[project @ 2000-03-31 03:09:35 by hwloidl]
[ghc-hetmet.git] / ghc / includes / PrimOps.h
1 /* -----------------------------------------------------------------------------
2  * $Id: PrimOps.h,v 1.48 2000/03/31 03:09:35 hwloidl Exp $
3  *
4  * (c) The GHC Team, 1998-1999
5  *
6  * Macros for primitive operations in STG-ish C code.
7  *
8  * ---------------------------------------------------------------------------*/
9
10 #ifndef PRIMOPS_H
11 #define PRIMOPS_H
12
13 /* -----------------------------------------------------------------------------
14    Comparison PrimOps.
15    -------------------------------------------------------------------------- */
16
17 #define gtCharzh(r,a,b) r=(I_)((a)> (b))
18 #define geCharzh(r,a,b) r=(I_)((a)>=(b))
19 #define eqCharzh(r,a,b) r=(I_)((a)==(b))
20 #define neCharzh(r,a,b) r=(I_)((a)!=(b))
21 #define ltCharzh(r,a,b) r=(I_)((a)< (b))
22 #define leCharzh(r,a,b) r=(I_)((a)<=(b))
23
24 /* Int comparisons: >#, >=# etc */
25 #define zgzh(r,a,b)     r=(I_)((I_)(a) >(I_)(b))
26 #define zgzezh(r,a,b)   r=(I_)((I_)(a)>=(I_)(b))
27 #define zezezh(r,a,b)   r=(I_)((I_)(a)==(I_)(b))
28 #define zszezh(r,a,b)   r=(I_)((I_)(a)!=(I_)(b))
29 #define zlzh(r,a,b)     r=(I_)((I_)(a) <(I_)(b))
30 #define zlzezh(r,a,b)   r=(I_)((I_)(a)<=(I_)(b))
31
32 #define gtWordzh(r,a,b) r=(I_)((W_)(a) >(W_)(b))
33 #define geWordzh(r,a,b) r=(I_)((W_)(a)>=(W_)(b))
34 #define eqWordzh(r,a,b) r=(I_)((W_)(a)==(W_)(b))
35 #define neWordzh(r,a,b) r=(I_)((W_)(a)!=(W_)(b))
36 #define ltWordzh(r,a,b) r=(I_)((W_)(a) <(W_)(b))
37 #define leWordzh(r,a,b) r=(I_)((W_)(a)<=(W_)(b))
38
39 #define gtAddrzh(r,a,b) r=(I_)((a) >(b))
40 #define geAddrzh(r,a,b) r=(I_)((a)>=(b))
41 #define eqAddrzh(r,a,b) r=(I_)((a)==(b))
42 #define neAddrzh(r,a,b) r=(I_)((a)!=(b))
43 #define ltAddrzh(r,a,b) r=(I_)((a) <(b))
44 #define leAddrzh(r,a,b) r=(I_)((a)<=(b))
45
46 #define gtFloatzh(r,a,b)  r=(I_)((a)> (b))
47 #define geFloatzh(r,a,b)  r=(I_)((a)>=(b))
48 #define eqFloatzh(r,a,b)  r=(I_)((a)==(b))
49 #define neFloatzh(r,a,b)  r=(I_)((a)!=(b))
50 #define ltFloatzh(r,a,b)  r=(I_)((a)< (b))
51 #define leFloatzh(r,a,b)  r=(I_)((a)<=(b))
52
53 /* Double comparisons: >##, >=#@ etc */
54 #define zgzhzh(r,a,b)   r=(I_)((a) >(b))
55 #define zgzezhzh(r,a,b) r=(I_)((a)>=(b))
56 #define zezezhzh(r,a,b) r=(I_)((a)==(b))
57 #define zszezhzh(r,a,b) r=(I_)((a)!=(b))
58 #define zlzhzh(r,a,b)   r=(I_)((a) <(b))
59 #define zlzezhzh(r,a,b) r=(I_)((a)<=(b))
60
61 /* -----------------------------------------------------------------------------
62    Char# PrimOps.
63    -------------------------------------------------------------------------- */
64
65 #define ordzh(r,a)      r=(I_)((W_) (a))
66 #define chrzh(r,a)      r=(StgChar)((W_)(a))
67
68 /* -----------------------------------------------------------------------------
69    Int# PrimOps.
70    -------------------------------------------------------------------------- */
71
72 I_ stg_div (I_ a, I_ b);
73
74 #define zpzh(r,a,b)             r=(a)+(b)
75 #define zmzh(r,a,b)             r=(a)-(b)
76 #define ztzh(r,a,b)             r=(a)*(b)
77 #define quotIntzh(r,a,b)        r=(a)/(b)
78 #define zszh(r,a,b)             r=ULTRASAFESTGCALL2(I_,(void *, I_, I_),stg_div,(a),(b))
79 #define remIntzh(r,a,b)         r=(a)%(b)
80 #define negateIntzh(r,a)        r=-(a)
81
82 /* -----------------------------------------------------------------------------
83  * Int operations with carry.
84  * -------------------------------------------------------------------------- */
85
86 /* With some bit-twiddling, we can define int{Add,Sub}Czh portably in
87  * C, and without needing any comparisons.  This may not be the
88  * fastest way to do it - if you have better code, please send it! --SDM
89  *
90  * Return : r = a + b,  c = 0 if no overflow, 1 on overflow.
91  *
92  * We currently don't make use of the r value if c is != 0 (i.e. 
93  * overflow), we just convert to big integers and try again.  This
94  * could be improved by making r and c the correct values for
95  * plugging into a new J#.  
96  */
97 #define addIntCzh(r,c,a,b)                      \
98 { r = a + b;                                    \
99   c = ((StgWord)(~(a^b) & (a^r)))               \
100     >> (BITS_PER_BYTE * sizeof(I_) - 1);        \
101 }
102
103
104 #define subIntCzh(r,c,a,b)                      \
105 { r = a - b;                                    \
106   c = ((StgWord)((a^b) & (a^r)))                \
107     >> (BITS_PER_BYTE * sizeof(I_) - 1);        \
108 }
109
110 /* Multiply with overflow checking.
111  *
112  * This is slightly more tricky - the usual sign rules for add/subtract
113  * don't apply.  
114  *
115  * On x86 hardware we use a hand-crafted assembly fragment to do the job.
116  *
117  * On other 32-bit machines we use gcc's 'long long' types, finding
118  * overflow with some careful bit-twiddling.
119  *
120  * On 64-bit machines where gcc's 'long long' type is also 64-bits,
121  * we use a crude approximation, testing whether either operand is
122  * larger than 32-bits; if neither is, then we go ahead with the
123  * multiplication.
124  */
125
126 #if i386_TARGET_ARCH
127
128 #define mulIntCzh(r,c,a,b)                              \
129 {                                                       \
130   __asm__("xorl %1,%1\n\t                               \
131            imull %2,%3\n\t                              \
132            jno 1f\n\t                                   \
133            movl $1,%1\n\t                               \
134            1:"                                          \
135         : "=r" (r), "=&r" (c) : "r" (a), "0" (b));      \
136 }
137
138 #elif SIZEOF_VOID_P == 4
139
140 #ifdef WORDS_BIGENDIAN
141 #define C 0
142 #define R 1
143 #else
144 #define C 1
145 #define R 0
146 #endif
147
148 typedef union {
149     StgInt64 l;
150     StgInt32 i[2];
151 } long_long_u ;
152
153 #define mulIntCzh(r,c,a,b)                      \
154 {                                               \
155   long_long_u z;                                \
156   z.l = (StgInt64)a * (StgInt64)b;              \
157   r = z.i[R];                                   \
158   c = z.i[C];                                   \
159   if (c == 0 || c == -1) {                      \
160     c = ((StgWord)((a^b) ^ r))                  \
161       >> (BITS_PER_BYTE * sizeof(I_) - 1);      \
162   }                                             \
163 }
164 /* Careful: the carry calculation above is extremely delicate.  Make sure
165  * you test it thoroughly after changing it.
166  */
167
168 #else
169
170 #define HALF_INT  (1 << (BITS_PER_BYTE * sizeof(I_) / 2))
171
172 #define stg_abs(a) ((a) < 0 ? -(a) : (a))
173
174 #define mulIntCzh(r,c,a,b)                      \
175 {                                               \
176   if (stg_abs(a) >= HALF_INT                    \
177       stg_abs(b) >= HALF_INT) {                 \
178     c = 1;                                      \
179   } else {                                      \
180     r = a * b;                                  \
181     c = 0;                                      \
182   }                                             \
183 }
184 #endif
185
186 /* -----------------------------------------------------------------------------
187    Word PrimOps.
188    -------------------------------------------------------------------------- */
189
190 #define quotWordzh(r,a,b)       r=((W_)a)/((W_)b)
191 #define remWordzh(r,a,b)        r=((W_)a)%((W_)b)
192
193 #define andzh(r,a,b)            r=(a)&(b)
194 #define orzh(r,a,b)             r=(a)|(b)
195 #define xorzh(r,a,b)            r=(a)^(b)
196 #define notzh(r,a)              r=~(a)
197
198 /* The extra tests below properly define the behaviour when shifting
199  * by offsets larger than the width of the value being shifted.  Doing
200  * so is undefined in C (and in fact gives different answers depending
201  * on whether the operation is constant folded or not with gcc on x86!)
202  */
203
204 #define shiftLzh(r,a,b)         r=((b) >= BITS_IN(W_)) ? 0 : (a)<<(b)
205 #define shiftRLzh(r,a,b)        r=((b) >= BITS_IN(W_)) ? 0 : (a)>>(b)
206 #define iShiftLzh(r,a,b)        r=((b) >= BITS_IN(W_)) ? 0 : (a)<<(b)
207 /* Right shifting of signed quantities is not portable in C, so
208    the behaviour you'll get from using these primops depends
209    on the whatever your C compiler is doing. ToDo: fix/document. -- sof 8/98
210 */
211 #define iShiftRAzh(r,a,b)       r=((b) >= BITS_IN(I_)) ? (((a) < 0) ? -1 : 0) : (a)>>(b)
212 #define iShiftRLzh(r,a,b)       r=((b) >= BITS_IN(I_)) ? 0 : ((W_)(a))>>(b)
213
214 #define int2Wordzh(r,a)         r=(W_)(a)
215 #define word2Intzh(r,a)         r=(I_)(a)
216
217 /* -----------------------------------------------------------------------------
218    Addr PrimOps.
219    -------------------------------------------------------------------------- */
220
221 #define int2Addrzh(r,a)         r=(A_)(a)
222 #define addr2Intzh(r,a)         r=(I_)(a)
223
224 #define readCharOffAddrzh(r,a,i)        r= ((C_ *)(a))[i]
225 #define readIntOffAddrzh(r,a,i)         r= ((I_ *)(a))[i]
226 #define readWordOffAddrzh(r,a,i)        r= ((W_ *)(a))[i]
227 #define readAddrOffAddrzh(r,a,i)        r= ((PP_)(a))[i]
228 #define readFloatOffAddrzh(r,a,i)       r= PK_FLT((P_) (((StgFloat *)(a)) + i))
229 #define readDoubleOffAddrzh(r,a,i)      r= PK_DBL((P_) (((StgDouble *)(a)) + i))
230 #define readStablePtrOffAddrzh(r,a,i)   r= ((StgStablePtr *)(a))[i]
231 #ifdef SUPPORT_LONG_LONGS
232 #define readInt64OffAddrzh(r,a,i)       r= ((LI_ *)(a))[i]
233 #define readWord64OffAddrzh(r,a,i)      r= ((LW_ *)(a))[i]
234 #endif
235
236 #define writeCharOffAddrzh(a,i,v)       ((C_ *)(a))[i] = (v)
237 #define writeIntOffAddrzh(a,i,v)        ((I_ *)(a))[i] = (v)
238 #define writeWordOffAddrzh(a,i,v)       ((W_ *)(a))[i] = (v)
239 #define writeAddrOffAddrzh(a,i,v)       ((PP_)(a))[i] = (v)
240 #define writeForeignObjOffAddrzh(a,i,v) ((PP_)(a))[i] = ForeignObj_CLOSURE_DATA(v)
241 #define writeFloatOffAddrzh(a,i,v)      ASSIGN_FLT((P_) (((StgFloat *)(a)) + i),v)
242 #define writeDoubleOffAddrzh(a,i,v)     ASSIGN_DBL((P_) (((StgDouble *)(a)) + i),v)
243 #define writeStablePtrOffAddrzh(a,i,v)  ((StgStablePtr *)(a))[i] = (v)
244 #ifdef SUPPORT_LONG_LONGS
245 #define writeInt64OffAddrzh(a,i,v)   ((LI_ *)(a))[i] = (v)
246 #define writeWord64OffAddrzh(a,i,v)  ((LW_ *)(a))[i] = (v)
247 #endif
248
249 #define indexCharOffAddrzh(r,a,i)       r= ((C_ *)(a))[i]
250 #define indexIntOffAddrzh(r,a,i)        r= ((I_ *)(a))[i]
251 #define indexWordOffAddrzh(r,a,i)       r= ((W_ *)(a))[i]
252 #define indexAddrOffAddrzh(r,a,i)       r= ((PP_)(a))[i]
253 #define indexFloatOffAddrzh(r,a,i)      r= PK_FLT((P_) (((StgFloat *)(a)) + i))
254 #define indexDoubleOffAddrzh(r,a,i)     r= PK_DBL((P_) (((StgDouble *)(a)) + i))
255 #define indexStablePtrOffAddrzh(r,a,i)  r= ((StgStablePtr *)(a))[i]
256 #ifdef SUPPORT_LONG_LONGS
257 #define indexInt64OffAddrzh(r,a,i)      r= ((LI_ *)(a))[i]
258 #define indexWord64OffAddrzh(r,a,i)     r= ((LW_ *)(a))[i]
259 #endif
260
261 /* -----------------------------------------------------------------------------
262    Float PrimOps.
263    -------------------------------------------------------------------------- */
264
265 #define plusFloatzh(r,a,b)   r=(a)+(b)
266 #define minusFloatzh(r,a,b)  r=(a)-(b)
267 #define timesFloatzh(r,a,b)  r=(a)*(b)
268 #define divideFloatzh(r,a,b) r=(a)/(b)
269 #define negateFloatzh(r,a)   r=-(a)
270                              
271 #define int2Floatzh(r,a)     r=(StgFloat)(a)
272 #define float2Intzh(r,a)     r=(I_)(a)
273                              
274 #define expFloatzh(r,a)      r=(StgFloat) RET_PRIM_STGCALL1(StgDouble,exp,a)
275 #define logFloatzh(r,a)      r=(StgFloat) RET_PRIM_STGCALL1(StgDouble,log,a)
276 #define sqrtFloatzh(r,a)     r=(StgFloat) RET_PRIM_STGCALL1(StgDouble,sqrt,a)
277 #define sinFloatzh(r,a)      r=(StgFloat) RET_PRIM_STGCALL1(StgDouble,sin,a)
278 #define cosFloatzh(r,a)      r=(StgFloat) RET_PRIM_STGCALL1(StgDouble,cos,a)
279 #define tanFloatzh(r,a)      r=(StgFloat) RET_PRIM_STGCALL1(StgDouble,tan,a)
280 #define asinFloatzh(r,a)     r=(StgFloat) RET_PRIM_STGCALL1(StgDouble,asin,a)
281 #define acosFloatzh(r,a)     r=(StgFloat) RET_PRIM_STGCALL1(StgDouble,acos,a)
282 #define atanFloatzh(r,a)     r=(StgFloat) RET_PRIM_STGCALL1(StgDouble,atan,a)
283 #define sinhFloatzh(r,a)     r=(StgFloat) RET_PRIM_STGCALL1(StgDouble,sinh,a)
284 #define coshFloatzh(r,a)     r=(StgFloat) RET_PRIM_STGCALL1(StgDouble,cosh,a)
285 #define tanhFloatzh(r,a)     r=(StgFloat) RET_PRIM_STGCALL1(StgDouble,tanh,a)
286 #define powerFloatzh(r,a,b)  r=(StgFloat) RET_PRIM_STGCALL2(StgDouble,pow,a,b)
287
288 /* -----------------------------------------------------------------------------
289    Double PrimOps.
290    -------------------------------------------------------------------------- */
291
292 #define zpzhzh(r,a,b)        r=(a)+(b)
293 #define zmzhzh(r,a,b)        r=(a)-(b)
294 #define ztzhzh(r,a,b)        r=(a)*(b)
295 #define zszhzh(r,a,b)        r=(a)/(b)
296 #define negateDoublezh(r,a)  r=-(a)
297                              
298 #define int2Doublezh(r,a)    r=(StgDouble)(a)
299 #define double2Intzh(r,a)    r=(I_)(a)
300                              
301 #define float2Doublezh(r,a)  r=(StgDouble)(a)
302 #define double2Floatzh(r,a)  r=(StgFloat)(a)
303                              
304 #define expDoublezh(r,a)     r=(StgDouble) RET_PRIM_STGCALL1(StgDouble,exp,a)
305 #define logDoublezh(r,a)     r=(StgDouble) RET_PRIM_STGCALL1(StgDouble,log,a)
306 #define sqrtDoublezh(r,a)    r=(StgDouble) RET_PRIM_STGCALL1(StgDouble,sqrt,a)
307 #define sinDoublezh(r,a)     r=(StgDouble) RET_PRIM_STGCALL1(StgDouble,sin,a)
308 #define cosDoublezh(r,a)     r=(StgDouble) RET_PRIM_STGCALL1(StgDouble,cos,a)
309 #define tanDoublezh(r,a)     r=(StgDouble) RET_PRIM_STGCALL1(StgDouble,tan,a)
310 #define asinDoublezh(r,a)    r=(StgDouble) RET_PRIM_STGCALL1(StgDouble,asin,a)
311 #define acosDoublezh(r,a)    r=(StgDouble) RET_PRIM_STGCALL1(StgDouble,acos,a)
312 #define atanDoublezh(r,a)    r=(StgDouble) RET_PRIM_STGCALL1(StgDouble,atan,a)
313 #define sinhDoublezh(r,a)    r=(StgDouble) RET_PRIM_STGCALL1(StgDouble,sinh,a)
314 #define coshDoublezh(r,a)    r=(StgDouble) RET_PRIM_STGCALL1(StgDouble,cosh,a)
315 #define tanhDoublezh(r,a)    r=(StgDouble) RET_PRIM_STGCALL1(StgDouble,tanh,a)
316 /* Power: **## */
317 #define ztztzhzh(r,a,b) r=(StgDouble) RET_PRIM_STGCALL2(StgDouble,pow,a,b)
318
319 /* -----------------------------------------------------------------------------
320    Integer PrimOps.
321    -------------------------------------------------------------------------- */
322
323 /* We can do integer2Int and cmpInteger inline, since they don't need
324  * to allocate any memory.
325  *
326  * integer2Int# is now modular.
327  */
328
329 #define integer2Intzh(r, sa,da)                         \
330 { StgWord word0 = ((StgWord *)BYTE_ARR_CTS(da))[0];     \
331   int size = sa;                                        \
332                                                         \
333   (r) =                                                 \
334     ( size == 0 ) ?                                     \
335        0 :                                              \
336        ( size < 0 && word0 != 0x8000000 ) ?             \
337          -(I_)word0 :                                   \
338           (I_)word0;                                    \
339 }
340
341 #define integer2Wordzh(r, sa,da)                        \
342 { StgWord word0 = ((StgWord *)BYTE_ARR_CTS(da))[0];     \
343   int size = sa;                                        \
344   (r) = ( size == 0 ) ? 0 : word0 ;                     \
345 }
346
347 #define cmpIntegerzh(r, s1,d1, s2,d2)                           \
348 { MP_INT arg1;                                                  \
349   MP_INT arg2;                                                  \
350                                                                 \
351   arg1._mp_size = (s1);                                         \
352   arg1._mp_alloc= ((StgArrWords *)d1)->words;                   \
353   arg1._mp_d    = (unsigned long int *) (BYTE_ARR_CTS(d1));     \
354   arg2._mp_size = (s2);                                         \
355   arg2._mp_alloc= ((StgArrWords *)d2)->words;                   \
356   arg2._mp_d    = (unsigned long int *) (BYTE_ARR_CTS(d2));     \
357                                                                 \
358   (r) = RET_PRIM_STGCALL2(I_,mpz_cmp,&arg1,&arg2);              \
359 }
360
361 #define cmpIntegerIntzh(r, s,d, i)                              \
362 { MP_INT arg;                                                   \
363                                                                 \
364   arg._mp_size  = (s);                                          \
365   arg._mp_alloc = ((StgArrWords *)d)->words;                    \
366   arg._mp_d     = (unsigned long int *) (BYTE_ARR_CTS(d));      \
367                                                                 \
368   (r) = RET_PRIM_STGCALL2(I_,mpz_cmp_si,&arg,i);                \
369 }
370
371 /* I think mp_limb_t must be the same size as StgInt for this to work
372  * properly --SDM
373  */
374 #define gcdIntzh(r,a,b) \
375 { StgInt aa = a; \
376   r = (aa) ? (b) ? \
377         RET_STGCALL3(StgInt, mpn_gcd_1, (mp_limb_t *)(&aa), 1, (mp_limb_t)(b)) \
378         : abs(aa) \
379       : abs(b); \
380 }
381
382 #define gcdIntegerIntzh(r,a,sb,b) \
383   RET_STGCALL3(StgInt, mpn_gcd_1, (unsigned long int *) b, sb, (mp_limb_t)(a))
384
385 /* The rest are all out-of-line: -------- */
386
387 /* Integer arithmetic */
388 EF_(plusIntegerzh_fast);
389 EF_(minusIntegerzh_fast);
390 EF_(timesIntegerzh_fast);
391 EF_(gcdIntegerzh_fast);
392 EF_(quotRemIntegerzh_fast);
393 EF_(quotIntegerzh_fast);
394 EF_(remIntegerzh_fast);
395 EF_(divExactIntegerzh_fast);
396 EF_(divModIntegerzh_fast);
397
398 /* Conversions */
399 EF_(int2Integerzh_fast);
400 EF_(word2Integerzh_fast);
401 EF_(addr2Integerzh_fast);
402
403 /* Floating-point decodings */
404 EF_(decodeFloatzh_fast);
405 EF_(decodeDoublezh_fast);
406
407 /* -----------------------------------------------------------------------------
408    Word64 PrimOps.
409    -------------------------------------------------------------------------- */
410
411 #ifdef SUPPORT_LONG_LONGS
412
413 #define integerToWord64zh(r, sa,da)                             \
414 { unsigned long int* d;                                         \
415   I_ aa;                                                        \
416   StgWord64 res;                                                \
417                                                                 \
418   d             = (unsigned long int *) (BYTE_ARR_CTS(da));     \
419   aa = ((StgArrWords *)da)->words;                              \
420   if ( (aa) == 0 ) {                                            \
421      res = (LW_)0;                                              \
422   } else if ( (aa) == 1) {                                      \
423      res = (LW_)d[0];                                           \
424   } else {                                                      \
425      res = (LW_)d[0] + (LW_)d[1] * 0x100000000ULL;              \
426   }                                                             \
427   (r) = res;                                                    \
428 }
429
430 #define integerToInt64zh(r, sa,da)                              \
431 { unsigned long int* d;                                         \
432   I_ aa;                                                        \
433   StgInt64 res;                                                 \
434                                                                 \
435   d             = (unsigned long int *) (BYTE_ARR_CTS(da));     \
436   aa = ((StgArrWords *)da)->words;                              \
437   if ( (aa) == 0 ) {                                            \
438      res = (LI_)0;                                              \
439   } else if ( (aa) == 1) {                                      \
440      res = (LI_)d[0];                                           \
441   } else {                                                      \
442      res = (LI_)d[0] + (LI_)d[1] * 0x100000000LL;               \
443      if ( sa < 0 ) {                                            \
444            res = (LI_)-res;                                     \
445      }                                                          \
446   }                                                             \
447   (r) = res;                                                    \
448 }
449
450 /* Conversions */
451 EF_(int64ToIntegerzh_fast);
452 EF_(word64ToIntegerzh_fast);
453
454 /* The rest are (way!) out of line, implemented via C entry points.
455  */
456 I_ stg_gtWord64 (StgWord64, StgWord64);
457 I_ stg_geWord64 (StgWord64, StgWord64);
458 I_ stg_eqWord64 (StgWord64, StgWord64);
459 I_ stg_neWord64 (StgWord64, StgWord64);
460 I_ stg_ltWord64 (StgWord64, StgWord64);
461 I_ stg_leWord64 (StgWord64, StgWord64);
462
463 I_ stg_gtInt64 (StgInt64, StgInt64);
464 I_ stg_geInt64 (StgInt64, StgInt64);
465 I_ stg_eqInt64 (StgInt64, StgInt64);
466 I_ stg_neInt64 (StgInt64, StgInt64);
467 I_ stg_ltInt64 (StgInt64, StgInt64);
468 I_ stg_leInt64 (StgInt64, StgInt64);
469
470 LW_ stg_remWord64  (StgWord64, StgWord64);
471 LW_ stg_quotWord64 (StgWord64, StgWord64);
472
473 LI_ stg_remInt64    (StgInt64, StgInt64);
474 LI_ stg_quotInt64   (StgInt64, StgInt64);
475 LI_ stg_negateInt64 (StgInt64);
476 LI_ stg_plusInt64   (StgInt64, StgInt64);
477 LI_ stg_minusInt64  (StgInt64, StgInt64);
478 LI_ stg_timesInt64  (StgInt64, StgInt64);
479
480 LW_ stg_and64  (StgWord64, StgWord64);
481 LW_ stg_or64   (StgWord64, StgWord64);
482 LW_ stg_xor64  (StgWord64, StgWord64);
483 LW_ stg_not64  (StgWord64);
484
485 LW_ stg_shiftL64   (StgWord64, StgInt);
486 LW_ stg_shiftRL64  (StgWord64, StgInt);
487 LI_ stg_iShiftL64  (StgInt64, StgInt);
488 LI_ stg_iShiftRL64 (StgInt64, StgInt);
489 LI_ stg_iShiftRA64 (StgInt64, StgInt);
490
491 LI_ stg_intToInt64    (StgInt);
492 I_ stg_int64ToInt     (StgInt64);
493 LW_ stg_int64ToWord64 (StgInt64);
494
495 LW_ stg_wordToWord64  (StgWord);
496 W_  stg_word64ToWord  (StgWord64);
497 LI_ stg_word64ToInt64 (StgWord64);
498 #endif
499
500 /* -----------------------------------------------------------------------------
501    Array PrimOps.
502    -------------------------------------------------------------------------- */
503
504 /* We cast to void* instead of StgChar* because this avoids a warning
505  * about increasing the alignment requirements.
506  */
507 #define REAL_BYTE_ARR_CTS(a)   ((void *) (((StgArrWords *)(a))->payload))
508 #define REAL_PTRS_ARR_CTS(a)   ((P_)   (((StgMutArrPtrs  *)(a))->payload))
509
510 #ifdef DEBUG
511 #define BYTE_ARR_CTS(a)                           \
512  ({ ASSERT(GET_INFO((StgArrWords *)(a)) == &ARR_WORDS_info);      \
513     REAL_BYTE_ARR_CTS(a); })
514 #define PTRS_ARR_CTS(a)                           \
515  ({ ASSERT((GET_INFO((StgMutArrPtrs  *)(a)) == &MUT_ARR_PTRS_FROZEN_info)         \
516         || (GET_INFO((StgMutArrPtrs  *)(a)) == &MUT_ARR_PTRS_info));  \
517     REAL_PTRS_ARR_CTS(a); })
518 #else
519 #define BYTE_ARR_CTS(a)         REAL_BYTE_ARR_CTS(a)
520 #define PTRS_ARR_CTS(a)         REAL_PTRS_ARR_CTS(a)
521 #endif
522
523 extern I_ genSymZh(void);
524 extern I_ resetGenSymZh(void);
525
526 /*--- everything except new*Array is done inline: */
527
528 #define sameMutableArrayzh(r,a,b)       r=(I_)((a)==(b))
529 #define sameMutableByteArrayzh(r,a,b)   r=(I_)((a)==(b))
530
531 #define readArrayzh(r,a,i)       r=((PP_) PTRS_ARR_CTS(a))[(i)]
532
533 #define readCharArrayzh(r,a,i)   indexCharOffAddrzh(r,BYTE_ARR_CTS(a),i)
534 #define readIntArrayzh(r,a,i)    indexIntOffAddrzh(r,BYTE_ARR_CTS(a),i)
535 #define readWordArrayzh(r,a,i)   indexWordOffAddrzh(r,BYTE_ARR_CTS(a),i)
536 #define readAddrArrayzh(r,a,i)   indexAddrOffAddrzh(r,BYTE_ARR_CTS(a),i)
537 #define readFloatArrayzh(r,a,i)  indexFloatOffAddrzh(r,BYTE_ARR_CTS(a),i)
538 #define readDoubleArrayzh(r,a,i) indexDoubleOffAddrzh(r,BYTE_ARR_CTS(a),i)
539 #define readStablePtrArrayzh(r,a,i) indexStablePtrOffAddrzh(r,BYTE_ARR_CTS(a),i)
540 #ifdef SUPPORT_LONG_LONGS
541 #define readInt64Arrayzh(r,a,i)  indexInt64OffAddrzh(r,BYTE_ARR_CTS(a),i)
542 #define readWord64Arrayzh(r,a,i) indexWord64OffAddrzh(r,BYTE_ARR_CTS(a),i)
543 #endif
544
545 /* result ("r") arg ignored in write macros! */
546 #define writeArrayzh(a,i,v)     ((PP_) PTRS_ARR_CTS(a))[(i)]=(v)
547
548 #define writeCharArrayzh(a,i,v)   ((C_ *)(BYTE_ARR_CTS(a)))[i] = (v)
549 #define writeIntArrayzh(a,i,v)    ((I_ *)(BYTE_ARR_CTS(a)))[i] = (v)
550 #define writeWordArrayzh(a,i,v)   ((W_ *)(BYTE_ARR_CTS(a)))[i] = (v)
551 #define writeAddrArrayzh(a,i,v)   ((PP_)(BYTE_ARR_CTS(a)))[i] = (v)
552 #define writeFloatArrayzh(a,i,v)  \
553         ASSIGN_FLT((P_) (((StgFloat *)(BYTE_ARR_CTS(a))) + i),v)
554 #define writeDoubleArrayzh(a,i,v) \
555         ASSIGN_DBL((P_) (((StgDouble *)(BYTE_ARR_CTS(a))) + i),v)
556 #define writeStablePtrArrayzh(a,i,v)      ((StgStablePtr *)(BYTE_ARR_CTS(a)))[i] = (v)
557 #ifdef SUPPORT_LONG_LONGS
558 #define writeInt64Arrayzh(a,i,v)  ((LI_ *)(BYTE_ARR_CTS(a)))[i] = (v)
559 #define writeWord64Arrayzh(a,i,v) ((LW_ *)(BYTE_ARR_CTS(a)))[i] = (v)
560 #endif
561
562 #define indexArrayzh(r,a,i)       r=((PP_) PTRS_ARR_CTS(a))[(i)]
563
564 #define indexCharArrayzh(r,a,i)   indexCharOffAddrzh(r,BYTE_ARR_CTS(a),i)
565 #define indexIntArrayzh(r,a,i)    indexIntOffAddrzh(r,BYTE_ARR_CTS(a),i)
566 #define indexWordArrayzh(r,a,i)   indexWordOffAddrzh(r,BYTE_ARR_CTS(a),i)
567 #define indexAddrArrayzh(r,a,i)   indexAddrOffAddrzh(r,BYTE_ARR_CTS(a),i)
568 #define indexFloatArrayzh(r,a,i)  indexFloatOffAddrzh(r,BYTE_ARR_CTS(a),i)
569 #define indexDoubleArrayzh(r,a,i) indexDoubleOffAddrzh(r,BYTE_ARR_CTS(a),i)
570 #define indexStablePtrArrayzh(r,a,i) indexStablePtrOffAddrzh(r,BYTE_ARR_CTS(a),i)
571 #ifdef SUPPORT_LONG_LONGS
572 #define indexInt64Arrayzh(r,a,i)  indexInt64OffAddrzh(r,BYTE_ARR_CTS(a),i)
573 #define indexWord64Arrayzh(r,a,i) indexWord64OffAddrzh(r,BYTE_ARR_CTS(a),i)
574 #endif
575
576 /* Freezing arrays-of-ptrs requires changing an info table, for the
577    benefit of the generational collector.  It needs to scavenge mutable
578    objects, even if they are in old space.  When they become immutable,
579    they can be removed from this scavenge list.  */
580
581 #define unsafeFreezzeArrayzh(r,a)                                       \
582         {                                                               \
583         SET_INFO((StgClosure *)a,&MUT_ARR_PTRS_FROZEN_info);            \
584         r = a;                                                          \
585         }
586
587 #define unsafeFreezzeByteArrayzh(r,a)   r=(a)
588
589 EF_(unsafeThawArrayzh_fast);
590
591 #define sizzeofByteArrayzh(r,a) \
592      r = (((StgArrWords *)(a))->words * sizeof(W_))
593 #define sizzeofMutableByteArrayzh(r,a) \
594      r = (((StgArrWords *)(a))->words * sizeof(W_))
595
596 /* and the out-of-line ones... */
597
598 EF_(newCharArrayzh_fast);
599 EF_(newIntArrayzh_fast);
600 EF_(newWordArrayzh_fast);
601 EF_(newAddrArrayzh_fast);
602 EF_(newFloatArrayzh_fast);
603 EF_(newDoubleArrayzh_fast);
604 EF_(newStablePtrArrayzh_fast);
605 EF_(newArrayzh_fast);
606
607 /* encoding and decoding of floats/doubles. */
608
609 /* We only support IEEE floating point format */
610 #include "ieee-flpt.h"
611
612 /* The decode operations are out-of-line because they need to allocate
613  * a byte array.
614  */
615 #ifdef FLOATS_AS_DOUBLES
616 #define decodeFloatzh_fast decodeDoublezh_fast
617 #else
618 EF_(decodeFloatzh_fast);
619 #endif
620
621 EF_(decodeDoublezh_fast);
622
623 /* grimy low-level support functions defined in StgPrimFloat.c */
624
625 extern StgDouble __encodeDouble (I_ size, StgByteArray arr, I_ e);
626 extern StgDouble __int_encodeDouble (I_ j, I_ e);
627 #ifndef FLOATS_AS_DOUBLES
628 extern StgFloat  __encodeFloat (I_ size, StgByteArray arr, I_ e);
629 extern StgFloat  __int_encodeFloat (I_ j, I_ e);
630 #endif
631 extern void      __decodeDouble (MP_INT *man, I_ *_exp, StgDouble dbl);
632 extern void      __decodeFloat  (MP_INT *man, I_ *_exp, StgFloat flt);
633 extern StgInt    isDoubleNaN(StgDouble d);
634 extern StgInt    isDoubleInfinite(StgDouble d);
635 extern StgInt    isDoubleDenormalized(StgDouble d);
636 extern StgInt    isDoubleNegativeZero(StgDouble d);
637 extern StgInt    isFloatNaN(StgFloat f);
638 extern StgInt    isFloatInfinite(StgFloat f);
639 extern StgInt    isFloatDenormalized(StgFloat f);
640 extern StgInt    isFloatNegativeZero(StgFloat f);
641
642 /* -----------------------------------------------------------------------------
643    Mutable variables
644
645    newMutVar is out of line.
646    -------------------------------------------------------------------------- */
647
648 EF_(newMutVarzh_fast);
649
650 #define readMutVarzh(r,a)        r=(P_)(((StgMutVar *)(a))->var)
651 #define writeMutVarzh(a,v)       (P_)(((StgMutVar *)(a))->var)=(v)
652 #define sameMutVarzh(r,a,b)      r=(I_)((a)==(b))
653
654 /* -----------------------------------------------------------------------------
655    MVar PrimOps.
656
657    All out of line, because they either allocate or may block.
658    -------------------------------------------------------------------------- */
659 #define sameMVarzh(r,a,b)        r=(I_)((a)==(b))
660
661 /* Assume external decl of EMPTY_MVAR_info is in scope by now */
662 #define isEmptyMVarzh(r,a)       r=(I_)((GET_INFO((StgMVar*)(a))) == &EMPTY_MVAR_info )
663 EF_(newMVarzh_fast);
664 EF_(takeMVarzh_fast);
665 EF_(putMVarzh_fast);
666
667
668 /* -----------------------------------------------------------------------------
669    Delay/Wait PrimOps
670    -------------------------------------------------------------------------- */
671
672 EF_(waitReadzh_fast);
673 EF_(waitWritezh_fast);
674 EF_(delayzh_fast);
675
676 /* -----------------------------------------------------------------------------
677    Primitive I/O, error-handling PrimOps
678    -------------------------------------------------------------------------- */
679
680 EF_(catchzh_fast);
681 EF_(raisezh_fast);
682
683 extern void stg_exit(I_ n)  __attribute__ ((noreturn));
684
685 /* -----------------------------------------------------------------------------
686    Stable Name / Stable Pointer  PrimOps
687    -------------------------------------------------------------------------- */
688
689 #ifndef PAR
690
691 EF_(makeStableNamezh_fast);
692
693 #define stableNameToIntzh(r,s)   (r = ((StgStableName *)s)->sn)
694
695 #define eqStableNamezh(r,sn1,sn2)                                       \
696     (r = (((StgStableName *)sn1)->sn == ((StgStableName *)sn2)->sn))
697
698 #define makeStablePtrzh(r,a) \
699    r = RET_STGCALL1(StgStablePtr,getStablePtr,a)
700
701 #define deRefStablePtrzh(r,sp) do {             \
702   ASSERT(stable_ptr_table[sp & ~STABLEPTR_WEIGHT_MASK].weight > 0);     \
703   r = stable_ptr_table[sp & ~STABLEPTR_WEIGHT_MASK].addr; \
704 } while (0);
705
706 #define eqStablePtrzh(r,sp1,sp2) \
707     (r = ((sp1 & ~STABLEPTR_WEIGHT_MASK) == (sp2 & ~STABLEPTR_WEIGHT_MASK)))
708
709 #endif
710
711 /* -----------------------------------------------------------------------------
712    Concurrency/Exception PrimOps.
713    -------------------------------------------------------------------------- */
714
715 EF_(forkzh_fast);
716 EF_(yieldzh_fast);
717 EF_(killThreadzh_fast);
718 EF_(seqzh_fast);
719 EF_(blockAsyncExceptionszh_fast);
720 EF_(unblockAsyncExceptionszh_fast);
721
722 #define myThreadIdzh(t) (t = CurrentTSO)
723
724 extern int cmp_thread(const StgTSO *tso1, const StgTSO *tso2);
725
726 /* ------------------------------------------------------------------------
727    Parallel PrimOps
728
729    A par in the Haskell code is ultimately translated to a parzh macro
730    (with a case wrapped around it to guarantee that the macro is actually 
731     executed; see compiler/prelude/PrimOps.lhs)
732    In GUM and SMP we only add a pointer to the spark pool.
733    In GranSim we call an RTS fct, forwarding additional parameters which
734    supply info on granularity of the computation, size of the result value
735    and the degree of parallelism in the sparked expression.
736    ---------------------------------------------------------------------- */
737
738 #if defined(GRAN)
739 //@cindex _par_
740 #define parzh(r,node)             PAR(r,node,1,0,0,0,0,0)
741
742 //@cindex _parAt_
743 #define parAtzh(r,node,where,identifier,gran_info,size_info,par_info,rest) \
744         parAT(r,node,where,identifier,gran_info,size_info,par_info,rest,1)
745
746 //@cindex _parAtAbs_
747 #define parAtAbszh(r,node,proc,identifier,gran_info,size_info,par_info,rest) \
748         parAT(r,node,proc,identifier,gran_info,size_info,par_info,rest,2)
749
750 //@cindex _parAtRel_
751 #define parAtRelzh(r,node,proc,identifier,gran_info,size_info,par_info,rest) \
752         parAT(r,node,proc,identifier,gran_info,size_info,par_info,rest,3)
753
754 //@cindex _parAtForNow_
755 #define parAtForNowzh(r,node,where,identifier,gran_info,size_info,par_info,rest)        \
756         parAT(r,node,where,identifier,gran_info,size_info,par_info,rest,0)
757
758 #define parAT(r,node,where,identifier,gran_info,size_info,par_info,rest,local)  \
759 {                                                               \
760   if (closure_SHOULD_SPARK((StgClosure*)node)) {                \
761     rtsSparkQ result;                                           \
762     PEs p;                                                      \
763                                                                 \
764     STGCALL6(newSpark, node,identifier,gran_info,size_info,par_info,local); \
765     switch (local) {                                                        \
766       case 2: p = where;  /* parAtAbs means absolute PE no. expected */     \
767               break;                                                        \
768       case 3: p = CurrentProc+where; /* parAtRel means rel PE no. expected */\
769               break;                                                        \
770       default: p = where_is(where); /* parAt means closure expected */      \
771               break;                                                        \
772     }                                                                       \
773     /* update GranSim state according to this spark */                      \
774     STGCALL3(GranSimSparkAtAbs, result, (I_)p, identifier);                 \
775   }                                                                         \
776 }
777
778 //@cindex _parLocal_
779 #define parLocalzh(r,node,identifier,gran_info,size_info,par_info,rest) \
780         PAR(r,node,rest,identifier,gran_info,size_info,par_info,1)
781
782 //@cindex _parGlobal_
783 #define parGlobalzh(r,node,identifier,gran_info,size_info,par_info,rest) \
784         PAR(r,node,rest,identifier,gran_info,size_info,par_info,0)
785
786 #define PAR(r,node,rest,identifier,gran_info,size_info,par_info,local) \
787 {                                                                        \
788   if (closure_SHOULD_SPARK((StgClosure*)node)) {                         \
789     rtsSpark *result;                                                    \
790     result = RET_STGCALL6(rtsSpark*, newSpark,                           \
791                           node,identifier,gran_info,size_info,par_info,local);\
792     STGCALL1(add_to_spark_queue,result);                                \
793     STGCALL2(GranSimSpark, local,(P_)node);                             \
794   }                                                                     \
795 }
796
797 #define copyablezh(r,node)                              \
798   /* copyable not yet implemented!! */
799
800 #define noFollowzh(r,node)                              \
801   /* noFollow not yet implemented!! */
802
803 #elif defined(SMP) || defined(PAR)
804
805 #define parzh(r,node)                                   \
806 {                                                       \
807   extern unsigned int context_switch;                   \
808   if (closure_SHOULD_SPARK((StgClosure *)node) &&       \
809       SparkTl < SparkLim) {                             \
810     *SparkTl++ = (StgClosure *)(node);                  \
811   }                                                     \
812   r = context_switch = 1;                               \
813 }
814 #else /* !GRAN && !SMP && !PAR */
815 #define parzh(r,node) r = 1
816 #endif
817
818 /* -----------------------------------------------------------------------------
819    Pointer equality
820    -------------------------------------------------------------------------- */
821
822 /* warning: extremely non-referentially transparent, need to hide in
823    an appropriate monad.
824
825    ToDo: follow indirections.  
826 */
827
828 #define reallyUnsafePtrEqualityzh(r,a,b) r=((StgPtr)(a) == (StgPtr)(b))
829
830 /* -----------------------------------------------------------------------------
831    Weak Pointer PrimOps.
832    -------------------------------------------------------------------------- */
833
834 #ifndef PAR
835
836 EF_(mkWeakzh_fast);
837 EF_(finalizzeWeakzh_fast);
838
839 #define deRefWeakzh(code,val,w)                         \
840   if (((StgWeak *)w)->header.info == &WEAK_info) {      \
841         code = 1;                                       \
842         val = (P_)((StgWeak *)w)->value;                \
843   } else {                                              \
844         code = 0;                                       \
845         val = (P_)w;                                    \
846   }
847
848 #define sameWeakzh(w1,w2)  ((w1)==(w2))
849
850 #endif
851
852 /* -----------------------------------------------------------------------------
853    Foreign Object PrimOps.
854    -------------------------------------------------------------------------- */
855
856 #ifndef PAR
857
858 #define ForeignObj_CLOSURE_DATA(c)  (((StgForeignObj *)c)->data)
859
860 EF_(makeForeignObjzh_fast);
861
862 #define writeForeignObjzh(res,datum) \
863    (ForeignObj_CLOSURE_DATA(res) = (P_)(datum))
864
865 #define eqForeignObj(f1,f2)  ((f1)==(f2))
866
867 #define indexCharOffForeignObjzh(r,fo,i)   indexCharOffAddrzh(r,ForeignObj_CLOSURE_DATA(fo),i)
868 #define indexIntOffForeignObjzh(r,fo,i)    indexIntOffAddrzh(r,ForeignObj_CLOSURE_DATA(fo),i)
869 #define indexWordOffForeignObjzh(r,fo,i)   indexWordOffAddrzh(r,ForeignObj_CLOSURE_DATA(fo),i)
870 #define indexAddrOffForeignObjzh(r,fo,i)   indexAddrOffAddrzh(r,ForeignObj_CLOSURE_DATA(fo),i)
871 #define indexFloatOffForeignObjzh(r,fo,i)  indexFloatOffAddrzh(r,ForeignObj_CLOSURE_DATA(fo),i)
872 #define indexDoubleOffForeignObjzh(r,fo,i) indexDoubleOffAddrzh(r,ForeignObj_CLOSURE_DATA(fo),i)
873 #define indexStablePtrOffForeignObjzh(r,fo,i)  indexStablePtrOffAddrzh(r,ForeignObj_CLOSURE_DATA(fo),i)
874 #ifdef SUPPORT_LONG_LONGS
875 #define indexInt64OffForeignObjzh(r,fo,i)  indexInt64OffAddrzh(r,ForeignObj_CLOSURE_DATA(fo),i)
876 #define indexWord64OffForeignObjzh(r,fo,i) indexWord64OffAddrzh(r,ForeignObj_CLOSURE_DATA(fo),i)
877 #endif
878
879 #endif
880
881 /* -----------------------------------------------------------------------------
882    Constructor tags
883    -------------------------------------------------------------------------- */
884
885 #define dataToTagzh(r,a)  r=(GET_TAG(((StgClosure *)a)->header.info))
886 /*  tagToEnum# is handled directly by the code generator. */
887
888 /* -----------------------------------------------------------------------------
889    Signal processing.  Not really primops, but called directly from
890    Haskell. 
891    -------------------------------------------------------------------------- */
892
893 #define STG_SIG_DFL  (-1)
894 #define STG_SIG_IGN  (-2)
895 #define STG_SIG_ERR  (-3)
896 #define STG_SIG_HAN  (-4)
897
898 extern StgInt sig_install (StgInt, StgInt, StgStablePtr, sigset_t *);
899 #define stg_sig_default(sig,mask) sig_install(sig,STG_SIG_DFL,0,(sigset_t *)mask)
900 #define stg_sig_ignore(sig,mask) sig_install(sig,STG_SIG_IGN,0,(sigset_t *)mask)
901 #define stg_sig_catch(sig,ptr,mask) sig_install(sig,STG_SIG_HAN,ptr,(sigset_t *)mask)
902
903 #endif PRIMOPS_H