74d50acea205f22185dfde92ca007570725a501b
[ghc-hetmet.git] / ghc / rts / Capability.c
1 /* ---------------------------------------------------------------------------
2  *
3  * (c) The GHC Team, 2002
4  *
5  * Capabilities
6  *
7  * A Capability represent the token required to execute STG code,
8  * and all the state an OS thread/task needs to run Haskell code:
9  * its STG registers, a pointer to its TSO, a nursery etc. During
10  * STG execution, a pointer to the capabilitity is kept in a
11  * register (BaseReg).
12  *
13  * Only in an SMP build will there be multiple capabilities, for
14  * the threaded RTS and other non-threaded builds, there is only
15  * one global capability, namely MainCapability.
16  * 
17  * --------------------------------------------------------------------------*/
18 #include "PosixSource.h"
19 #include "Rts.h"
20 #include "RtsUtils.h"
21 #include "OSThreads.h"
22 #include "Capability.h"
23 #include "Schedule.h"  /* to get at EMPTY_RUN_QUEUE() */
24 #include "Signals.h" /* to get at handleSignalsInThisThread() */
25
26 #if !defined(SMP)
27 Capability MainCapability;     /* for non-SMP, we have one global capability */
28 #endif
29
30 nat rts_n_free_capabilities;
31
32 #if defined(RTS_SUPPORTS_THREADS)
33 /* returning_worker_cond: when a worker thread returns from executing an
34  * external call, it needs to wait for an RTS Capability before passing
35  * on the result of the call to the Haskell thread that made it.
36  * 
37  * returning_worker_cond is signalled in Capability.releaseCapability().
38  *
39  */
40 Condition returning_worker_cond = INIT_COND_VAR;
41
42 /*
43  * To avoid starvation of threads blocked on worker_thread_cond,
44  * the task(s) that enter the Scheduler will check to see whether
45  * there are one or more worker threads blocked waiting on
46  * returning_worker_cond.
47  */
48 nat rts_n_waiting_workers = 0;
49
50 /* thread_ready_cond: when signalled, a thread has become runnable for a
51  * task to execute.
52  *
53  * In the non-SMP case, it also implies that the thread that is woken up has
54  * exclusive access to the RTS and all its data structures (that are not
55  * locked by the Scheduler's mutex).
56  *
57  * thread_ready_cond is signalled whenever noCapabilities doesn't hold.
58  *
59  */
60 Condition thread_ready_cond = INIT_COND_VAR;
61
62 /*
63  * To be able to make an informed decision about whether or not 
64  * to create a new task when making an external call, keep track of
65  * the number of tasks currently blocked waiting on thread_ready_cond.
66  * (if > 0 => no need for a new task, just unblock an existing one).
67  *
68  * waitForWorkCapability() takes care of keeping it up-to-date;
69  * Task.startTask() uses its current value.
70  */
71 nat rts_n_waiting_tasks = 0;
72 #endif
73
74 /* -----------------------------------------------------------------------------
75    Initialisation
76    -------------------------------------------------------------------------- */
77 static
78 void
79 initCapability( Capability *cap )
80 {
81     cap->f.stgGCEnter1     = (F_)__stg_gc_enter_1;
82     cap->f.stgGCFun        = (F_)__stg_gc_fun;
83 }
84
85 #if defined(SMP)
86 static void initCapabilities_(nat n);
87 #endif
88
89 /* 
90  * Function:  initCapabilities()
91  *
92  * Purpose:   set up the Capability handling. For the SMP build,
93  *            we keep a table of them, the size of which is
94  *            controlled by the user via the RTS flag RtsFlags.ParFlags.nNodes
95  *
96  * Pre-conditions: no locks assumed held.
97  */
98 void
99 initCapabilities()
100 {
101 #if defined(RTS_SUPPORTS_THREADS)
102   initCondition(&returning_worker_cond);
103   initCondition(&thread_ready_cond);
104 #endif
105
106 #if defined(SMP)
107   initCapabilities_(RtsFlags.ParFlags.nNodes);
108 #else
109   initCapability(&MainCapability);
110   rts_n_free_capabilities = 1;
111 #endif
112
113   return;
114 }
115
116 #if defined(SMP)
117 /* Free capability list. */
118 static Capability *free_capabilities; /* Available capabilities for running threads */
119 static Capability *returning_capabilities; 
120         /* Capabilities being passed to returning worker threads */
121 #endif
122
123 /* -----------------------------------------------------------------------------
124    Acquiring capabilities
125    -------------------------------------------------------------------------- */
126
127 /*
128  * Function:  grabCapability(Capability**)
129  * 
130  * Purpose:   the act of grabbing a capability is easy; just 
131  *            remove one from the free capabilities list (which
132  *            may just have one entry). In threaded builds, worker
133  *            threads are prevented from doing so willy-nilly
134  *            via the condition variables thread_ready_cond and
135  *            returning_worker_cond.
136  *
137  */ 
138 void grabCapability(Capability** cap)
139 {
140 #ifdef RTS_SUPPORTS_THREADS
141   ASSERT(rts_n_free_capabilities > 0);
142 #endif
143 #if !defined(SMP)
144   rts_n_free_capabilities = 0;
145   *cap = &MainCapability;
146   handleSignalsInThisThread();
147 #else
148   *cap = free_capabilities;
149   free_capabilities = (*cap)->link;
150   rts_n_free_capabilities--;
151 #endif
152 #ifdef RTS_SUPPORTS_THREADS
153   IF_DEBUG(scheduler,
154            fprintf(stderr,"worker thread (%p): got capability\n",
155                    osThreadId()));
156 #endif
157 }
158
159 /*
160  * Function:  releaseCapability(Capability*)
161  *
162  * Purpose:   Letting go of a capability. Causes a
163  *            'returning worker' thread or a 'waiting worker'
164  *            to wake up, in that order.
165  *
166  */
167 void releaseCapability(Capability* cap
168 #if !defined(SMP)
169                        STG_UNUSED
170 #endif
171 )
172 {       // Precondition: sched_mutex must be held
173 #if defined(RTS_SUPPORTS_THREADS)
174 #ifndef SMP
175   ASSERT(rts_n_free_capabilities == 0);
176 #endif
177   /* Check to see whether a worker thread can be given
178      the go-ahead to return the result of an external call..*/
179   if (rts_n_waiting_workers > 0) {
180     /* Decrement the counter here to avoid livelock where the
181      * thread that is yielding its capability will repeatedly
182      * signal returning_worker_cond.
183      */
184 #if defined(SMP)
185         // SMP variant untested
186     cap->link = returning_capabilities;
187     returning_capabilities = cap;
188 #else
189 #endif
190     rts_n_waiting_workers--;
191     signalCondition(&returning_worker_cond);
192   } else /*if ( !EMPTY_RUN_QUEUE() )*/ {
193 #if defined(SMP)
194     cap->link = free_capabilities;
195     free_capabilities = cap;
196     rts_n_free_capabilities++;
197 #else
198     rts_n_free_capabilities = 1;
199 #endif
200     /* Signal that a capability is available */
201     signalCondition(&thread_ready_cond);
202   }
203 #endif
204 #ifdef RTS_SUPPORTS_THREADS
205   IF_DEBUG(scheduler,
206            fprintf(stderr,"worker thread (%p): released capability\n",
207                    osThreadId()));
208 #endif
209  return;
210 }
211
212 #if defined(RTS_SUPPORTS_THREADS)
213 /*
214  * When a native thread has completed the execution of an external
215  * call, it needs to communicate the result back. This is done
216  * as follows:
217  *
218  *  - in resumeThread(), the thread calls grabReturnCapability().
219  *  - If no capabilities are readily available, grabReturnCapability()
220  *    increments a counter rts_n_waiting_workers, and blocks
221  *    waiting for the condition returning_worker_cond to become
222  *    signalled.
223  *  - upon entry to the Scheduler, a worker thread checks the
224  *    value of rts_n_waiting_workers. If > 0, the worker thread
225  *    will yield its capability to let a returning worker thread
226  *    proceed with returning its result -- this is done via
227  *    yieldToReturningWorker().
228  *  - the worker thread that yielded its capability then tries
229  *    to re-grab a capability and re-enter the Scheduler.
230  */
231
232 /*
233  * Function: grabReturnCapability(Capability**)
234  *
235  * Purpose:  when an OS thread returns from an external call,
236  * it calls grabReturnCapability() (via Schedule.resumeThread())
237  * to wait for permissions to enter the RTS & communicate the
238  * result of the external call back to the Haskell thread that
239  * made it.
240  *
241  * Pre-condition:  pMutex is held.
242  * Post-condition: pMutex is still held and a capability has
243  *                 been assigned to the worker thread.
244  */
245 void
246 grabReturnCapability(Mutex* pMutex, Capability** pCap)
247 {
248   IF_DEBUG(scheduler,
249            fprintf(stderr,"worker (%p): returning, waiting for lock.\n", osThreadId()));
250   IF_DEBUG(scheduler,
251            fprintf(stderr,"worker (%p): returning; workers waiting: %d\n",
252                    osThreadId(), rts_n_waiting_workers));
253   if ( noCapabilities() ) {
254     rts_n_waiting_workers++;
255     wakeBlockedWorkerThread();
256     context_switch = 1; // make sure it's our turn soon
257     waitCondition(&returning_worker_cond, pMutex);
258 #if defined(SMP)
259     *pCap = returning_capabilities;
260     returning_capabilities = (*pCap)->link;
261 #else
262     *pCap = &MainCapability;
263     ASSERT(rts_n_free_capabilities == 0);
264     handleSignalsInThisThread();
265 #endif
266   } else {
267     grabCapability(pCap);
268   }
269   return;
270 }
271
272
273 /* -----------------------------------------------------------------------------
274    Yielding/waiting for capabilities
275    -------------------------------------------------------------------------- */
276
277 /*
278  * Function: yieldToReturningWorker(Mutex*,Capability*,Condition*)
279  *
280  * Purpose:  when, upon entry to the Scheduler, an OS worker thread
281  *           spots that one or more threads are blocked waiting for
282  *           permission to return back their result, it gives up
283  *           its Capability.
284  *           Immediately afterwards, it tries to reaquire the Capabilty
285  *           using waitForWorkCapability.
286  *
287  *
288  * Pre-condition:  pMutex is assumed held and the thread possesses
289  *                 a Capability.
290  * Post-condition: pMutex is held and the thread possesses
291  *                 a Capability.
292  */
293 void
294 yieldToReturningWorker(Mutex* pMutex, Capability** pCap, Condition* pThreadCond)
295 {
296   if ( rts_n_waiting_workers > 0 ) {
297     IF_DEBUG(scheduler,
298              fprintf(stderr,"worker thread (%p): giving up RTS token\n", osThreadId()));
299     releaseCapability(*pCap);
300         /* And wait for work */
301     waitForWorkCapability(pMutex, pCap, pThreadCond);
302     IF_DEBUG(scheduler,
303              fprintf(stderr,"worker thread (%p): got back RTS token (after yieldToReturningWorker)\n",
304                 osThreadId()));
305   }
306   return;
307 }
308
309
310 /*
311  * Function: waitForWorkCapability(Mutex*, Capability**, Condition*)
312  *
313  * Purpose:  wait for a Capability to become available. In
314  *           the process of doing so, updates the number
315  *           of tasks currently blocked waiting for a capability/more
316  *           work. That counter is used when deciding whether or
317  *           not to create a new worker thread when an external
318  *           call is made.
319  *           If pThreadCond is not NULL, a capability can be specifically
320  *           passed to this thread using passCapability.
321  *
322  * Pre-condition: pMutex is held.
323  * Post-condition: pMutex is held and *pCap is held by the current thread
324  */
325  
326 static Condition *passTarget = NULL;
327  
328 void 
329 waitForWorkCapability(Mutex* pMutex, Capability** pCap, Condition* pThreadCond)
330 {
331 #ifdef SMP
332   #error SMP version not implemented
333 #endif
334   IF_DEBUG(scheduler,
335            fprintf(stderr,"worker thread (%p): wait for cap (cond: %p)\n",
336               osThreadId(),pThreadCond));
337   while ( noCapabilities() || (pThreadCond && passTarget != pThreadCond)
338       || (!pThreadCond && passTarget)) {
339     if(pThreadCond)
340     {
341       waitCondition(pThreadCond, pMutex);
342       IF_DEBUG(scheduler,
343                fprintf(stderr,"worker thread (%p): get passed capability\n",
344                   osThreadId()));
345     }
346     else
347     {
348       rts_n_waiting_tasks++;
349       waitCondition(&thread_ready_cond, pMutex);
350       rts_n_waiting_tasks--;
351       IF_DEBUG(scheduler,
352                fprintf(stderr,"worker thread (%p): get normal capability\n",
353                   osThreadId()));
354     }
355   }
356   passTarget = NULL;
357   grabCapability(pCap);
358   return;
359 }
360
361 /*
362  * Function: passCapability(Mutex*, Capability*, Condition*)
363  *
364  * Purpose:  Let go of the capability and make sure the thread associated
365  *           with the Condition pTargetThreadCond gets it next.
366  *
367  * Pre-condition: pMutex is held and cap is held by the current thread
368  * Post-condition: pMutex is held; cap will be grabbed by the "target"
369  *                 thread when pMutex is released.
370  */
371
372 void
373 passCapability(Mutex* pMutex, Capability* cap, Condition *pTargetThreadCond)
374 {
375 #ifdef SMP
376   #error SMP version not implemented
377 #endif
378     rts_n_free_capabilities = 1;
379     signalCondition(pTargetThreadCond);
380     passTarget = pTargetThreadCond;
381     IF_DEBUG(scheduler,
382              fprintf(stderr,"worker thread (%p): passCapability\n",
383                 osThreadId()));
384 }
385
386
387 #endif /* RTS_SUPPORTS_THREADS */
388
389 #if defined(SMP)
390 /*
391  * Function: initCapabilities_(nat)
392  *
393  * Purpose:  upon startup, allocate and fill in table
394  *           holding 'n' Capabilities. Only for SMP, since
395  *           it is the only build that supports multiple
396  *           capabilities within the RTS.
397  */
398 static void
399 initCapabilities_(nat n)
400 {
401   nat i;
402   Capability *cap, *prev;
403   cap  = NULL;
404   prev = NULL;
405   for (i = 0; i < n; i++) {
406     cap = stgMallocBytes(sizeof(Capability), "initCapabilities");
407     initCapability(cap);
408     cap->link = prev;
409     prev = cap;
410   }
411   free_capabilities = cap;
412   rts_n_free_capabilities = n;
413   returning_capabilities = NULL;
414   IF_DEBUG(scheduler,fprintf(stderr,"scheduler: Allocated %d capabilities\n", n_free_capabilities););
415 }
416 #endif /* SMP */
417