c82e36955261ad7089f8963f37ec4a9869c8d650
[ghc-hetmet.git] / ghc / docs / users_guide / glasgow_exts.xml
1 <?xml version="1.0" encoding="iso-8859-1"?>
2 <para>
3 <indexterm><primary>language, GHC</primary></indexterm>
4 <indexterm><primary>extensions, GHC</primary></indexterm>
5 As with all known Haskell systems, GHC implements some extensions to
6 the language.  They are all enabled by options; by default GHC
7 understands only plain Haskell 98.
8 </para>
9
10 <para>
11 Some of the Glasgow extensions serve to give you access to the
12 underlying facilities with which we implement Haskell.  Thus, you can
13 get at the Raw Iron, if you are willing to write some non-portable
14 code at a more primitive level.  You need not be &ldquo;stuck&rdquo;
15 on performance because of the implementation costs of Haskell's
16 &ldquo;high-level&rdquo; features&mdash;you can always code
17 &ldquo;under&rdquo; them.  In an extreme case, you can write all your
18 time-critical code in C, and then just glue it together with Haskell!
19 </para>
20
21 <para>
22 Before you get too carried away working at the lowest level (e.g.,
23 sloshing <literal>MutableByteArray&num;</literal>s around your
24 program), you may wish to check if there are libraries that provide a
25 &ldquo;Haskellised veneer&rdquo; over the features you want.  The
26 separate <ulink url="../libraries/index.html">libraries
27 documentation</ulink> describes all the libraries that come with GHC.
28 </para>
29
30 <!-- LANGUAGE OPTIONS -->
31   <sect1 id="options-language">
32     <title>Language options</title>
33
34     <indexterm><primary>language</primary><secondary>option</secondary>
35     </indexterm>
36     <indexterm><primary>options</primary><secondary>language</secondary>
37     </indexterm>
38     <indexterm><primary>extensions</primary><secondary>options controlling</secondary>
39     </indexterm>
40
41     <para>These flags control what variation of the language are
42     permitted.  Leaving out all of them gives you standard Haskell
43     98.</para>
44
45     <para>NB. turning on an option that enables special syntax
46     <emphasis>might</emphasis> cause working Haskell 98 code to fail
47     to compile, perhaps because it uses a variable name which has
48     become a reserved word.  So, together with each option below, we
49     list the special syntax which is enabled by this option.  We use
50     notation and nonterminal names from the Haskell 98 lexical syntax
51     (see the Haskell 98 Report).  There are two classes of special
52     syntax:</para>
53
54     <itemizedlist>
55       <listitem>
56         <para>New reserved words and symbols: character sequences
57         which are no longer available for use as identifiers in the
58         program.</para>
59       </listitem>
60       <listitem>
61         <para>Other special syntax: sequences of characters that have
62         a different meaning when this particular option is turned
63         on.</para>
64       </listitem>
65     </itemizedlist>
66
67     <para>We are only listing syntax changes here that might affect
68     existing working programs (i.e. "stolen" syntax).  Many of these
69     extensions will also enable new context-free syntax, but in all
70     cases programs written to use the new syntax would not be
71     compilable without the option enabled.</para>
72
73     <variablelist>
74
75       <varlistentry>
76         <term>
77           <option>-fglasgow-exts</option>:
78           <indexterm><primary><option>-fglasgow-exts</option></primary></indexterm>
79         </term>
80         <listitem>
81           <para>This simultaneously enables all of the extensions to
82           Haskell 98 described in <xref
83           linkend="ghc-language-features"/>, except where otherwise
84           noted. </para>
85
86           <para>New reserved words: <literal>forall</literal> (only in
87           types), <literal>mdo</literal>.</para>
88
89           <para>Other syntax stolen:
90               <replaceable>varid</replaceable>{<literal>&num;</literal>},
91               <replaceable>char</replaceable><literal>&num;</literal>,      
92               <replaceable>string</replaceable><literal>&num;</literal>,    
93               <replaceable>integer</replaceable><literal>&num;</literal>,    
94               <replaceable>float</replaceable><literal>&num;</literal>,    
95               <replaceable>float</replaceable><literal>&num;&num;</literal>,    
96               <literal>(&num;</literal>, <literal>&num;)</literal>,         
97               <literal>|)</literal>, <literal>{|</literal>.</para>
98         </listitem>
99       </varlistentry>
100
101       <varlistentry>
102         <term>
103           <option>-ffi</option> and <option>-fffi</option>:
104           <indexterm><primary><option>-ffi</option></primary></indexterm>
105           <indexterm><primary><option>-fffi</option></primary></indexterm>
106         </term>
107         <listitem>
108           <para>This option enables the language extension defined in the
109           Haskell 98 Foreign Function Interface Addendum plus deprecated
110           syntax of previous versions of the FFI for backwards
111           compatibility.</para> 
112
113           <para>New reserved words: <literal>foreign</literal>.</para>
114         </listitem>
115       </varlistentry>
116
117       <varlistentry>
118         <term>
119           <option>-fno-monomorphism-restriction</option>:
120           <indexterm><primary><option>-fno-monomorphism-restriction</option></primary></indexterm>
121         </term>
122         <listitem>
123           <para> Switch off the Haskell 98 monomorphism restriction.
124           Independent of the <option>-fglasgow-exts</option>
125           flag. </para>
126         </listitem>
127       </varlistentry>
128
129       <varlistentry>
130         <term>
131           <option>-fallow-overlapping-instances</option>
132           <indexterm><primary><option>-fallow-overlapping-instances</option></primary></indexterm>
133         </term>
134         <term>
135           <option>-fallow-undecidable-instances</option>
136           <indexterm><primary><option>-fallow-undecidable-instances</option></primary></indexterm>
137         </term>
138         <term>
139           <option>-fallow-incoherent-instances</option>
140           <indexterm><primary><option>-fallow-incoherent-instances</option></primary></indexterm>
141         </term>
142         <term>
143           <option>-fcontext-stack</option>
144           <indexterm><primary><option>-fcontext-stack</option></primary></indexterm>
145         </term>
146         <listitem>
147           <para> See <xref linkend="instance-decls"/>.  Only relevant
148           if you also use <option>-fglasgow-exts</option>.</para>
149         </listitem>
150       </varlistentry>
151
152       <varlistentry>
153         <term>
154           <option>-finline-phase</option>
155           <indexterm><primary><option>-finline-phase</option></primary></indexterm>
156         </term>
157         <listitem>
158           <para>See <xref linkend="rewrite-rules"/>.  Only relevant if
159           you also use <option>-fglasgow-exts</option>.</para>
160         </listitem>
161       </varlistentry>
162
163       <varlistentry>
164         <term>
165           <option>-farrows</option>
166           <indexterm><primary><option>-farrows</option></primary></indexterm>
167         </term>
168         <listitem>
169           <para>See <xref linkend="arrow-notation"/>.  Independent of
170           <option>-fglasgow-exts</option>.</para>
171
172           <para>New reserved words/symbols: <literal>rec</literal>,
173           <literal>proc</literal>, <literal>-&lt;</literal>,
174           <literal>&gt;-</literal>, <literal>-&lt;&lt;</literal>,
175           <literal>&gt;&gt;-</literal>.</para>
176
177           <para>Other syntax stolen: <literal>(|</literal>,
178           <literal>|)</literal>.</para>
179         </listitem>
180       </varlistentry>
181
182       <varlistentry>
183         <term>
184           <option>-fgenerics</option>
185           <indexterm><primary><option>-fgenerics</option></primary></indexterm>
186         </term>
187         <listitem>
188           <para>See <xref linkend="generic-classes"/>.  Independent of
189           <option>-fglasgow-exts</option>.</para>
190         </listitem>
191       </varlistentry>
192
193       <varlistentry>
194         <term><option>-fno-implicit-prelude</option></term>
195         <listitem>
196           <para><indexterm><primary>-fno-implicit-prelude
197           option</primary></indexterm> GHC normally imports
198           <filename>Prelude.hi</filename> files for you.  If you'd
199           rather it didn't, then give it a
200           <option>-fno-implicit-prelude</option> option.  The idea is
201           that you can then import a Prelude of your own.  (But don't
202           call it <literal>Prelude</literal>; the Haskell module
203           namespace is flat, and you must not conflict with any
204           Prelude module.)</para>
205
206           <para>Even though you have not imported the Prelude, most of
207           the built-in syntax still refers to the built-in Haskell
208           Prelude types and values, as specified by the Haskell
209           Report.  For example, the type <literal>[Int]</literal>
210           still means <literal>Prelude.[] Int</literal>; tuples
211           continue to refer to the standard Prelude tuples; the
212           translation for list comprehensions continues to use
213           <literal>Prelude.map</literal> etc.</para>
214
215           <para>However, <option>-fno-implicit-prelude</option> does
216           change the handling of certain built-in syntax: see <xref
217           linkend="rebindable-syntax"/>.</para>
218         </listitem>
219       </varlistentry>
220
221       <varlistentry>
222         <term><option>-fth</option></term>
223         <listitem>
224           <para>Enables Template Haskell (see <xref
225           linkend="template-haskell"/>).  Currently also implied by
226           <option>-fglasgow-exts</option>.</para>
227
228           <para>Syntax stolen: <literal>[|</literal>,
229           <literal>[e|</literal>, <literal>[p|</literal>,
230           <literal>[d|</literal>, <literal>[t|</literal>,
231           <literal>$(</literal>,
232           <literal>$<replaceable>varid</replaceable></literal>.</para>
233         </listitem>
234       </varlistentry>
235
236       <varlistentry>
237         <term><option>-fimplicit-params</option></term>
238         <listitem>
239           <para>Enables implicit parameters (see <xref
240           linkend="implicit-parameters"/>).  Currently also implied by 
241           <option>-fglasgow-exts</option>.</para>
242
243           <para>Syntax stolen:
244           <literal>?<replaceable>varid</replaceable></literal>,
245           <literal>%<replaceable>varid</replaceable></literal>.</para>
246         </listitem>
247       </varlistentry>
248
249     </variablelist>
250   </sect1>
251
252 <!-- UNBOXED TYPES AND PRIMITIVE OPERATIONS -->
253 <!--    included from primitives.sgml  -->
254 <!-- &primitives; -->
255 <sect1 id="primitives">
256   <title>Unboxed types and primitive operations</title>
257
258 <para>GHC is built on a raft of primitive data types and operations.
259 While you really can use this stuff to write fast code,
260   we generally find it a lot less painful, and more satisfying in the
261   long run, to use higher-level language features and libraries.  With
262   any luck, the code you write will be optimised to the efficient
263   unboxed version in any case.  And if it isn't, we'd like to know
264   about it.</para>
265
266 <para>We do not currently have good, up-to-date documentation about the
267 primitives, perhaps because they are mainly intended for internal use.
268 There used to be a long section about them here in the User Guide, but it
269 became out of date, and wrong information is worse than none.</para>
270
271 <para>The Real Truth about what primitive types there are, and what operations
272 work over those types, is held in the file
273 <filename>fptools/ghc/compiler/prelude/primops.txt</filename>.
274 This file is used directly to generate GHC's primitive-operation definitions, so
275 it is always correct!  It is also intended for processing into text.</para>
276
277 <para> Indeed,
278 the result of such processing is part of the description of the 
279  <ulink
280       url="http://haskell.cs.yale.edu/ghc/docs/papers/core.ps.gz">External
281          Core language</ulink>.
282 So that document is a good place to look for a type-set version.
283 We would be very happy if someone wanted to volunteer to produce an SGML
284 back end to the program that processes <filename>primops.txt</filename> so that
285 we could include the results here in the User Guide.</para>
286
287 <para>What follows here is a brief summary of some main points.</para>
288   
289 <sect2 id="glasgow-unboxed">
290 <title>Unboxed types
291 </title>
292
293 <para>
294 <indexterm><primary>Unboxed types (Glasgow extension)</primary></indexterm>
295 </para>
296
297 <para>Most types in GHC are <firstterm>boxed</firstterm>, which means
298 that values of that type are represented by a pointer to a heap
299 object.  The representation of a Haskell <literal>Int</literal>, for
300 example, is a two-word heap object.  An <firstterm>unboxed</firstterm>
301 type, however, is represented by the value itself, no pointers or heap
302 allocation are involved.
303 </para>
304
305 <para>
306 Unboxed types correspond to the &ldquo;raw machine&rdquo; types you
307 would use in C: <literal>Int&num;</literal> (long int),
308 <literal>Double&num;</literal> (double), <literal>Addr&num;</literal>
309 (void *), etc.  The <emphasis>primitive operations</emphasis>
310 (PrimOps) on these types are what you might expect; e.g.,
311 <literal>(+&num;)</literal> is addition on
312 <literal>Int&num;</literal>s, and is the machine-addition that we all
313 know and love&mdash;usually one instruction.
314 </para>
315
316 <para>
317 Primitive (unboxed) types cannot be defined in Haskell, and are
318 therefore built into the language and compiler.  Primitive types are
319 always unlifted; that is, a value of a primitive type cannot be
320 bottom.  We use the convention that primitive types, values, and
321 operations have a <literal>&num;</literal> suffix.
322 </para>
323
324 <para>
325 Primitive values are often represented by a simple bit-pattern, such
326 as <literal>Int&num;</literal>, <literal>Float&num;</literal>,
327 <literal>Double&num;</literal>.  But this is not necessarily the case:
328 a primitive value might be represented by a pointer to a
329 heap-allocated object.  Examples include
330 <literal>Array&num;</literal>, the type of primitive arrays.  A
331 primitive array is heap-allocated because it is too big a value to fit
332 in a register, and would be too expensive to copy around; in a sense,
333 it is accidental that it is represented by a pointer.  If a pointer
334 represents a primitive value, then it really does point to that value:
335 no unevaluated thunks, no indirections&hellip;nothing can be at the
336 other end of the pointer than the primitive value.
337 </para>
338
339 <para>
340 There are some restrictions on the use of primitive types, the main
341 one being that you can't pass a primitive value to a polymorphic
342 function or store one in a polymorphic data type.  This rules out
343 things like <literal>[Int&num;]</literal> (i.e. lists of primitive
344 integers).  The reason for this restriction is that polymorphic
345 arguments and constructor fields are assumed to be pointers: if an
346 unboxed integer is stored in one of these, the garbage collector would
347 attempt to follow it, leading to unpredictable space leaks.  Or a
348 <function>seq</function> operation on the polymorphic component may
349 attempt to dereference the pointer, with disastrous results.  Even
350 worse, the unboxed value might be larger than a pointer
351 (<literal>Double&num;</literal> for instance).
352 </para>
353
354 <para>
355 Nevertheless, A numerically-intensive program using unboxed types can
356 go a <emphasis>lot</emphasis> faster than its &ldquo;standard&rdquo;
357 counterpart&mdash;we saw a threefold speedup on one example.
358 </para>
359
360 </sect2>
361
362 <sect2 id="unboxed-tuples">
363 <title>Unboxed Tuples
364 </title>
365
366 <para>
367 Unboxed tuples aren't really exported by <literal>GHC.Exts</literal>,
368 they're available by default with <option>-fglasgow-exts</option>.  An
369 unboxed tuple looks like this:
370 </para>
371
372 <para>
373
374 <programlisting>
375 (# e_1, ..., e_n #)
376 </programlisting>
377
378 </para>
379
380 <para>
381 where <literal>e&lowbar;1..e&lowbar;n</literal> are expressions of any
382 type (primitive or non-primitive).  The type of an unboxed tuple looks
383 the same.
384 </para>
385
386 <para>
387 Unboxed tuples are used for functions that need to return multiple
388 values, but they avoid the heap allocation normally associated with
389 using fully-fledged tuples.  When an unboxed tuple is returned, the
390 components are put directly into registers or on the stack; the
391 unboxed tuple itself does not have a composite representation.  Many
392 of the primitive operations listed in this section return unboxed
393 tuples.
394 </para>
395
396 <para>
397 There are some pretty stringent restrictions on the use of unboxed tuples:
398 </para>
399
400 <para>
401
402 <itemizedlist>
403 <listitem>
404
405 <para>
406  Unboxed tuple types are subject to the same restrictions as
407 other unboxed types; i.e. they may not be stored in polymorphic data
408 structures or passed to polymorphic functions.
409
410 </para>
411 </listitem>
412 <listitem>
413
414 <para>
415  Unboxed tuples may only be constructed as the direct result of
416 a function, and may only be deconstructed with a <literal>case</literal> expression.
417 eg. the following are valid:
418
419
420 <programlisting>
421 f x y = (# x+1, y-1 #)
422 g x = case f x x of { (# a, b #) -&#62; a + b }
423 </programlisting>
424
425
426 but the following are invalid:
427
428
429 <programlisting>
430 f x y = g (# x, y #)
431 g (# x, y #) = x + y
432 </programlisting>
433
434
435 </para>
436 </listitem>
437 <listitem>
438
439 <para>
440  No variable can have an unboxed tuple type.  This is illegal:
441
442
443 <programlisting>
444 f :: (# Int, Int #) -&#62; (# Int, Int #)
445 f x = x
446 </programlisting>
447
448
449 because <literal>x</literal> has an unboxed tuple type.
450
451 </para>
452 </listitem>
453
454 </itemizedlist>
455
456 </para>
457
458 <para>
459 Note: we may relax some of these restrictions in the future.
460 </para>
461
462 <para>
463 The <literal>IO</literal> and <literal>ST</literal> monads use unboxed
464 tuples to avoid unnecessary allocation during sequences of operations.
465 </para>
466
467 </sect2>
468 </sect1>
469
470
471 <!-- ====================== SYNTACTIC EXTENSIONS =======================  -->
472
473 <sect1 id="syntax-extns">
474 <title>Syntactic extensions</title>
475  
476     <!-- ====================== HIERARCHICAL MODULES =======================  -->
477
478     <sect2 id="hierarchical-modules">
479       <title>Hierarchical Modules</title>
480
481       <para>GHC supports a small extension to the syntax of module
482       names: a module name is allowed to contain a dot
483       <literal>&lsquo;.&rsquo;</literal>.  This is also known as the
484       &ldquo;hierarchical module namespace&rdquo; extension, because
485       it extends the normally flat Haskell module namespace into a
486       more flexible hierarchy of modules.</para>
487
488       <para>This extension has very little impact on the language
489       itself; modules names are <emphasis>always</emphasis> fully
490       qualified, so you can just think of the fully qualified module
491       name as <quote>the module name</quote>.  In particular, this
492       means that the full module name must be given after the
493       <literal>module</literal> keyword at the beginning of the
494       module; for example, the module <literal>A.B.C</literal> must
495       begin</para>
496
497 <programlisting>module A.B.C</programlisting>
498
499
500       <para>It is a common strategy to use the <literal>as</literal>
501       keyword to save some typing when using qualified names with
502       hierarchical modules.  For example:</para>
503
504 <programlisting>
505 import qualified Control.Monad.ST.Strict as ST
506 </programlisting>
507
508       <para>For details on how GHC searches for source and interface
509       files in the presence of hierarchical modules, see <xref
510       linkend="search-path"/>.</para>
511
512       <para>GHC comes with a large collection of libraries arranged
513       hierarchically; see the accompanying library documentation.
514       There is an ongoing project to create and maintain a stable set
515       of <quote>core</quote> libraries used by several Haskell
516       compilers, and the libraries that GHC comes with represent the
517       current status of that project.  For more details, see <ulink
518       url="http://www.haskell.org/~simonmar/libraries/libraries.html">Haskell
519       Libraries</ulink>.</para>
520
521     </sect2>
522
523     <!-- ====================== PATTERN GUARDS =======================  -->
524
525 <sect2 id="pattern-guards">
526 <title>Pattern guards</title>
527
528 <para>
529 <indexterm><primary>Pattern guards (Glasgow extension)</primary></indexterm>
530 The discussion that follows is an abbreviated version of Simon Peyton Jones's original <ulink url="http://research.microsoft.com/~simonpj/Haskell/guards.html">proposal</ulink>. (Note that the proposal was written before pattern guards were implemented, so refers to them as unimplemented.)
531 </para>
532
533 <para>
534 Suppose we have an abstract data type of finite maps, with a
535 lookup operation:
536
537 <programlisting>
538 lookup :: FiniteMap -> Int -> Maybe Int
539 </programlisting>
540
541 The lookup returns <function>Nothing</function> if the supplied key is not in the domain of the mapping, and <function>(Just v)</function> otherwise,
542 where <varname>v</varname> is the value that the key maps to.  Now consider the following definition:
543 </para>
544
545 <programlisting>
546 clunky env var1 var2 | ok1 &amp;&amp; ok2 = val1 + val2
547 | otherwise  = var1 + var2
548 where
549   m1 = lookup env var1
550   m2 = lookup env var2
551   ok1 = maybeToBool m1
552   ok2 = maybeToBool m2
553   val1 = expectJust m1
554   val2 = expectJust m2
555 </programlisting>
556
557 <para>
558 The auxiliary functions are 
559 </para>
560
561 <programlisting>
562 maybeToBool :: Maybe a -&gt; Bool
563 maybeToBool (Just x) = True
564 maybeToBool Nothing  = False
565
566 expectJust :: Maybe a -&gt; a
567 expectJust (Just x) = x
568 expectJust Nothing  = error "Unexpected Nothing"
569 </programlisting>
570
571 <para>
572 What is <function>clunky</function> doing? The guard <literal>ok1 &amp;&amp;
573 ok2</literal> checks that both lookups succeed, using
574 <function>maybeToBool</function> to convert the <function>Maybe</function>
575 types to booleans. The (lazily evaluated) <function>expectJust</function>
576 calls extract the values from the results of the lookups, and binds the
577 returned values to <varname>val1</varname> and <varname>val2</varname>
578 respectively.  If either lookup fails, then clunky takes the
579 <literal>otherwise</literal> case and returns the sum of its arguments.
580 </para>
581
582 <para>
583 This is certainly legal Haskell, but it is a tremendously verbose and
584 un-obvious way to achieve the desired effect.  Arguably, a more direct way
585 to write clunky would be to use case expressions:
586 </para>
587
588 <programlisting>
589 clunky env var1 var1 = case lookup env var1 of
590   Nothing -&gt; fail
591   Just val1 -&gt; case lookup env var2 of
592     Nothing -&gt; fail
593     Just val2 -&gt; val1 + val2
594 where
595   fail = val1 + val2
596 </programlisting>
597
598 <para>
599 This is a bit shorter, but hardly better.  Of course, we can rewrite any set
600 of pattern-matching, guarded equations as case expressions; that is
601 precisely what the compiler does when compiling equations! The reason that
602 Haskell provides guarded equations is because they allow us to write down
603 the cases we want to consider, one at a time, independently of each other. 
604 This structure is hidden in the case version.  Two of the right-hand sides
605 are really the same (<function>fail</function>), and the whole expression
606 tends to become more and more indented. 
607 </para>
608
609 <para>
610 Here is how I would write clunky:
611 </para>
612
613 <programlisting>
614 clunky env var1 var1
615   | Just val1 &lt;- lookup env var1
616   , Just val2 &lt;- lookup env var2
617   = val1 + val2
618 ...other equations for clunky...
619 </programlisting>
620
621 <para>
622 The semantics should be clear enough.  The qualifers are matched in order. 
623 For a <literal>&lt;-</literal> qualifier, which I call a pattern guard, the
624 right hand side is evaluated and matched against the pattern on the left. 
625 If the match fails then the whole guard fails and the next equation is
626 tried.  If it succeeds, then the appropriate binding takes place, and the
627 next qualifier is matched, in the augmented environment.  Unlike list
628 comprehensions, however, the type of the expression to the right of the
629 <literal>&lt;-</literal> is the same as the type of the pattern to its
630 left.  The bindings introduced by pattern guards scope over all the
631 remaining guard qualifiers, and over the right hand side of the equation.
632 </para>
633
634 <para>
635 Just as with list comprehensions, boolean expressions can be freely mixed
636 with among the pattern guards.  For example:
637 </para>
638
639 <programlisting>
640 f x | [y] &lt;- x
641     , y > 3
642     , Just z &lt;- h y
643     = ...
644 </programlisting>
645
646 <para>
647 Haskell's current guards therefore emerge as a special case, in which the
648 qualifier list has just one element, a boolean expression.
649 </para>
650 </sect2>
651
652     <!-- ===================== Recursive do-notation ===================  -->
653
654 <sect2 id="mdo-notation">
655 <title>The recursive do-notation
656 </title>
657
658 <para> The recursive do-notation (also known as mdo-notation) is implemented as described in
659 "A recursive do for Haskell",
660 Levent Erkok, John Launchbury",
661 Haskell Workshop 2002, pages: 29-37. Pittsburgh, Pennsylvania. 
662 </para>
663 <para>
664 The do-notation of Haskell does not allow <emphasis>recursive bindings</emphasis>,
665 that is, the variables bound in a do-expression are visible only in the textually following 
666 code block. Compare this to a let-expression, where bound variables are visible in the entire binding
667 group. It turns out that several applications can benefit from recursive bindings in
668 the do-notation, and this extension provides the necessary syntactic support.
669 </para>
670 <para>
671 Here is a simple (yet contrived) example:
672 </para>
673 <programlisting>
674 import Control.Monad.Fix
675
676 justOnes = mdo xs &lt;- Just (1:xs)
677                return xs
678 </programlisting>
679 <para>
680 As you can guess <literal>justOnes</literal> will evaluate to <literal>Just [1,1,1,...</literal>.
681 </para>
682
683 <para>
684 The Control.Monad.Fix library introduces the <literal>MonadFix</literal> class. It's definition is:
685 </para>
686 <programlisting>
687 class Monad m => MonadFix m where
688    mfix :: (a -> m a) -> m a
689 </programlisting>
690 <para>
691 The function <literal>mfix</literal>
692 dictates how the required recursion operation should be performed. If recursive bindings are required for a monad,
693 then that monad must be declared an instance of the <literal>MonadFix</literal> class.
694 For details, see the above mentioned reference.
695 </para>
696 <para>
697 The following instances of <literal>MonadFix</literal> are automatically provided: List, Maybe, IO. 
698 Furthermore, the Control.Monad.ST and Control.Monad.ST.Lazy modules provide the instances of the MonadFix class 
699 for Haskell's internal state monad (strict and lazy, respectively).
700 </para>
701 <para>
702 There are three important points in using the recursive-do notation:
703 <itemizedlist>
704 <listitem><para>
705 The recursive version of the do-notation uses the keyword <literal>mdo</literal> (rather
706 than <literal>do</literal>).
707 </para></listitem>
708
709 <listitem><para>
710 You should <literal>import Control.Monad.Fix</literal>.
711 (Note: Strictly speaking, this import is required only when you need to refer to the name
712 <literal>MonadFix</literal> in your program, but the import is always safe, and the programmers
713 are encouraged to always import this module when using the mdo-notation.)
714 </para></listitem>
715
716 <listitem><para>
717 As with other extensions, ghc should be given the flag <literal>-fglasgow-exts</literal>
718 </para></listitem>
719 </itemizedlist>
720 </para>
721
722 <para>
723 The web page: <ulink url="http://www.cse.ogi.edu/PacSoft/projects/rmb">http://www.cse.ogi.edu/PacSoft/projects/rmb</ulink>
724 contains up to date information on recursive monadic bindings.
725 </para>
726
727 <para>
728 Historical note: The old implementation of the mdo-notation (and most
729 of the existing documents) used the name
730 <literal>MonadRec</literal> for the class and the corresponding library.
731 This name is not supported by GHC.
732 </para>
733
734 </sect2>
735
736
737    <!-- ===================== PARALLEL LIST COMPREHENSIONS ===================  -->
738
739   <sect2 id="parallel-list-comprehensions">
740     <title>Parallel List Comprehensions</title>
741     <indexterm><primary>list comprehensions</primary><secondary>parallel</secondary>
742     </indexterm>
743     <indexterm><primary>parallel list comprehensions</primary>
744     </indexterm>
745
746     <para>Parallel list comprehensions are a natural extension to list
747     comprehensions.  List comprehensions can be thought of as a nice
748     syntax for writing maps and filters.  Parallel comprehensions
749     extend this to include the zipWith family.</para>
750
751     <para>A parallel list comprehension has multiple independent
752     branches of qualifier lists, each separated by a `|' symbol.  For
753     example, the following zips together two lists:</para>
754
755 <programlisting>
756    [ (x, y) | x &lt;- xs | y &lt;- ys ] 
757 </programlisting>
758
759     <para>The behavior of parallel list comprehensions follows that of
760     zip, in that the resulting list will have the same length as the
761     shortest branch.</para>
762
763     <para>We can define parallel list comprehensions by translation to
764     regular comprehensions.  Here's the basic idea:</para>
765
766     <para>Given a parallel comprehension of the form: </para>
767
768 <programlisting>
769    [ e | p1 &lt;- e11, p2 &lt;- e12, ... 
770        | q1 &lt;- e21, q2 &lt;- e22, ... 
771        ... 
772    ] 
773 </programlisting>
774
775     <para>This will be translated to: </para>
776
777 <programlisting>
778    [ e | ((p1,p2), (q1,q2), ...) &lt;- zipN [(p1,p2) | p1 &lt;- e11, p2 &lt;- e12, ...] 
779                                          [(q1,q2) | q1 &lt;- e21, q2 &lt;- e22, ...] 
780                                          ... 
781    ] 
782 </programlisting>
783
784     <para>where `zipN' is the appropriate zip for the given number of
785     branches.</para>
786
787   </sect2>
788
789 <sect2 id="rebindable-syntax">
790 <title>Rebindable syntax</title>
791
792
793       <para>GHC allows most kinds of built-in syntax to be rebound by
794       the user, to facilitate replacing the <literal>Prelude</literal>
795       with a home-grown version, for example.</para>
796
797             <para>You may want to define your own numeric class
798             hierarchy.  It completely defeats that purpose if the
799             literal "1" means "<literal>Prelude.fromInteger
800             1</literal>", which is what the Haskell Report specifies.
801             So the <option>-fno-implicit-prelude</option> flag causes
802             the following pieces of built-in syntax to refer to
803             <emphasis>whatever is in scope</emphasis>, not the Prelude
804             versions:</para>
805
806             <itemizedlist>
807               <listitem>
808                 <para>Integer and fractional literals mean
809                 "<literal>fromInteger 1</literal>" and
810                 "<literal>fromRational 3.2</literal>", not the
811                 Prelude-qualified versions; both in expressions and in
812                 patterns. </para>
813                 <para>However, the standard Prelude <literal>Eq</literal> class
814                 is still used for the equality test necessary for literal patterns.</para>
815               </listitem>
816
817               <listitem>
818                 <para>Negation (e.g. "<literal>- (f x)</literal>")
819                 means "<literal>negate (f x)</literal>" (not
820                 <literal>Prelude.negate</literal>).</para>
821               </listitem>
822
823               <listitem>
824                 <para>In an n+k pattern, the standard Prelude
825                 <literal>Ord</literal> class is still used for comparison,
826                 but the necessary subtraction uses whatever
827                 "<literal>(-)</literal>" is in scope (not
828                 "<literal>Prelude.(-)</literal>").</para>
829               </listitem>
830
831               <listitem>
832           <para>"Do" notation is translated using whatever
833               functions <literal>(>>=)</literal>,
834               <literal>(>>)</literal>, <literal>fail</literal>, and
835               <literal>return</literal>, are in scope (not the Prelude
836               versions).  List comprehensions, and parallel array
837               comprehensions, are unaffected.  </para></listitem>
838             </itemizedlist>
839
840              <para>Be warned: this is an experimental facility, with fewer checks than
841              usual.  In particular, it is essential that the functions GHC finds in scope
842              must have the appropriate types, namely:
843              <screen>
844                 fromInteger  :: forall a. (...) => Integer  -> a
845                 fromRational :: forall a. (...) => Rational -> a
846                 negate       :: forall a. (...) => a -> a
847                 (-)          :: forall a. (...) => a -> a -> a
848                 (>>=)        :: forall m a. (...) => m a -> (a -> m b) -> m b
849                 (>>)         :: forall m a. (...) => m a -> m b -> m b
850                 return       :: forall m a. (...) => a      -> m a
851                 fail         :: forall m a. (...) => String -> m a
852              </screen>
853              (The (...) part can be any context including the empty context; that part 
854              is up to you.)
855              If the functions don't have the right type, very peculiar things may 
856              happen.  Use <literal>-dcore-lint</literal> to
857              typecheck the desugared program.  If Core Lint is happy you should be all right.</para>
858
859 </sect2>
860 </sect1>
861
862
863 <!-- TYPE SYSTEM EXTENSIONS -->
864 <sect1 id="type-extensions">
865 <title>Type system extensions</title>
866
867
868 <sect2>
869 <title>Data types and type synonyms</title>
870
871 <sect3 id="nullary-types">
872 <title>Data types with no constructors</title>
873
874 <para>With the <option>-fglasgow-exts</option> flag, GHC lets you declare
875 a data type with no constructors.  For example:</para>
876
877 <programlisting>
878   data S      -- S :: *
879   data T a    -- T :: * -> *
880 </programlisting>
881
882 <para>Syntactically, the declaration lacks the "= constrs" part.  The 
883 type can be parameterised over types of any kind, but if the kind is
884 not <literal>*</literal> then an explicit kind annotation must be used
885 (see <xref linkend="sec-kinding"/>).</para>
886
887 <para>Such data types have only one value, namely bottom.
888 Nevertheless, they can be useful when defining "phantom types".</para>
889 </sect3>
890
891 <sect3 id="infix-tycons">
892 <title>Infix type constructors</title>
893
894 <para>
895 GHC allows type constructors to be operators, and to be written infix, very much 
896 like expressions.  More specifically:
897 <itemizedlist>
898 <listitem><para>
899   A type constructor can be an operator, beginning with a colon; e.g. <literal>:*:</literal>.
900   The lexical syntax is the same as that for data constructors.
901   </para></listitem>
902 <listitem><para>
903   Types can be written infix.  For example <literal>Int :*: Bool</literal>.  
904   </para></listitem>
905 <listitem><para>
906   Back-quotes work
907   as for expressions, both for type constructors and type variables;  e.g. <literal>Int `Either` Bool</literal>, or
908   <literal>Int `a` Bool</literal>.  Similarly, parentheses work the same; e.g.  <literal>(:*:) Int Bool</literal>.
909   </para></listitem>
910 <listitem><para>
911   Fixities may be declared for type constructors just as for data constructors.  However,
912   one cannot distinguish between the two in a fixity declaration; a fixity declaration
913   sets the fixity for a data constructor and the corresponding type constructor.  For example:
914 <screen>
915   infixl 7 T, :*:
916 </screen>
917   sets the fixity for both type constructor <literal>T</literal> and data constructor <literal>T</literal>,
918   and similarly for <literal>:*:</literal>.
919   <literal>Int `a` Bool</literal>.
920   </para></listitem>
921 <listitem><para>
922   Function arrow is <literal>infixr</literal> with fixity 0.  (This might change; I'm not sure what it should be.)
923   </para></listitem>
924 <listitem><para>
925   Data type and type-synonym declarations can be written infix.  E.g.
926 <screen>
927   data a :*: b = Foo a b
928   type a :+: b = Either a b
929 </screen>
930   </para></listitem>
931 <listitem><para>
932   The only thing that differs between operators in types and operators in expressions is that
933   ordinary non-constructor operators, such as <literal>+</literal> and <literal>*</literal>
934   are not allowed in types. Reason: the uniform thing to do would be to make them type
935   variables, but that's not very useful.  A less uniform but more useful thing would be to
936   allow them to be type <emphasis>constructors</emphasis>.  But that gives trouble in export
937   lists.  So for now we just exclude them.
938   </para></listitem>
939
940 </itemizedlist>
941 </para>
942 </sect3>
943
944 <sect3 id="type-synonyms">
945 <title>Liberalised type synonyms</title>
946
947 <para>
948 Type synonmys are like macros at the type level, and
949 GHC does validity checking on types <emphasis>only after expanding type synonyms</emphasis>.
950 That means that GHC can be very much more liberal about type synonyms than Haskell 98:
951 <itemizedlist>
952 <listitem> <para>You can write a <literal>forall</literal> (including overloading)
953 in a type synonym, thus:
954 <programlisting>
955   type Discard a = forall b. Show b => a -> b -> (a, String)
956
957   f :: Discard a
958   f x y = (x, show y)
959
960   g :: Discard Int -> (Int,Bool)    -- A rank-2 type
961   g f = f Int True
962 </programlisting>
963 </para>
964 </listitem>
965
966 <listitem><para>
967 You can write an unboxed tuple in a type synonym:
968 <programlisting>
969   type Pr = (# Int, Int #)
970
971   h :: Int -> Pr
972   h x = (# x, x #)
973 </programlisting>
974 </para></listitem>
975
976 <listitem><para>
977 You can apply a type synonym to a forall type:
978 <programlisting>
979   type Foo a = a -> a -> Bool
980  
981   f :: Foo (forall b. b->b)
982 </programlisting>
983 After expanding the synonym, <literal>f</literal> has the legal (in GHC) type:
984 <programlisting>
985   f :: (forall b. b->b) -> (forall b. b->b) -> Bool
986 </programlisting>
987 </para></listitem>
988
989 <listitem><para>
990 You can apply a type synonym to a partially applied type synonym:
991 <programlisting>
992   type Generic i o = forall x. i x -> o x
993   type Id x = x
994   
995   foo :: Generic Id []
996 </programlisting>
997 After epxanding the synonym, <literal>foo</literal> has the legal (in GHC) type:
998 <programlisting>
999   foo :: forall x. x -> [x]
1000 </programlisting>
1001 </para></listitem>
1002
1003 </itemizedlist>
1004 </para>
1005
1006 <para>
1007 GHC currently does kind checking before expanding synonyms (though even that
1008 could be changed.)
1009 </para>
1010 <para>
1011 After expanding type synonyms, GHC does validity checking on types, looking for
1012 the following mal-formedness which isn't detected simply by kind checking:
1013 <itemizedlist>
1014 <listitem><para>
1015 Type constructor applied to a type involving for-alls.
1016 </para></listitem>
1017 <listitem><para>
1018 Unboxed tuple on left of an arrow.
1019 </para></listitem>
1020 <listitem><para>
1021 Partially-applied type synonym.
1022 </para></listitem>
1023 </itemizedlist>
1024 So, for example,
1025 this will be rejected:
1026 <programlisting>
1027   type Pr = (# Int, Int #)
1028
1029   h :: Pr -> Int
1030   h x = ...
1031 </programlisting>
1032 because GHC does not allow  unboxed tuples on the left of a function arrow.
1033 </para>
1034 </sect3>
1035
1036
1037 <sect3 id="existential-quantification">
1038 <title>Existentially quantified data constructors
1039 </title>
1040
1041 <para>
1042 The idea of using existential quantification in data type declarations
1043 was suggested by Laufer (I believe, thought doubtless someone will
1044 correct me), and implemented in Hope+. It's been in Lennart
1045 Augustsson's <command>hbc</command> Haskell compiler for several years, and
1046 proved very useful.  Here's the idea.  Consider the declaration:
1047 </para>
1048
1049 <para>
1050
1051 <programlisting>
1052   data Foo = forall a. MkFoo a (a -> Bool)
1053            | Nil
1054 </programlisting>
1055
1056 </para>
1057
1058 <para>
1059 The data type <literal>Foo</literal> has two constructors with types:
1060 </para>
1061
1062 <para>
1063
1064 <programlisting>
1065   MkFoo :: forall a. a -> (a -> Bool) -> Foo
1066   Nil   :: Foo
1067 </programlisting>
1068
1069 </para>
1070
1071 <para>
1072 Notice that the type variable <literal>a</literal> in the type of <function>MkFoo</function>
1073 does not appear in the data type itself, which is plain <literal>Foo</literal>.
1074 For example, the following expression is fine:
1075 </para>
1076
1077 <para>
1078
1079 <programlisting>
1080   [MkFoo 3 even, MkFoo 'c' isUpper] :: [Foo]
1081 </programlisting>
1082
1083 </para>
1084
1085 <para>
1086 Here, <literal>(MkFoo 3 even)</literal> packages an integer with a function
1087 <function>even</function> that maps an integer to <literal>Bool</literal>; and <function>MkFoo 'c'
1088 isUpper</function> packages a character with a compatible function.  These
1089 two things are each of type <literal>Foo</literal> and can be put in a list.
1090 </para>
1091
1092 <para>
1093 What can we do with a value of type <literal>Foo</literal>?.  In particular,
1094 what happens when we pattern-match on <function>MkFoo</function>?
1095 </para>
1096
1097 <para>
1098
1099 <programlisting>
1100   f (MkFoo val fn) = ???
1101 </programlisting>
1102
1103 </para>
1104
1105 <para>
1106 Since all we know about <literal>val</literal> and <function>fn</function> is that they
1107 are compatible, the only (useful) thing we can do with them is to
1108 apply <function>fn</function> to <literal>val</literal> to get a boolean.  For example:
1109 </para>
1110
1111 <para>
1112
1113 <programlisting>
1114   f :: Foo -> Bool
1115   f (MkFoo val fn) = fn val
1116 </programlisting>
1117
1118 </para>
1119
1120 <para>
1121 What this allows us to do is to package heterogenous values
1122 together with a bunch of functions that manipulate them, and then treat
1123 that collection of packages in a uniform manner.  You can express
1124 quite a bit of object-oriented-like programming this way.
1125 </para>
1126
1127 <sect4 id="existential">
1128 <title>Why existential?
1129 </title>
1130
1131 <para>
1132 What has this to do with <emphasis>existential</emphasis> quantification?
1133 Simply that <function>MkFoo</function> has the (nearly) isomorphic type
1134 </para>
1135
1136 <para>
1137
1138 <programlisting>
1139   MkFoo :: (exists a . (a, a -> Bool)) -> Foo
1140 </programlisting>
1141
1142 </para>
1143
1144 <para>
1145 But Haskell programmers can safely think of the ordinary
1146 <emphasis>universally</emphasis> quantified type given above, thereby avoiding
1147 adding a new existential quantification construct.
1148 </para>
1149
1150 </sect4>
1151
1152 <sect4>
1153 <title>Type classes</title>
1154
1155 <para>
1156 An easy extension (implemented in <command>hbc</command>) is to allow
1157 arbitrary contexts before the constructor.  For example:
1158 </para>
1159
1160 <para>
1161
1162 <programlisting>
1163 data Baz = forall a. Eq a => Baz1 a a
1164          | forall b. Show b => Baz2 b (b -> b)
1165 </programlisting>
1166
1167 </para>
1168
1169 <para>
1170 The two constructors have the types you'd expect:
1171 </para>
1172
1173 <para>
1174
1175 <programlisting>
1176 Baz1 :: forall a. Eq a => a -> a -> Baz
1177 Baz2 :: forall b. Show b => b -> (b -> b) -> Baz
1178 </programlisting>
1179
1180 </para>
1181
1182 <para>
1183 But when pattern matching on <function>Baz1</function> the matched values can be compared
1184 for equality, and when pattern matching on <function>Baz2</function> the first matched
1185 value can be converted to a string (as well as applying the function to it).
1186 So this program is legal:
1187 </para>
1188
1189 <para>
1190
1191 <programlisting>
1192   f :: Baz -> String
1193   f (Baz1 p q) | p == q    = "Yes"
1194                | otherwise = "No"
1195   f (Baz2 v fn)            = show (fn v)
1196 </programlisting>
1197
1198 </para>
1199
1200 <para>
1201 Operationally, in a dictionary-passing implementation, the
1202 constructors <function>Baz1</function> and <function>Baz2</function> must store the
1203 dictionaries for <literal>Eq</literal> and <literal>Show</literal> respectively, and
1204 extract it on pattern matching.
1205 </para>
1206
1207 <para>
1208 Notice the way that the syntax fits smoothly with that used for
1209 universal quantification earlier.
1210 </para>
1211
1212 </sect4>
1213
1214 <sect4>
1215 <title>Restrictions</title>
1216
1217 <para>
1218 There are several restrictions on the ways in which existentially-quantified
1219 constructors can be use.
1220 </para>
1221
1222 <para>
1223
1224 <itemizedlist>
1225 <listitem>
1226
1227 <para>
1228  When pattern matching, each pattern match introduces a new,
1229 distinct, type for each existential type variable.  These types cannot
1230 be unified with any other type, nor can they escape from the scope of
1231 the pattern match.  For example, these fragments are incorrect:
1232
1233
1234 <programlisting>
1235 f1 (MkFoo a f) = a
1236 </programlisting>
1237
1238
1239 Here, the type bound by <function>MkFoo</function> "escapes", because <literal>a</literal>
1240 is the result of <function>f1</function>.  One way to see why this is wrong is to
1241 ask what type <function>f1</function> has:
1242
1243
1244 <programlisting>
1245   f1 :: Foo -> a             -- Weird!
1246 </programlisting>
1247
1248
1249 What is this "<literal>a</literal>" in the result type? Clearly we don't mean
1250 this:
1251
1252
1253 <programlisting>
1254   f1 :: forall a. Foo -> a   -- Wrong!
1255 </programlisting>
1256
1257
1258 The original program is just plain wrong.  Here's another sort of error
1259
1260
1261 <programlisting>
1262   f2 (Baz1 a b) (Baz1 p q) = a==q
1263 </programlisting>
1264
1265
1266 It's ok to say <literal>a==b</literal> or <literal>p==q</literal>, but
1267 <literal>a==q</literal> is wrong because it equates the two distinct types arising
1268 from the two <function>Baz1</function> constructors.
1269
1270
1271 </para>
1272 </listitem>
1273 <listitem>
1274
1275 <para>
1276 You can't pattern-match on an existentially quantified
1277 constructor in a <literal>let</literal> or <literal>where</literal> group of
1278 bindings. So this is illegal:
1279
1280
1281 <programlisting>
1282   f3 x = a==b where { Baz1 a b = x }
1283 </programlisting>
1284
1285 Instead, use a <literal>case</literal> expression:
1286
1287 <programlisting>
1288   f3 x = case x of Baz1 a b -> a==b
1289 </programlisting>
1290
1291 In general, you can only pattern-match
1292 on an existentially-quantified constructor in a <literal>case</literal> expression or
1293 in the patterns of a function definition.
1294
1295 The reason for this restriction is really an implementation one.
1296 Type-checking binding groups is already a nightmare without
1297 existentials complicating the picture.  Also an existential pattern
1298 binding at the top level of a module doesn't make sense, because it's
1299 not clear how to prevent the existentially-quantified type "escaping".
1300 So for now, there's a simple-to-state restriction.  We'll see how
1301 annoying it is.
1302
1303 </para>
1304 </listitem>
1305 <listitem>
1306
1307 <para>
1308 You can't use existential quantification for <literal>newtype</literal>
1309 declarations.  So this is illegal:
1310
1311
1312 <programlisting>
1313   newtype T = forall a. Ord a => MkT a
1314 </programlisting>
1315
1316
1317 Reason: a value of type <literal>T</literal> must be represented as a
1318 pair of a dictionary for <literal>Ord t</literal> and a value of type
1319 <literal>t</literal>.  That contradicts the idea that
1320 <literal>newtype</literal> should have no concrete representation.
1321 You can get just the same efficiency and effect by using
1322 <literal>data</literal> instead of <literal>newtype</literal>.  If
1323 there is no overloading involved, then there is more of a case for
1324 allowing an existentially-quantified <literal>newtype</literal>,
1325 because the <literal>data</literal> version does carry an
1326 implementation cost, but single-field existentially quantified
1327 constructors aren't much use.  So the simple restriction (no
1328 existential stuff on <literal>newtype</literal>) stands, unless there
1329 are convincing reasons to change it.
1330
1331
1332 </para>
1333 </listitem>
1334 <listitem>
1335
1336 <para>
1337  You can't use <literal>deriving</literal> to define instances of a
1338 data type with existentially quantified data constructors.
1339
1340 Reason: in most cases it would not make sense. For example:&num;
1341
1342 <programlisting>
1343 data T = forall a. MkT [a] deriving( Eq )
1344 </programlisting>
1345
1346 To derive <literal>Eq</literal> in the standard way we would need to have equality
1347 between the single component of two <function>MkT</function> constructors:
1348
1349 <programlisting>
1350 instance Eq T where
1351   (MkT a) == (MkT b) = ???
1352 </programlisting>
1353
1354 But <varname>a</varname> and <varname>b</varname> have distinct types, and so can't be compared.
1355 It's just about possible to imagine examples in which the derived instance
1356 would make sense, but it seems altogether simpler simply to prohibit such
1357 declarations.  Define your own instances!
1358 </para>
1359 </listitem>
1360
1361 </itemizedlist>
1362
1363 </para>
1364
1365 </sect4>
1366 </sect3>
1367
1368 </sect2>
1369
1370
1371
1372 <sect2 id="multi-param-type-classes">
1373 <title>Class declarations</title>
1374
1375 <para>
1376 This section documents GHC's implementation of multi-parameter type
1377 classes.  There's lots of background in the paper <ulink
1378 url="http://research.microsoft.com/~simonpj/multi.ps.gz" >Type
1379 classes: exploring the design space</ulink > (Simon Peyton Jones, Mark
1380 Jones, Erik Meijer).
1381 </para>
1382 <para>
1383 There are the following constraints on class declarations:
1384 <orderedlist>
1385 <listitem>
1386
1387 <para>
1388  <emphasis>Multi-parameter type classes are permitted</emphasis>. For example:
1389
1390
1391 <programlisting>
1392   class Collection c a where
1393     union :: c a -> c a -> c a
1394     ...etc.
1395 </programlisting>
1396
1397
1398
1399 </para>
1400 </listitem>
1401 <listitem>
1402
1403 <para>
1404  <emphasis>The class hierarchy must be acyclic</emphasis>.  However, the definition
1405 of "acyclic" involves only the superclass relationships.  For example,
1406 this is OK:
1407
1408
1409 <programlisting>
1410   class C a where {
1411     op :: D b => a -> b -> b
1412   }
1413
1414   class C a => D a where { ... }
1415 </programlisting>
1416
1417
1418 Here, <literal>C</literal> is a superclass of <literal>D</literal>, but it's OK for a
1419 class operation <literal>op</literal> of <literal>C</literal> to mention <literal>D</literal>.  (It
1420 would not be OK for <literal>D</literal> to be a superclass of <literal>C</literal>.)
1421
1422 </para>
1423 </listitem>
1424 <listitem>
1425
1426 <para>
1427  <emphasis>There are no restrictions on the context in a class declaration
1428 (which introduces superclasses), except that the class hierarchy must
1429 be acyclic</emphasis>.  So these class declarations are OK:
1430
1431
1432 <programlisting>
1433   class Functor (m k) => FiniteMap m k where
1434     ...
1435
1436   class (Monad m, Monad (t m)) => Transform t m where
1437     lift :: m a -> (t m) a
1438 </programlisting>
1439
1440
1441 </para>
1442 </listitem>
1443
1444 <listitem>
1445
1446 <para>
1447  <emphasis>All of the class type variables must be reachable (in the sense 
1448 mentioned in <xref linkend="type-restrictions"/>)
1449 from the free varibles of each method type
1450 </emphasis>.  For example:
1451
1452
1453 <programlisting>
1454   class Coll s a where
1455     empty  :: s
1456     insert :: s -> a -> s
1457 </programlisting>
1458
1459
1460 is not OK, because the type of <literal>empty</literal> doesn't mention
1461 <literal>a</literal>.  This rule is a consequence of Rule 1(a), above, for
1462 types, and has the same motivation.
1463
1464 Sometimes, offending class declarations exhibit misunderstandings.  For
1465 example, <literal>Coll</literal> might be rewritten
1466
1467
1468 <programlisting>
1469   class Coll s a where
1470     empty  :: s a
1471     insert :: s a -> a -> s a
1472 </programlisting>
1473
1474
1475 which makes the connection between the type of a collection of
1476 <literal>a</literal>'s (namely <literal>(s a)</literal>) and the element type <literal>a</literal>.
1477 Occasionally this really doesn't work, in which case you can split the
1478 class like this:
1479
1480
1481 <programlisting>
1482   class CollE s where
1483     empty  :: s
1484
1485   class CollE s => Coll s a where
1486     insert :: s -> a -> s
1487 </programlisting>
1488
1489
1490 </para>
1491 </listitem>
1492
1493 </orderedlist>
1494 </para>
1495
1496 <sect3 id="class-method-types">
1497 <title>Class method types</title>
1498 <para>
1499 Haskell 98 prohibits class method types to mention constraints on the
1500 class type variable, thus:
1501 <programlisting>
1502   class Seq s a where
1503     fromList :: [a] -> s a
1504     elem     :: Eq a => a -> s a -> Bool
1505 </programlisting>
1506 The type of <literal>elem</literal> is illegal in Haskell 98, because it
1507 contains the constraint <literal>Eq a</literal>, constrains only the 
1508 class type variable (in this case <literal>a</literal>).
1509 </para>
1510 <para>
1511 With the <option>-fglasgow-exts</option> GHC lifts this restriction.
1512 </para>
1513
1514 </sect3>
1515
1516 </sect2>
1517
1518 <sect2 id="type-restrictions">
1519 <title>Type signatures</title>
1520
1521 <sect3><title>The context of a type signature</title>
1522 <para>
1523 Unlike Haskell 98, constraints in types do <emphasis>not</emphasis> have to be of
1524 the form <emphasis>(class type-variable)</emphasis> or
1525 <emphasis>(class (type-variable type-variable ...))</emphasis>.  Thus,
1526 these type signatures are perfectly OK
1527 <programlisting>
1528   g :: Eq [a] => ...
1529   g :: Ord (T a ()) => ...
1530 </programlisting>
1531 </para>
1532 <para>
1533 GHC imposes the following restrictions on the constraints in a type signature.
1534 Consider the type:
1535
1536 <programlisting>
1537   forall tv1..tvn (c1, ...,cn) => type
1538 </programlisting>
1539
1540 (Here, we write the "foralls" explicitly, although the Haskell source
1541 language omits them; in Haskell 98, all the free type variables of an
1542 explicit source-language type signature are universally quantified,
1543 except for the class type variables in a class declaration.  However,
1544 in GHC, you can give the foralls if you want.  See <xref linkend="universal-quantification"/>).
1545 </para>
1546
1547 <para>
1548
1549 <orderedlist>
1550 <listitem>
1551
1552 <para>
1553  <emphasis>Each universally quantified type variable
1554 <literal>tvi</literal> must be reachable from <literal>type</literal></emphasis>.
1555
1556 A type variable <literal>a</literal> is "reachable" if it it appears
1557 in the same constraint as either a type variable free in in
1558 <literal>type</literal>, or another reachable type variable.  
1559 A value with a type that does not obey 
1560 this reachability restriction cannot be used without introducing
1561 ambiguity; that is why the type is rejected.
1562 Here, for example, is an illegal type:
1563
1564
1565 <programlisting>
1566   forall a. Eq a => Int
1567 </programlisting>
1568
1569
1570 When a value with this type was used, the constraint <literal>Eq tv</literal>
1571 would be introduced where <literal>tv</literal> is a fresh type variable, and
1572 (in the dictionary-translation implementation) the value would be
1573 applied to a dictionary for <literal>Eq tv</literal>.  The difficulty is that we
1574 can never know which instance of <literal>Eq</literal> to use because we never
1575 get any more information about <literal>tv</literal>.
1576 </para>
1577 <para>
1578 Note
1579 that the reachability condition is weaker than saying that <literal>a</literal> is
1580 functionally dependendent on a type variable free in
1581 <literal>type</literal> (see <xref
1582 linkend="functional-dependencies"/>).  The reason for this is there
1583 might be a "hidden" dependency, in a superclass perhaps.  So
1584 "reachable" is a conservative approximation to "functionally dependent".
1585 For example, consider:
1586 <programlisting>
1587   class C a b | a -> b where ...
1588   class C a b => D a b where ...
1589   f :: forall a b. D a b => a -> a
1590 </programlisting>
1591 This is fine, because in fact <literal>a</literal> does functionally determine <literal>b</literal>
1592 but that is not immediately apparent from <literal>f</literal>'s type.
1593 </para>
1594 </listitem>
1595 <listitem>
1596
1597 <para>
1598  <emphasis>Every constraint <literal>ci</literal> must mention at least one of the
1599 universally quantified type variables <literal>tvi</literal></emphasis>.
1600
1601 For example, this type is OK because <literal>C a b</literal> mentions the
1602 universally quantified type variable <literal>b</literal>:
1603
1604
1605 <programlisting>
1606   forall a. C a b => burble
1607 </programlisting>
1608
1609
1610 The next type is illegal because the constraint <literal>Eq b</literal> does not
1611 mention <literal>a</literal>:
1612
1613
1614 <programlisting>
1615   forall a. Eq b => burble
1616 </programlisting>
1617
1618
1619 The reason for this restriction is milder than the other one.  The
1620 excluded types are never useful or necessary (because the offending
1621 context doesn't need to be witnessed at this point; it can be floated
1622 out).  Furthermore, floating them out increases sharing. Lastly,
1623 excluding them is a conservative choice; it leaves a patch of
1624 territory free in case we need it later.
1625
1626 </para>
1627 </listitem>
1628
1629 </orderedlist>
1630
1631 </para>
1632 </sect3>
1633
1634 <sect3 id="hoist">
1635 <title>For-all hoisting</title>
1636 <para>
1637 It is often convenient to use generalised type synonyms (see <xref linkend="type-synonyms"/>) at the right hand
1638 end of an arrow, thus:
1639 <programlisting>
1640   type Discard a = forall b. a -> b -> a
1641
1642   g :: Int -> Discard Int
1643   g x y z = x+y
1644 </programlisting>
1645 Simply expanding the type synonym would give
1646 <programlisting>
1647   g :: Int -> (forall b. Int -> b -> Int)
1648 </programlisting>
1649 but GHC "hoists" the <literal>forall</literal> to give the isomorphic type
1650 <programlisting>
1651   g :: forall b. Int -> Int -> b -> Int
1652 </programlisting>
1653 In general, the rule is this: <emphasis>to determine the type specified by any explicit
1654 user-written type (e.g. in a type signature), GHC expands type synonyms and then repeatedly
1655 performs the transformation:</emphasis>
1656 <programlisting>
1657   <emphasis>type1</emphasis> -> forall a1..an. <emphasis>context2</emphasis> => <emphasis>type2</emphasis>
1658 ==>
1659   forall a1..an. <emphasis>context2</emphasis> => <emphasis>type1</emphasis> -> <emphasis>type2</emphasis>
1660 </programlisting>
1661 (In fact, GHC tries to retain as much synonym information as possible for use in
1662 error messages, but that is a usability issue.)  This rule applies, of course, whether
1663 or not the <literal>forall</literal> comes from a synonym. For example, here is another
1664 valid way to write <literal>g</literal>'s type signature:
1665 <programlisting>
1666   g :: Int -> Int -> forall b. b -> Int
1667 </programlisting>
1668 </para>
1669 <para>
1670 When doing this hoisting operation, GHC eliminates duplicate constraints.  For
1671 example:
1672 <programlisting>
1673   type Foo a = (?x::Int) => Bool -> a
1674   g :: Foo (Foo Int)
1675 </programlisting>
1676 means
1677 <programlisting>
1678   g :: (?x::Int) => Bool -> Bool -> Int
1679 </programlisting>
1680 </para>
1681 </sect3>
1682
1683
1684 </sect2>
1685
1686 <sect2 id="instance-decls">
1687 <title>Instance declarations</title>
1688
1689 <sect3>
1690 <title>Overlapping instances</title>
1691 <para>
1692 In general, <emphasis>instance declarations may not overlap</emphasis>.  The two instance
1693 declarations
1694
1695
1696 <programlisting>
1697   instance context1 => C type1 where ...
1698   instance context2 => C type2 where ...
1699 </programlisting>
1700
1701 "overlap" if <literal>type1</literal> and <literal>type2</literal> unify.
1702 </para>
1703 <para>
1704 However, if you give the command line option
1705 <option>-fallow-overlapping-instances</option><indexterm><primary>-fallow-overlapping-instances
1706 option</primary></indexterm> then overlapping instance declarations are permitted.
1707 However, GHC arranges never to commit to using an instance declaration
1708 if another instance declaration also applies, either now or later.
1709
1710 <itemizedlist>
1711 <listitem>
1712
1713 <para>
1714  EITHER <literal>type1</literal> and <literal>type2</literal> do not unify
1715 </para>
1716 </listitem>
1717 <listitem>
1718
1719 <para>
1720  OR <literal>type2</literal> is a substitution instance of <literal>type1</literal>
1721 (but not identical to <literal>type1</literal>), or vice versa.
1722 </para>
1723 </listitem>
1724 </itemizedlist>
1725 Notice that these rules
1726 <itemizedlist>
1727 <listitem>
1728
1729 <para>
1730  make it clear which instance decl to use
1731 (pick the most specific one that matches)
1732
1733 </para>
1734 </listitem>
1735 <listitem>
1736
1737 <para>
1738  do not mention the contexts <literal>context1</literal>, <literal>context2</literal>
1739 Reason: you can pick which instance decl
1740 "matches" based on the type.
1741 </para>
1742 </listitem>
1743
1744 </itemizedlist>
1745 However the rules are over-conservative.  Two instance declarations can overlap,
1746 but it can still be clear in particular situations which to use.  For example:
1747 <programlisting>
1748   instance C (Int,a) where ...
1749   instance C (a,Bool) where ...
1750 </programlisting>
1751 These are rejected by GHC's rules, but it is clear what to do when trying
1752 to solve the constraint <literal>C (Int,Int)</literal> because the second instance
1753 cannot apply.  Yell if this restriction bites you.
1754 </para>
1755 <para>
1756 GHC is also conservative about committing to an overlapping instance.  For example:
1757 <programlisting>
1758   class C a where { op :: a -> a }
1759   instance C [Int] where ...
1760   instance C a => C [a] where ...
1761   
1762   f :: C b => [b] -> [b]
1763   f x = op x
1764 </programlisting>
1765 From the RHS of f we get the constraint <literal>C [b]</literal>.  But
1766 GHC does not commit to the second instance declaration, because in a paricular
1767 call of f, b might be instantiate to Int, so the first instance declaration
1768 would be appropriate.  So GHC rejects the program.  If you add <option>-fallow-incoherent-instances</option>
1769 GHC will instead silently pick the second instance, without complaining about 
1770 the problem of subsequent instantiations.
1771 </para>
1772 <para>
1773 Regrettably, GHC doesn't guarantee to detect overlapping instance
1774 declarations if they appear in different modules.  GHC can "see" the
1775 instance declarations in the transitive closure of all the modules
1776 imported by the one being compiled, so it can "see" all instance decls
1777 when it is compiling <literal>Main</literal>.  However, it currently chooses not
1778 to look at ones that can't possibly be of use in the module currently
1779 being compiled, in the interests of efficiency.  (Perhaps we should
1780 change that decision, at least for <literal>Main</literal>.)
1781 </para>
1782 </sect3>
1783
1784 <sect3>
1785 <title>Type synonyms in the instance head</title>
1786
1787 <para>
1788 <emphasis>Unlike Haskell 98, instance heads may use type
1789 synonyms</emphasis>.  (The instance "head" is the bit after the "=>" in an instance decl.)
1790 As always, using a type synonym is just shorthand for
1791 writing the RHS of the type synonym definition.  For example:
1792
1793
1794 <programlisting>
1795   type Point = (Int,Int)
1796   instance C Point   where ...
1797   instance C [Point] where ...
1798 </programlisting>
1799
1800
1801 is legal.  However, if you added
1802
1803
1804 <programlisting>
1805   instance C (Int,Int) where ...
1806 </programlisting>
1807
1808
1809 as well, then the compiler will complain about the overlapping
1810 (actually, identical) instance declarations.  As always, type synonyms
1811 must be fully applied.  You cannot, for example, write:
1812
1813
1814 <programlisting>
1815   type P a = [[a]]
1816   instance Monad P where ...
1817 </programlisting>
1818
1819
1820 This design decision is independent of all the others, and easily
1821 reversed, but it makes sense to me.
1822
1823 </para>
1824 </sect3>
1825
1826 <sect3 id="undecidable-instances">
1827 <title>Undecidable instances</title>
1828
1829 <para>An instance declaration must normally obey the following rules:
1830 <orderedlist>
1831 <listitem><para>At least one of the types in the <emphasis>head</emphasis> of
1832 an instance declaration <emphasis>must not</emphasis> be a type variable.
1833 For example, these are OK:
1834
1835 <programlisting>
1836   instance C Int a where ...
1837
1838   instance D (Int, Int) where ...
1839
1840   instance E [[a]] where ...
1841 </programlisting>
1842 but this is not:
1843 <programlisting>
1844   instance F a where ...
1845 </programlisting>
1846 Note that instance heads <emphasis>may</emphasis> contain repeated type variables.
1847 For example, this is OK:
1848 <programlisting>
1849   instance Stateful (ST s) (MutVar s) where ...
1850 </programlisting>
1851 </para>
1852 </listitem>
1853
1854
1855 <listitem>
1856 <para>All of the types in the <emphasis>context</emphasis> of
1857 an instance declaration <emphasis>must</emphasis> be type variables.
1858 Thus
1859 <programlisting>
1860 instance C a b => Eq (a,b) where ...
1861 </programlisting>
1862 is OK, but
1863 <programlisting>
1864 instance C Int b => Foo b where ...
1865 </programlisting>
1866 is not OK.
1867 </para>
1868 </listitem>
1869 </orderedlist>
1870 These restrictions ensure that 
1871 context reduction terminates: each reduction step removes one type
1872 constructor.  For example, the following would make the type checker
1873 loop if it wasn't excluded:
1874 <programlisting>
1875   instance C a => C a where ...
1876 </programlisting>
1877 There are two situations in which the rule is a bit of a pain. First,
1878 if one allows overlapping instance declarations then it's quite
1879 convenient to have a "default instance" declaration that applies if
1880 something more specific does not:
1881
1882
1883 <programlisting>
1884   instance C a where
1885     op = ... -- Default
1886 </programlisting>
1887
1888
1889 Second, sometimes you might want to use the following to get the
1890 effect of a "class synonym":
1891
1892
1893 <programlisting>
1894   class (C1 a, C2 a, C3 a) => C a where { }
1895
1896   instance (C1 a, C2 a, C3 a) => C a where { }
1897 </programlisting>
1898
1899
1900 This allows you to write shorter signatures:
1901
1902
1903 <programlisting>
1904   f :: C a => ...
1905 </programlisting>
1906
1907
1908 instead of
1909
1910
1911 <programlisting>
1912   f :: (C1 a, C2 a, C3 a) => ...
1913 </programlisting>
1914
1915
1916 Voluminous correspondence on the Haskell mailing list has convinced me
1917 that it's worth experimenting with more liberal rules.  If you use
1918 the experimental flag <option>-fallow-undecidable-instances</option>
1919 <indexterm><primary>-fallow-undecidable-instances
1920 option</primary></indexterm>, you can use arbitrary
1921 types in both an instance context and instance head.  Termination is ensured by having a
1922 fixed-depth recursion stack.  If you exceed the stack depth you get a
1923 sort of backtrace, and the opportunity to increase the stack depth
1924 with <option>-fcontext-stack</option><emphasis>N</emphasis>.
1925 </para>
1926 <para>
1927 I'm on the lookout for a less brutal solution: a simple rule that preserves decidability while
1928 allowing these idioms interesting idioms.  
1929 </para>
1930 </sect3>
1931
1932
1933 </sect2>
1934
1935 <sect2 id="implicit-parameters">
1936 <title>Implicit parameters</title>
1937
1938 <para> Implicit paramters are implemented as described in 
1939 "Implicit parameters: dynamic scoping with static types", 
1940 J Lewis, MB Shields, E Meijer, J Launchbury,
1941 27th ACM Symposium on Principles of Programming Languages (POPL'00),
1942 Boston, Jan 2000.
1943 </para>
1944
1945 <para>(Most of the following, stil rather incomplete, documentation is
1946 due to Jeff Lewis.)</para>
1947
1948 <para>Implicit parameter support is enabled with the option
1949 <option>-fimplicit-params</option>.</para>
1950
1951 <para>
1952 A variable is called <emphasis>dynamically bound</emphasis> when it is bound by the calling
1953 context of a function and <emphasis>statically bound</emphasis> when bound by the callee's
1954 context. In Haskell, all variables are statically bound. Dynamic
1955 binding of variables is a notion that goes back to Lisp, but was later
1956 discarded in more modern incarnations, such as Scheme. Dynamic binding
1957 can be very confusing in an untyped language, and unfortunately, typed
1958 languages, in particular Hindley-Milner typed languages like Haskell,
1959 only support static scoping of variables.
1960 </para>
1961 <para>
1962 However, by a simple extension to the type class system of Haskell, we
1963 can support dynamic binding. Basically, we express the use of a
1964 dynamically bound variable as a constraint on the type. These
1965 constraints lead to types of the form <literal>(?x::t') => t</literal>, which says "this
1966 function uses a dynamically-bound variable <literal>?x</literal> 
1967 of type <literal>t'</literal>". For
1968 example, the following expresses the type of a sort function,
1969 implicitly parameterized by a comparison function named <literal>cmp</literal>.
1970 <programlisting>
1971   sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]
1972 </programlisting>
1973 The dynamic binding constraints are just a new form of predicate in the type class system.
1974 </para>
1975 <para>
1976 An implicit parameter occurs in an expression using the special form <literal>?x</literal>, 
1977 where <literal>x</literal> is
1978 any valid identifier (e.g. <literal>ord ?x</literal> is a valid expression). 
1979 Use of this construct also introduces a new
1980 dynamic-binding constraint in the type of the expression. 
1981 For example, the following definition
1982 shows how we can define an implicitly parameterized sort function in
1983 terms of an explicitly parameterized <literal>sortBy</literal> function:
1984 <programlisting>
1985   sortBy :: (a -> a -> Bool) -> [a] -> [a]
1986
1987   sort   :: (?cmp :: a -> a -> Bool) => [a] -> [a]
1988   sort    = sortBy ?cmp
1989 </programlisting>
1990 </para>
1991
1992 <sect3>
1993 <title>Implicit-parameter type constraints</title>
1994 <para>
1995 Dynamic binding constraints behave just like other type class
1996 constraints in that they are automatically propagated. Thus, when a
1997 function is used, its implicit parameters are inherited by the
1998 function that called it. For example, our <literal>sort</literal> function might be used
1999 to pick out the least value in a list:
2000 <programlisting>
2001   least   :: (?cmp :: a -> a -> Bool) => [a] -> a
2002   least xs = fst (sort xs)
2003 </programlisting>
2004 Without lifting a finger, the <literal>?cmp</literal> parameter is
2005 propagated to become a parameter of <literal>least</literal> as well. With explicit
2006 parameters, the default is that parameters must always be explicit
2007 propagated. With implicit parameters, the default is to always
2008 propagate them.
2009 </para>
2010 <para>
2011 An implicit-parameter type constraint differs from other type class constraints in the
2012 following way: All uses of a particular implicit parameter must have
2013 the same type. This means that the type of <literal>(?x, ?x)</literal> 
2014 is <literal>(?x::a) => (a,a)</literal>, and not 
2015 <literal>(?x::a, ?x::b) => (a, b)</literal>, as would be the case for type
2016 class constraints.
2017 </para>
2018
2019 <para> You can't have an implicit parameter in the context of a class or instance
2020 declaration.  For example, both these declarations are illegal:
2021 <programlisting>
2022   class (?x::Int) => C a where ...
2023   instance (?x::a) => Foo [a] where ...
2024 </programlisting>
2025 Reason: exactly which implicit parameter you pick up depends on exactly where
2026 you invoke a function. But the ``invocation'' of instance declarations is done
2027 behind the scenes by the compiler, so it's hard to figure out exactly where it is done.
2028 Easiest thing is to outlaw the offending types.</para>
2029 <para>
2030 Implicit-parameter constraints do not cause ambiguity.  For example, consider:
2031 <programlisting>
2032    f :: (?x :: [a]) => Int -> Int
2033    f n = n + length ?x
2034
2035    g :: (Read a, Show a) => String -> String
2036    g s = show (read s)
2037 </programlisting>
2038 Here, <literal>g</literal> has an ambiguous type, and is rejected, but <literal>f</literal>
2039 is fine.  The binding for <literal>?x</literal> at <literal>f</literal>'s call site is 
2040 quite unambiguous, and fixes the type <literal>a</literal>.
2041 </para>
2042 </sect3>
2043
2044 <sect3>
2045 <title>Implicit-parameter bindings</title>
2046
2047 <para>
2048 An implicit parameter is <emphasis>bound</emphasis> using the standard
2049 <literal>let</literal> or <literal>where</literal> binding forms.
2050 For example, we define the <literal>min</literal> function by binding
2051 <literal>cmp</literal>.
2052 <programlisting>
2053   min :: [a] -> a
2054   min  = let ?cmp = (&lt;=) in least
2055 </programlisting>
2056 </para>
2057 <para>
2058 A group of implicit-parameter bindings may occur anywhere a normal group of Haskell
2059 bindings can occur, except at top level.  That is, they can occur in a <literal>let</literal> 
2060 (including in a list comprehension, or do-notation, or pattern guards), 
2061 or a <literal>where</literal> clause.
2062 Note the following points:
2063 <itemizedlist>
2064 <listitem><para>
2065 An implicit-parameter binding group must be a
2066 collection of simple bindings to implicit-style variables (no
2067 function-style bindings, and no type signatures); these bindings are
2068 neither polymorphic or recursive.  
2069 </para></listitem>
2070 <listitem><para>
2071 You may not mix implicit-parameter bindings with ordinary bindings in a 
2072 single <literal>let</literal>
2073 expression; use two nested <literal>let</literal>s instead.
2074 (In the case of <literal>where</literal> you are stuck, since you can't nest <literal>where</literal> clauses.)
2075 </para></listitem>
2076
2077 <listitem><para>
2078 You may put multiple implicit-parameter bindings in a
2079 single binding group; but they are <emphasis>not</emphasis> treated
2080 as a mutually recursive group (as ordinary <literal>let</literal> bindings are).
2081 Instead they are treated as a non-recursive group, simultaneously binding all the implicit
2082 parameter.  The bindings are not nested, and may be re-ordered without changing
2083 the meaning of the program.
2084 For example, consider:
2085 <programlisting>
2086   f t = let { ?x = t; ?y = ?x+(1::Int) } in ?x + ?y
2087 </programlisting>
2088 The use of <literal>?x</literal> in the binding for <literal>?y</literal> does not "see"
2089 the binding for <literal>?x</literal>, so the type of <literal>f</literal> is
2090 <programlisting>
2091   f :: (?x::Int) => Int -> Int
2092 </programlisting>
2093 </para></listitem>
2094 </itemizedlist>
2095 </para>
2096
2097 </sect3>
2098 </sect2>
2099
2100 <sect2 id="linear-implicit-parameters">
2101 <title>Linear implicit parameters</title>
2102 <para>
2103 Linear implicit parameters are an idea developed by Koen Claessen,
2104 Mark Shields, and Simon PJ.  They address the long-standing
2105 problem that monads seem over-kill for certain sorts of problem, notably:
2106 </para>
2107 <itemizedlist>
2108 <listitem> <para> distributing a supply of unique names </para> </listitem>
2109 <listitem> <para> distributing a suppply of random numbers </para> </listitem>
2110 <listitem> <para> distributing an oracle (as in QuickCheck) </para> </listitem>
2111 </itemizedlist>
2112
2113 <para>
2114 Linear implicit parameters are just like ordinary implicit parameters,
2115 except that they are "linear" -- that is, they cannot be copied, and
2116 must be explicitly "split" instead.  Linear implicit parameters are
2117 written '<literal>%x</literal>' instead of '<literal>?x</literal>'.  
2118 (The '/' in the '%' suggests the split!)
2119 </para>
2120 <para>
2121 For example:
2122 <programlisting>
2123     import GHC.Exts( Splittable )
2124
2125     data NameSupply = ...
2126     
2127     splitNS :: NameSupply -> (NameSupply, NameSupply)
2128     newName :: NameSupply -> Name
2129
2130     instance Splittable NameSupply where
2131         split = splitNS
2132
2133
2134     f :: (%ns :: NameSupply) => Env -> Expr -> Expr
2135     f env (Lam x e) = Lam x' (f env e)
2136                     where
2137                       x'   = newName %ns
2138                       env' = extend env x x'
2139     ...more equations for f...
2140 </programlisting>
2141 Notice that the implicit parameter %ns is consumed 
2142 <itemizedlist>
2143 <listitem> <para> once by the call to <literal>newName</literal> </para> </listitem>
2144 <listitem> <para> once by the recursive call to <literal>f</literal> </para></listitem>
2145 </itemizedlist>
2146 </para>
2147 <para>
2148 So the translation done by the type checker makes
2149 the parameter explicit:
2150 <programlisting>
2151     f :: NameSupply -> Env -> Expr -> Expr
2152     f ns env (Lam x e) = Lam x' (f ns1 env e)
2153                        where
2154                          (ns1,ns2) = splitNS ns
2155                          x' = newName ns2
2156                          env = extend env x x'
2157 </programlisting>
2158 Notice the call to 'split' introduced by the type checker.
2159 How did it know to use 'splitNS'?  Because what it really did
2160 was to introduce a call to the overloaded function 'split',
2161 defined by the class <literal>Splittable</literal>:
2162 <programlisting>
2163         class Splittable a where
2164           split :: a -> (a,a)
2165 </programlisting>
2166 The instance for <literal>Splittable NameSupply</literal> tells GHC how to implement
2167 split for name supplies.  But we can simply write
2168 <programlisting>
2169         g x = (x, %ns, %ns)
2170 </programlisting>
2171 and GHC will infer
2172 <programlisting>
2173         g :: (Splittable a, %ns :: a) => b -> (b,a,a)
2174 </programlisting>
2175 The <literal>Splittable</literal> class is built into GHC.  It's exported by module 
2176 <literal>GHC.Exts</literal>.
2177 </para>
2178 <para>
2179 Other points:
2180 <itemizedlist>
2181 <listitem> <para> '<literal>?x</literal>' and '<literal>%x</literal>' 
2182 are entirely distinct implicit parameters: you 
2183   can use them together and they won't intefere with each other. </para>
2184 </listitem>
2185
2186 <listitem> <para> You can bind linear implicit parameters in 'with' clauses. </para> </listitem>
2187
2188 <listitem> <para>You cannot have implicit parameters (whether linear or not)
2189   in the context of a class or instance declaration. </para></listitem>
2190 </itemizedlist>
2191 </para>
2192
2193 <sect3><title>Warnings</title>
2194
2195 <para>
2196 The monomorphism restriction is even more important than usual.
2197 Consider the example above:
2198 <programlisting>
2199     f :: (%ns :: NameSupply) => Env -> Expr -> Expr
2200     f env (Lam x e) = Lam x' (f env e)
2201                     where
2202                       x'   = newName %ns
2203                       env' = extend env x x'
2204 </programlisting>
2205 If we replaced the two occurrences of x' by (newName %ns), which is
2206 usually a harmless thing to do, we get:
2207 <programlisting>
2208     f :: (%ns :: NameSupply) => Env -> Expr -> Expr
2209     f env (Lam x e) = Lam (newName %ns) (f env e)
2210                     where
2211                       env' = extend env x (newName %ns)
2212 </programlisting>
2213 But now the name supply is consumed in <emphasis>three</emphasis> places
2214 (the two calls to newName,and the recursive call to f), so
2215 the result is utterly different.  Urk!  We don't even have 
2216 the beta rule.
2217 </para>
2218 <para>
2219 Well, this is an experimental change.  With implicit
2220 parameters we have already lost beta reduction anyway, and
2221 (as John Launchbury puts it) we can't sensibly reason about
2222 Haskell programs without knowing their typing.
2223 </para>
2224
2225 </sect3>
2226
2227 <sect3><title>Recursive functions</title>
2228 <para>Linear implicit parameters can be particularly tricky when you have a recursive function
2229 Consider
2230 <programlisting>
2231         foo :: %x::T => Int -> [Int]
2232         foo 0 = []
2233         foo n = %x : foo (n-1)
2234 </programlisting>
2235 where T is some type in class Splittable.</para>
2236 <para>
2237 Do you get a list of all the same T's or all different T's
2238 (assuming that split gives two distinct T's back)?
2239 </para><para>
2240 If you supply the type signature, taking advantage of polymorphic
2241 recursion, you get what you'd probably expect.  Here's the
2242 translated term, where the implicit param is made explicit:
2243 <programlisting>
2244         foo x 0 = []
2245         foo x n = let (x1,x2) = split x
2246                   in x1 : foo x2 (n-1)
2247 </programlisting>
2248 But if you don't supply a type signature, GHC uses the Hindley
2249 Milner trick of using a single monomorphic instance of the function
2250 for the recursive calls. That is what makes Hindley Milner type inference
2251 work.  So the translation becomes
2252 <programlisting>
2253         foo x = let
2254                   foom 0 = []
2255                   foom n = x : foom (n-1)
2256                 in
2257                 foom
2258 </programlisting>
2259 Result: 'x' is not split, and you get a list of identical T's.  So the
2260 semantics of the program depends on whether or not foo has a type signature.
2261 Yikes!
2262 </para><para>
2263 You may say that this is a good reason to dislike linear implicit parameters
2264 and you'd be right.  That is why they are an experimental feature. 
2265 </para>
2266 </sect3>
2267
2268 </sect2>
2269
2270 <sect2 id="functional-dependencies">
2271 <title>Functional dependencies
2272 </title>
2273
2274 <para> Functional dependencies are implemented as described by Mark Jones
2275 in &ldquo;<ulink url="http://www.cse.ogi.edu/~mpj/pubs/fundeps.html">Type Classes with Functional Dependencies</ulink>&rdquo;, Mark P. Jones, 
2276 In Proceedings of the 9th European Symposium on Programming, 
2277 ESOP 2000, Berlin, Germany, March 2000, Springer-Verlag LNCS 1782,
2278 .
2279 </para>
2280 <para>
2281 Functional dependencies are introduced by a vertical bar in the syntax of a 
2282 class declaration;  e.g. 
2283 <programlisting>
2284   class (Monad m) => MonadState s m | m -> s where ...
2285
2286   class Foo a b c | a b -> c where ...
2287 </programlisting>
2288 There should be more documentation, but there isn't (yet).  Yell if you need it.
2289 </para>
2290 </sect2>
2291
2292
2293
2294 <sect2 id="sec-kinding">
2295 <title>Explicitly-kinded quantification</title>
2296
2297 <para>
2298 Haskell infers the kind of each type variable.  Sometimes it is nice to be able
2299 to give the kind explicitly as (machine-checked) documentation, 
2300 just as it is nice to give a type signature for a function.  On some occasions,
2301 it is essential to do so.  For example, in his paper "Restricted Data Types in Haskell" (Haskell Workshop 1999)
2302 John Hughes had to define the data type:
2303 <screen>
2304      data Set cxt a = Set [a]
2305                     | Unused (cxt a -> ())
2306 </screen>
2307 The only use for the <literal>Unused</literal> constructor was to force the correct
2308 kind for the type variable <literal>cxt</literal>.
2309 </para>
2310 <para>
2311 GHC now instead allows you to specify the kind of a type variable directly, wherever
2312 a type variable is explicitly bound.  Namely:
2313 <itemizedlist>
2314 <listitem><para><literal>data</literal> declarations:
2315 <screen>
2316   data Set (cxt :: * -> *) a = Set [a]
2317 </screen></para></listitem>
2318 <listitem><para><literal>type</literal> declarations:
2319 <screen>
2320   type T (f :: * -> *) = f Int
2321 </screen></para></listitem>
2322 <listitem><para><literal>class</literal> declarations:
2323 <screen>
2324   class (Eq a) => C (f :: * -> *) a where ...
2325 </screen></para></listitem>
2326 <listitem><para><literal>forall</literal>'s in type signatures:
2327 <screen>
2328   f :: forall (cxt :: * -> *). Set cxt Int
2329 </screen></para></listitem>
2330 </itemizedlist>
2331 </para>
2332
2333 <para>
2334 The parentheses are required.  Some of the spaces are required too, to
2335 separate the lexemes.  If you write <literal>(f::*->*)</literal> you
2336 will get a parse error, because "<literal>::*->*</literal>" is a
2337 single lexeme in Haskell.
2338 </para>
2339
2340 <para>
2341 As part of the same extension, you can put kind annotations in types
2342 as well.  Thus:
2343 <screen>
2344    f :: (Int :: *) -> Int
2345    g :: forall a. a -> (a :: *)
2346 </screen>
2347 The syntax is
2348 <screen>
2349    atype ::= '(' ctype '::' kind ')
2350 </screen>
2351 The parentheses are required.
2352 </para>
2353 </sect2>
2354
2355
2356 <sect2 id="universal-quantification">
2357 <title>Arbitrary-rank polymorphism
2358 </title>
2359
2360 <para>
2361 Haskell type signatures are implicitly quantified.  The new keyword <literal>forall</literal>
2362 allows us to say exactly what this means.  For example:
2363 </para>
2364 <para>
2365 <programlisting>
2366         g :: b -> b
2367 </programlisting>
2368 means this:
2369 <programlisting>
2370         g :: forall b. (b -> b)
2371 </programlisting>
2372 The two are treated identically.
2373 </para>
2374
2375 <para>
2376 However, GHC's type system supports <emphasis>arbitrary-rank</emphasis> 
2377 explicit universal quantification in
2378 types. 
2379 For example, all the following types are legal:
2380 <programlisting>
2381     f1 :: forall a b. a -> b -> a
2382     g1 :: forall a b. (Ord a, Eq  b) => a -> b -> a
2383
2384     f2 :: (forall a. a->a) -> Int -> Int
2385     g2 :: (forall a. Eq a => [a] -> a -> Bool) -> Int -> Int
2386
2387     f3 :: ((forall a. a->a) -> Int) -> Bool -> Bool
2388 </programlisting>
2389 Here, <literal>f1</literal> and <literal>g1</literal> are rank-1 types, and
2390 can be written in standard Haskell (e.g. <literal>f1 :: a->b->a</literal>).
2391 The <literal>forall</literal> makes explicit the universal quantification that
2392 is implicitly added by Haskell.
2393 </para>
2394 <para>
2395 The functions <literal>f2</literal> and <literal>g2</literal> have rank-2 types;
2396 the <literal>forall</literal> is on the left of a function arrrow.  As <literal>g2</literal>
2397 shows, the polymorphic type on the left of the function arrow can be overloaded.
2398 </para>
2399 <para>
2400 The function <literal>f3</literal> has a rank-3 type;
2401 it has rank-2 types on the left of a function arrow.
2402 </para>
2403 <para>
2404 GHC allows types of arbitrary rank; you can nest <literal>forall</literal>s
2405 arbitrarily deep in function arrows.   (GHC used to be restricted to rank 2, but
2406 that restriction has now been lifted.)
2407 In particular, a forall-type (also called a "type scheme"),
2408 including an operational type class context, is legal:
2409 <itemizedlist>
2410 <listitem> <para> On the left of a function arrow </para> </listitem>
2411 <listitem> <para> On the right of a function arrow (see <xref linkend="hoist"/>) </para> </listitem>
2412 <listitem> <para> As the argument of a constructor, or type of a field, in a data type declaration. For
2413 example, any of the <literal>f1,f2,f3,g1,g2</literal> above would be valid
2414 field type signatures.</para> </listitem>
2415 <listitem> <para> As the type of an implicit parameter </para> </listitem>
2416 <listitem> <para> In a pattern type signature (see <xref linkend="scoped-type-variables"/>) </para> </listitem>
2417 </itemizedlist>
2418 There is one place you cannot put a <literal>forall</literal>:
2419 you cannot instantiate a type variable with a forall-type.  So you cannot 
2420 make a forall-type the argument of a type constructor.  So these types are illegal:
2421 <programlisting>
2422     x1 :: [forall a. a->a]
2423     x2 :: (forall a. a->a, Int)
2424     x3 :: Maybe (forall a. a->a)
2425 </programlisting>
2426 Of course <literal>forall</literal> becomes a keyword; you can't use <literal>forall</literal> as
2427 a type variable any more!
2428 </para>
2429
2430
2431 <sect3 id="univ">
2432 <title>Examples
2433 </title>
2434
2435 <para>
2436 In a <literal>data</literal> or <literal>newtype</literal> declaration one can quantify
2437 the types of the constructor arguments.  Here are several examples:
2438 </para>
2439
2440 <para>
2441
2442 <programlisting>
2443 data T a = T1 (forall b. b -> b -> b) a
2444
2445 data MonadT m = MkMonad { return :: forall a. a -> m a,
2446                           bind   :: forall a b. m a -> (a -> m b) -> m b
2447                         }
2448
2449 newtype Swizzle = MkSwizzle (Ord a => [a] -> [a])
2450 </programlisting>
2451
2452 </para>
2453
2454 <para>
2455 The constructors have rank-2 types:
2456 </para>
2457
2458 <para>
2459
2460 <programlisting>
2461 T1 :: forall a. (forall b. b -> b -> b) -> a -> T a
2462 MkMonad :: forall m. (forall a. a -> m a)
2463                   -> (forall a b. m a -> (a -> m b) -> m b)
2464                   -> MonadT m
2465 MkSwizzle :: (Ord a => [a] -> [a]) -> Swizzle
2466 </programlisting>
2467
2468 </para>
2469
2470 <para>
2471 Notice that you don't need to use a <literal>forall</literal> if there's an
2472 explicit context.  For example in the first argument of the
2473 constructor <function>MkSwizzle</function>, an implicit "<literal>forall a.</literal>" is
2474 prefixed to the argument type.  The implicit <literal>forall</literal>
2475 quantifies all type variables that are not already in scope, and are
2476 mentioned in the type quantified over.
2477 </para>
2478
2479 <para>
2480 As for type signatures, implicit quantification happens for non-overloaded
2481 types too.  So if you write this:
2482
2483 <programlisting>
2484   data T a = MkT (Either a b) (b -> b)
2485 </programlisting>
2486
2487 it's just as if you had written this:
2488
2489 <programlisting>
2490   data T a = MkT (forall b. Either a b) (forall b. b -> b)
2491 </programlisting>
2492
2493 That is, since the type variable <literal>b</literal> isn't in scope, it's
2494 implicitly universally quantified.  (Arguably, it would be better
2495 to <emphasis>require</emphasis> explicit quantification on constructor arguments
2496 where that is what is wanted.  Feedback welcomed.)
2497 </para>
2498
2499 <para>
2500 You construct values of types <literal>T1, MonadT, Swizzle</literal> by applying
2501 the constructor to suitable values, just as usual.  For example,
2502 </para>
2503
2504 <para>
2505
2506 <programlisting>
2507     a1 :: T Int
2508     a1 = T1 (\xy->x) 3
2509     
2510     a2, a3 :: Swizzle
2511     a2 = MkSwizzle sort
2512     a3 = MkSwizzle reverse
2513     
2514     a4 :: MonadT Maybe
2515     a4 = let r x = Just x
2516              b m k = case m of
2517                        Just y -> k y
2518                        Nothing -> Nothing
2519          in
2520          MkMonad r b
2521
2522     mkTs :: (forall b. b -> b -> b) -> a -> [T a]
2523     mkTs f x y = [T1 f x, T1 f y]
2524 </programlisting>
2525
2526 </para>
2527
2528 <para>
2529 The type of the argument can, as usual, be more general than the type
2530 required, as <literal>(MkSwizzle reverse)</literal> shows.  (<function>reverse</function>
2531 does not need the <literal>Ord</literal> constraint.)
2532 </para>
2533
2534 <para>
2535 When you use pattern matching, the bound variables may now have
2536 polymorphic types.  For example:
2537 </para>
2538
2539 <para>
2540
2541 <programlisting>
2542     f :: T a -> a -> (a, Char)
2543     f (T1 w k) x = (w k x, w 'c' 'd')
2544
2545     g :: (Ord a, Ord b) => Swizzle -> [a] -> (a -> b) -> [b]
2546     g (MkSwizzle s) xs f = s (map f (s xs))
2547
2548     h :: MonadT m -> [m a] -> m [a]
2549     h m [] = return m []
2550     h m (x:xs) = bind m x          $ \y ->
2551                  bind m (h m xs)   $ \ys ->
2552                  return m (y:ys)
2553 </programlisting>
2554
2555 </para>
2556
2557 <para>
2558 In the function <function>h</function> we use the record selectors <literal>return</literal>
2559 and <literal>bind</literal> to extract the polymorphic bind and return functions
2560 from the <literal>MonadT</literal> data structure, rather than using pattern
2561 matching.
2562 </para>
2563 </sect3>
2564
2565 <sect3>
2566 <title>Type inference</title>
2567
2568 <para>
2569 In general, type inference for arbitrary-rank types is undecideable.
2570 GHC uses an algorithm proposed by Odersky and Laufer ("Putting type annotations to work", POPL'96)
2571 to get a decidable algorithm by requiring some help from the programmer.
2572 We do not yet have a formal specification of "some help" but the rule is this:
2573 </para>
2574 <para>
2575 <emphasis>For a lambda-bound or case-bound variable, x, either the programmer
2576 provides an explicit polymorphic type for x, or GHC's type inference will assume
2577 that x's type has no foralls in it</emphasis>.
2578 </para>
2579 <para>
2580 What does it mean to "provide" an explicit type for x?  You can do that by 
2581 giving a type signature for x directly, using a pattern type signature
2582 (<xref linkend="scoped-type-variables"/>), thus:
2583 <programlisting>
2584      \ f :: (forall a. a->a) -> (f True, f 'c')
2585 </programlisting>
2586 Alternatively, you can give a type signature to the enclosing
2587 context, which GHC can "push down" to find the type for the variable:
2588 <programlisting>
2589      (\ f -> (f True, f 'c')) :: (forall a. a->a) -> (Bool,Char)
2590 </programlisting>
2591 Here the type signature on the expression can be pushed inwards
2592 to give a type signature for f.  Similarly, and more commonly,
2593 one can give a type signature for the function itself:
2594 <programlisting>
2595      h :: (forall a. a->a) -> (Bool,Char)
2596      h f = (f True, f 'c')
2597 </programlisting>
2598 You don't need to give a type signature if the lambda bound variable
2599 is a constructor argument.  Here is an example we saw earlier:
2600 <programlisting>
2601     f :: T a -> a -> (a, Char)
2602     f (T1 w k) x = (w k x, w 'c' 'd')
2603 </programlisting>
2604 Here we do not need to give a type signature to <literal>w</literal>, because
2605 it is an argument of constructor <literal>T1</literal> and that tells GHC all
2606 it needs to know.
2607 </para>
2608
2609 </sect3>
2610
2611
2612 <sect3 id="implicit-quant">
2613 <title>Implicit quantification</title>
2614
2615 <para>
2616 GHC performs implicit quantification as follows.  <emphasis>At the top level (only) of 
2617 user-written types, if and only if there is no explicit <literal>forall</literal>,
2618 GHC finds all the type variables mentioned in the type that are not already
2619 in scope, and universally quantifies them.</emphasis>  For example, the following pairs are 
2620 equivalent:
2621 <programlisting>
2622   f :: a -> a
2623   f :: forall a. a -> a
2624
2625   g (x::a) = let
2626                 h :: a -> b -> b
2627                 h x y = y
2628              in ...
2629   g (x::a) = let
2630                 h :: forall b. a -> b -> b
2631                 h x y = y
2632              in ...
2633 </programlisting>
2634 </para>
2635 <para>
2636 Notice that GHC does <emphasis>not</emphasis> find the innermost possible quantification
2637 point.  For example:
2638 <programlisting>
2639   f :: (a -> a) -> Int
2640            -- MEANS
2641   f :: forall a. (a -> a) -> Int
2642            -- NOT
2643   f :: (forall a. a -> a) -> Int
2644
2645
2646   g :: (Ord a => a -> a) -> Int
2647            -- MEANS the illegal type
2648   g :: forall a. (Ord a => a -> a) -> Int
2649            -- NOT
2650   g :: (forall a. Ord a => a -> a) -> Int
2651 </programlisting>
2652 The latter produces an illegal type, which you might think is silly,
2653 but at least the rule is simple.  If you want the latter type, you
2654 can write your for-alls explicitly.  Indeed, doing so is strongly advised
2655 for rank-2 types.
2656 </para>
2657 </sect3>
2658 </sect2>
2659
2660
2661
2662
2663 <sect2 id="scoped-type-variables">
2664 <title>Scoped type variables
2665 </title>
2666
2667 <para>
2668 A <emphasis>pattern type signature</emphasis> can introduce a <emphasis>scoped type
2669 variable</emphasis>.  For example
2670 </para>
2671
2672 <para>
2673
2674 <programlisting>
2675 f (xs::[a]) = ys ++ ys
2676            where
2677               ys :: [a]
2678               ys = reverse xs
2679 </programlisting>
2680
2681 </para>
2682
2683 <para>
2684 The pattern <literal>(xs::[a])</literal> includes a type signature for <varname>xs</varname>.
2685 This brings the type variable <literal>a</literal> into scope; it scopes over
2686 all the patterns and right hand sides for this equation for <function>f</function>.
2687 In particular, it is in scope at the type signature for <varname>y</varname>.
2688 </para>
2689
2690 <para>
2691  Pattern type signatures are completely orthogonal to ordinary, separate
2692 type signatures.  The two can be used independently or together.
2693 At ordinary type signatures, such as that for <varname>ys</varname>, any type variables
2694 mentioned in the type signature <emphasis>that are not in scope</emphasis> are
2695 implicitly universally quantified.  (If there are no type variables in
2696 scope, all type variables mentioned in the signature are universally
2697 quantified, which is just as in Haskell 98.)  In this case, since <varname>a</varname>
2698 is in scope, it is not universally quantified, so the type of <varname>ys</varname> is
2699 the same as that of <varname>xs</varname>.  In Haskell 98 it is not possible to declare
2700 a type for <varname>ys</varname>; a major benefit of scoped type variables is that
2701 it becomes possible to do so.
2702 </para>
2703
2704 <para>
2705 Scoped type variables are implemented in both GHC and Hugs.  Where the
2706 implementations differ from the specification below, those differences
2707 are noted.
2708 </para>
2709
2710 <para>
2711 So much for the basic idea.  Here are the details.
2712 </para>
2713
2714 <sect3>
2715 <title>What a pattern type signature means</title>
2716 <para>
2717 A type variable brought into scope by a pattern type signature is simply
2718 the name for a type.   The restriction they express is that all occurrences
2719 of the same name mean the same type.  For example:
2720 <programlisting>
2721   f :: [Int] -> Int -> Int
2722   f (xs::[a]) (y::a) = (head xs + y) :: a
2723 </programlisting>
2724 The pattern type signatures on the left hand side of
2725 <literal>f</literal> express the fact that <literal>xs</literal>
2726 must be a list of things of some type <literal>a</literal>; and that <literal>y</literal>
2727 must have this same type.  The type signature on the expression <literal>(head xs)</literal>
2728 specifies that this expression must have the same type <literal>a</literal>.
2729 <emphasis>There is no requirement that the type named by "<literal>a</literal>" is
2730 in fact a type variable</emphasis>.  Indeed, in this case, the type named by "<literal>a</literal>" is
2731 <literal>Int</literal>.  (This is a slight liberalisation from the original rather complex
2732 rules, which specified that a pattern-bound type variable should be universally quantified.)
2733 For example, all of these are legal:</para>
2734
2735 <programlisting>
2736   t (x::a) (y::a) = x+y*2
2737
2738   f (x::a) (y::b) = [x,y]       -- a unifies with b
2739
2740   g (x::a) = x + 1::Int         -- a unifies with Int
2741
2742   h x = let k (y::a) = [x,y]    -- a is free in the
2743         in k x                  -- environment
2744
2745   k (x::a) True    = ...        -- a unifies with Int
2746   k (x::Int) False = ...
2747
2748   w :: [b] -> [b]
2749   w (x::a) = x                  -- a unifies with [b]
2750 </programlisting>
2751
2752 </sect3>
2753
2754 <sect3>
2755 <title>Scope and implicit quantification</title>
2756
2757 <para>
2758
2759 <itemizedlist>
2760 <listitem>
2761
2762 <para>
2763 All the type variables mentioned in a pattern,
2764 that are not already in scope,
2765 are brought into scope by the pattern.  We describe this set as
2766 the <emphasis>type variables bound by the pattern</emphasis>.
2767 For example:
2768 <programlisting>
2769   f (x::a) = let g (y::(a,b)) = fst y
2770              in
2771              g (x,True)
2772 </programlisting>
2773 The pattern <literal>(x::a)</literal> brings the type variable
2774 <literal>a</literal> into scope, as well as the term 
2775 variable <literal>x</literal>.  The pattern <literal>(y::(a,b))</literal>
2776 contains an occurrence of the already-in-scope type variable <literal>a</literal>,
2777 and brings into scope the type variable <literal>b</literal>.
2778 </para>
2779 </listitem>
2780
2781 <listitem>
2782 <para>
2783 The type variable(s) bound by the pattern have the same scope
2784 as the term variable(s) bound by the pattern.  For example:
2785 <programlisting>
2786   let
2787     f (x::a) = &lt;...rhs of f...>
2788     (p::b, q::b) = (1,2)
2789   in &lt;...body of let...>
2790 </programlisting>
2791 Here, the type variable <literal>a</literal> scopes over the right hand side of <literal>f</literal>,
2792 just like <literal>x</literal> does; while the type variable <literal>b</literal> scopes over the
2793 body of the <literal>let</literal>, and all the other definitions in the <literal>let</literal>,
2794 just like <literal>p</literal> and <literal>q</literal> do.
2795 Indeed, the newly bound type variables also scope over any ordinary, separate
2796 type signatures in the <literal>let</literal> group.
2797 </para>
2798 </listitem>
2799
2800
2801 <listitem>
2802 <para>
2803 The type variables bound by the pattern may be 
2804 mentioned in ordinary type signatures or pattern 
2805 type signatures anywhere within their scope.
2806
2807 </para>
2808 </listitem>
2809
2810 <listitem>
2811 <para>
2812  In ordinary type signatures, any type variable mentioned in the
2813 signature that is in scope is <emphasis>not</emphasis> universally quantified.
2814
2815 </para>
2816 </listitem>
2817
2818 <listitem>
2819
2820 <para>
2821  Ordinary type signatures do not bring any new type variables
2822 into scope (except in the type signature itself!). So this is illegal:
2823
2824 <programlisting>
2825   f :: a -> a
2826   f x = x::a
2827 </programlisting>
2828
2829 It's illegal because <varname>a</varname> is not in scope in the body of <function>f</function>,
2830 so the ordinary signature <literal>x::a</literal> is equivalent to <literal>x::forall a.a</literal>;
2831 and that is an incorrect typing.
2832
2833 </para>
2834 </listitem>
2835
2836 <listitem>
2837 <para>
2838 The pattern type signature is a monotype:
2839 </para>
2840
2841 <itemizedlist>
2842 <listitem> <para> 
2843 A pattern type signature cannot contain any explicit <literal>forall</literal> quantification.
2844 </para> </listitem>
2845
2846 <listitem>  <para> 
2847 The type variables bound by a pattern type signature can only be instantiated to monotypes,
2848 not to type schemes.
2849 </para> </listitem>
2850
2851 <listitem>  <para> 
2852 There is no implicit universal quantification on pattern type signatures (in contrast to
2853 ordinary type signatures).
2854 </para> </listitem>
2855
2856 </itemizedlist>
2857
2858 </listitem>
2859
2860 <listitem>
2861 <para>
2862
2863 The type variables in the head of a <literal>class</literal> or <literal>instance</literal> declaration
2864 scope over the methods defined in the <literal>where</literal> part.  For example:
2865
2866
2867 <programlisting>
2868   class C a where
2869     op :: [a] -> a
2870
2871     op xs = let ys::[a]
2872                 ys = reverse xs
2873             in
2874             head ys
2875 </programlisting>
2876
2877
2878 (Not implemented in Hugs yet, Dec 98).
2879 </para>
2880 </listitem>
2881
2882 </itemizedlist>
2883
2884 </para>
2885
2886 </sect3>
2887
2888 <sect3>
2889 <title>Where a pattern type signature can occur</title>
2890
2891 <para>
2892 A pattern type signature can occur in any pattern.  For example:
2893 <itemizedlist>
2894
2895 <listitem>
2896 <para>
2897 A pattern type signature can be on an arbitrary sub-pattern, not
2898 ust on a variable:
2899
2900
2901 <programlisting>
2902   f ((x,y)::(a,b)) = (y,x) :: (b,a)
2903 </programlisting>
2904
2905
2906 </para>
2907 </listitem>
2908 <listitem>
2909
2910 <para>
2911  Pattern type signatures, including the result part, can be used
2912 in lambda abstractions:
2913
2914 <programlisting>
2915   (\ (x::a, y) :: a -> x)
2916 </programlisting>
2917 </para>
2918 </listitem>
2919 <listitem>
2920
2921 <para>
2922  Pattern type signatures, including the result part, can be used
2923 in <literal>case</literal> expressions:
2924
2925 <programlisting>
2926   case e of { ((x::a, y) :: (a,b)) -> x }
2927 </programlisting>
2928
2929 Note that the <literal>-&gt;</literal> symbol in a case alternative
2930 leads to difficulties when parsing a type signature in the pattern: in
2931 the absence of the extra parentheses in the example above, the parser
2932 would try to interpret the <literal>-&gt;</literal> as a function
2933 arrow and give a parse error later.
2934
2935 </para>
2936
2937 </listitem>
2938
2939 <listitem>
2940 <para>
2941 To avoid ambiguity, the type after the &ldquo;<literal>::</literal>&rdquo; in a result
2942 pattern signature on a lambda or <literal>case</literal> must be atomic (i.e. a single
2943 token or a parenthesised type of some sort).  To see why,
2944 consider how one would parse this:
2945
2946
2947 <programlisting>
2948   \ x :: a -> b -> x
2949 </programlisting>
2950
2951
2952 </para>
2953 </listitem>
2954
2955 <listitem>
2956
2957 <para>
2958  Pattern type signatures can bind existential type variables.
2959 For example:
2960
2961
2962 <programlisting>
2963   data T = forall a. MkT [a]
2964
2965   f :: T -> T
2966   f (MkT [t::a]) = MkT t3
2967                  where
2968                    t3::[a] = [t,t,t]
2969 </programlisting>
2970
2971
2972 </para>
2973 </listitem>
2974
2975
2976 <listitem>
2977
2978 <para>
2979 Pattern type signatures 
2980 can be used in pattern bindings:
2981
2982 <programlisting>
2983   f x = let (y, z::a) = x in ...
2984   f1 x                = let (y, z::Int) = x in ...
2985   f2 (x::(Int,a))     = let (y, z::a)   = x in ...
2986   f3 :: (b->b)        = \x -> x
2987 </programlisting>
2988
2989 In all such cases, the binding is not generalised over the pattern-bound
2990 type variables.  Thus <literal>f3</literal> is monomorphic; <literal>f3</literal>
2991 has type <literal>b -&gt; b</literal> for some type <literal>b</literal>, 
2992 and <emphasis>not</emphasis> <literal>forall b. b -&gt; b</literal>.
2993 In contrast, the binding
2994 <programlisting>
2995   f4 :: b->b
2996   f4 = \x -> x
2997 </programlisting>
2998 makes a polymorphic function, but <literal>b</literal> is not in scope anywhere
2999 in <literal>f4</literal>'s scope.
3000
3001 </para>
3002 </listitem>
3003 </itemizedlist>
3004 </para>
3005
3006 </sect3>
3007
3008 <sect3>
3009 <title>Result type signatures</title>
3010
3011 <para>
3012 The result type of a function can be given a signature, thus:
3013
3014
3015 <programlisting>
3016   f (x::a) :: [a] = [x,x,x]
3017 </programlisting>
3018
3019
3020 The final <literal>:: [a]</literal> after all the patterns gives a signature to the
3021 result type.  Sometimes this is the only way of naming the type variable
3022 you want:
3023
3024
3025 <programlisting>
3026   f :: Int -> [a] -> [a]
3027   f n :: ([a] -> [a]) = let g (x::a, y::a) = (y,x)
3028                         in \xs -> map g (reverse xs `zip` xs)
3029 </programlisting>
3030
3031 </para>
3032 <para>
3033 The type variables bound in a result type signature scope over the right hand side
3034 of the definition. However, consider this corner-case:
3035 <programlisting>
3036   rev1 :: [a] -> [a] = \xs -> reverse xs
3037
3038   foo ys = rev (ys::[a])
3039 </programlisting>
3040 The signature on <literal>rev1</literal> is considered a pattern type signature, not a result
3041 type signature, and the type variables it binds have the same scope as <literal>rev1</literal>
3042 itself (i.e. the right-hand side of <literal>rev1</literal> and the rest of the module too).
3043 In particular, the expression <literal>(ys::[a])</literal> is OK, because the type variable <literal>a</literal>
3044 is in scope (otherwise it would mean <literal>(ys::forall a.[a])</literal>, which would be rejected).  
3045 </para>
3046 <para>
3047 As mentioned above, <literal>rev1</literal> is made monomorphic by this scoping rule.
3048 For example, the following program would be rejected, because it claims that <literal>rev1</literal>
3049 is polymorphic:
3050 <programlisting>
3051   rev1 :: [b] -> [b]
3052   rev1 :: [a] -> [a] = \xs -> reverse xs
3053 </programlisting>
3054 </para>
3055
3056 <para>
3057 Result type signatures are not yet implemented in Hugs.
3058 </para>
3059
3060 </sect3>
3061
3062 </sect2>
3063
3064 <sect2 id="deriving-typeable">
3065 <title>Deriving clause for classes <literal>Typeable</literal> and <literal>Data</literal></title>
3066
3067 <para>
3068 Haskell 98 allows the programmer to add "<literal>deriving( Eq, Ord )</literal>" to a data type 
3069 declaration, to generate a standard instance declaration for classes specified in the <literal>deriving</literal> clause.  
3070 In Haskell 98, the only classes that may appear in the <literal>deriving</literal> clause are the standard
3071 classes <literal>Eq</literal>, <literal>Ord</literal>, 
3072 <literal>Enum</literal>, <literal>Ix</literal>, <literal>Bounded</literal>, <literal>Read</literal>, and <literal>Show</literal>.
3073 </para>
3074 <para>
3075 GHC extends this list with two more classes that may be automatically derived 
3076 (provided the <option>-fglasgow-exts</option> flag is specified):
3077 <literal>Typeable</literal>, and <literal>Data</literal>.  These classes are defined in the library
3078 modules <literal>Data.Dynamic</literal> and <literal>Data.Generics</literal> respectively, and the
3079 appropriate class must be in scope before it can be mentioned in the <literal>deriving</literal> clause.
3080 </para>
3081 </sect2>
3082
3083 <sect2 id="newtype-deriving">
3084 <title>Generalised derived instances for newtypes</title>
3085
3086 <para>
3087 When you define an abstract type using <literal>newtype</literal>, you may want
3088 the new type to inherit some instances from its representation. In
3089 Haskell 98, you can inherit instances of <literal>Eq</literal>, <literal>Ord</literal>,
3090 <literal>Enum</literal> and <literal>Bounded</literal> by deriving them, but for any
3091 other classes you have to write an explicit instance declaration. For
3092 example, if you define
3093
3094 <programlisting> 
3095   newtype Dollars = Dollars Int 
3096 </programlisting> 
3097
3098 and you want to use arithmetic on <literal>Dollars</literal>, you have to
3099 explicitly define an instance of <literal>Num</literal>:
3100
3101 <programlisting> 
3102   instance Num Dollars where
3103     Dollars a + Dollars b = Dollars (a+b)
3104     ...
3105 </programlisting>
3106 All the instance does is apply and remove the <literal>newtype</literal>
3107 constructor. It is particularly galling that, since the constructor
3108 doesn't appear at run-time, this instance declaration defines a
3109 dictionary which is <emphasis>wholly equivalent</emphasis> to the <literal>Int</literal>
3110 dictionary, only slower!
3111 </para>
3112
3113
3114 <sect3> <title> Generalising the deriving clause </title>
3115 <para>
3116 GHC now permits such instances to be derived instead, so one can write 
3117 <programlisting> 
3118   newtype Dollars = Dollars Int deriving (Eq,Show,Num)
3119 </programlisting> 
3120
3121 and the implementation uses the <emphasis>same</emphasis> <literal>Num</literal> dictionary
3122 for <literal>Dollars</literal> as for <literal>Int</literal>. Notionally, the compiler
3123 derives an instance declaration of the form
3124
3125 <programlisting> 
3126   instance Num Int => Num Dollars
3127 </programlisting> 
3128
3129 which just adds or removes the <literal>newtype</literal> constructor according to the type.
3130 </para>
3131 <para>
3132
3133 We can also derive instances of constructor classes in a similar
3134 way. For example, suppose we have implemented state and failure monad
3135 transformers, such that
3136
3137 <programlisting> 
3138   instance Monad m => Monad (State s m) 
3139   instance Monad m => Monad (Failure m)
3140 </programlisting> 
3141 In Haskell 98, we can define a parsing monad by 
3142 <programlisting> 
3143   type Parser tok m a = State [tok] (Failure m) a
3144 </programlisting> 
3145
3146 which is automatically a monad thanks to the instance declarations
3147 above. With the extension, we can make the parser type abstract,
3148 without needing to write an instance of class <literal>Monad</literal>, via
3149
3150 <programlisting> 
3151   newtype Parser tok m a = Parser (State [tok] (Failure m) a)
3152                          deriving Monad
3153 </programlisting>
3154 In this case the derived instance declaration is of the form 
3155 <programlisting> 
3156   instance Monad (State [tok] (Failure m)) => Monad (Parser tok m) 
3157 </programlisting> 
3158
3159 Notice that, since <literal>Monad</literal> is a constructor class, the
3160 instance is a <emphasis>partial application</emphasis> of the new type, not the
3161 entire left hand side. We can imagine that the type declaration is
3162 ``eta-converted'' to generate the context of the instance
3163 declaration.
3164 </para>
3165 <para>
3166
3167 We can even derive instances of multi-parameter classes, provided the
3168 newtype is the last class parameter. In this case, a ``partial
3169 application'' of the class appears in the <literal>deriving</literal>
3170 clause. For example, given the class
3171
3172 <programlisting> 
3173   class StateMonad s m | m -> s where ... 
3174   instance Monad m => StateMonad s (State s m) where ... 
3175 </programlisting> 
3176 then we can derive an instance of <literal>StateMonad</literal> for <literal>Parser</literal>s by 
3177 <programlisting> 
3178   newtype Parser tok m a = Parser (State [tok] (Failure m) a)
3179                          deriving (Monad, StateMonad [tok])
3180 </programlisting>
3181
3182 The derived instance is obtained by completing the application of the
3183 class to the new type:
3184
3185 <programlisting> 
3186   instance StateMonad [tok] (State [tok] (Failure m)) =>
3187            StateMonad [tok] (Parser tok m)
3188 </programlisting>
3189 </para>
3190 <para>
3191
3192 As a result of this extension, all derived instances in newtype
3193 declarations are treated uniformly (and implemented just by reusing
3194 the dictionary for the representation type), <emphasis>except</emphasis>
3195 <literal>Show</literal> and <literal>Read</literal>, which really behave differently for
3196 the newtype and its representation.
3197 </para>
3198 </sect3>
3199
3200 <sect3> <title> A more precise specification </title>
3201 <para>
3202 Derived instance declarations are constructed as follows. Consider the
3203 declaration (after expansion of any type synonyms)
3204
3205 <programlisting> 
3206   newtype T v1...vn = T' (S t1...tk vk+1...vn) deriving (c1...cm) 
3207 </programlisting> 
3208
3209 where 
3210  <itemizedlist>
3211 <listitem><para>
3212   <literal>S</literal> is a type constructor, 
3213 </para></listitem>
3214 <listitem><para>
3215   The <literal>t1...tk</literal> are types,
3216 </para></listitem>
3217 <listitem><para>
3218   The <literal>vk+1...vn</literal> are type variables which do not occur in any of
3219   the <literal>ti</literal>, and
3220 </para></listitem>
3221 <listitem><para>
3222   The <literal>ci</literal> are partial applications of
3223   classes of the form <literal>C t1'...tj'</literal>, where the arity of <literal>C</literal>
3224   is exactly <literal>j+1</literal>.  That is, <literal>C</literal> lacks exactly one type argument.
3225 </para></listitem>
3226 <listitem><para>
3227   None of the <literal>ci</literal> is <literal>Read</literal>, <literal>Show</literal>, 
3228                 <literal>Typeable</literal>, or <literal>Data</literal>.  These classes
3229                 should not "look through" the type or its constructor.  You can still
3230                 derive these classes for a newtype, but it happens in the usual way, not 
3231                 via this new mechanism.  
3232 </para></listitem>
3233 </itemizedlist>
3234 Then, for each <literal>ci</literal>, the derived instance
3235 declaration is:
3236 <programlisting> 
3237   instance ci (S t1...tk vk+1...v) => ci (T v1...vp)
3238 </programlisting>
3239 where <literal>p</literal> is chosen so that <literal>T v1...vp</literal> is of the 
3240 right <emphasis>kind</emphasis> for the last parameter of class <literal>Ci</literal>.
3241 </para>
3242 <para>
3243
3244 As an example which does <emphasis>not</emphasis> work, consider 
3245 <programlisting> 
3246   newtype NonMonad m s = NonMonad (State s m s) deriving Monad 
3247 </programlisting> 
3248 Here we cannot derive the instance 
3249 <programlisting> 
3250   instance Monad (State s m) => Monad (NonMonad m) 
3251 </programlisting> 
3252
3253 because the type variable <literal>s</literal> occurs in <literal>State s m</literal>,
3254 and so cannot be "eta-converted" away. It is a good thing that this
3255 <literal>deriving</literal> clause is rejected, because <literal>NonMonad m</literal> is
3256 not, in fact, a monad --- for the same reason. Try defining
3257 <literal>>>=</literal> with the correct type: you won't be able to.
3258 </para>
3259 <para>
3260
3261 Notice also that the <emphasis>order</emphasis> of class parameters becomes
3262 important, since we can only derive instances for the last one. If the
3263 <literal>StateMonad</literal> class above were instead defined as
3264
3265 <programlisting> 
3266   class StateMonad m s | m -> s where ... 
3267 </programlisting>
3268
3269 then we would not have been able to derive an instance for the
3270 <literal>Parser</literal> type above. We hypothesise that multi-parameter
3271 classes usually have one "main" parameter for which deriving new
3272 instances is most interesting.
3273 </para>
3274 </sect3>
3275
3276 </sect2>
3277
3278
3279 </sect1>
3280 <!-- ==================== End of type system extensions =================  -->
3281   
3282 <!-- ====================== TEMPLATE HASKELL =======================  -->
3283
3284 <sect1 id="template-haskell">
3285 <title>Template Haskell</title>
3286
3287 <para>Template Haskell allows you to do compile-time meta-programming in Haskell.  There is a "home page" for
3288 Template Haskell at <ulink url="http://www.haskell.org/th/">
3289 http://www.haskell.org/th/</ulink>, while
3290 the background to
3291 the main technical innovations is discussed in "<ulink
3292 url="http://research.microsoft.com/~simonpj/papers/meta-haskell">
3293 Template Meta-programming for Haskell</ulink>" (Proc Haskell Workshop 2002).
3294 The details of the Template Haskell design are still in flux.  Make sure you
3295 consult the <ulink url="http://www.haskell.org/ghc/docs/latest/html/libraries/index.html">online library reference material</ulink> 
3296 (search for the type ExpQ).
3297 [Temporary: many changes to the original design are described in 
3298       <ulink url="http://research.microsoft.com/~simonpj/tmp/notes2.ps">"http://research.microsoft.com/~simonpj/tmp/notes2.ps"</ulink>.
3299 Not all of these changes are in GHC 6.2.]
3300 </para>
3301
3302 <para> The first example from that paper is set out below as a worked example to help get you started. 
3303 </para>
3304
3305 <para>
3306 The documentation here describes the realisation in GHC.  (It's rather sketchy just now;
3307 Tim Sheard is going to expand it.)
3308 </para>
3309
3310     <sect2>
3311       <title>Syntax</title>
3312
3313       <para> Template Haskell has the following new syntactic
3314       constructions.  You need to use the flag
3315       <option>-fth</option><indexterm><primary><option>-fth</option></primary>
3316       </indexterm>to switch these syntactic extensions on
3317       (<option>-fth</option> is currently implied by
3318       <option>-fglasgow-exts</option>, but you are encouraged to
3319       specify it explicitly).</para>
3320
3321         <itemizedlist>
3322               <listitem><para>
3323                   A splice is written <literal>$x</literal>, where <literal>x</literal> is an
3324                   identifier, or <literal>$(...)</literal>, where the "..." is an arbitrary expression.
3325                   There must be no space between the "$" and the identifier or parenthesis.  This use
3326                   of "$" overrides its meaning as an infix operator, just as "M.x" overrides the meaning
3327                   of "." as an infix operator.  If you want the infix operator, put spaces around it.
3328                   </para>
3329               <para> A splice can occur in place of 
3330                   <itemizedlist>
3331                     <listitem><para> an expression; the spliced expression must have type <literal>Expr</literal></para></listitem>
3332                     <listitem><para> a list of top-level declarations; ; the spliced expression must have type <literal>Q [Dec]</literal></para></listitem>
3333                     <listitem><para> a type; the spliced expression must have type <literal>Type</literal>.</para></listitem>
3334                     </itemizedlist>
3335            (Note that the syntax for a declaration splice uses "<literal>$</literal>" not "<literal>splice</literal>" as in
3336         the paper. Also the type of the enclosed expression must be  <literal>Q [Dec]</literal>, not  <literal>[Q Dec]</literal>
3337         as in the paper.)
3338                 </para></listitem>
3339
3340
3341               <listitem><para>
3342                   A expression quotation is written in Oxford brackets, thus:
3343                   <itemizedlist>
3344                     <listitem><para> <literal>[| ... |]</literal>, where the "..." is an expression; 
3345                              the quotation has type <literal>Expr</literal>.</para></listitem>
3346                     <listitem><para> <literal>[d| ... |]</literal>, where the "..." is a list of top-level declarations;
3347                              the quotation has type <literal>Q [Dec]</literal>.</para></listitem>
3348                     <listitem><para> <literal>[t| ... |]</literal>, where the "..." is a type; 
3349                              the quotation has type <literal>Type</literal>.</para></listitem>
3350                   </itemizedlist></para></listitem>
3351
3352               <listitem><para>
3353                   Reification is written thus:
3354                   <itemizedlist>
3355                     <listitem><para> <literal>reifyDecl T</literal>, where <literal>T</literal> is a type constructor; this expression
3356                       has type <literal>Dec</literal>. </para></listitem>
3357                     <listitem><para> <literal>reifyDecl C</literal>, where <literal>C</literal> is a class; has type <literal>Dec</literal>.</para></listitem>
3358                     <listitem><para> <literal>reifyType f</literal>, where <literal>f</literal> is an identifier; has type <literal>Typ</literal>.</para></listitem>
3359                     <listitem><para> Still to come: fixities </para></listitem>
3360                     
3361                   </itemizedlist></para>
3362                 </listitem>
3363
3364                   
3365         </itemizedlist>
3366 </sect2>
3367
3368 <sect2>  <title> Using Template Haskell </title>
3369 <para>
3370 <itemizedlist>
3371     <listitem><para>
3372     The data types and monadic constructor functions for Template Haskell are in the library
3373     <literal>Language.Haskell.THSyntax</literal>.
3374     </para></listitem>
3375
3376     <listitem><para>
3377     You can only run a function at compile time if it is imported from another module.  That is,
3378             you can't define a function in a module, and call it from within a splice in the same module.
3379             (It would make sense to do so, but it's hard to implement.)
3380    </para></listitem>
3381
3382     <listitem><para>
3383             The flag <literal>-ddump-splices</literal> shows the expansion of all top-level splices as they happen.
3384    </para></listitem>
3385     <listitem><para>
3386             If you are building GHC from source, you need at least a stage-2 bootstrap compiler to
3387               run Template Haskell.  A stage-1 compiler will reject the TH constructs.  Reason: TH
3388               compiles and runs a program, and then looks at the result.  So it's important that
3389               the program it compiles produces results whose representations are identical to
3390               those of the compiler itself.
3391    </para></listitem>
3392 </itemizedlist>
3393 </para>
3394 <para> Template Haskell works in any mode (<literal>--make</literal>, <literal>--interactive</literal>,
3395         or file-at-a-time).  There used to be a restriction to the former two, but that restriction 
3396         has been lifted.
3397 </para>
3398 </sect2>
3399  
3400 <sect2>  <title> A Template Haskell Worked Example </title>
3401 <para>To help you get over the confidence barrier, try out this skeletal worked example.
3402   First cut and paste the two modules below into "Main.hs" and "Printf.hs":</para>
3403
3404 <programlisting>
3405
3406 {- Main.hs -}
3407 module Main where
3408
3409 -- Import our template "pr"
3410 import Printf ( pr )
3411
3412 -- The splice operator $ takes the Haskell source code
3413 -- generated at compile time by "pr" and splices it into
3414 -- the argument of "putStrLn".
3415 main = putStrLn ( $(pr "Hello") )
3416
3417
3418 {- Printf.hs -}
3419 module Printf where
3420
3421 -- Skeletal printf from the paper.
3422 -- It needs to be in a separate module to the one where
3423 -- you intend to use it.
3424
3425 -- Import some Template Haskell syntax
3426 import Language.Haskell.TH.Syntax
3427
3428 -- Describe a format string
3429 data Format = D | S | L String
3430
3431 -- Parse a format string.  This is left largely to you
3432 -- as we are here interested in building our first ever
3433 -- Template Haskell program and not in building printf.
3434 parse :: String -> [Format]
3435 parse s   = [ L s ]
3436
3437 -- Generate Haskell source code from a parsed representation
3438 -- of the format string.  This code will be spliced into
3439 -- the module which calls "pr", at compile time.
3440 gen :: [Format] -> ExpQ
3441 gen [D]   = [| \n -> show n |]
3442 gen [S]   = [| \s -> s |]
3443 gen [L s] = stringE s
3444
3445 -- Here we generate the Haskell code for the splice
3446 -- from an input format string.
3447 pr :: String -> ExpQ
3448 pr s      = gen (parse s)
3449 </programlisting>
3450
3451 <para>Now run the compiler (here we are a Cygwin prompt on Windows):
3452 </para>
3453 <programlisting>
3454 $ ghc --make -fth main.hs -o main.exe
3455 </programlisting>
3456
3457 <para>Run "main.exe" and here is your output:</para>
3458
3459 <programlisting>
3460 $ ./main
3461 Hello
3462 </programlisting>
3463
3464 </sect2>
3465  
3466 </sect1>
3467
3468 <!-- ===================== Arrow notation ===================  -->
3469
3470 <sect1 id="arrow-notation">
3471 <title>Arrow notation
3472 </title>
3473
3474 <para>Arrows are a generalization of monads introduced by John Hughes.
3475 For more details, see
3476 <itemizedlist>
3477
3478 <listitem>
3479 <para>
3480 &ldquo;Generalising Monads to Arrows&rdquo;,
3481 John Hughes, in <citetitle>Science of Computer Programming</citetitle> 37,
3482 pp67&ndash;111, May 2000.
3483 </para>
3484 </listitem>
3485
3486 <listitem>
3487 <para>
3488 &ldquo;<ulink url="http://www.soi.city.ac.uk/~ross/papers/notation.html">A New Notation for Arrows</ulink>&rdquo;,
3489 Ross Paterson, in <citetitle>ICFP</citetitle>, Sep 2001.
3490 </para>
3491 </listitem>
3492
3493 <listitem>
3494 <para>
3495 &ldquo;<ulink url="http://www.soi.city.ac.uk/~ross/papers/fop.html">Arrows and Computation</ulink>&rdquo;,
3496 Ross Paterson, in <citetitle>The Fun of Programming</citetitle>,
3497 Palgrave, 2003.
3498 </para>
3499 </listitem>
3500
3501 </itemizedlist>
3502 and the arrows web page at
3503 <ulink url="http://www.haskell.org/arrows/"><literal>http://www.haskell.org/arrows/</literal></ulink>.
3504 With the <option>-farrows</option> flag, GHC supports the arrow
3505 notation described in the second of these papers.
3506 What follows is a brief introduction to the notation;
3507 it won't make much sense unless you've read Hughes's paper.
3508 This notation is translated to ordinary Haskell,
3509 using combinators from the
3510 <ulink url="../libraries/base/Control.Arrow.html"><literal>Control.Arrow</literal></ulink>
3511 module.
3512 </para>
3513
3514 <para>The extension adds a new kind of expression for defining arrows:
3515 <screen>
3516 <replaceable>exp</replaceable><superscript>10</superscript> ::= ...
3517        |  proc <replaceable>apat</replaceable> -> <replaceable>cmd</replaceable>
3518 </screen>
3519 where <literal>proc</literal> is a new keyword.
3520 The variables of the pattern are bound in the body of the 
3521 <literal>proc</literal>-expression,
3522 which is a new sort of thing called a <firstterm>command</firstterm>.
3523 The syntax of commands is as follows:
3524 <screen>
3525 <replaceable>cmd</replaceable>   ::= <replaceable>exp</replaceable><superscript>10</superscript> -&lt;  <replaceable>exp</replaceable>
3526        |  <replaceable>exp</replaceable><superscript>10</superscript> -&lt;&lt; <replaceable>exp</replaceable>
3527        |  <replaceable>cmd</replaceable><superscript>0</superscript>
3528 </screen>
3529 with <replaceable>cmd</replaceable><superscript>0</superscript> up to
3530 <replaceable>cmd</replaceable><superscript>9</superscript> defined using
3531 infix operators as for expressions, and
3532 <screen>
3533 <replaceable>cmd</replaceable><superscript>10</superscript> ::= \ <replaceable>apat</replaceable> ... <replaceable>apat</replaceable> -> <replaceable>cmd</replaceable>
3534        |  let <replaceable>decls</replaceable> in <replaceable>cmd</replaceable>
3535        |  if <replaceable>exp</replaceable> then <replaceable>cmd</replaceable> else <replaceable>cmd</replaceable>
3536        |  case <replaceable>exp</replaceable> of { <replaceable>calts</replaceable> }
3537        |  do { <replaceable>cstmt</replaceable> ; ... <replaceable>cstmt</replaceable> ; <replaceable>cmd</replaceable> }
3538        |  <replaceable>fcmd</replaceable>
3539
3540 <replaceable>fcmd</replaceable>  ::= <replaceable>fcmd</replaceable> <replaceable>aexp</replaceable>
3541        |  ( <replaceable>cmd</replaceable> )
3542        |  (| <replaceable>aexp</replaceable> <replaceable>cmd</replaceable> ... <replaceable>cmd</replaceable> |)
3543
3544 <replaceable>cstmt</replaceable> ::= let <replaceable>decls</replaceable>
3545        |  <replaceable>pat</replaceable> &lt;- <replaceable>cmd</replaceable>
3546        |  rec { <replaceable>cstmt</replaceable> ; ... <replaceable>cstmt</replaceable> [;] }
3547        |  <replaceable>cmd</replaceable>
3548 </screen>
3549 where <replaceable>calts</replaceable> are like <replaceable>alts</replaceable>
3550 except that the bodies are commands instead of expressions.
3551 </para>
3552
3553 <para>
3554 Commands produce values, but (like monadic computations)
3555 may yield more than one value,
3556 or none, and may do other things as well.
3557 For the most part, familiarity with monadic notation is a good guide to
3558 using commands.
3559 However the values of expressions, even monadic ones,
3560 are determined by the values of the variables they contain;
3561 this is not necessarily the case for commands.
3562 </para>
3563
3564 <para>
3565 A simple example of the new notation is the expression
3566 <screen>
3567 proc x -> f -&lt; x+1
3568 </screen>
3569 We call this a <firstterm>procedure</firstterm> or
3570 <firstterm>arrow abstraction</firstterm>.
3571 As with a lambda expression, the variable <literal>x</literal>
3572 is a new variable bound within the <literal>proc</literal>-expression.
3573 It refers to the input to the arrow.
3574 In the above example, <literal>-&lt;</literal> is not an identifier but an
3575 new reserved symbol used for building commands from an expression of arrow
3576 type and an expression to be fed as input to that arrow.
3577 (The weird look will make more sense later.)
3578 It may be read as analogue of application for arrows.
3579 The above example is equivalent to the Haskell expression
3580 <screen>
3581 arr (\ x -> x+1) >>> f
3582 </screen>
3583 That would make no sense if the expression to the left of
3584 <literal>-&lt;</literal> involves the bound variable <literal>x</literal>.
3585 More generally, the expression to the left of <literal>-&lt;</literal>
3586 may not involve any <firstterm>local variable</firstterm>,
3587 i.e. a variable bound in the current arrow abstraction.
3588 For such a situation there is a variant <literal>-&lt;&lt;</literal>, as in
3589 <screen>
3590 proc x -> f x -&lt;&lt; x+1
3591 </screen>
3592 which is equivalent to
3593 <screen>
3594 arr (\ x -> (f, x+1)) >>> app
3595 </screen>
3596 so in this case the arrow must belong to the <literal>ArrowApply</literal>
3597 class.
3598 Such an arrow is equivalent to a monad, so if you're using this form
3599 you may find a monadic formulation more convenient.
3600 </para>
3601
3602 <sect2>
3603 <title>do-notation for commands</title>
3604
3605 <para>
3606 Another form of command is a form of <literal>do</literal>-notation.
3607 For example, you can write
3608 <screen>
3609 proc x -> do
3610         y &lt;- f -&lt; x+1
3611         g -&lt; 2*y
3612         let z = x+y
3613         t &lt;- h -&lt; x*z
3614         returnA -&lt; t+z
3615 </screen>
3616 You can read this much like ordinary <literal>do</literal>-notation,
3617 but with commands in place of monadic expressions.
3618 The first line sends the value of <literal>x+1</literal> as an input to
3619 the arrow <literal>f</literal>, and matches its output against
3620 <literal>y</literal>.
3621 In the next line, the output is discarded.
3622 The arrow <literal>returnA</literal> is defined in the
3623 <ulink url="../base/Control.Arrow.html"><literal>Control.Arrow</literal></ulink>
3624 module as <literal>arr id</literal>.
3625 The above example is treated as an abbreviation for
3626 <screen>
3627 arr (\ x -> (x, x)) >>>
3628         first (arr (\ x -> x+1) >>> f) >>>
3629         arr (\ (y, x) -> (y, (x, y))) >>>
3630         first (arr (\ y -> 2*y) >>> g) >>>
3631         arr snd >>>
3632         arr (\ (x, y) -> let z = x+y in ((x, z), z)) >>>
3633         first (arr (\ (x, z) -> x*z) >>> h) >>>
3634         arr (\ (t, z) -> t+z) >>>
3635         returnA
3636 </screen>
3637 Note that variables not used later in the composition are projected out.
3638 After simplification using rewrite rules (see <xref linkend="rewrite-rules"/>)
3639 defined in the
3640 <ulink url="../base/Control.Arrow.html"><literal>Control.Arrow</literal></ulink>
3641 module, this reduces to
3642 <screen>
3643 arr (\ x -> (x+1, x)) >>>
3644         first f >>>
3645         arr (\ (y, x) -> (2*y, (x, y))) >>>
3646         first g >>>
3647         arr (\ (_, (x, y)) -> let z = x+y in (x*z, z)) >>>
3648         first h >>>
3649         arr (\ (t, z) -> t+z)
3650 </screen>
3651 which is what you might have written by hand.
3652 With arrow notation, GHC keeps track of all those tuples of variables for you.
3653 </para>
3654
3655 <para>
3656 Note that although the above translation suggests that
3657 <literal>let</literal>-bound variables like <literal>z</literal> must be
3658 monomorphic, the actual translation produces Core,
3659 so polymorphic variables are allowed.
3660 </para>
3661
3662 <para>
3663 It's also possible to have mutually recursive bindings,
3664 using the new <literal>rec</literal> keyword, as in the following example:
3665 <screen>
3666 counter :: ArrowCircuit a => a Bool Int
3667 counter = proc reset -> do
3668         rec     output &lt;- returnA -&lt; if reset then 0 else next
3669                 next &lt;- delay 0 -&lt; output+1
3670         returnA -&lt; output
3671 </screen>
3672 The translation of such forms uses the <literal>loop</literal> combinator,
3673 so the arrow concerned must belong to the <literal>ArrowLoop</literal> class.
3674 </para>
3675
3676 </sect2>
3677
3678 <sect2>
3679 <title>Conditional commands</title>
3680
3681 <para>
3682 In the previous example, we used a conditional expression to construct the
3683 input for an arrow.
3684 Sometimes we want to conditionally execute different commands, as in
3685 <screen>
3686 proc (x,y) ->
3687         if f x y
3688         then g -&lt; x+1
3689         else h -&lt; y+2
3690 </screen>
3691 which is translated to
3692 <screen>
3693 arr (\ (x,y) -> if f x y then Left x else Right y) >>>
3694         (arr (\x -> x+1) >>> f) ||| (arr (\y -> y+2) >>> g)
3695 </screen>
3696 Since the translation uses <literal>|||</literal>,
3697 the arrow concerned must belong to the <literal>ArrowChoice</literal> class.
3698 </para>
3699
3700 <para>
3701 There are also <literal>case</literal> commands, like
3702 <screen>
3703 case input of
3704     [] -> f -&lt; ()
3705     [x] -> g -&lt; x+1
3706     x1:x2:xs -> do
3707         y &lt;- h -&lt; (x1, x2)
3708         ys &lt;- k -&lt; xs
3709         returnA -&lt; y:ys
3710 </screen>
3711 The syntax is the same as for <literal>case</literal> expressions,
3712 except that the bodies of the alternatives are commands rather than expressions.
3713 The translation is similar to that of <literal>if</literal> commands.
3714 </para>
3715
3716 </sect2>
3717
3718 <sect2>
3719 <title>Defining your own control structures</title>
3720
3721 <para>
3722 As we're seen, arrow notation provides constructs,
3723 modelled on those for expressions,
3724 for sequencing, value recursion and conditionals.
3725 But suitable combinators,
3726 which you can define in ordinary Haskell,
3727 may also be used to build new commands out of existing ones.
3728 The basic idea is that a command defines an arrow from environments to values.
3729 These environments assign values to the free local variables of the command.
3730 Thus combinators that produce arrows from arrows
3731 may also be used to build commands from commands.
3732 For example, the <literal>ArrowChoice</literal> class includes a combinator
3733 <programlisting>
3734 ArrowChoice a => (&lt;+>) :: a e c -> a e c -> a e c
3735 </programlisting>
3736 so we can use it to build commands:
3737 <programlisting>
3738 expr' = proc x -> do
3739                 returnA -&lt; x
3740         &lt;+> do
3741                 symbol Plus -&lt; ()
3742                 y &lt;- term -&lt; ()
3743                 expr' -&lt; x + y
3744         &lt;+> do
3745                 symbol Minus -&lt; ()
3746                 y &lt;- term -&lt; ()
3747                 expr' -&lt; x - y
3748 </programlisting>
3749 (The <literal>do</literal> on the first line is needed to prevent the first
3750 <literal>&lt;+> ...</literal> from being interpreted as part of the
3751 expression on the previous line.)
3752 This is equivalent to
3753 <programlisting>
3754 expr' = (proc x -> returnA -&lt; x)
3755         &lt;+> (proc x -> do
3756                 symbol Plus -&lt; ()
3757                 y &lt;- term -&lt; ()
3758                 expr' -&lt; x + y)
3759         &lt;+> (proc x -> do
3760                 symbol Minus -&lt; ()
3761                 y &lt;- term -&lt; ()
3762                 expr' -&lt; x - y)
3763 </programlisting>
3764 It is essential that this operator be polymorphic in <literal>e</literal>
3765 (representing the environment input to the command
3766 and thence to its subcommands)
3767 and satisfy the corresponding naturality property
3768 <screen>
3769 arr k >>> (f &lt;+> g) = (arr k >>> f) &lt;+> (arr k >>> g)
3770 </screen>
3771 at least for strict <literal>k</literal>.
3772 (This should be automatic if you're not using <literal>seq</literal>.)
3773 This ensures that environments seen by the subcommands are environments
3774 of the whole command,
3775 and also allows the translation to safely trim these environments.
3776 The operator must also not use any variable defined within the current
3777 arrow abstraction.
3778 </para>
3779
3780 <para>
3781 We could define our own operator
3782 <programlisting>
3783 untilA :: ArrowChoice a => a e () -> a e Bool -> a e ()
3784 untilA body cond = proc x ->
3785         if cond x then returnA -&lt; ()
3786         else do
3787                 body -&lt; x
3788                 untilA body cond -&lt; x
3789 </programlisting>
3790 and use it in the same way.
3791 Of course this infix syntax only makes sense for binary operators;
3792 there is also a more general syntax involving special brackets:
3793 <screen>
3794 proc x -> do
3795         y &lt;- f -&lt; x+1
3796         (|untilA (increment -&lt; x+y) (within 0.5 -&lt; x)|)
3797 </screen>
3798 </para>
3799
3800 </sect2>
3801
3802 <sect2>
3803 <title>Primitive constructs</title>
3804
3805 <para>
3806 Some operators will need to pass additional inputs to their subcommands.
3807 For example, in an arrow type supporting exceptions,
3808 the operator that attaches an exception handler will wish to pass the
3809 exception that occurred to the handler.
3810 Such an operator might have a type
3811 <screen>
3812 handleA :: ... => a e c -> a (e,Ex) c -> a e c
3813 </screen>
3814 where <literal>Ex</literal> is the type of exceptions handled.
3815 You could then use this with arrow notation by writing a command
3816 <screen>
3817 body `handleA` \ ex -> handler
3818 </screen>
3819 so that if an exception is raised in the command <literal>body</literal>,
3820 the variable <literal>ex</literal> is bound to the value of the exception
3821 and the command <literal>handler</literal>,
3822 which typically refers to <literal>ex</literal>, is entered.
3823 Though the syntax here looks like a functional lambda,
3824 we are talking about commands, and something different is going on.
3825 The input to the arrow represented by a command consists of values for
3826 the free local variables in the command, plus a stack of anonymous values.
3827 In all the prior examples, this stack was empty.
3828 In the second argument to <literal>handleA</literal>,
3829 this stack consists of one value, the value of the exception.
3830 The command form of lambda merely gives this value a name.
3831 </para>
3832
3833 <para>
3834 More concretely,
3835 the values on the stack are paired to the right of the environment.
3836 So when designing operators like <literal>handleA</literal> that pass
3837 extra inputs to their subcommands,
3838 More precisely, the type of each argument of the operator (and its result)
3839 should have the form
3840 <screen>
3841 a (...(e,t1), ... tn) t
3842 </screen>
3843 where <replaceable>e</replaceable> is a polymorphic variable
3844 (representing the environment)
3845 and <replaceable>ti</replaceable> are the types of the values on the stack,
3846 with <replaceable>t1</replaceable> being the <quote>top</quote>.
3847 The polymorphic variable <replaceable>e</replaceable> must not occur in
3848 <replaceable>a</replaceable>, <replaceable>ti</replaceable> or
3849 <replaceable>t</replaceable>.
3850 However the arrows involved need not be the same.
3851 Here are some more examples of suitable operators:
3852 <screen>
3853 bracketA :: ... => a e b -> a (e,b) c -> a (e,c) d -> a e d
3854 runReader :: ... => a e c -> a' (e,State) c
3855 runState :: ... => a e c -> a' (e,State) (c,State)
3856 </screen>
3857 We can supply the extra input required by commands built with the last two
3858 by applying them to ordinary expressions, as in
3859 <screen>
3860 proc x -> do
3861         s &lt;- ...
3862         (|runReader (do { ... })|) s
3863 </screen>
3864 which adds <literal>s</literal> to the stack of inputs to the command
3865 built using <literal>runReader</literal>.
3866 </para>
3867
3868 <para>
3869 The command versions of lambda abstraction and application are analogous to
3870 the expression versions.
3871 In particular, the beta and eta rules describe equivalences of commands.
3872 These three features (operators, lambda abstraction and application)
3873 are the core of the notation; everything else can be built using them,
3874 though the results would be somewhat clumsy.
3875 For example, we could simulate <literal>do</literal>-notation by defining
3876 <programlisting>
3877 bind :: Arrow a => a e b -> a (e,b) c -> a e c
3878 u `bind` f = returnA &amp;&amp;&amp; u >>> f
3879
3880 bind_ :: Arrow a => a e b -> a e c -> a e c
3881 u `bind_` f = u `bind` (arr fst >>> f)
3882 </programlisting>
3883 We could simulate <literal>do</literal> by defining
3884 <programlisting>
3885 cond :: ArrowChoice a => a e b -> a e b -> a (e,Bool) b
3886 cond f g = arr (\ (e,b) -> if b then Left e else Right e) >>> f ||| g
3887 </programlisting>
3888 </para>
3889
3890 </sect2>
3891
3892 <sect2>
3893 <title>Differences with the paper</title>
3894
3895 <itemizedlist>
3896
3897 <listitem>
3898 <para>Instead of a single form of arrow application (arrow tail) with two
3899 translations, the implementation provides two forms
3900 <quote><literal>-&lt;</literal></quote> (first-order)
3901 and <quote><literal>-&lt;&lt;</literal></quote> (higher-order).
3902 </para>
3903 </listitem>
3904
3905 <listitem>
3906 <para>User-defined operators are flagged with banana brackets instead of
3907 a new <literal>form</literal> keyword.
3908 </para>
3909 </listitem>
3910
3911 </itemizedlist>
3912
3913 </sect2>
3914
3915 <sect2>
3916 <title>Portability</title>
3917
3918 <para>
3919 Although only GHC implements arrow notation directly,
3920 there is also a preprocessor
3921 (available from the 
3922 <ulink url="http://www.haskell.org/arrows/">arrows web page</ulink>)
3923 that translates arrow notation into Haskell 98
3924 for use with other Haskell systems.
3925 You would still want to check arrow programs with GHC;
3926 tracing type errors in the preprocessor output is not easy.
3927 Modules intended for both GHC and the preprocessor must observe some
3928 additional restrictions:
3929 <itemizedlist>
3930
3931 <listitem>
3932 <para>
3933 The module must import
3934 <ulink url="../base/Control.Arrow.html"><literal>Control.Arrow</literal></ulink>.
3935 </para>
3936 </listitem>
3937
3938 <listitem>
3939 <para>
3940 The preprocessor cannot cope with other Haskell extensions.
3941 These would have to go in separate modules.
3942 </para>
3943 </listitem>
3944
3945 <listitem>
3946 <para>
3947 Because the preprocessor targets Haskell (rather than Core),
3948 <literal>let</literal>-bound variables are monomorphic.
3949 </para>
3950 </listitem>
3951
3952 </itemizedlist>
3953 </para>
3954
3955 </sect2>
3956
3957 </sect1>
3958
3959 <!-- ==================== ASSERTIONS =================  -->
3960
3961 <sect1 id="sec-assertions">
3962 <title>Assertions
3963 <indexterm><primary>Assertions</primary></indexterm>
3964 </title>
3965
3966 <para>
3967 If you want to make use of assertions in your standard Haskell code, you
3968 could define a function like the following:
3969 </para>
3970
3971 <para>
3972
3973 <programlisting>
3974 assert :: Bool -> a -> a
3975 assert False x = error "assertion failed!"
3976 assert _     x = x
3977 </programlisting>
3978
3979 </para>
3980
3981 <para>
3982 which works, but gives you back a less than useful error message --
3983 an assertion failed, but which and where?
3984 </para>
3985
3986 <para>
3987 One way out is to define an extended <function>assert</function> function which also
3988 takes a descriptive string to include in the error message and
3989 perhaps combine this with the use of a pre-processor which inserts
3990 the source location where <function>assert</function> was used.
3991 </para>
3992
3993 <para>
3994 Ghc offers a helping hand here, doing all of this for you. For every
3995 use of <function>assert</function> in the user's source:
3996 </para>
3997
3998 <para>
3999
4000 <programlisting>
4001 kelvinToC :: Double -> Double
4002 kelvinToC k = assert (k &gt;= 0.0) (k+273.15)
4003 </programlisting>
4004
4005 </para>
4006
4007 <para>
4008 Ghc will rewrite this to also include the source location where the
4009 assertion was made,
4010 </para>
4011
4012 <para>
4013
4014 <programlisting>
4015 assert pred val ==> assertError "Main.hs|15" pred val
4016 </programlisting>
4017
4018 </para>
4019
4020 <para>
4021 The rewrite is only performed by the compiler when it spots
4022 applications of <function>Control.Exception.assert</function>, so you
4023 can still define and use your own versions of
4024 <function>assert</function>, should you so wish. If not, import
4025 <literal>Control.Exception</literal> to make use
4026 <function>assert</function> in your code.
4027 </para>
4028
4029 <para>
4030 To have the compiler ignore uses of assert, use the compiler option
4031 <option>-fignore-asserts</option>. <indexterm><primary>-fignore-asserts
4032 option</primary></indexterm> That is, expressions of the form
4033 <literal>assert pred e</literal> will be rewritten to
4034 <literal>e</literal>.
4035 </para>
4036
4037 <para>
4038 Assertion failures can be caught, see the documentation for the
4039 <literal>Control.Exception</literal> library for the details.
4040 </para>
4041
4042 </sect1>
4043
4044
4045 <!-- =============================== PRAGMAS ===========================  -->
4046
4047   <sect1 id="pragmas">
4048     <title>Pragmas</title>
4049
4050     <indexterm><primary>pragma</primary></indexterm>
4051
4052     <para>GHC supports several pragmas, or instructions to the
4053     compiler placed in the source code.  Pragmas don't normally affect
4054     the meaning of the program, but they might affect the efficiency
4055     of the generated code.</para>
4056
4057     <para>Pragmas all take the form
4058
4059 <literal>{-# <replaceable>word</replaceable> ... #-}</literal>  
4060
4061     where <replaceable>word</replaceable> indicates the type of
4062     pragma, and is followed optionally by information specific to that
4063     type of pragma.  Case is ignored in
4064     <replaceable>word</replaceable>.  The various values for
4065     <replaceable>word</replaceable> that GHC understands are described
4066     in the following sections; any pragma encountered with an
4067     unrecognised <replaceable>word</replaceable> is (silently)
4068     ignored.</para>
4069
4070     <sect2 id="deprecated-pragma">
4071       <title>DEPRECATED pragma</title>
4072       <indexterm><primary>DEPRECATED</primary>
4073       </indexterm>
4074
4075       <para>The DEPRECATED pragma lets you specify that a particular
4076       function, class, or type, is deprecated.  There are two
4077       forms.
4078
4079       <itemizedlist>
4080         <listitem>
4081           <para>You can deprecate an entire module thus:</para>
4082 <programlisting>
4083    module Wibble {-# DEPRECATED "Use Wobble instead" #-} where
4084      ...
4085 </programlisting>
4086           <para>When you compile any module that import
4087           <literal>Wibble</literal>, GHC will print the specified
4088           message.</para>
4089         </listitem>
4090
4091         <listitem>
4092           <para>You can deprecate a function, class, or type, with the
4093           following top-level declaration:</para>
4094 <programlisting>
4095    {-# DEPRECATED f, C, T "Don't use these" #-}
4096 </programlisting>
4097           <para>When you compile any module that imports and uses any
4098           of the specifed entities, GHC will print the specified
4099           message.</para>
4100         </listitem>
4101       </itemizedlist>
4102       Any use of the deprecated item, or of anything from a deprecated
4103       module, will be flagged with an appropriate message.  However,
4104       deprecations are not reported for
4105       (a) uses of a deprecated function within its defining module, and
4106       (b) uses of a deprecated function in an export list.
4107       The latter reduces spurious complaints within a library
4108       in which one module gathers together and re-exports 
4109       the exports of several others.
4110       </para>
4111       <para>You can suppress the warnings with the flag
4112       <option>-fno-warn-deprecations</option>.</para>
4113     </sect2>
4114
4115     <sect2 id="inline-noinline-pragma">
4116       <title>INLINE and NOINLINE pragmas</title>
4117
4118       <para>These pragmas control the inlining of function
4119       definitions.</para>
4120
4121       <sect3 id="inline-pragma">
4122         <title>INLINE pragma</title>
4123         <indexterm><primary>INLINE</primary></indexterm>
4124
4125         <para>GHC (with <option>-O</option>, as always) tries to
4126         inline (or &ldquo;unfold&rdquo;) functions/values that are
4127         &ldquo;small enough,&rdquo; thus avoiding the call overhead
4128         and possibly exposing other more-wonderful optimisations.
4129         Normally, if GHC decides a function is &ldquo;too
4130         expensive&rdquo; to inline, it will not do so, nor will it
4131         export that unfolding for other modules to use.</para>
4132
4133         <para>The sledgehammer you can bring to bear is the
4134         <literal>INLINE</literal><indexterm><primary>INLINE
4135         pragma</primary></indexterm> pragma, used thusly:</para>
4136
4137 <programlisting>
4138 key_function :: Int -> String -> (Bool, Double)
4139
4140 #ifdef __GLASGOW_HASKELL__
4141 {-# INLINE key_function #-}
4142 #endif
4143 </programlisting>
4144
4145         <para>(You don't need to do the C pre-processor carry-on
4146         unless you're going to stick the code through HBC&mdash;it
4147         doesn't like <literal>INLINE</literal> pragmas.)</para>
4148
4149         <para>The major effect of an <literal>INLINE</literal> pragma
4150         is to declare a function's &ldquo;cost&rdquo; to be very low.
4151         The normal unfolding machinery will then be very keen to
4152         inline it.</para>
4153
4154         <para>Syntactially, an <literal>INLINE</literal> pragma for a
4155         function can be put anywhere its type signature could be
4156         put.</para>
4157
4158         <para><literal>INLINE</literal> pragmas are a particularly
4159         good idea for the
4160         <literal>then</literal>/<literal>return</literal> (or
4161         <literal>bind</literal>/<literal>unit</literal>) functions in
4162         a monad.  For example, in GHC's own
4163         <literal>UniqueSupply</literal> monad code, we have:</para>
4164
4165 <programlisting>
4166 #ifdef __GLASGOW_HASKELL__
4167 {-# INLINE thenUs #-}
4168 {-# INLINE returnUs #-}
4169 #endif
4170 </programlisting>
4171
4172         <para>See also the <literal>NOINLINE</literal> pragma (<xref
4173         linkend="noinline-pragma"/>).</para>
4174       </sect3>
4175
4176       <sect3 id="noinline-pragma">
4177         <title>NOINLINE pragma</title>
4178         
4179         <indexterm><primary>NOINLINE</primary></indexterm>
4180         <indexterm><primary>NOTINLINE</primary></indexterm>
4181
4182         <para>The <literal>NOINLINE</literal> pragma does exactly what
4183         you'd expect: it stops the named function from being inlined
4184         by the compiler.  You shouldn't ever need to do this, unless
4185         you're very cautious about code size.</para>
4186
4187         <para><literal>NOTINLINE</literal> is a synonym for
4188         <literal>NOINLINE</literal> (<literal>NOTINLINE</literal> is
4189         specified by Haskell 98 as the standard way to disable
4190         inlining, so it should be used if you want your code to be
4191         portable).</para>
4192       </sect3>
4193
4194       <sect3 id="phase-control">
4195         <title>Phase control</title>
4196
4197         <para> Sometimes you want to control exactly when in GHC's
4198         pipeline the INLINE pragma is switched on.  Inlining happens
4199         only during runs of the <emphasis>simplifier</emphasis>.  Each
4200         run of the simplifier has a different <emphasis>phase
4201         number</emphasis>; the phase number decreases towards zero.
4202         If you use <option>-dverbose-core2core</option> you'll see the
4203         sequence of phase numbers for successive runs of the
4204         simpifier.  In an INLINE pragma you can optionally specify a
4205         phase number, thus:</para>
4206
4207         <itemizedlist>
4208           <listitem>
4209             <para>You can say "inline <literal>f</literal> in Phase 2
4210             and all subsequent phases":
4211 <programlisting>
4212   {-# INLINE [2] f #-}
4213 </programlisting>
4214             </para>
4215           </listitem>
4216
4217           <listitem>
4218             <para>You can say "inline <literal>g</literal> in all
4219             phases up to, but not including, Phase 3":
4220 <programlisting>
4221   {-# INLINE [~3] g #-}
4222 </programlisting>
4223             </para>
4224           </listitem>
4225
4226           <listitem>
4227             <para>If you omit the phase indicator, you mean "inline in
4228             all phases".</para>
4229           </listitem>
4230         </itemizedlist>
4231
4232         <para>You can use a phase number on a NOINLINE pragma too:</para>
4233
4234         <itemizedlist>
4235           <listitem>
4236             <para>You can say "do not inline <literal>f</literal>
4237             until Phase 2; in Phase 2 and subsequently behave as if
4238             there was no pragma at all":
4239 <programlisting>
4240   {-# NOINLINE [2] f #-}
4241 </programlisting>
4242             </para>
4243           </listitem>
4244
4245           <listitem>
4246             <para>You can say "do not inline <literal>g</literal> in
4247             Phase 3 or any subsequent phase; before that, behave as if
4248             there was no pragma":
4249 <programlisting>
4250   {-# NOINLINE [~3] g #-}
4251 </programlisting>
4252             </para>
4253           </listitem>
4254
4255           <listitem>
4256             <para>If you omit the phase indicator, you mean "never
4257             inline this function".</para>
4258           </listitem>
4259         </itemizedlist>
4260
4261         <para>The same phase-numbering control is available for RULES
4262         (<xref linkend="rewrite-rules"/>).</para>
4263       </sect3>
4264     </sect2>
4265
4266     <sect2 id="line-pragma">
4267       <title>LINE pragma</title>
4268
4269       <indexterm><primary>LINE</primary><secondary>pragma</secondary></indexterm>
4270       <indexterm><primary>pragma</primary><secondary>LINE</secondary></indexterm>
4271       <para>This pragma is similar to C's <literal>&num;line</literal>
4272       pragma, and is mainly for use in automatically generated Haskell
4273       code.  It lets you specify the line number and filename of the
4274       original code; for example</para>
4275
4276 <programlisting>
4277 {-# LINE 42 "Foo.vhs" #-}
4278 </programlisting>
4279
4280       <para>if you'd generated the current file from something called
4281       <filename>Foo.vhs</filename> and this line corresponds to line
4282       42 in the original.  GHC will adjust its error messages to refer
4283       to the line/file named in the <literal>LINE</literal>
4284       pragma.</para>
4285     </sect2>
4286
4287     <sect2 id="options-pragma">
4288       <title>OPTIONS pragma</title>
4289       <indexterm><primary>OPTIONS</primary>
4290       </indexterm>
4291       <indexterm><primary>pragma</primary><secondary>OPTIONS</secondary>
4292       </indexterm>
4293
4294       <para>The <literal>OPTIONS</literal> pragma is used to specify
4295       additional options that are given to the compiler when compiling
4296       this source file.  See <xref linkend="source-file-options"/> for
4297       details.</para>
4298     </sect2>
4299
4300     <sect2 id="rules">
4301       <title>RULES pragma</title>
4302
4303       <para>The RULES pragma lets you specify rewrite rules.  It is
4304       described in <xref linkend="rewrite-rules"/>.</para>
4305     </sect2>
4306
4307     <sect2 id="specialize-pragma">
4308       <title>SPECIALIZE pragma</title>
4309
4310       <indexterm><primary>SPECIALIZE pragma</primary></indexterm>
4311       <indexterm><primary>pragma, SPECIALIZE</primary></indexterm>
4312       <indexterm><primary>overloading, death to</primary></indexterm>
4313
4314       <para>(UK spelling also accepted.)  For key overloaded
4315       functions, you can create extra versions (NB: more code space)
4316       specialised to particular types.  Thus, if you have an
4317       overloaded function:</para>
4318
4319 <programlisting>
4320 hammeredLookup :: Ord key => [(key, value)] -> key -> value
4321 </programlisting>
4322
4323       <para>If it is heavily used on lists with
4324       <literal>Widget</literal> keys, you could specialise it as
4325       follows:</para>
4326
4327 <programlisting>
4328 {-# SPECIALIZE hammeredLookup :: [(Widget, value)] -> Widget -> value #-}
4329 </programlisting>
4330
4331       <para>A <literal>SPECIALIZE</literal> pragma for a function can
4332       be put anywhere its type signature could be put.</para>
4333
4334       <para>A <literal>SPECIALIZE</literal> has the effect of generating
4335       (a) a specialised version of the function and (b) a rewrite rule
4336       (see <xref linkend="rewrite-rules"/>) that rewrites a call to the
4337       un-specialised function into a call to the specialised one.</para>
4338
4339       <para>In earlier versions of GHC, it was possible to provide your own
4340       specialised function for a given type:
4341
4342 <programlisting>
4343 {-# SPECIALIZE hammeredLookup :: [(Int, value)] -> Int -> value = intLookup #-}
4344 </programlisting>
4345
4346       This feature has been removed, as it is now subsumed by the
4347       <literal>RULES</literal> pragma (see <xref linkend="rule-spec"/>).</para>
4348
4349     </sect2>
4350
4351 <sect2 id="specialize-instance-pragma">
4352 <title>SPECIALIZE instance pragma
4353 </title>
4354
4355 <para>
4356 <indexterm><primary>SPECIALIZE pragma</primary></indexterm>
4357 <indexterm><primary>overloading, death to</primary></indexterm>
4358 Same idea, except for instance declarations.  For example:
4359
4360 <programlisting>
4361 instance (Eq a) => Eq (Foo a) where { 
4362    {-# SPECIALIZE instance Eq (Foo [(Int, Bar)]) #-}
4363    ... usual stuff ...
4364  }
4365 </programlisting>
4366 The pragma must occur inside the <literal>where</literal> part
4367 of the instance declaration.
4368 </para>
4369 <para>
4370 Compatible with HBC, by the way, except perhaps in the placement
4371 of the pragma.
4372 </para>
4373
4374 </sect2>
4375
4376     <sect2 id="unpack-pragma">
4377       <title>UNPACK pragma</title>
4378
4379       <indexterm><primary>UNPACK</primary></indexterm>
4380       
4381       <para>The <literal>UNPACK</literal> indicates to the compiler
4382       that it should unpack the contents of a constructor field into
4383       the constructor itself, removing a level of indirection.  For
4384       example:</para>
4385
4386 <programlisting>
4387 data T = T {-# UNPACK #-} !Float
4388            {-# UNPACK #-} !Float
4389 </programlisting>
4390
4391       <para>will create a constructor <literal>T</literal> containing
4392       two unboxed floats.  This may not always be an optimisation: if
4393       the <function>T</function> constructor is scrutinised and the
4394       floats passed to a non-strict function for example, they will
4395       have to be reboxed (this is done automatically by the
4396       compiler).</para>
4397
4398       <para>Unpacking constructor fields should only be used in
4399       conjunction with <option>-O</option>, in order to expose
4400       unfoldings to the compiler so the reboxing can be removed as
4401       often as possible.  For example:</para>
4402
4403 <programlisting>
4404 f :: T -&#62; Float
4405 f (T f1 f2) = f1 + f2
4406 </programlisting>
4407
4408       <para>The compiler will avoid reboxing <function>f1</function>
4409       and <function>f2</function> by inlining <function>+</function>
4410       on floats, but only when <option>-O</option> is on.</para>
4411
4412       <para>Any single-constructor data is eligible for unpacking; for
4413       example</para>
4414
4415 <programlisting>
4416 data T = T {-# UNPACK #-} !(Int,Int)
4417 </programlisting>
4418
4419       <para>will store the two <literal>Int</literal>s directly in the
4420       <function>T</function> constructor, by flattening the pair.
4421       Multi-level unpacking is also supported:</para>
4422
4423 <programlisting>
4424 data T = T {-# UNPACK #-} !S
4425 data S = S {-# UNPACK #-} !Int {-# UNPACK #-} !Int
4426 </programlisting>
4427
4428       <para>will store two unboxed <literal>Int&num;</literal>s
4429       directly in the <function>T</function> constructor.  The
4430       unpacker can see through newtypes, too.</para>
4431
4432       <para>If a field cannot be unpacked, you will not get a warning,
4433       so it might be an idea to check the generated code with
4434       <option>-ddump-simpl</option>.</para>
4435
4436       <para>See also the <option>-funbox-strict-fields</option> flag,
4437       which essentially has the effect of adding
4438       <literal>{-#&nbsp;UNPACK&nbsp;#-}</literal> to every strict
4439       constructor field.</para>
4440     </sect2>
4441
4442 </sect1>
4443
4444 <!--  ======================= REWRITE RULES ======================== -->
4445
4446 <sect1 id="rewrite-rules">
4447 <title>Rewrite rules
4448
4449 <indexterm><primary>RULES pagma</primary></indexterm>
4450 <indexterm><primary>pragma, RULES</primary></indexterm>
4451 <indexterm><primary>rewrite rules</primary></indexterm></title>
4452
4453 <para>
4454 The programmer can specify rewrite rules as part of the source program
4455 (in a pragma).  GHC applies these rewrite rules wherever it can, provided (a) 
4456 the <option>-O</option> flag (<xref linkend="options-optimise"/>) is on, 
4457 and (b) the <option>-frules-off</option> flag
4458 (<xref linkend="options-f"/>) is not specified.
4459 </para>
4460
4461 <para>
4462 Here is an example:
4463
4464 <programlisting>
4465   {-# RULES
4466         "map/map"       forall f g xs. map f (map g xs) = map (f.g) xs
4467   #-}
4468 </programlisting>
4469
4470 </para>
4471
4472 <sect2>
4473 <title>Syntax</title>
4474
4475 <para>
4476 From a syntactic point of view:
4477
4478 <itemizedlist>
4479 <listitem>
4480
4481 <para>
4482  There may be zero or more rules in a <literal>RULES</literal> pragma.
4483 </para>
4484 </listitem>
4485
4486 <listitem>
4487
4488 <para>
4489  Each rule has a name, enclosed in double quotes.  The name itself has
4490 no significance at all.  It is only used when reporting how many times the rule fired.
4491 </para>
4492 </listitem>
4493
4494 <listitem>
4495 <para>
4496 A rule may optionally have a phase-control number (see <xref linkend="phase-control"/>),
4497 immediately after the name of the rule.  Thus:
4498 <programlisting>
4499   {-# RULES
4500         "map/map" [2]  forall f g xs. map f (map g xs) = map (f.g) xs
4501   #-}
4502 </programlisting>
4503 The "[2]" means that the rule is active in Phase 2 and subsequent phases.  The inverse
4504 notation "[~2]" is also accepted, meaning that the rule is active up to, but not including,
4505 Phase 2.
4506 </para>
4507 </listitem>
4508
4509
4510 <listitem>
4511
4512 <para>
4513  Layout applies in a <literal>RULES</literal> pragma.  Currently no new indentation level
4514 is set, so you must lay out your rules starting in the same column as the
4515 enclosing definitions.
4516 </para>
4517 </listitem>
4518
4519 <listitem>
4520
4521 <para>
4522  Each variable mentioned in a rule must either be in scope (e.g. <function>map</function>),
4523 or bound by the <literal>forall</literal> (e.g. <function>f</function>, <function>g</function>, <function>xs</function>).  The variables bound by
4524 the <literal>forall</literal> are called the <emphasis>pattern</emphasis> variables.  They are separated
4525 by spaces, just like in a type <literal>forall</literal>.
4526 </para>
4527 </listitem>
4528 <listitem>
4529
4530 <para>
4531  A pattern variable may optionally have a type signature.
4532 If the type of the pattern variable is polymorphic, it <emphasis>must</emphasis> have a type signature.
4533 For example, here is the <literal>foldr/build</literal> rule:
4534
4535 <programlisting>
4536 "fold/build"  forall k z (g::forall b. (a->b->b) -> b -> b) .
4537               foldr k z (build g) = g k z
4538 </programlisting>
4539
4540 Since <function>g</function> has a polymorphic type, it must have a type signature.
4541
4542 </para>
4543 </listitem>
4544 <listitem>
4545
4546 <para>
4547 The left hand side of a rule must consist of a top-level variable applied
4548 to arbitrary expressions.  For example, this is <emphasis>not</emphasis> OK:
4549
4550 <programlisting>
4551 "wrong1"   forall e1 e2.  case True of { True -> e1; False -> e2 } = e1
4552 "wrong2"   forall f.      f True = True
4553 </programlisting>
4554
4555 In <literal>"wrong1"</literal>, the LHS is not an application; in <literal>"wrong2"</literal>, the LHS has a pattern variable
4556 in the head.
4557 </para>
4558 </listitem>
4559 <listitem>
4560
4561 <para>
4562  A rule does not need to be in the same module as (any of) the
4563 variables it mentions, though of course they need to be in scope.
4564 </para>
4565 </listitem>
4566 <listitem>
4567
4568 <para>
4569  Rules are automatically exported from a module, just as instance declarations are.
4570 </para>
4571 </listitem>
4572
4573 </itemizedlist>
4574
4575 </para>
4576
4577 </sect2>
4578
4579 <sect2>
4580 <title>Semantics</title>
4581
4582 <para>
4583 From a semantic point of view:
4584
4585 <itemizedlist>
4586 <listitem>
4587
4588 <para>
4589 Rules are only applied if you use the <option>-O</option> flag.
4590 </para>
4591 </listitem>
4592
4593 <listitem>
4594 <para>
4595  Rules are regarded as left-to-right rewrite rules.
4596 When GHC finds an expression that is a substitution instance of the LHS
4597 of a rule, it replaces the expression by the (appropriately-substituted) RHS.
4598 By "a substitution instance" we mean that the LHS can be made equal to the
4599 expression by substituting for the pattern variables.
4600
4601 </para>
4602 </listitem>
4603 <listitem>
4604
4605 <para>
4606  The LHS and RHS of a rule are typechecked, and must have the
4607 same type.
4608
4609 </para>
4610 </listitem>
4611 <listitem>
4612
4613 <para>
4614  GHC makes absolutely no attempt to verify that the LHS and RHS
4615 of a rule have the same meaning.  That is undecideable in general, and
4616 infeasible in most interesting cases.  The responsibility is entirely the programmer's!
4617
4618 </para>
4619 </listitem>
4620 <listitem>
4621
4622 <para>
4623  GHC makes no attempt to make sure that the rules are confluent or
4624 terminating.  For example:
4625
4626 <programlisting>
4627   "loop"        forall x,y.  f x y = f y x
4628 </programlisting>
4629
4630 This rule will cause the compiler to go into an infinite loop.
4631
4632 </para>
4633 </listitem>
4634 <listitem>
4635
4636 <para>
4637  If more than one rule matches a call, GHC will choose one arbitrarily to apply.
4638
4639 </para>
4640 </listitem>
4641 <listitem>
4642 <para>
4643  GHC currently uses a very simple, syntactic, matching algorithm
4644 for matching a rule LHS with an expression.  It seeks a substitution
4645 which makes the LHS and expression syntactically equal modulo alpha
4646 conversion.  The pattern (rule), but not the expression, is eta-expanded if
4647 necessary.  (Eta-expanding the epression can lead to laziness bugs.)
4648 But not beta conversion (that's called higher-order matching).
4649 </para>
4650
4651 <para>
4652 Matching is carried out on GHC's intermediate language, which includes
4653 type abstractions and applications.  So a rule only matches if the
4654 types match too.  See <xref linkend="rule-spec"/> below.
4655 </para>
4656 </listitem>
4657 <listitem>
4658
4659 <para>
4660  GHC keeps trying to apply the rules as it optimises the program.
4661 For example, consider:
4662
4663 <programlisting>
4664   let s = map f
4665       t = map g
4666   in
4667   s (t xs)
4668 </programlisting>
4669
4670 The expression <literal>s (t xs)</literal> does not match the rule <literal>"map/map"</literal>, but GHC
4671 will substitute for <varname>s</varname> and <varname>t</varname>, giving an expression which does match.
4672 If <varname>s</varname> or <varname>t</varname> was (a) used more than once, and (b) large or a redex, then it would
4673 not be substituted, and the rule would not fire.
4674
4675 </para>
4676 </listitem>
4677 <listitem>
4678
4679 <para>
4680  In the earlier phases of compilation, GHC inlines <emphasis>nothing
4681 that appears on the LHS of a rule</emphasis>, because once you have substituted
4682 for something you can't match against it (given the simple minded
4683 matching).  So if you write the rule
4684
4685 <programlisting>
4686         "map/map"       forall f,g.  map f . map g = map (f.g)
4687 </programlisting>
4688
4689 this <emphasis>won't</emphasis> match the expression <literal>map f (map g xs)</literal>.
4690 It will only match something written with explicit use of ".".
4691 Well, not quite.  It <emphasis>will</emphasis> match the expression
4692
4693 <programlisting>
4694 wibble f g xs
4695 </programlisting>
4696
4697 where <function>wibble</function> is defined:
4698
4699 <programlisting>
4700 wibble f g = map f . map g
4701 </programlisting>
4702
4703 because <function>wibble</function> will be inlined (it's small).
4704
4705 Later on in compilation, GHC starts inlining even things on the
4706 LHS of rules, but still leaves the rules enabled.  This inlining
4707 policy is controlled by the per-simplification-pass flag <option>-finline-phase</option><emphasis>n</emphasis>.
4708
4709 </para>
4710 </listitem>
4711 <listitem>
4712
4713 <para>
4714  All rules are implicitly exported from the module, and are therefore
4715 in force in any module that imports the module that defined the rule, directly
4716 or indirectly.  (That is, if A imports B, which imports C, then C's rules are
4717 in force when compiling A.)  The situation is very similar to that for instance
4718 declarations.
4719 </para>
4720 </listitem>
4721
4722 </itemizedlist>
4723
4724 </para>
4725
4726 </sect2>
4727
4728 <sect2>
4729 <title>List fusion</title>
4730
4731 <para>
4732 The RULES mechanism is used to implement fusion (deforestation) of common list functions.
4733 If a "good consumer" consumes an intermediate list constructed by a "good producer", the
4734 intermediate list should be eliminated entirely.
4735 </para>
4736
4737 <para>
4738 The following are good producers:
4739
4740 <itemizedlist>
4741 <listitem>
4742
4743 <para>
4744  List comprehensions
4745 </para>
4746 </listitem>
4747 <listitem>
4748
4749 <para>
4750  Enumerations of <literal>Int</literal> and <literal>Char</literal> (e.g. <literal>['a'..'z']</literal>).
4751 </para>
4752 </listitem>
4753 <listitem>
4754
4755 <para>
4756  Explicit lists (e.g. <literal>[True, False]</literal>)
4757 </para>
4758 </listitem>
4759 <listitem>
4760
4761 <para>
4762  The cons constructor (e.g <literal>3:4:[]</literal>)
4763 </para>
4764 </listitem>
4765 <listitem>
4766
4767 <para>
4768  <function>++</function>
4769 </para>
4770 </listitem>
4771
4772 <listitem>
4773 <para>
4774  <function>map</function>
4775 </para>
4776 </listitem>
4777
4778 <listitem>
4779 <para>
4780  <function>filter</function>
4781 </para>
4782 </listitem>
4783 <listitem>
4784
4785 <para>
4786  <function>iterate</function>, <function>repeat</function>
4787 </para>
4788 </listitem>
4789 <listitem>
4790
4791 <para>
4792  <function>zip</function>, <function>zipWith</function>
4793 </para>
4794 </listitem>
4795
4796 </itemizedlist>
4797
4798 </para>
4799
4800 <para>
4801 The following are good consumers:
4802
4803 <itemizedlist>
4804 <listitem>
4805
4806 <para>
4807  List comprehensions
4808 </para>
4809 </listitem>
4810 <listitem>
4811
4812 <para>
4813  <function>array</function> (on its second argument)
4814 </para>
4815 </listitem>
4816 <listitem>
4817
4818 <para>
4819  <function>length</function>
4820 </para>
4821 </listitem>
4822 <listitem>
4823
4824 <para>
4825  <function>++</function> (on its first argument)
4826 </para>
4827 </listitem>
4828
4829 <listitem>
4830 <para>
4831  <function>foldr</function>
4832 </para>
4833 </listitem>
4834
4835 <listitem>
4836 <para>
4837  <function>map</function>
4838 </para>
4839 </listitem>
4840 <listitem>
4841
4842 <para>
4843  <function>filter</function>
4844 </para>
4845 </listitem>
4846 <listitem>
4847
4848 <para>
4849  <function>concat</function>
4850 </para>
4851 </listitem>
4852 <listitem>
4853
4854 <para>
4855  <function>unzip</function>, <function>unzip2</function>, <function>unzip3</function>, <function>unzip4</function>
4856 </para>
4857 </listitem>
4858 <listitem>
4859
4860 <para>
4861  <function>zip</function>, <function>zipWith</function> (but on one argument only; if both are good producers, <function>zip</function>
4862 will fuse with one but not the other)
4863 </para>
4864 </listitem>
4865 <listitem>
4866
4867 <para>
4868  <function>partition</function>
4869 </para>
4870 </listitem>
4871 <listitem>
4872
4873 <para>
4874  <function>head</function>
4875 </para>
4876 </listitem>
4877 <listitem>
4878
4879 <para>
4880  <function>and</function>, <function>or</function>, <function>any</function>, <function>all</function>
4881 </para>
4882 </listitem>
4883 <listitem>
4884
4885 <para>
4886  <function>sequence&lowbar;</function>
4887 </para>
4888 </listitem>
4889 <listitem>
4890
4891 <para>
4892  <function>msum</function>
4893 </para>
4894 </listitem>
4895 <listitem>
4896
4897 <para>
4898  <function>sortBy</function>
4899 </para>
4900 </listitem>
4901
4902 </itemizedlist>
4903
4904 </para>
4905
4906  <para>
4907 So, for example, the following should generate no intermediate lists:
4908
4909 <programlisting>
4910 array (1,10) [(i,i*i) | i &#60;- map (+ 1) [0..9]]
4911 </programlisting>
4912
4913 </para>
4914
4915 <para>
4916 This list could readily be extended; if there are Prelude functions that you use
4917 a lot which are not included, please tell us.
4918 </para>
4919
4920 <para>
4921 If you want to write your own good consumers or producers, look at the
4922 Prelude definitions of the above functions to see how to do so.
4923 </para>
4924
4925 </sect2>
4926
4927 <sect2 id="rule-spec">
4928 <title>Specialisation
4929 </title>
4930
4931 <para>
4932 Rewrite rules can be used to get the same effect as a feature
4933 present in earlier versions of GHC.
4934 For example, suppose that:
4935
4936 <programlisting>
4937 genericLookup :: Ord a => Table a b   -> a   -> b
4938 intLookup     ::          Table Int b -> Int -> b
4939 </programlisting>
4940
4941 where <function>intLookup</function> is an implementation of
4942 <function>genericLookup</function> that works very fast for
4943 keys of type <literal>Int</literal>.  You might wish
4944 to tell GHC to use <function>intLookup</function> instead of
4945 <function>genericLookup</function> whenever the latter was called with
4946 type <literal>Table Int b -&gt; Int -&gt; b</literal>.
4947 It used to be possible to write
4948
4949 <programlisting>
4950 {-# SPECIALIZE genericLookup :: Table Int b -> Int -> b = intLookup #-}
4951 </programlisting>
4952
4953 This feature is no longer in GHC, but rewrite rules let you do the same thing:
4954
4955 <programlisting>
4956 {-# RULES "genericLookup/Int" genericLookup = intLookup #-}
4957 </programlisting>
4958
4959 This slightly odd-looking rule instructs GHC to replace
4960 <function>genericLookup</function> by <function>intLookup</function>
4961 <emphasis>whenever the types match</emphasis>.
4962 What is more, this rule does not need to be in the same
4963 file as <function>genericLookup</function>, unlike the
4964 <literal>SPECIALIZE</literal> pragmas which currently do (so that they
4965 have an original definition available to specialise).
4966 </para>
4967
4968 <para>It is <emphasis>Your Responsibility</emphasis> to make sure that
4969 <function>intLookup</function> really behaves as a specialised version
4970 of <function>genericLookup</function>!!!</para>
4971
4972 <para>An example in which using <literal>RULES</literal> for
4973 specialisation will Win Big:
4974
4975 <programlisting>
4976 toDouble :: Real a => a -> Double
4977 toDouble = fromRational . toRational
4978
4979 {-# RULES "toDouble/Int" toDouble = i2d #-}
4980 i2d (I# i) = D# (int2Double# i) -- uses Glasgow prim-op directly
4981 </programlisting>
4982
4983 The <function>i2d</function> function is virtually one machine
4984 instruction; the default conversion&mdash;via an intermediate
4985 <literal>Rational</literal>&mdash;is obscenely expensive by
4986 comparison.
4987 </para>
4988
4989 </sect2>
4990
4991 <sect2>
4992 <title>Controlling what's going on</title>
4993
4994 <para>
4995
4996 <itemizedlist>
4997 <listitem>
4998
4999 <para>
5000  Use <option>-ddump-rules</option> to see what transformation rules GHC is using.
5001 </para>
5002 </listitem>
5003 <listitem>
5004
5005 <para>
5006  Use <option>-ddump-simpl-stats</option> to see what rules are being fired.
5007 If you add <option>-dppr-debug</option> you get a more detailed listing.
5008 </para>
5009 </listitem>
5010 <listitem>
5011
5012 <para>
5013  The defintion of (say) <function>build</function> in <filename>GHC/Base.lhs</filename> looks llike this:
5014
5015 <programlisting>
5016         build   :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
5017         {-# INLINE build #-}
5018         build g = g (:) []
5019 </programlisting>
5020
5021 Notice the <literal>INLINE</literal>!  That prevents <literal>(:)</literal> from being inlined when compiling
5022 <literal>PrelBase</literal>, so that an importing module will &ldquo;see&rdquo; the <literal>(:)</literal>, and can
5023 match it on the LHS of a rule.  <literal>INLINE</literal> prevents any inlining happening
5024 in the RHS of the <literal>INLINE</literal> thing.  I regret the delicacy of this.
5025
5026 </para>
5027 </listitem>
5028 <listitem>
5029
5030 <para>
5031  In <filename>libraries/base/GHC/Base.lhs</filename> look at the rules for <function>map</function> to
5032 see how to write rules that will do fusion and yet give an efficient
5033 program even if fusion doesn't happen.  More rules in <filename>GHC/List.lhs</filename>.
5034 </para>
5035 </listitem>
5036
5037 </itemizedlist>
5038
5039 </para>
5040
5041 </sect2>
5042
5043 <sect2 id="core-pragma">
5044   <title>CORE pragma</title>
5045
5046   <indexterm><primary>CORE pragma</primary></indexterm>
5047   <indexterm><primary>pragma, CORE</primary></indexterm>
5048   <indexterm><primary>core, annotation</primary></indexterm>
5049
5050 <para>
5051   The external core format supports <quote>Note</quote> annotations;
5052   the <literal>CORE</literal> pragma gives a way to specify what these
5053   should be in your Haskell source code.  Syntactically, core
5054   annotations are attached to expressions and take a Haskell string
5055   literal as an argument.  The following function definition shows an
5056   example:
5057
5058 <programlisting>
5059 f x = ({-# CORE "foo" #-} show) ({-# CORE "bar" #-} x)
5060 </programlisting>
5061
5062   Sematically, this is equivalent to:
5063
5064 <programlisting>
5065 g x = show x
5066 </programlisting>
5067 </para>
5068
5069 <para>
5070   However, when external for is generated (via
5071   <option>-fext-core</option>), there will be Notes attached to the
5072   expressions <function>show</function> and <varname>x</varname>.
5073   The core function declaration for <function>f</function> is:
5074 </para>
5075
5076 <programlisting>
5077   f :: %forall a . GHCziShow.ZCTShow a ->
5078                    a -> GHCziBase.ZMZN GHCziBase.Char =
5079     \ @ a (zddShow::GHCziShow.ZCTShow a) (eta::a) ->
5080         (%note "foo"
5081          %case zddShow %of (tpl::GHCziShow.ZCTShow a)
5082            {GHCziShow.ZCDShow
5083             (tpl1::GHCziBase.Int ->
5084                    a ->
5085                    GHCziBase.ZMZN GHCziBase.Char -> GHCziBase.ZMZN GHCziBase.Cha
5086 r)
5087             (tpl2::a -> GHCziBase.ZMZN GHCziBase.Char)
5088             (tpl3::GHCziBase.ZMZN a ->
5089                    GHCziBase.ZMZN GHCziBase.Char -> GHCziBase.ZMZN GHCziBase.Cha
5090 r) ->
5091               tpl2})
5092         (%note "foo"
5093          eta);
5094 </programlisting>
5095
5096 <para>
5097   Here, we can see that the function <function>show</function> (which
5098   has been expanded out to a case expression over the Show dictionary)
5099   has a <literal>%note</literal> attached to it, as does the
5100   expression <varname>eta</varname> (which used to be called
5101   <varname>x</varname>).
5102 </para>
5103
5104 </sect2>
5105
5106 </sect1>
5107
5108 <sect1 id="generic-classes">
5109 <title>Generic classes</title>
5110
5111     <para>(Note: support for generic classes is currently broken in
5112     GHC 5.02).</para>
5113
5114 <para>
5115 The ideas behind this extension are described in detail in "Derivable type classes",
5116 Ralf Hinze and Simon Peyton Jones, Haskell Workshop, Montreal Sept 2000, pp94-105.
5117 An example will give the idea:
5118 </para>
5119
5120 <programlisting>
5121   import Generics
5122
5123   class Bin a where
5124     toBin   :: a -> [Int]
5125     fromBin :: [Int] -> (a, [Int])
5126   
5127     toBin {| Unit |}    Unit      = []
5128     toBin {| a :+: b |} (Inl x)   = 0 : toBin x
5129     toBin {| a :+: b |} (Inr y)   = 1 : toBin y
5130     toBin {| a :*: b |} (x :*: y) = toBin x ++ toBin y
5131   
5132     fromBin {| Unit |}    bs      = (Unit, bs)
5133     fromBin {| a :+: b |} (0:bs)  = (Inl x, bs')    where (x,bs') = fromBin bs
5134     fromBin {| a :+: b |} (1:bs)  = (Inr y, bs')    where (y,bs') = fromBin bs
5135     fromBin {| a :*: b |} bs      = (x :*: y, bs'') where (x,bs' ) = fromBin bs
5136                                                           (y,bs'') = fromBin bs'
5137 </programlisting>
5138 <para>
5139 This class declaration explains how <literal>toBin</literal> and <literal>fromBin</literal>
5140 work for arbitrary data types.  They do so by giving cases for unit, product, and sum,
5141 which are defined thus in the library module <literal>Generics</literal>:
5142 </para>
5143 <programlisting>
5144   data Unit    = Unit
5145   data a :+: b = Inl a | Inr b
5146   data a :*: b = a :*: b
5147 </programlisting>
5148 <para>
5149 Now you can make a data type into an instance of Bin like this:
5150 <programlisting>
5151   instance (Bin a, Bin b) => Bin (a,b)
5152   instance Bin a => Bin [a]
5153 </programlisting>
5154 That is, just leave off the "where" clause.  Of course, you can put in the
5155 where clause and over-ride whichever methods you please.
5156 </para>
5157
5158     <sect2>
5159       <title> Using generics </title>
5160       <para>To use generics you need to</para>
5161       <itemizedlist>
5162         <listitem>
5163           <para>Use the flags <option>-fglasgow-exts</option> (to enable the extra syntax), 
5164                 <option>-fgenerics</option> (to generate extra per-data-type code),
5165                 and <option>-package lang</option> (to make the <literal>Generics</literal> library
5166                 available.  </para>
5167         </listitem>
5168         <listitem>
5169           <para>Import the module <literal>Generics</literal> from the
5170           <literal>lang</literal> package.  This import brings into
5171           scope the data types <literal>Unit</literal>,
5172           <literal>:*:</literal>, and <literal>:+:</literal>.  (You
5173           don't need this import if you don't mention these types
5174           explicitly; for example, if you are simply giving instance
5175           declarations.)</para>
5176         </listitem>
5177       </itemizedlist>
5178     </sect2>
5179
5180 <sect2> <title> Changes wrt the paper </title>
5181 <para>
5182 Note that the type constructors <literal>:+:</literal> and <literal>:*:</literal> 
5183 can be written infix (indeed, you can now use
5184 any operator starting in a colon as an infix type constructor).  Also note that
5185 the type constructors are not exactly as in the paper (Unit instead of 1, etc).
5186 Finally, note that the syntax of the type patterns in the class declaration
5187 uses "<literal>{|</literal>" and "<literal>|}</literal>" brackets; curly braces
5188 alone would ambiguous when they appear on right hand sides (an extension we 
5189 anticipate wanting).
5190 </para>
5191 </sect2>
5192
5193 <sect2> <title>Terminology and restrictions</title>
5194 <para>
5195 Terminology.  A "generic default method" in a class declaration
5196 is one that is defined using type patterns as above.
5197 A "polymorphic default method" is a default method defined as in Haskell 98.
5198 A "generic class declaration" is a class declaration with at least one
5199 generic default method.
5200 </para>
5201
5202 <para>
5203 Restrictions:
5204 <itemizedlist>
5205 <listitem>
5206 <para>
5207 Alas, we do not yet implement the stuff about constructor names and 
5208 field labels.
5209 </para>
5210 </listitem>
5211
5212 <listitem>
5213 <para>
5214 A generic class can have only one parameter; you can't have a generic
5215 multi-parameter class.
5216 </para>
5217 </listitem>
5218
5219 <listitem>
5220 <para>
5221 A default method must be defined entirely using type patterns, or entirely
5222 without.  So this is illegal:
5223 <programlisting>
5224   class Foo a where
5225     op :: a -> (a, Bool)
5226     op {| Unit |} Unit = (Unit, True)
5227     op x               = (x,    False)
5228 </programlisting>
5229 However it is perfectly OK for some methods of a generic class to have 
5230 generic default methods and others to have polymorphic default methods.
5231 </para>
5232 </listitem>
5233
5234 <listitem>
5235 <para>
5236 The type variable(s) in the type pattern for a generic method declaration
5237 scope over the right hand side.  So this is legal (note the use of the type variable ``p'' in a type signature on the right hand side:
5238 <programlisting>
5239   class Foo a where
5240     op :: a -> Bool
5241     op {| p :*: q |} (x :*: y) = op (x :: p)
5242     ...
5243 </programlisting>
5244 </para>
5245 </listitem>
5246
5247 <listitem>
5248 <para>
5249 The type patterns in a generic default method must take one of the forms:
5250 <programlisting>
5251        a :+: b
5252        a :*: b
5253        Unit
5254 </programlisting>
5255 where "a" and "b" are type variables.  Furthermore, all the type patterns for
5256 a single type constructor (<literal>:*:</literal>, say) must be identical; they
5257 must use the same type variables.  So this is illegal:
5258 <programlisting>
5259   class Foo a where
5260     op :: a -> Bool
5261     op {| a :+: b |} (Inl x) = True
5262     op {| p :+: q |} (Inr y) = False
5263 </programlisting>
5264 The type patterns must be identical, even in equations for different methods of the class.
5265 So this too is illegal:
5266 <programlisting>
5267   class Foo a where
5268     op1 :: a -> Bool
5269     op1 {| a :*: b |} (x :*: y) = True
5270
5271     op2 :: a -> Bool
5272     op2 {| p :*: q |} (x :*: y) = False
5273 </programlisting>
5274 (The reason for this restriction is that we gather all the equations for a particular type consructor
5275 into a single generic instance declaration.)
5276 </para>
5277 </listitem>
5278
5279 <listitem>
5280 <para>
5281 A generic method declaration must give a case for each of the three type constructors.
5282 </para>
5283 </listitem>
5284
5285 <listitem>
5286 <para>
5287 The type for a generic method can be built only from:
5288   <itemizedlist>
5289   <listitem> <para> Function arrows </para> </listitem>
5290   <listitem> <para> Type variables </para> </listitem>
5291   <listitem> <para> Tuples </para> </listitem>
5292   <listitem> <para> Arbitrary types not involving type variables </para> </listitem>
5293   </itemizedlist>
5294 Here are some example type signatures for generic methods:
5295 <programlisting>
5296     op1 :: a -> Bool
5297     op2 :: Bool -> (a,Bool)
5298     op3 :: [Int] -> a -> a
5299     op4 :: [a] -> Bool
5300 </programlisting>
5301 Here, op1, op2, op3 are OK, but op4 is rejected, because it has a type variable
5302 inside a list.  
5303 </para>
5304 <para>
5305 This restriction is an implementation restriction: we just havn't got around to
5306 implementing the necessary bidirectional maps over arbitrary type constructors.
5307 It would be relatively easy to add specific type constructors, such as Maybe and list,
5308 to the ones that are allowed.</para>
5309 </listitem>
5310
5311 <listitem>
5312 <para>
5313 In an instance declaration for a generic class, the idea is that the compiler
5314 will fill in the methods for you, based on the generic templates.  However it can only
5315 do so if
5316   <itemizedlist>
5317   <listitem>
5318   <para>
5319   The instance type is simple (a type constructor applied to type variables, as in Haskell 98).
5320   </para>
5321   </listitem>
5322   <listitem>
5323   <para>
5324   No constructor of the instance type has unboxed fields.
5325   </para>
5326   </listitem>
5327   </itemizedlist>
5328 (Of course, these things can only arise if you are already using GHC extensions.)
5329 However, you can still give an instance declarations for types which break these rules,
5330 provided you give explicit code to override any generic default methods.
5331 </para>
5332 </listitem>
5333
5334 </itemizedlist>
5335 </para>
5336
5337 <para>
5338 The option <option>-ddump-deriv</option> dumps incomprehensible stuff giving details of 
5339 what the compiler does with generic declarations.
5340 </para>
5341
5342 </sect2>
5343
5344 <sect2> <title> Another example </title>
5345 <para>
5346 Just to finish with, here's another example I rather like:
5347 <programlisting>
5348   class Tag a where
5349     nCons :: a -> Int
5350     nCons {| Unit |}    _ = 1
5351     nCons {| a :*: b |} _ = 1
5352     nCons {| a :+: b |} _ = nCons (bot::a) + nCons (bot::b)
5353   
5354     tag :: a -> Int
5355     tag {| Unit |}    _       = 1
5356     tag {| a :*: b |} _       = 1   
5357     tag {| a :+: b |} (Inl x) = tag x
5358     tag {| a :+: b |} (Inr y) = nCons (bot::a) + tag y
5359 </programlisting>
5360 </para>
5361 </sect2>
5362 </sect1>
5363
5364
5365
5366 <!-- Emacs stuff:
5367      ;;; Local Variables: ***
5368      ;;; mode: xml ***
5369      ;;; sgml-parent-document: ("users_guide.xml" "book" "chapter" "sect1") ***
5370      ;;; End: ***
5371  -->
5372