</literal>, where the "..." is an expression; 
3222                              the quotation has type <literal>Expr</literal>.</para></listitem>
3223                     <listitem><para> <literal>[d| ... |]</literal>, where the "..." is a list of top-level declarations;
3224                              the quotation has type <literal>Q [Dec]</literal>.</para></listitem>
3225                     <listitem><para> <literal>[t| ... |]</literal>, where the "..." is a type; 
3226                              the quotation has type <literal>Type</literal>.</para></listitem>
3227                   </itemizedlist></para></listitem>
3228
3229               <listitem><para>
3230                   Reification is written thus:
3231                   <itemizedlist>
3232                     <listitem><para> <literal>reifyDecl T</literal>, where <literal>T</literal> is a type constructor; this expression
3233                       has type <literal>Dec</literal>. </para></listitem>
3234                     <listitem><para> <literal>reifyDecl C</literal>, where <literal>C</literal> is a class; has type <literal>Dec</literal>.</para></listitem>
3235                     <listitem><para> <literal>reifyType f</literal>, where <literal>f</literal> is an identifier; has type <literal>Typ</literal>.</para></listitem>
3236                     <listitem><para> Still to come: fixities </para></listitem>
3237                     
3238                   </itemizedlist></para>
3239                 </listitem>
3240
3241                   
3242         </itemizedlist>
3243 </para>
3244 </sect2>
3245
3246 <sect2>  <title> Using Template Haskell </title>
3247 <para>
3248 <itemizedlist>
3249     <listitem><para>
3250     The data types and monadic constructor functions for Template Haskell are in the library
3251     <literal>Language.Haskell.THSyntax</literal>.
3252     </para></listitem>
3253
3254     <listitem><para>
3255     You can only run a function at compile time if it is imported from another module.  That is,
3256             you can't define a function in a module, and call it from within a splice in the same module.
3257             (It would make sense to do so, but it's hard to implement.)
3258    </para></listitem>
3259
3260     <listitem><para>
3261             The flag <literal>-ddump-splices</literal> shows the expansion of all top-level splices as they happen.
3262    </para></listitem>
3263     <listitem><para>
3264             If you are building GHC from source, you need at least a stage-2 bootstrap compiler to
3265               run Template Haskell.  A stage-1 compiler will reject the TH constructs.  Reason: TH
3266               compiles and runs a program, and then looks at the result.  So it's important that
3267               the program it compiles produces results whose representations are identical to
3268               those of the compiler itself.
3269    </para></listitem>
3270 </itemizedlist>
3271 </para>
3272 <para> Template Haskell works in any mode (<literal>--make</literal>, <literal>--interactive</literal>,
3273         or file-at-a-time).  There used to be a restriction to the former two, but that restriction 
3274         has been lifted.
3275 </para>
3276 </sect2>
3277  
3278 <sect2>  <title> A Template Haskell Worked Example </title>
3279 <para>To help you get over the confidence barrier, try out this skeletal worked example.
3280   First cut and paste the two modules below into "Main.hs" and "Printf.hs":</para>
3281
3282 <programlisting>
3283 {- Main.hs -}
3284 module Main where
3285
3286 -- Import our template "pr"
3287 import Printf ( pr )
3288
3289 -- The splice operator $ takes the Haskell source code
3290 -- generated at compile time by "pr" and splices it into
3291 -- the argument of "putStrLn".
3292 main = putStrLn ( $(pr "Hello") )
3293 </programlisting>
3294
3295 <programlisting>
3296 {- Printf.hs -}
3297 module Printf where
3298
3299 -- Skeletal printf from the paper.
3300 -- It needs to be in a separate module to the one where
3301 -- you intend to use it.
3302
3303 -- Import some Template Haskell syntax
3304 import Language.Haskell.THSyntax
3305
3306 -- Describe a format string
3307 data Format = D | S | L String
3308
3309 -- Parse a format string.  This is left largely to you
3310 -- as we are here interested in building our first ever
3311 -- Template Haskell program and not in building printf.
3312 parse :: String -> [Format]
3313 parse s   = [ L s ]
3314
3315 -- Generate Haskell source code from a parsed representation
3316 -- of the format string.  This code will be spliced into
3317 -- the module which calls "pr", at compile time.
3318 gen :: [Format] -> Expr
3319 gen [D]   = [| \n -> show n |]
3320 gen [S]   = [| \s -> s |]
3321 gen [L s] = string s
3322
3323 -- Here we generate the Haskell code for the splice
3324 -- from an input format string.
3325 pr :: String -> Expr
3326 pr s      = gen (parse s)
3327 </programlisting>
3328
3329 <para>Now run the compiler (here we are using a "stage three" build of GHC, at a Cygwin prompt on Windows):
3330 </para>
3331 <programlisting>
3332 ghc/compiler/stage3/ghc-inplace --make -fglasgow-exts -package haskell-src main.hs -o main.exe
3333 </programlisting>
3334
3335 <para>Run "main.exe" and here is your output:
3336 </para>
3337
3338 <programlisting>
3339 $ ./main
3340 Hello
3341 </programlisting>
3342
3343 </sect2>
3344  
3345 </sect1>
3346
3347 <!-- ==================== ASSERTIONS =================  -->
3348
3349 <sect1 id="sec-assertions">
3350 <title>Assertions
3351 <indexterm><primary>Assertions</primary></indexterm>
3352 </title>
3353
3354 <para>
3355 If you want to make use of assertions in your standard Haskell code, you
3356 could define a function like the following:
3357 </para>
3358
3359 <para>
3360
3361 <programlisting>
3362 assert :: Bool -> a -> a
3363 assert False x = error "assertion failed!"
3364 assert _     x = x
3365 </programlisting>
3366
3367 </para>
3368
3369 <para>
3370 which works, but gives you back a less than useful error message --
3371 an assertion failed, but which and where?
3372 </para>
3373
3374 <para>
3375 One way out is to define an extended <function>assert</function> function which also
3376 takes a descriptive string to include in the error message and
3377 perhaps combine this with the use of a pre-processor which inserts
3378 the source location where <function>assert</function> was used.
3379 </para>
3380
3381 <para>
3382 Ghc offers a helping hand here, doing all of this for you. For every
3383 use of <function>assert</function> in the user's source:
3384 </para>
3385
3386 <para>
3387
3388 <programlisting>
3389 kelvinToC :: Double -> Double
3390 kelvinToC k = assert (k &gt;= 0.0) (k+273.15)
3391 </programlisting>
3392
3393 </para>
3394
3395 <para>
3396 Ghc will rewrite this to also include the source location where the
3397 assertion was made,
3398 </para>
3399
3400 <para>
3401
3402 <programlisting>
3403 assert pred val ==> assertError "Main.hs|15" pred val
3404 </programlisting>
3405
3406 </para>
3407
3408 <para>
3409 The rewrite is only performed by the compiler when it spots
3410 applications of <function>Control.Exception.assert</function>, so you
3411 can still define and use your own versions of
3412 <function>assert</function>, should you so wish. If not, import
3413 <literal>Control.Exception</literal> to make use
3414 <function>assert</function> in your code.
3415 </para>
3416
3417 <para>
3418 To have the compiler ignore uses of assert, use the compiler option
3419 <option>-fignore-asserts</option>. <indexterm><primary>-fignore-asserts
3420 option</primary></indexterm> That is, expressions of the form
3421 <literal>assert pred e</literal> will be rewritten to
3422 <literal>e</literal>.
3423 </para>
3424
3425 <para>
3426 Assertion failures can be caught, see the documentation for the
3427 <literal>Control.Exception</literal> library for the details.
3428 </para>
3429
3430 </sect1>
3431
3432
3433 <!-- =============================== PRAGMAS ===========================  -->
3434
3435   <sect1 id="pragmas">
3436     <title>Pragmas</title>
3437
3438     <indexterm><primary>pragma</primary></indexterm>
3439
3440     <para>GHC supports several pragmas, or instructions to the
3441     compiler placed in the source code.  Pragmas don't normally affect
3442     the meaning of the program, but they might affect the efficiency
3443     of the generated code.</para>
3444
3445     <para>Pragmas all take the form
3446
3447 <literal>{-# <replaceable>word</replaceable> ... #-}</literal>  
3448
3449     where <replaceable>word</replaceable> indicates the type of
3450     pragma, and is followed optionally by information specific to that
3451     type of pragma.  Case is ignored in
3452     <replaceable>word</replaceable>.  The various values for
3453     <replaceable>word</replaceable> that GHC understands are described
3454     in the following sections; any pragma encountered with an
3455     unrecognised <replaceable>word</replaceable> is (silently)
3456     ignored.</para>
3457
3458 <sect2 id="inline-pragma">
3459 <title>INLINE pragma
3460
3461 <indexterm><primary>INLINE and NOINLINE pragmas</primary></indexterm>
3462 <indexterm><primary>pragma, INLINE</primary></indexterm></title>
3463
3464 <para>
3465 GHC (with <option>-O</option>, as always) tries to inline (or &ldquo;unfold&rdquo;)
3466 functions/values that are &ldquo;small enough,&rdquo; thus avoiding the call
3467 overhead and possibly exposing other more-wonderful optimisations.
3468 Normally, if GHC decides a function is &ldquo;too expensive&rdquo; to inline, it
3469 will not do so, nor will it export that unfolding for other modules to
3470 use.
3471 </para>
3472
3473 <para>
3474 The sledgehammer you can bring to bear is the
3475 <literal>INLINE</literal><indexterm><primary>INLINE pragma</primary></indexterm> pragma, used thusly:
3476
3477 <programlisting>
3478 key_function :: Int -> String -> (Bool, Double)
3479
3480 #ifdef __GLASGOW_HASKELL__
3481 {-# INLINE key_function #-}
3482 #endif
3483 </programlisting>
3484 (You don't need to do the C pre-processor carry-on unless you're going
3485 to stick the code through HBC&mdash;it doesn't like <literal>INLINE</literal> pragmas.)
3486 </para>
3487
3488 <para>
3489 The major effect of an <literal>INLINE</literal> pragma is to declare a function's
3490 &ldquo;cost&rdquo; to be very low.  The normal unfolding machinery will then be
3491 very keen to inline it.
3492 </para>
3493
3494 <para>
3495 Syntactially, an <literal>INLINE</literal> pragma for a function can be put anywhere its type
3496 signature could be put.
3497 </para>
3498
3499 <para>
3500 <literal>INLINE</literal> pragmas are a particularly good idea for the
3501 <literal>then</literal>/<literal>return</literal> (or <literal>bind</literal>/<literal>unit</literal>) functions in a monad.
3502 For example, in GHC's own <literal>UniqueSupply</literal> monad code, we have:
3503
3504 <programlisting>
3505 #ifdef __GLASGOW_HASKELL__
3506 {-# INLINE thenUs #-}
3507 {-# INLINE returnUs #-}
3508 #endif
3509 </programlisting>
3510
3511 </para>
3512
3513 <sect3 id="noinline-pragma">
3514 <title>The NOINLINE pragma </title>
3515
3516 <indexterm><primary>NOINLINE pragma</primary></indexterm>
3517 <indexterm><primary>pragma</primary><secondary>NOINLINE</secondary></indexterm>
3518 <indexterm><primary>NOTINLINE pragma</primary></indexterm>
3519 <indexterm><primary>pragma</primary><secondary>NOTINLINE</secondary></indexterm>
3520
3521 <para>
3522 The <literal>NOINLINE</literal> pragma does exactly what you'd expect:
3523 it stops the named function from being inlined by the compiler.  You
3524 shouldn't ever need to do this, unless you're very cautious about code
3525 size.
3526 </para>
3527
3528 <para><literal>NOTINLINE</literal> is a synonym for
3529 <literal>NOINLINE</literal> (<literal>NOTINLINE</literal> is specified
3530 by Haskell 98 as the standard way to disable inlining, so it should be
3531 used if you want your code to be portable).</para>
3532 </sect3>
3533
3534
3535 <sect3 id="phase-control">
3536 <title>Phase control</title>
3537
3538 <para> Sometimes you want to control exactly when in GHC's pipeline
3539 the INLINE pragma is switched on.  Inlining happens only during runs of
3540 the <emphasis>simplifier</emphasis>.  Each run of the simplifier has a different
3541 <emphasis>phase number</emphasis>; the phase number decreases towards zero.
3542 If you use <option>-dverbose-core2core</option>
3543 you'll see the sequence of phase numbers for successive runs of the simpifier.
3544 In an INLINE pragma you can optionally specify a phase number, thus:
3545 <itemizedlist>
3546 <listitem> <para>You can say "inline <literal>f</literal> in Phase 2 and all subsequent
3547 phases":
3548 <programlisting>
3549   {-# INLINE [2] f #-}
3550 </programlisting>
3551 </para></listitem>
3552
3553 <listitem> <para>You can say "inline <literal>g</literal> in all phases up to, but
3554 not including, Phase 3":
3555 <programlisting>
3556   {-# INLINE [~3] g #-}
3557 </programlisting>
3558 </para></listitem>
3559
3560 <listitem> <para>If you omit the phase indicator, you mean "inline in all phases".
3561 </para></listitem>
3562 </itemizedlist>
3563 You can use a phase number on a NOINLINE pragma too:
3564 <itemizedlist>
3565 <listitem> <para>You can say "do not inline <literal>f</literal> until Phase 2; in 
3566 Phase 2 and subsequently behave as if there was no pragma at all":
3567 <programlisting>
3568   {-# NOINLINE [2] f #-}
3569 </programlisting>
3570 </para></listitem>
3571
3572 <listitem> <para>You can say "do not inline <literal>g</literal> in Phase 3 or any subsequent phase; 
3573 before that, behave as if there was no pragma":
3574 <programlisting>
3575   {-# NOINLINE [~3] g #-}
3576 </programlisting>
3577 </para></listitem>
3578
3579 <listitem> <para>If you omit the phase indicator, you mean "never inline this function".
3580 </para></listitem>
3581 </itemizedlist>
3582 </para>
3583 <para>The same phase-numbering control is available for RULES (<xref LinkEnd="rewrite-rules">).</para>
3584 </sect3>
3585
3586
3587
3588 </sect2>
3589
3590 <sect2 id="rules">
3591 <title>RULES pragma</title>
3592
3593 <para>
3594 The RULES pragma lets you specify rewrite rules.  It is described in
3595 <xref LinkEnd="rewrite-rules">.
3596 </para>
3597
3598 </sect2>
3599
3600
3601     <sect2 id="specialize-pragma">
3602       <title>SPECIALIZE pragma</title>
3603
3604       <indexterm><primary>SPECIALIZE pragma</primary></indexterm>
3605       <indexterm><primary>pragma, SPECIALIZE</primary></indexterm>
3606       <indexterm><primary>overloading, death to</primary></indexterm>
3607
3608       <para>(UK spelling also accepted.)  For key overloaded
3609       functions, you can create extra versions (NB: more code space)
3610       specialised to particular types.  Thus, if you have an
3611       overloaded function:</para>
3612
3613 <programlisting>
3614 hammeredLookup :: Ord key => [(key, value)] -> key -> value
3615 </programlisting>
3616
3617       <para>If it is heavily used on lists with
3618       <literal>Widget</literal> keys, you could specialise it as
3619       follows:</para>
3620
3621 <programlisting>
3622 {-# SPECIALIZE hammeredLookup :: [(Widget, value)] -> Widget -> value #-}
3623 </programlisting>
3624
3625       <para>A <literal>SPECIALIZE</literal> pragma for a function can
3626       be put anywhere its type signature could be put.</para>
3627
3628       <para>To get very fancy, you can also specify a named function
3629       to use for the specialised value, as in:</para>
3630
3631 <programlisting>
3632 {-# RULES "hammeredLookup" hammeredLookup = blah #-}
3633 </programlisting>
3634
3635       <para>where <literal>blah</literal> is an implementation of
3636       <literal>hammerdLookup</literal> written specialy for
3637       <literal>Widget</literal> lookups.  It's <emphasis>Your
3638       Responsibility</emphasis> to make sure that
3639       <function>blah</function> really behaves as a specialised
3640       version of <function>hammeredLookup</function>!!!</para>
3641
3642       <para>Note we use the <literal>RULE</literal> pragma here to
3643       indicate that <literal>hammeredLookup</literal> applied at a
3644       certain type should be replaced by <literal>blah</literal>.  See
3645       <xref linkend="rules"> for more information on
3646       <literal>RULES</literal>.</para>
3647
3648       <para>An example in which using <literal>RULES</literal> for
3649       specialisation will Win Big:
3650
3651 <programlisting>
3652 toDouble :: Real a => a -> Double
3653 toDouble = fromRational . toRational
3654
3655 {-# RULES "toDouble/Int" toDouble = i2d #-}
3656 i2d (I# i) = D# (int2Double# i) -- uses Glasgow prim-op directly
3657 </programlisting>
3658
3659       The <function>i2d</function> function is virtually one machine
3660       instruction; the default conversion&mdash;via an intermediate
3661       <literal>Rational</literal>&mdash;is obscenely expensive by
3662       comparison.</para>
3663
3664     </sect2>
3665
3666 <sect2 id="specialize-instance-pragma">
3667 <title>SPECIALIZE instance pragma
3668 </title>
3669
3670 <para>
3671 <indexterm><primary>SPECIALIZE pragma</primary></indexterm>
3672 <indexterm><primary>overloading, death to</primary></indexterm>
3673 Same idea, except for instance declarations.  For example:
3674
3675 <programlisting>
3676 instance (Eq a) => Eq (Foo a) where { 
3677    {-# SPECIALIZE instance Eq (Foo [(Int, Bar)]) #-}
3678    ... usual stuff ...
3679  }
3680 </programlisting>
3681 The pragma must occur inside the <literal>where</literal> part
3682 of the instance declaration.
3683 </para>
3684 <para>
3685 Compatible with HBC, by the way, except perhaps in the placement
3686 of the pragma.
3687 </para>
3688
3689 </sect2>
3690
3691 <sect2 id="line-pragma">
3692 <title>LINE pragma
3693 </title>
3694
3695 <para>
3696 <indexterm><primary>LINE pragma</primary></indexterm>
3697 <indexterm><primary>pragma, LINE</primary></indexterm>
3698 </para>
3699
3700 <para>
3701 This pragma is similar to C's <literal>&num;line</literal> pragma, and is mainly for use in
3702 automatically generated Haskell code.  It lets you specify the line
3703 number and filename of the original code; for example
3704 </para>
3705
3706 <para>
3707
3708 <programlisting>
3709 {-# LINE 42 "Foo.vhs" #-}
3710 </programlisting>
3711
3712 </para>
3713
3714 <para>
3715 if you'd generated the current file from something called <filename>Foo.vhs</filename>
3716 and this line corresponds to line 42 in the original.  GHC will adjust
3717 its error messages to refer to the line/file named in the <literal>LINE</literal>
3718 pragma.
3719 </para>
3720
3721 </sect2>
3722
3723 <sect2 id="deprecated-pragma">
3724 <title>DEPRECATED pragma</title>
3725
3726 <para>
3727 The DEPRECATED pragma lets you specify that a particular function, class, or type, is deprecated.  
3728 There are two forms.  
3729 </para>
3730 <itemizedlist>
3731 <listitem><para>
3732 You can deprecate an entire module thus:</para>
3733 <programlisting>
3734    module Wibble {-# DEPRECATED "Use Wobble instead" #-} where
3735      ...
3736 </programlisting>
3737 <para>
3738 When you compile any module that import <literal>Wibble</literal>, GHC will print
3739 the specified message.</para>
3740 </listitem>
3741
3742 <listitem>
3743 <para>
3744 You can deprecate a function, class, or type, with the following top-level declaration:
3745 </para>
3746 <programlisting>
3747    {-# DEPRECATED f, C, T "Don't use these" #-}
3748 </programlisting>
3749 <para>
3750 When you compile any module that imports and uses any of the specifed entities, 
3751 GHC will print the specified message.
3752 </para>
3753 </listitem>
3754 </itemizedlist>
3755 <para>You can suppress the warnings with the flag <option>-fno-warn-deprecations</option>.</para>
3756
3757 </sect2>
3758
3759 </sect1>
3760
3761 <!--  ======================= REWRITE RULES ======================== -->
3762
3763 <sect1 id="rewrite-rules">
3764 <title>Rewrite rules
3765
3766 <indexterm><primary>RULES pagma</primary></indexterm>
3767 <indexterm><primary>pragma, RULES</primary></indexterm>
3768 <indexterm><primary>rewrite rules</primary></indexterm></title>
3769
3770 <para>
3771 The programmer can specify rewrite rules as part of the source program
3772 (in a pragma).  GHC applies these rewrite rules wherever it can.
3773 </para>
3774
3775 <para>
3776 Here is an example:
3777
3778 <programlisting>
3779   {-# RULES
3780         "map/map"       forall f g xs. map f (map g xs) = map (f.g) xs
3781   #-}
3782 </programlisting>
3783
3784 </para>
3785
3786 <sect2>
3787 <title>Syntax</title>
3788
3789 <para>
3790 From a syntactic point of view:
3791
3792 <itemizedlist>
3793 <listitem>
3794
3795 <para>
3796  There may be zero or more rules in a <literal>RULES</literal> pragma.
3797 </para>
3798 </listitem>
3799
3800 <listitem>
3801
3802 <para>
3803  Each rule has a name, enclosed in double quotes.  The name itself has
3804 no significance at all.  It is only used when reporting how many times the rule fired.
3805 </para>
3806 </listitem>
3807
3808 <listitem>
3809 <para>
3810 A rule may optionally have a phase-control number (see <xref LinkEnd="phase-control">),
3811 immediately after the name of the rule.  Thus:
3812 <programlisting>
3813   {-# RULES
3814         "map/map" [2]  forall f g xs. map f (map g xs) = map (f.g) xs
3815   #-}
3816 </programlisting>
3817 The "[2]" means that the rule is active in Phase 2 and subsequent phases.  The inverse
3818 notation "[~2]" is also accepted, meaning that the rule is active up to, but not including,
3819 Phase 2.
3820 </para>
3821 </listitem>
3822
3823
3824 <listitem>
3825
3826 <para>
3827  Layout applies in a <literal>RULES</literal> pragma.  Currently no new indentation level
3828 is set, so you must lay out your rules starting in the same column as the
3829 enclosing definitions.
3830 </para>
3831 </listitem>
3832
3833 <listitem>
3834
3835 <para>
3836  Each variable mentioned in a rule must either be in scope (e.g. <function>map</function>),
3837 or bound by the <literal>forall</literal> (e.g. <function>f</function>, <function>g</function>, <function>xs</function>).  The variables bound by
3838 the <literal>forall</literal> are called the <emphasis>pattern</emphasis> variables.  They are separated
3839 by spaces, just like in a type <literal>forall</literal>.
3840 </para>
3841 </listitem>
3842 <listitem>
3843
3844 <para>
3845  A pattern variable may optionally have a type signature.
3846 If the type of the pattern variable is polymorphic, it <emphasis>must</emphasis> have a type signature.
3847 For example, here is the <literal>foldr/build</literal> rule:
3848
3849 <programlisting>
3850 "fold/build"  forall k z (g::forall b. (a->b->b) -> b -> b) .
3851               foldr k z (build g) = g k z
3852 </programlisting>
3853
3854 Since <function>g</function> has a polymorphic type, it must have a type signature.
3855
3856 </para>
3857 </listitem>
3858 <listitem>
3859
3860 <para>
3861 The left hand side of a rule must consist of a top-level variable applied
3862 to arbitrary expressions.  For example, this is <emphasis>not</emphasis> OK:
3863
3864 <programlisting>
3865 "wrong1"   forall e1 e2.  case True of { True -> e1; False -> e2 } = e1
3866 "wrong2"   forall f.      f True = True
3867 </programlisting>
3868
3869 In <literal>"wrong1"</literal>, the LHS is not an application; in <literal>"wrong2"</literal>, the LHS has a pattern variable
3870 in the head.
3871 </para>
3872 </listitem>
3873 <listitem>
3874
3875 <para>
3876  A rule does not need to be in the same module as (any of) the
3877 variables it mentions, though of course they need to be in scope.
3878 </para>
3879 </listitem>
3880 <listitem>
3881
3882 <para>
3883  Rules are automatically exported from a module, just as instance declarations are.
3884 </para>
3885 </listitem>
3886
3887 </itemizedlist>
3888
3889 </para>
3890
3891 </sect2>
3892
3893 <sect2>
3894 <title>Semantics</title>
3895
3896 <para>
3897 From a semantic point of view:
3898
3899 <itemizedlist>
3900 <listitem>
3901
3902 <para>
3903 Rules are only applied if you use the <option>-O</option> flag.
3904 </para>
3905 </listitem>
3906
3907 <listitem>
3908 <para>
3909  Rules are regarded as left-to-right rewrite rules.
3910 When GHC finds an expression that is a substitution instance of the LHS
3911 of a rule, it replaces the expression by the (appropriately-substituted) RHS.
3912 By "a substitution instance" we mean that the LHS can be made equal to the
3913 expression by substituting for the pattern variables.
3914
3915 </para>
3916 </listitem>
3917 <listitem>
3918
3919 <para>
3920  The LHS and RHS of a rule are typechecked, and must have the
3921 same type.
3922
3923 </para>
3924 </listitem>
3925 <listitem>
3926
3927 <para>
3928  GHC makes absolutely no attempt to verify that the LHS and RHS
3929 of a rule have the same meaning.  That is undecideable in general, and
3930 infeasible in most interesting cases.  The responsibility is entirely the programmer's!
3931
3932 </para>
3933 </listitem>
3934 <listitem>
3935
3936 <para>
3937  GHC makes no attempt to make sure that the rules are confluent or
3938 terminating.  For example:
3939
3940 <programlisting>
3941   "loop"        forall x,y.  f x y = f y x
3942 </programlisting>
3943
3944 This rule will cause the compiler to go into an infinite loop.
3945
3946 </para>
3947 </listitem>
3948 <listitem>
3949
3950 <para>
3951  If more than one rule matches a call, GHC will choose one arbitrarily to apply.
3952
3953 </para>
3954 </listitem>
3955 <listitem>
3956 <para>
3957  GHC currently uses a very simple, syntactic, matching algorithm
3958 for matching a rule LHS with an expression.  It seeks a substitution
3959 which makes the LHS and expression syntactically equal modulo alpha
3960 conversion.  The pattern (rule), but not the expression, is eta-expanded if
3961 necessary.  (Eta-expanding the epression can lead to laziness bugs.)
3962 But not beta conversion (that's called higher-order matching).
3963 </para>
3964
3965 <para>
3966 Matching is carried out on GHC's intermediate language, which includes
3967 type abstractions and applications.  So a rule only matches if the
3968 types match too.  See <xref LinkEnd="rule-spec"> below.
3969 </para>
3970 </listitem>
3971 <listitem>
3972
3973 <para>
3974  GHC keeps trying to apply the rules as it optimises the program.
3975 For example, consider:
3976
3977 <programlisting>
3978   let s = map f
3979       t = map g
3980   in
3981   s (t xs)
3982 </programlisting>
3983
3984 The expression <literal>s (t xs)</literal> does not match the rule <literal>"map/map"</literal>, but GHC
3985 will substitute for <VarName>s</VarName> and <VarName>t</VarName>, giving an expression which does match.
3986 If <VarName>s</VarName> or <VarName>t</VarName> was (a) used more than once, and (b) large or a redex, then it would
3987 not be substituted, and the rule would not fire.
3988
3989 </para>
3990 </listitem>
3991 <listitem>
3992
3993 <para>
3994  In the earlier phases of compilation, GHC inlines <emphasis>nothing
3995 that appears on the LHS of a rule</emphasis>, because once you have substituted
3996 for something you can't match against it (given the simple minded
3997 matching).  So if you write the rule
3998
3999 <programlisting>
4000         "map/map"       forall f,g.  map f . map g = map (f.g)
4001 </programlisting>
4002
4003 this <emphasis>won't</emphasis> match the expression <literal>map f (map g xs)</literal>.
4004 It will only match something written with explicit use of ".".
4005 Well, not quite.  It <emphasis>will</emphasis> match the expression
4006
4007 <programlisting>
4008 wibble f g xs
4009 </programlisting>
4010
4011 where <function>wibble</function> is defined:
4012
4013 <programlisting>
4014 wibble f g = map f . map g
4015 </programlisting>
4016
4017 because <function>wibble</function> will be inlined (it's small).
4018
4019 Later on in compilation, GHC starts inlining even things on the
4020 LHS of rules, but still leaves the rules enabled.  This inlining
4021 policy is controlled by the per-simplification-pass flag <option>-finline-phase</option><emphasis>n</emphasis>.
4022
4023 </para>
4024 </listitem>
4025 <listitem>
4026
4027 <para>
4028  All rules are implicitly exported from the module, and are therefore
4029 in force in any module that imports the module that defined the rule, directly
4030 or indirectly.  (That is, if A imports B, which imports C, then C's rules are
4031 in force when compiling A.)  The situation is very similar to that for instance
4032 declarations.
4033 </para>
4034 </listitem>
4035
4036 </itemizedlist>
4037
4038 </para>
4039
4040 </sect2>
4041
4042 <sect2>
4043 <title>List fusion</title>
4044
4045 <para>
4046 The RULES mechanism is used to implement fusion (deforestation) of common list functions.
4047 If a "good consumer" consumes an intermediate list constructed by a "good producer", the
4048 intermediate list should be eliminated entirely.
4049 </para>
4050
4051 <para>
4052 The following are good producers:
4053
4054 <itemizedlist>
4055 <listitem>
4056
4057 <para>
4058  List comprehensions
4059 </para>
4060 </listitem>
4061 <listitem>
4062
4063 <para>
4064  Enumerations of <literal>Int</literal> and <literal>Char</literal> (e.g. <literal>['a'..'z']</literal>).
4065 </para>
4066 </listitem>
4067 <listitem>
4068
4069 <para>
4070  Explicit lists (e.g. <literal>[True, False]</literal>)
4071 </para>
4072 </listitem>
4073 <listitem>
4074
4075 <para>
4076  The cons constructor (e.g <literal>3:4:[]</literal>)
4077 </para>
4078 </listitem>
4079 <listitem>
4080
4081 <para>
4082  <function>++</function>
4083 </para>
4084 </listitem>
4085
4086 <listitem>
4087 <para>
4088  <function>map</function>
4089 </para>
4090 </listitem>
4091
4092 <listitem>
4093 <para>
4094  <function>filter</function>
4095 </para>
4096 </listitem>
4097 <listitem>
4098
4099 <para>
4100  <function>iterate</function>, <function>repeat</function>
4101 </para>
4102 </listitem>
4103 <listitem>
4104
4105 <para>
4106  <function>zip</function>, <function>zipWith</function>
4107 </para>
4108 </listitem>
4109
4110 </itemizedlist>
4111
4112 </para>
4113
4114 <para>
4115 The following are good consumers:
4116
4117 <itemizedlist>
4118 <listitem>
4119
4120 <para>
4121  List comprehensions
4122 </para>
4123 </listitem>
4124 <listitem>
4125
4126 <para>
4127  <function>array</function> (on its second argument)
4128 </para>
4129 </listitem>
4130 <listitem>
4131
4132 <para>
4133  <function>length</function>
4134 </para>
4135 </listitem>
4136 <listitem>
4137
4138 <para>
4139  <function>++</function> (on its first argument)
4140 </para>
4141 </listitem>
4142
4143 <listitem>
4144 <para>
4145  <function>foldr</function>
4146 </para>
4147 </listitem>
4148
4149 <listitem>
4150 <para>
4151  <function>map</function>
4152 </para>
4153 </listitem>
4154 <listitem>
4155
4156 <para>
4157  <function>filter</function>
4158 </para>
4159 </listitem>
4160 <listitem>
4161
4162 <para>
4163  <function>concat</function>
4164 </para>
4165 </listitem>
4166 <listitem>
4167
4168 <para>
4169  <function>unzip</function>, <function>unzip2</function>, <function>unzip3</function>, <function>unzip4</function>
4170 </para>
4171 </listitem>
4172 <listitem>
4173
4174 <para>
4175  <function>zip</function>, <function>zipWith</function> (but on one argument only; if both are good producers, <function>zip</function>
4176 will fuse with one but not the other)
4177 </para>
4178 </listitem>
4179 <listitem>
4180
4181 <para>
4182  <function>partition</function>
4183 </para>
4184 </listitem>
4185 <listitem>
4186
4187 <para>
4188  <function>head</function>
4189 </para>
4190 </listitem>
4191 <listitem>
4192
4193 <para>
4194  <function>and</function>, <function>or</function>, <function>any</function>, <function>all</function>
4195 </para>
4196 </listitem>
4197 <listitem>
4198
4199 <para>
4200  <function>sequence&lowbar;</function>
4201 </para>
4202 </listitem>
4203 <listitem>
4204
4205 <para>
4206  <function>msum</function>
4207 </para>
4208 </listitem>
4209 <listitem>
4210
4211 <para>
4212  <function>sortBy</function>
4213 </para>
4214 </listitem>
4215
4216 </itemizedlist>
4217
4218 </para>
4219
4220 <para>
4221 So, for example, the following should generate no intermediate lists:
4222
4223 <programlisting>
4224 array (1,10) [(i,i*i) | i &#60;- map (+ 1) [0..9]]
4225 </programlisting>
4226
4227 </para>
4228
4229 <para>
4230 This list could readily be extended; if there are Prelude functions that you use
4231 a lot which are not included, please tell us.
4232 </para>
4233
4234 <para>
4235 If you want to write your own good consumers or producers, look at the
4236 Prelude definitions of the above functions to see how to do so.
4237 </para>
4238
4239 </sect2>
4240
4241 <sect2 id="rule-spec">
4242 <title>Specialisation
4243 </title>
4244
4245 <para>
4246 Rewrite rules can be used to get the same effect as a feature
4247 present in earlier version of GHC:
4248
4249 <programlisting>
4250   {-# SPECIALIZE fromIntegral :: Int8 -> Int16 = int8ToInt16 #-}
4251 </programlisting>
4252
4253 This told GHC to use <function>int8ToInt16</function> instead of <function>fromIntegral</function> whenever
4254 the latter was called with type <literal>Int8 -&gt; Int16</literal>.  That is, rather than
4255 specialising the original definition of <function>fromIntegral</function> the programmer is
4256 promising that it is safe to use <function>int8ToInt16</function> instead.
4257 </para>
4258
4259 <para>
4260 This feature is no longer in GHC.  But rewrite rules let you do the
4261 same thing:
4262
4263 <programlisting>
4264 {-# RULES
4265   "fromIntegral/Int8/Int16" fromIntegral = int8ToInt16
4266 #-}
4267 </programlisting>
4268
4269 This slightly odd-looking rule instructs GHC to replace <function>fromIntegral</function>
4270 by <function>int8ToInt16</function> <emphasis>whenever the types match</emphasis>.  Speaking more operationally,
4271 GHC adds the type and dictionary applications to get the typed rule
4272
4273 <programlisting>
4274 forall (d1::Integral Int8) (d2::Num Int16) .
4275         fromIntegral Int8 Int16 d1 d2 = int8ToInt16
4276 </programlisting>
4277
4278 What is more,
4279 this rule does not need to be in the same file as fromIntegral,
4280 unlike the <literal>SPECIALISE</literal> pragmas which currently do (so that they
4281 have an original definition available to specialise).
4282 </para>
4283
4284 </sect2>
4285
4286 <sect2>
4287 <title>Controlling what's going on</title>
4288
4289 <para>
4290
4291 <itemizedlist>
4292 <listitem>
4293
4294 <para>
4295  Use <option>-ddump-rules</option> to see what transformation rules GHC is using.
4296 </para>
4297 </listitem>
4298 <listitem>
4299
4300 <para>
4301  Use <option>-ddump-simpl-stats</option> to see what rules are being fired.
4302 If you add <option>-dppr-debug</option> you get a more detailed listing.
4303 </para>
4304 </listitem>
4305 <listitem>
4306
4307 <para>
4308  The defintion of (say) <function>build</function> in <FileName>PrelBase.lhs</FileName> looks llike this:
4309
4310 <programlisting>
4311         build   :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
4312         {-# INLINE build #-}
4313         build g = g (:) []
4314 </programlisting>
4315
4316 Notice the <literal>INLINE</literal>!  That prevents <literal>(:)</literal> from being inlined when compiling
4317 <literal>PrelBase</literal>, so that an importing module will &ldquo;see&rdquo; the <literal>(:)</literal>, and can
4318 match it on the LHS of a rule.  <literal>INLINE</literal> prevents any inlining happening
4319 in the RHS of the <literal>INLINE</literal> thing.  I regret the delicacy of this.
4320
4321 </para>
4322 </listitem>
4323 <listitem>
4324
4325 <para>
4326  In <filename>ghc/lib/std/PrelBase.lhs</filename> look at the rules for <function>map</function> to
4327 see how to write rules that will do fusion and yet give an efficient
4328 program even if fusion doesn't happen.  More rules in <filename>PrelList.lhs</filename>.
4329 </para>
4330 </listitem>
4331
4332 </itemizedlist>
4333
4334 </para>
4335
4336 </sect2>
4337
4338 <sect2 id="core-pragma">
4339   <title>CORE pragma</title>
4340
4341   <indexterm><primary>CORE pragma</primary></indexterm>
4342   <indexterm><primary>pragma, CORE</primary></indexterm>
4343   <indexterm><primary>core, annotation</primary></indexterm>
4344
4345 <para>
4346   The external core format supports <quote>Note</quote> annotations;
4347   the <literal>CORE</literal> pragma gives a way to specify what these
4348   should be in your Haskell source code.  Syntactically, core
4349   annotations are attached to expressions and take a Haskell string
4350   literal as an argument.  The following function definition shows an
4351   example:
4352
4353 <programlisting>
4354 f x = ({-# CORE "foo" #-} show) ({-# CORE "bar" #-} x)
4355 </programlisting>
4356
4357   Sematically, this is equivalent to:
4358
4359 <programlisting>
4360 g x = show x
4361 </programlisting>
4362 </para>
4363
4364 <para>
4365   However, when external for is generated (via
4366   <option>-fext-core</option>), there will be Notes attached to the
4367   expressions <function>show</function> and <VarName>x</VarName>.
4368   The core function declaration for <function>f</function> is:
4369 </para>
4370
4371 <programlisting>
4372   f :: %forall a . GHCziShow.ZCTShow a ->
4373                    a -> GHCziBase.ZMZN GHCziBase.Char =
4374     \ @ a (zddShow::GHCziShow.ZCTShow a) (eta::a) ->
4375         (%note "foo"
4376          %case zddShow %of (tpl::GHCziShow.ZCTShow a)
4377            {GHCziShow.ZCDShow
4378             (tpl1::GHCziBase.Int ->
4379                    a ->
4380                    GHCziBase.ZMZN GHCziBase.Char -> GHCziBase.ZMZN GHCziBase.Cha
4381 r)
4382             (tpl2::a -> GHCziBase.ZMZN GHCziBase.Char)
4383             (tpl3::GHCziBase.ZMZN a ->
4384                    GHCziBase.ZMZN GHCziBase.Char -> GHCziBase.ZMZN GHCziBase.Cha
4385 r) ->
4386               tpl2})
4387         (%note "foo"
4388          eta);
4389 </programlisting>
4390
4391 <para>
4392   Here, we can see that the function <function>show</function> (which
4393   has been expanded out to a case expression over the Show dictionary)
4394   has a <literal>%note</literal> attached to it, as does the
4395   expression <VarName>eta</VarName> (which used to be called
4396   <VarName>x</VarName>).
4397 </para>
4398
4399 </sect2>
4400
4401 </sect1>
4402
4403 <sect1 id="generic-classes">
4404 <title>Generic classes</title>
4405
4406     <para>(Note: support for generic classes is currently broken in
4407     GHC 5.02).</para>
4408
4409 <para>
4410 The ideas behind this extension are described in detail in "Derivable type classes",
4411 Ralf Hinze and Simon Peyton Jones, Haskell Workshop, Montreal Sept 2000, pp94-105.
4412 An example will give the idea:
4413 </para>
4414
4415 <programlisting>
4416   import Generics
4417
4418   class Bin a where
4419     toBin   :: a -> [Int]
4420     fromBin :: [Int] -> (a, [Int])
4421   
4422     toBin {| Unit |}    Unit      = []
4423     toBin {| a :+: b |} (Inl x)   = 0 : toBin x
4424     toBin {| a :+: b |} (Inr y)   = 1 : toBin y
4425     toBin {| a :*: b |} (x :*: y) = toBin x ++ toBin y
4426   
4427     fromBin {| Unit |}    bs      = (Unit, bs)
4428     fromBin {| a :+: b |} (0:bs)  = (Inl x, bs')    where (x,bs') = fromBin bs
4429     fromBin {| a :+: b |} (1:bs)  = (Inr y, bs')    where (y,bs') = fromBin bs
4430     fromBin {| a :*: b |} bs      = (x :*: y, bs'') where (x,bs' ) = fromBin bs
4431                                                           (y,bs'') = fromBin bs'
4432 </programlisting>
4433 <para>
4434 This class declaration explains how <literal>toBin</literal> and <literal>fromBin</literal>
4435 work for arbitrary data types.  They do so by giving cases for unit, product, and sum,
4436 which are defined thus in the library module <literal>Generics</literal>:
4437 </para>
4438 <programlisting>
4439   data Unit    = Unit
4440   data a :+: b = Inl a | Inr b
4441   data a :*: b = a :*: b
4442 </programlisting>
4443 <para>
4444 Now you can make a data type into an instance of Bin like this:
4445 <programlisting>
4446   instance (Bin a, Bin b) => Bin (a,b)
4447   instance Bin a => Bin [a]
4448 </programlisting>
4449 That is, just leave off the "where" clasuse.  Of course, you can put in the
4450 where clause and over-ride whichever methods you please.
4451 </para>
4452
4453     <sect2>
4454       <title> Using generics </title>
4455       <para>To use generics you need to</para>
4456       <itemizedlist>
4457         <listitem>
4458           <para>Use the flags <option>-fglasgow-exts</option> (to enable the extra syntax), 
4459                 <option>-fgenerics</option> (to generate extra per-data-type code),
4460                 and <option>-package lang</option> (to make the <literal>Generics</literal> library
4461                 available.  </para>
4462         </listitem>
4463         <listitem>
4464           <para>Import the module <literal>Generics</literal> from the
4465           <literal>lang</literal> package.  This import brings into
4466           scope the data types <literal>Unit</literal>,
4467           <literal>:*:</literal>, and <literal>:+:</literal>.  (You
4468           don't need this import if you don't mention these types
4469           explicitly; for example, if you are simply giving instance
4470           declarations.)</para>
4471         </listitem>
4472       </itemizedlist>
4473     </sect2>
4474
4475 <sect2> <title> Changes wrt the paper </title>
4476 <para>
4477 Note that the type constructors <literal>:+:</literal> and <literal>:*:</literal> 
4478 can be written infix (indeed, you can now use
4479 any operator starting in a colon as an infix type constructor).  Also note that
4480 the type constructors are not exactly as in the paper (Unit instead of 1, etc).
4481 Finally, note that the syntax of the type patterns in the class declaration
4482 uses "<literal>{|</literal>" and "<literal>|}</literal>" brackets; curly braces
4483 alone would ambiguous when they appear on right hand sides (an extension we 
4484 anticipate wanting).
4485 </para>
4486 </sect2>
4487
4488 <sect2> <title>Terminology and restrictions</title>
4489 <para>
4490 Terminology.  A "generic default method" in a class declaration
4491 is one that is defined using type patterns as above.
4492 A "polymorphic default method" is a default method defined as in Haskell 98.
4493 A "generic class declaration" is a class declaration with at least one
4494 generic default method.
4495 </para>
4496
4497 <para>
4498 Restrictions:
4499 <itemizedlist>
4500 <listitem>
4501 <para>
4502 Alas, we do not yet implement the stuff about constructor names and 
4503 field labels.
4504 </para>
4505 </listitem>
4506
4507 <listitem>
4508 <para>
4509 A generic class can have only one parameter; you can't have a generic
4510 multi-parameter class.
4511 </para>
4512 </listitem>
4513
4514 <listitem>
4515 <para>
4516 A default method must be defined entirely using type patterns, or entirely
4517 without.  So this is illegal:
4518 <programlisting>
4519   class Foo a where
4520     op :: a -> (a, Bool)
4521     op {| Unit |} Unit = (Unit, True)
4522     op x               = (x,    False)
4523 </programlisting>
4524 However it is perfectly OK for some methods of a generic class to have 
4525 generic default methods and others to have polymorphic default methods.
4526 </para>
4527 </listitem>
4528
4529 <listitem>
4530 <para>
4531 The type variable(s) in the type pattern for a generic method declaration
4532 scope over the right hand side.  So this is legal (note the use of the type variable ``p'' in a type signature on the right hand side:
4533 <programlisting>
4534   class Foo a where
4535     op :: a -> Bool
4536     op {| p :*: q |} (x :*: y) = op (x :: p)
4537     ...
4538 </programlisting>
4539 </para>
4540 </listitem>
4541
4542 <listitem>
4543 <para>
4544 The type patterns in a generic default method must take one of the forms:
4545 <programlisting>
4546        a :+: b
4547        a :*: b
4548        Unit
4549 </programlisting>
4550 where "a" and "b" are type variables.  Furthermore, all the type patterns for
4551 a single type constructor (<literal>:*:</literal>, say) must be identical; they
4552 must use the same type variables.  So this is illegal:
4553 <programlisting>
4554   class Foo a where
4555     op :: a -> Bool
4556     op {| a :+: b |} (Inl x) = True
4557     op {| p :+: q |} (Inr y) = False
4558 </programlisting>
4559 The type patterns must be identical, even in equations for different methods of the class.
4560 So this too is illegal:
4561 <programlisting>
4562   class Foo a where
4563     op1 :: a -> Bool
4564     op1 {| a :*: b |} (x :*: y) = True
4565
4566     op2 :: a -> Bool
4567     op2 {| p :*: q |} (x :*: y) = False
4568 </programlisting>
4569 (The reason for this restriction is that we gather all the equations for a particular type consructor
4570 into a single generic instance declaration.)
4571 </para>
4572 </listitem>
4573
4574 <listitem>
4575 <para>
4576 A generic method declaration must give a case for each of the three type constructors.
4577 </para>
4578 </listitem>
4579
4580 <listitem>
4581 <para>
4582 The type for a generic method can be built only from:
4583   <itemizedlist>
4584   <listitem> <para> Function arrows </para> </listitem>
4585   <listitem> <para> Type variables </para> </listitem>
4586   <listitem> <para> Tuples </para> </listitem>
4587   <listitem> <para> Arbitrary types not involving type variables </para> </listitem>
4588   </itemizedlist>
4589 Here are some example type signatures for generic methods:
4590 <programlisting>
4591     op1 :: a -> Bool
4592     op2 :: Bool -> (a,Bool)
4593     op3 :: [Int] -> a -> a
4594     op4 :: [a] -> Bool
4595 </programlisting>
4596 Here, op1, op2, op3 are OK, but op4 is rejected, because it has a type variable
4597 inside a list.  
4598 </para>
4599 <para>
4600 This restriction is an implementation restriction: we just havn't got around to
4601 implementing the necessary bidirectional maps over arbitrary type constructors.
4602 It would be relatively easy to add specific type constructors, such as Maybe and list,
4603 to the ones that are allowed.</para>
4604 </listitem>
4605
4606 <listitem>
4607 <para>
4608 In an instance declaration for a generic class, the idea is that the compiler
4609 will fill in the methods for you, based on the generic templates.  However it can only
4610 do so if
4611   <itemizedlist>
4612   <listitem>
4613   <para>
4614   The instance type is simple (a type constructor applied to type variables, as in Haskell 98).
4615   </para>
4616   </listitem>
4617   <listitem>
4618   <para>
4619   No constructor of the instance type has unboxed fields.
4620   </para>
4621   </listitem>
4622   </itemizedlist>
4623 (Of course, these things can only arise if you are already using GHC extensions.)
4624 However, you can still give an instance declarations for types which break these rules,
4625 provided you give explicit code to override any generic default methods.
4626 </para>
4627 </listitem>
4628
4629 </itemizedlist>
4630 </para>
4631
4632 <para>
4633 The option <option>-ddump-deriv</option> dumps incomprehensible stuff giving details of 
4634 what the compiler does with generic declarations.
4635 </para>
4636
4637 </sect2>
4638
4639 <sect2> <title> Another example </title>
4640 <para>
4641 Just to finish with, here's another example I rather like:
4642 <programlisting>
4643   class Tag a where
4644     nCons :: a -> Int
4645     nCons {| Unit |}    _ = 1
4646     nCons {| a :*: b |} _ = 1
4647     nCons {| a :+: b |} _ = nCons (bot::a) + nCons (bot::b)
4648   
4649     tag :: a -> Int
4650     tag {| Unit |}    _       = 1
4651     tag {| a :*: b |} _       = 1   
4652     tag {| a :+: b |} (Inl x) = tag x
4653     tag {| a :+: b |} (Inr y) = nCons (bot::a) + tag y
4654 </programlisting>
4655 </para>
4656 </sect2>
4657 </sect1>
4658
4659
4660
4661 <!-- Emacs stuff:
4662      ;;; Local Variables: ***
4663      ;;; mode: sgml ***
4664      ;;; sgml-parent-document: ("users_guide.sgml" "book" "chapter" "sect1") ***
4665      ;;; End: ***
4666  -->