eadb097cf98d95f2878de2f69468b0b0f2edb97a
[ghc-hetmet.git] / ghc / rts / StgMiscClosures.hc
1 /* -----------------------------------------------------------------------------
2  * $Id: StgMiscClosures.hc,v 1.65 2001/02/15 14:30:07 sewardj Exp $
3  *
4  * (c) The GHC Team, 1998-2000
5  *
6  * Entry code for various built-in closure types.
7  *
8  * ---------------------------------------------------------------------------*/
9
10 #include "Rts.h"
11 #include "RtsUtils.h"
12 #include "RtsFlags.h"
13 #include "StgMiscClosures.h"
14 #include "HeapStackCheck.h"   /* for stg_gen_yield */
15 #include "Storage.h"
16 #include "StoragePriv.h"
17 #include "Profiling.h"
18 #include "Prelude.h"
19 #include "Schedule.h"
20 #include "SMP.h"
21 #if defined(GRAN) || defined(PAR)
22 # include "GranSimRts.h"      /* for DumpRawGranEvent */
23 # include "StgRun.h"    /* for StgReturn and register saving */
24 #endif
25
26 #ifdef HAVE_STDIO_H
27 #include <stdio.h>
28 #endif
29
30 /* ToDo: make the printing of panics more win32-friendly, i.e.,
31  *       pop up some lovely message boxes (as well).
32  */
33 #define DUMP_ERRMSG(msg) STGCALL2(fprintf,stderr,msg)
34
35 /*
36   Template for the entry code of non-enterable closures.
37 */
38
39 #define NON_ENTERABLE_ENTRY_CODE(type)                                  \
40 STGFUN(stg_##type##_entry)                                                      \
41 {                                                                       \
42   FB_                                                                   \
43     DUMP_ERRMSG(#type " object entered!\n");                            \
44     STGCALL1(shutdownHaskellAndExit, EXIT_FAILURE);                     \
45     return NULL;                                                        \
46   FE_                                                                   \
47 }
48
49
50 /* -----------------------------------------------------------------------------
51    Support for the bytecode interpreter.
52    -------------------------------------------------------------------------- */
53
54 /* 9 bits of return code for constructors created by the interpreter. */
55 FN_(stg_interp_constr_entry) 
56
57   /* R1 points at the constructor */
58   FB_ 
59     /* STGCALL2(fprintf,stderr,"stg_interp_constr_entry (direct return)!\n"); */
60     /* Pointless, since SET_TAG doesn't do anything */
61     SET_TAG( GET_TAG(GET_INFO(R1.cl))); 
62     JMP_(ENTRY_CODE((P_)(*Sp))); 
63   FE_ 
64 }
65
66 FN_(stg_interp_constr1_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),0)); FE_ }
67 FN_(stg_interp_constr2_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),1)); FE_ }
68 FN_(stg_interp_constr3_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),2)); FE_ }
69 FN_(stg_interp_constr4_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),3)); FE_ }
70 FN_(stg_interp_constr5_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),4)); FE_ }
71 FN_(stg_interp_constr6_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),5)); FE_ }
72 FN_(stg_interp_constr7_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),6)); FE_ }
73 FN_(stg_interp_constr8_entry) { FB_ JMP_(RET_VEC((P_)(*Sp),7)); FE_ }
74  
75 /* Some info tables to be used when compiled code returns a value to
76    the interpreter, i.e. the interpreter pushes one of these onto the
77    stack before entering a value.  What the code does is to
78    impedance-match the compiled return convention (in R1p/R1n/F1/D1 etc) to
79    the interpreter's convention (returned value is on top of stack),
80    and then cause the scheduler to enter the interpreter.
81
82    On entry, the stack (growing down) looks like this:
83
84       ptr to BCO holding return continuation
85       ptr to one of these info tables.
86  
87    The info table code, both direct and vectored, must:
88       * push R1/F1/D1 on the stack, and its tag if necessary
89       * push the BCO (so it's now on the stack twice)
90       * Yield, ie, go to the scheduler.
91
92    Scheduler examines the t.o.s, discovers it is a BCO, and proceeds
93    directly to the bytecode interpreter.  That pops the top element
94    (the BCO, containing the return continuation), and interprets it.
95    Net result: return continuation gets interpreted, with the
96    following stack:
97
98       ptr to this BCO
99       ptr to the info table just jumped thru
100       return value
101
102    which is just what we want -- the "standard" return layout for the
103    interpreter.  Hurrah!
104
105    Don't ask me how unboxed tuple returns are supposed to work.  We
106    haven't got a good story about that yet.
107 */
108
109 /* When the returned value is in R1 and it is a pointer, so doesn't
110    need tagging ... */
111 #define STG_CtoI_RET_R1p_Template(label)        \
112    IFN_(label)                          \
113    {                                    \
114       StgPtr bco;                       \
115       FB_                               \
116       bco = ((StgPtr*)Sp)[1];           \
117       Sp -= 1;                          \
118       ((StgPtr*)Sp)[0] = R1.p;          \
119       Sp -= 1;                          \
120       ((StgPtr*)Sp)[0] = bco;           \
121       JMP_(stg_yield_to_interpreter);   \
122       FE_                               \
123    }
124
125 STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_entry);
126 STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_0_entry);
127 STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_1_entry);
128 STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_2_entry);
129 STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_3_entry);
130 STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_4_entry);
131 STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_5_entry);
132 STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_6_entry);
133 STG_CtoI_RET_R1p_Template(stg_ctoi_ret_R1p_7_entry);
134
135 VEC_POLY_INFO_TABLE(stg_ctoi_ret_R1p,0, NULL/*srt*/, 0/*srt_off*/, 0/*srt_len*/, RET_BCO,, EF_);
136
137
138
139 /* When the returned value is in R1 and it isn't a pointer. */
140 #define STG_CtoI_RET_R1n_Template(label)        \
141    IFN_(label)                          \
142    {                                    \
143       StgPtr bco;                       \
144       FB_                               \
145       bco = ((StgPtr*)Sp)[1];           \
146       Sp -= 1;                          \
147       ((StgPtr*)Sp)[0] = (StgPtr)R1.i;  \
148       Sp -= 1;                          \
149       ((StgPtr*)Sp)[0] = (StgPtr)1; /* tag */   \
150       Sp -= 1;                          \
151       ((StgPtr*)Sp)[0] = bco;           \
152       JMP_(stg_yield_to_interpreter);   \
153       FE_                               \
154    }
155
156 STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_entry);
157 STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_0_entry);
158 STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_1_entry);
159 STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_2_entry);
160 STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_3_entry);
161 STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_4_entry);
162 STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_5_entry);
163 STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_6_entry);
164 STG_CtoI_RET_R1n_Template(stg_ctoi_ret_R1n_7_entry);
165
166 VEC_POLY_INFO_TABLE(stg_ctoi_ret_R1n,0, NULL/*srt*/, 0/*srt_off*/, 0/*srt_len*/, RET_BCO,, EF_);
167
168
169
170 /* When the returned value is in F1 ... */
171 #define STG_CtoI_RET_F1_Template(label)         \
172    IFN_(label)                          \
173    {                                    \
174       StgPtr bco;                       \
175       FB_                               \
176       bco = ((StgPtr*)Sp)[1];           \
177       Sp -= sizeofW(StgFloat);          \
178       ASSIGN_FLT((W_*)Sp, F1);          \
179       Sp -= 1;                          \
180       ((StgPtr*)Sp)[0] = (StgPtr)sizeofW(StgFloat); \
181       Sp -= 1;                          \
182       ((StgPtr*)Sp)[0] = bco;           \
183       JMP_(stg_yield_to_interpreter);   \
184       FE_                               \
185    }
186
187 STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_entry);
188 STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_0_entry);
189 STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_1_entry);
190 STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_2_entry);
191 STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_3_entry);
192 STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_4_entry);
193 STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_5_entry);
194 STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_6_entry);
195 STG_CtoI_RET_F1_Template(stg_ctoi_ret_F1_7_entry);
196
197 VEC_POLY_INFO_TABLE(stg_ctoi_ret_F1,0, NULL/*srt*/, 0/*srt_off*/, 0/*srt_len*/, RET_BCO,, EF_);
198
199
200 /* When the returned value is in D1 ... */
201 #define STG_CtoI_RET_D1_Template(label)         \
202    IFN_(label)                          \
203    {                                    \
204       StgPtr bco;                       \
205       FB_                               \
206       bco = ((StgPtr*)Sp)[1];           \
207       Sp -= sizeofW(StgDouble);         \
208       ASSIGN_DBL((W_*)Sp, D1);          \
209       Sp -= 1;                          \
210       ((StgPtr*)Sp)[0] = (StgPtr)sizeofW(StgDouble); \
211       Sp -= 1;                          \
212       ((StgPtr*)Sp)[0] = bco;           \
213       JMP_(stg_yield_to_interpreter);   \
214       FE_                               \
215    }
216
217 STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_entry);
218 STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_0_entry);
219 STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_1_entry);
220 STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_2_entry);
221 STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_3_entry);
222 STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_4_entry);
223 STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_5_entry);
224 STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_6_entry);
225 STG_CtoI_RET_D1_Template(stg_ctoi_ret_D1_7_entry);
226
227 VEC_POLY_INFO_TABLE(stg_ctoi_ret_D1,0, NULL/*srt*/, 0/*srt_off*/, 0/*srt_len*/, RET_BCO,, EF_);
228
229
230 /* When the returned value a VoidRep ... */
231 #define STG_CtoI_RET_V_Template(label)  \
232    IFN_(label)                          \
233    {                                    \
234       StgPtr bco;                       \
235       FB_                               \
236       bco = ((StgPtr*)Sp)[1];           \
237       Sp -= 1;                          \
238       ((StgPtr*)Sp)[0] = 0; /* VoidRep tag */ \
239       Sp -= 1;                          \
240       ((StgPtr*)Sp)[0] = bco;           \
241       JMP_(stg_yield_to_interpreter);   \
242       FE_                               \
243    }
244
245 STG_CtoI_RET_V_Template(stg_ctoi_ret_V_entry);
246 STG_CtoI_RET_V_Template(stg_ctoi_ret_V_0_entry);
247 STG_CtoI_RET_V_Template(stg_ctoi_ret_V_1_entry);
248 STG_CtoI_RET_V_Template(stg_ctoi_ret_V_2_entry);
249 STG_CtoI_RET_V_Template(stg_ctoi_ret_V_3_entry);
250 STG_CtoI_RET_V_Template(stg_ctoi_ret_V_4_entry);
251 STG_CtoI_RET_V_Template(stg_ctoi_ret_V_5_entry);
252 STG_CtoI_RET_V_Template(stg_ctoi_ret_V_6_entry);
253 STG_CtoI_RET_V_Template(stg_ctoi_ret_V_7_entry);
254
255 VEC_POLY_INFO_TABLE(stg_ctoi_ret_V,0, NULL/*srt*/, 0/*srt_off*/, 0/*srt_len*/, RET_BCO,, EF_);
256
257
258 /* The other way round: when the interpreter returns a value to
259    compiled code.  The stack looks like this:
260
261       return info table (pushed by compiled code)
262       return value (pushed by interpreter)
263
264    If the value is ptr-rep'd, the interpreter simply returns to the
265    scheduler, instructing it to ThreadEnterGHC.
266
267    Otherwise (unboxed return value), we replace the top stack word,
268    which must be the tag, with stg_gc_unbx_r1_info (or f1_info or d1_info),
269    and return to the scheduler, instructing it to ThreadRunGHC.
270
271    No supporting code needed!
272 */
273
274
275 /* Entering a BCO.  Heave it on the stack and defer to the
276    scheduler. */
277 INFO_TABLE(stg_BCO_info,stg_BCO_entry,4,0,BCO,,EF_,"BCO","BCO");
278 STGFUN(stg_BCO_entry) {
279   FB_
280     Sp -= 1;
281     Sp[0] = R1.w;
282     JMP_(stg_yield_to_interpreter);
283   FE_
284 }
285
286
287 /* -----------------------------------------------------------------------------
288    Entry code for an indirection.
289    -------------------------------------------------------------------------- */
290
291 INFO_TABLE(stg_IND_info,stg_IND_entry,1,0,IND,,EF_,0,0);
292 STGFUN(stg_IND_entry)
293 {
294     FB_
295     TICK_ENT_IND(Node); /* tick */
296
297     R1.p = (P_) ((StgInd*)R1.p)->indirectee;
298     TICK_ENT_VIA_NODE();
299     JMP_(ENTRY_CODE(*R1.p));
300     FE_
301 }
302
303 INFO_TABLE(stg_IND_STATIC_info,stg_IND_STATIC_entry,1,0,IND_STATIC,,EF_,0,0);
304 STGFUN(stg_IND_STATIC_entry)
305 {
306     FB_
307     TICK_ENT_IND(Node); /* tick */
308     R1.p = (P_) ((StgIndStatic*)R1.p)->indirectee;
309     TICK_ENT_VIA_NODE();
310     JMP_(ENTRY_CODE(*R1.p));
311     FE_
312 }
313
314 INFO_TABLE(stg_IND_PERM_info,stg_IND_PERM_entry,1,1,IND_PERM,,EF_,"IND_PERM","IND_PERM");
315 STGFUN(stg_IND_PERM_entry)
316 {
317     FB_
318     /* Don't add INDs to granularity cost */
319     /* Dont: TICK_ENT_IND(Node); for ticky-ticky; this ind is here only to help profiling */
320
321 #if defined(TICKY_TICKY) && !defined(PROFILING)
322     /* TICKY_TICKY && !PROFILING means PERM_IND *replaces* an IND, rather than being extra  */
323     TICK_ENT_PERM_IND(R1.p); /* tick */
324 #endif
325
326     /* Enter PAP cost centre -- lexical scoping only */
327     ENTER_CCS_PAP_CL(R1.cl);
328
329     /* For ticky-ticky, change the perm_ind to a normal ind on first
330      * entry, so the number of ent_perm_inds is the number of *thunks*
331      * entered again, not the number of subsequent entries.
332      *
333      * Since this screws up cost centres, we die if profiling and
334      * ticky_ticky are on at the same time.  KSW 1999-01.
335      */
336
337 #ifdef TICKY_TICKY
338 #  ifdef PROFILING
339 #    error Profiling and ticky-ticky do not mix at present!
340 #  endif  /* PROFILING */
341     SET_INFO((StgInd*)R1.p,&stg_IND_info);
342 #endif /* TICKY_TICKY */
343
344     R1.p = (P_) ((StgInd*)R1.p)->indirectee;
345
346     /* Dont: TICK_ENT_VIA_NODE(); for ticky-ticky; as above */
347
348 #if defined(TICKY_TICKY) && !defined(PROFILING)
349     TICK_ENT_VIA_NODE();
350 #endif
351
352     JMP_(ENTRY_CODE(*R1.p));
353     FE_
354 }  
355
356 INFO_TABLE(stg_IND_OLDGEN_info,stg_IND_OLDGEN_entry,1,1,IND_OLDGEN,,EF_,0,0);
357 STGFUN(stg_IND_OLDGEN_entry)
358 {
359     FB_
360     TICK_ENT_IND(Node); /* tick */
361   
362     R1.p = (P_) ((StgInd*)R1.p)->indirectee;
363     TICK_ENT_VIA_NODE();
364     JMP_(ENTRY_CODE(*R1.p));
365     FE_
366 }
367
368 INFO_TABLE(stg_IND_OLDGEN_PERM_info,stg_IND_OLDGEN_PERM_entry,1,1,IND_OLDGEN_PERM,,EF_,0,0);
369 STGFUN(stg_IND_OLDGEN_PERM_entry)
370 {
371     FB_
372     /* Dont: TICK_ENT_IND(Node); for ticky-ticky; this ind is here only to help profiling */
373
374 #if defined(TICKY_TICKY) && !defined(PROFILING)
375     /* TICKY_TICKY && !PROFILING means PERM_IND *replaces* an IND, rather than being extra  */
376     TICK_ENT_PERM_IND(R1.p); /* tick */
377 #endif
378   
379     /* Enter PAP cost centre -- lexical scoping only */
380     ENTER_CCS_PAP_CL(R1.cl);
381
382     /* see comment in IND_PERM */
383 #ifdef TICKY_TICKY
384 #  ifdef PROFILING
385 #    error Profiling and ticky-ticky do not mix at present!
386 #  endif  /* PROFILING */
387     SET_INFO((StgInd*)R1.p,&stg_IND_OLDGEN_info);
388 #endif /* TICKY_TICKY */
389
390     R1.p = (P_) ((StgInd*)R1.p)->indirectee;
391     TICK_ENT_VIA_NODE();
392     JMP_(ENTRY_CODE(*R1.p));
393     FE_
394 }
395
396 /* -----------------------------------------------------------------------------
397    Entry code for a black hole.
398
399    Entering a black hole normally causes a cyclic data dependency, but
400    in the concurrent world, black holes are synchronization points,
401    and they are turned into blocking queues when there are threads
402    waiting for the evaluation of the closure to finish.
403    -------------------------------------------------------------------------- */
404
405 /* Note: a BLACKHOLE and BLACKHOLE_BQ must be big enough to be
406  * overwritten with an indirection/evacuee/catch.  Thus we claim it
407  * has 1 non-pointer word of payload (in addition to the pointer word
408  * for the blocking queue in a BQ), which should be big enough for an
409  * old-generation indirection. 
410  */
411
412 INFO_TABLE(stg_BLACKHOLE_info, stg_BLACKHOLE_entry,0,2,BLACKHOLE,,EF_,"BLACKHOLE","BLACKHOLE");
413 STGFUN(stg_BLACKHOLE_entry)
414 {
415   FB_
416 #if defined(GRAN)
417     /* Before overwriting TSO_LINK */
418     STGCALL3(GranSimBlock,CurrentTSO,CurrentProc,(StgClosure *)R1.p /*Node*/);
419 #endif
420
421 #ifdef SMP
422     {
423       bdescr *bd = Bdescr(R1.p);
424       if (bd->back != (bdescr *)BaseReg) {
425         if (bd->gen->no >= 1 || bd->step->no >= 1) {
426           CMPXCHG(R1.cl->header.info, &stg_BLACKHOLE_info, &stg_WHITEHOLE_info);
427         } else {
428           EXTFUN_RTS(stg_gc_enter_1_hponly);
429           JMP_(stg_gc_enter_1_hponly);
430         }
431       }
432     }
433 #endif
434     TICK_ENT_BH();
435
436     /* Put ourselves on the blocking queue for this black hole */
437 #if defined(GRAN) || defined(PAR)
438     /* in fact, only difference is the type of the end-of-queue marker! */
439     CurrentTSO->link = END_BQ_QUEUE;
440     ((StgBlockingQueue *)R1.p)->blocking_queue = (StgBlockingQueueElement *)CurrentTSO;
441 #else
442     CurrentTSO->link = END_TSO_QUEUE;
443     ((StgBlockingQueue *)R1.p)->blocking_queue = CurrentTSO;
444 #endif
445     /* jot down why and on what closure we are blocked */
446     CurrentTSO->why_blocked = BlockedOnBlackHole;
447     CurrentTSO->block_info.closure = R1.cl;
448     /* closure is mutable since something has just been added to its BQ */
449     recordMutable((StgMutClosure *)R1.cl);
450     /* Change the BLACKHOLE into a BLACKHOLE_BQ */
451     ((StgBlockingQueue *)R1.p)->header.info = &stg_BLACKHOLE_BQ_info;
452
453     /* PAR: dumping of event now done in blockThread -- HWL */
454
455     /* stg_gen_block is too heavyweight, use a specialised one */
456     BLOCK_NP(1);
457
458   FE_
459 }
460
461 INFO_TABLE(stg_BLACKHOLE_BQ_info, stg_BLACKHOLE_BQ_entry,1,1,BLACKHOLE_BQ,,EF_,"BLACKHOLE","BLACKHOLE");
462 STGFUN(stg_BLACKHOLE_BQ_entry)
463 {
464   FB_
465 #if defined(GRAN)
466     /* Before overwriting TSO_LINK */
467     STGCALL3(GranSimBlock,CurrentTSO,CurrentProc,(StgClosure *)R1.p /*Node*/);
468 #endif
469
470 #ifdef SMP
471     {
472       bdescr *bd = Bdescr(R1.p);
473       if (bd->back != (bdescr *)BaseReg) {
474         if (bd->gen->no >= 1 || bd->step->no >= 1) {
475           CMPXCHG(R1.cl->header.info, &stg_BLACKHOLE_info, &stg_WHITEHOLE_info);
476         } else {
477           EXTFUN_RTS(stg_gc_enter_1_hponly);
478           JMP_(stg_gc_enter_1_hponly);
479         }
480       }
481     }
482 #endif
483
484     TICK_ENT_BH();
485
486     /* Put ourselves on the blocking queue for this black hole */
487     CurrentTSO->link = ((StgBlockingQueue *)R1.p)->blocking_queue;
488     ((StgBlockingQueue *)R1.p)->blocking_queue = CurrentTSO;
489     /* jot down why and on what closure we are blocked */
490     CurrentTSO->why_blocked = BlockedOnBlackHole;
491     CurrentTSO->block_info.closure = R1.cl;
492 #ifdef SMP
493     ((StgBlockingQueue *)R1.p)->header.info = &stg_BLACKHOLE_BQ_info;
494 #endif
495
496     /* PAR: dumping of event now done in blockThread -- HWL */
497
498     /* stg_gen_block is too heavyweight, use a specialised one */
499     BLOCK_NP(1);
500   FE_
501 }
502
503 /*
504    Revertible black holes are needed in the parallel world, to handle
505    negative acknowledgements of messages containing updatable closures.
506    The idea is that when the original message is transmitted, the closure
507    is turned into a revertible black hole...an object which acts like a
508    black hole when local threads try to enter it, but which can be reverted
509    back to the original closure if necessary.
510
511    It's actually a lot like a blocking queue (BQ) entry, because revertible
512    black holes are initially set up with an empty blocking queue.
513 */
514
515 #if defined(PAR) || defined(GRAN)
516
517 INFO_TABLE(stg_RBH_info, stg_RBH_entry,1,1,RBH,,EF_,0,0);
518 STGFUN(stg_RBH_entry)
519 {
520   FB_
521 # if defined(GRAN)
522     /* mainly statistics gathering for GranSim simulation */
523     STGCALL3(GranSimBlock,CurrentTSO,CurrentProc,(StgClosure *)R1.p /*Node*/);
524 # endif
525
526     /* exactly the same as a BLACKHOLE_BQ_entry -- HWL */
527     /* Put ourselves on the blocking queue for this black hole */
528     CurrentTSO->link = ((StgBlockingQueue *)R1.p)->blocking_queue;
529     ((StgBlockingQueue *)R1.p)->blocking_queue = CurrentTSO;
530     /* jot down why and on what closure we are blocked */
531     CurrentTSO->why_blocked = BlockedOnBlackHole;
532     CurrentTSO->block_info.closure = R1.cl;
533
534     /* PAR: dumping of event now done in blockThread -- HWL */
535
536     /* stg_gen_block is too heavyweight, use a specialised one */
537     BLOCK_NP(1); 
538   FE_
539 }
540
541 INFO_TABLE(stg_RBH_Save_0_info, stg_RBH_Save_0_entry,0,2,CONSTR,,EF_,0,0);
542 NON_ENTERABLE_ENTRY_CODE(RBH_Save_0);
543
544 INFO_TABLE(stg_RBH_Save_1_info, stg_RBH_Save_1_entry,1,1,CONSTR,,EF_,0,0);
545 NON_ENTERABLE_ENTRY_CODE(RBH_Save_1);
546
547 INFO_TABLE(stg_RBH_Save_2_info, stg_RBH_Save_2_entry,2,0,CONSTR,,EF_,0,0);
548 NON_ENTERABLE_ENTRY_CODE(RBH_Save_2);
549 #endif /* defined(PAR) || defined(GRAN) */
550
551 /* identical to BLACKHOLEs except for the infotag */
552 INFO_TABLE(stg_CAF_BLACKHOLE_info, stg_CAF_BLACKHOLE_entry,0,2,CAF_BLACKHOLE,,EF_,"CAF_BLACKHOLE","CAF_BLACKHOLE");
553 STGFUN(stg_CAF_BLACKHOLE_entry)
554 {
555   FB_
556 #if defined(GRAN)
557     /* mainly statistics gathering for GranSim simulation */
558     STGCALL3(GranSimBlock,CurrentTSO,CurrentProc,(StgClosure *)R1.p /*Node*/);
559 #endif
560
561 #ifdef SMP
562     {
563       bdescr *bd = Bdescr(R1.p);
564       if (bd->back != (bdescr *)BaseReg) {
565         if (bd->gen->no >= 1 || bd->step->no >= 1) {
566           CMPXCHG(R1.cl->header.info, &stg_CAF_BLACKHOLE_info, &stg_WHITEHOLE_info);
567         } else {
568           EXTFUN_RTS(stg_gc_enter_1_hponly);
569           JMP_(stg_gc_enter_1_hponly);
570         }
571       }
572     }
573 #endif
574
575     TICK_ENT_BH();
576
577     /* Put ourselves on the blocking queue for this black hole */
578 #if defined(GRAN) || defined(PAR)
579     /* in fact, only difference is the type of the end-of-queue marker! */
580     CurrentTSO->link = END_BQ_QUEUE;
581     ((StgBlockingQueue *)R1.p)->blocking_queue = (StgBlockingQueueElement *)CurrentTSO;
582 #else
583     CurrentTSO->link = END_TSO_QUEUE;
584     ((StgBlockingQueue *)R1.p)->blocking_queue = CurrentTSO;
585 #endif
586     /* jot down why and on what closure we are blocked */
587     CurrentTSO->why_blocked = BlockedOnBlackHole;
588     CurrentTSO->block_info.closure = R1.cl;
589     /* closure is mutable since something has just been added to its BQ */
590     recordMutable((StgMutClosure *)R1.cl);
591     /* Change the CAF_BLACKHOLE into a BLACKHOLE_BQ_STATIC */
592     ((StgBlockingQueue *)R1.p)->header.info = &stg_BLACKHOLE_BQ_info;
593
594     /* PAR: dumping of event now done in blockThread -- HWL */
595
596     /* stg_gen_block is too heavyweight, use a specialised one */
597     BLOCK_NP(1);
598   FE_
599 }
600
601 #ifdef TICKY_TICKY
602 INFO_TABLE(stg_SE_BLACKHOLE_info, stg_SE_BLACKHOLE_entry,0,2,SE_BLACKHOLE,,EF_,0,0);
603 STGFUN(stg_SE_BLACKHOLE_entry)
604 {
605   FB_
606     STGCALL3(fprintf,stderr,"SE_BLACKHOLE at %p entered!\n",R1.p);
607     STGCALL1(shutdownHaskellAndExit,EXIT_FAILURE);
608   FE_
609 }
610
611 INFO_TABLE(SE_CAF_BLACKHOLE_info, SE_CAF_BLACKHOLE_entry,0,2,SE_CAF_BLACKHOLE,,EF_,0,0);
612 STGFUN(stg_SE_CAF_BLACKHOLE_entry)
613 {
614   FB_
615     STGCALL3(fprintf,stderr,"SE_CAF_BLACKHOLE at %p entered!\n",R1.p);
616     STGCALL1(shutdownHaskellAndExit,EXIT_FAILURE);
617   FE_
618 }
619 #endif
620
621 #ifdef SMP
622 INFO_TABLE(stg_WHITEHOLE_info, stg_WHITEHOLE_entry,0,2,CONSTR_NOCAF_STATIC,,EF_,0,0);
623 STGFUN(stg_WHITEHOLE_entry)
624 {
625   FB_
626      JMP_(GET_ENTRY(R1.cl));
627   FE_
628 }
629 #endif
630
631 /* -----------------------------------------------------------------------------
632    Some static info tables for things that don't get entered, and
633    therefore don't need entry code (i.e. boxed but unpointed objects)
634    NON_ENTERABLE_ENTRY_CODE now defined at the beginning of the file
635    -------------------------------------------------------------------------- */
636
637 INFO_TABLE(stg_TSO_info, stg_TSO_entry, 0,0,TSO,,EF_,"TSO","TSO");
638 NON_ENTERABLE_ENTRY_CODE(TSO);
639
640 /* -----------------------------------------------------------------------------
641    Evacuees are left behind by the garbage collector.  Any attempt to enter
642    one is a real bug.
643    -------------------------------------------------------------------------- */
644
645 INFO_TABLE(stg_EVACUATED_info,stg_EVACUATED_entry,1,0,EVACUATED,,EF_,0,0);
646 NON_ENTERABLE_ENTRY_CODE(EVACUATED);
647
648 /* -----------------------------------------------------------------------------
649    Weak pointers
650
651    Live weak pointers have a special closure type.  Dead ones are just
652    nullary constructors (although they live on the heap - we overwrite
653    live weak pointers with dead ones).
654    -------------------------------------------------------------------------- */
655
656 INFO_TABLE(stg_WEAK_info,stg_WEAK_entry,0,4,WEAK,,EF_,"WEAK","WEAK");
657 NON_ENTERABLE_ENTRY_CODE(WEAK);
658
659 INFO_TABLE_CONSTR(stg_DEAD_WEAK_info,stg_DEAD_WEAK_entry,0,1,0,CONSTR,,EF_,"DEAD_WEAK","DEAD_WEAK");
660 NON_ENTERABLE_ENTRY_CODE(DEAD_WEAK);
661
662 /* -----------------------------------------------------------------------------
663    NO_FINALIZER
664
665    This is a static nullary constructor (like []) that we use to mark an empty
666    finalizer in a weak pointer object.
667    -------------------------------------------------------------------------- */
668
669 INFO_TABLE_CONSTR(stg_NO_FINALIZER_info,stg_NO_FINALIZER_entry,0,0,0,CONSTR_NOCAF_STATIC,,EF_,0,0);
670 NON_ENTERABLE_ENTRY_CODE(NO_FINALIZER);
671
672 SET_STATIC_HDR(stg_NO_FINALIZER_closure,stg_NO_FINALIZER_info,0/*CC*/,,EI_)
673 , /*payload*/{} };
674
675 /* -----------------------------------------------------------------------------
676    Foreign Objects are unlifted and therefore never entered.
677    -------------------------------------------------------------------------- */
678
679 INFO_TABLE(stg_FOREIGN_info,stg_FOREIGN_entry,0,1,FOREIGN,,EF_,"FOREIGN","FOREIGN");
680 NON_ENTERABLE_ENTRY_CODE(FOREIGN);
681
682 /* -----------------------------------------------------------------------------
683    Stable Names are unlifted too.
684    -------------------------------------------------------------------------- */
685
686 INFO_TABLE(stg_STABLE_NAME_info,stg_STABLE_NAME_entry,0,1,STABLE_NAME,,EF_,"STABLE_NAME","STABLE_NAME");
687 NON_ENTERABLE_ENTRY_CODE(STABLE_NAME);
688
689 /* -----------------------------------------------------------------------------
690    MVars
691
692    There are two kinds of these: full and empty.  We need an info table
693    and entry code for each type.
694    -------------------------------------------------------------------------- */
695
696 INFO_TABLE(stg_FULL_MVAR_info,stg_FULL_MVAR_entry,4,0,MVAR,,EF_,"MVAR","MVAR");
697 NON_ENTERABLE_ENTRY_CODE(FULL_MVAR);
698
699 INFO_TABLE(stg_EMPTY_MVAR_info,stg_EMPTY_MVAR_entry,4,0,MVAR,,EF_,"MVAR","MVAR");
700 NON_ENTERABLE_ENTRY_CODE(EMPTY_MVAR);
701
702 /* -----------------------------------------------------------------------------
703    END_TSO_QUEUE
704
705    This is a static nullary constructor (like []) that we use to mark the
706    end of a linked TSO queue.
707    -------------------------------------------------------------------------- */
708
709 INFO_TABLE_CONSTR(stg_END_TSO_QUEUE_info,stg_END_TSO_QUEUE_entry,0,0,0,CONSTR_NOCAF_STATIC,,EF_,0,0);
710 NON_ENTERABLE_ENTRY_CODE(END_TSO_QUEUE);
711
712 SET_STATIC_HDR(stg_END_TSO_QUEUE_closure,stg_END_TSO_QUEUE_info,0/*CC*/,,EI_)
713 , /*payload*/{} };
714
715 /* -----------------------------------------------------------------------------
716    Mutable lists
717
718    Mutable lists (used by the garbage collector) consist of a chain of
719    StgMutClosures connected through their mut_link fields, ending in
720    an END_MUT_LIST closure.
721    -------------------------------------------------------------------------- */
722
723 INFO_TABLE_CONSTR(stg_END_MUT_LIST_info,stg_END_MUT_LIST_entry,0,0,0,CONSTR_NOCAF_STATIC,,EF_,0,0);
724 NON_ENTERABLE_ENTRY_CODE(END_MUT_LIST);
725
726 SET_STATIC_HDR(stg_END_MUT_LIST_closure,stg_END_MUT_LIST_info,0/*CC*/,,EI_)
727 , /*payload*/{} };
728
729 INFO_TABLE(stg_MUT_CONS_info, stg_MUT_CONS_entry, 1, 1, MUT_VAR, , EF_, 0, 0);
730 NON_ENTERABLE_ENTRY_CODE(MUT_CONS);
731
732 /* -----------------------------------------------------------------------------
733    Exception lists
734    -------------------------------------------------------------------------- */
735
736 INFO_TABLE_CONSTR(stg_END_EXCEPTION_LIST_info,stg_END_EXCEPTION_LIST_entry,0,0,0,CONSTR_NOCAF_STATIC,,EF_,0,0);
737 NON_ENTERABLE_ENTRY_CODE(END_EXCEPTION_LIST);
738
739 SET_STATIC_HDR(stg_END_EXCEPTION_LIST_closure,stg_END_EXCEPTION_LIST_info,0/*CC*/,,EI_)
740 , /*payload*/{} };
741
742 INFO_TABLE(stg_EXCEPTION_CONS_info, stg_EXCEPTION_CONS_entry, 1, 1, CONSTR, , EF_, 0, 0);
743 NON_ENTERABLE_ENTRY_CODE(EXCEPTION_CONS);
744
745 /* -----------------------------------------------------------------------------
746    Arrays
747
748    These come in two basic flavours: arrays of data (StgArrWords) and arrays of
749    pointers (StgArrPtrs).  They all have a similar layout:
750
751         ___________________________
752         | Info | No. of | data....
753         |  Ptr | Words  |
754         ---------------------------
755
756    These are *unpointed* objects: i.e. they cannot be entered.
757
758    -------------------------------------------------------------------------- */
759
760 #define ArrayInfo(type)                                 \
761 INFO_TABLE(stg_##type##_info, stg_##type##_entry, 0, 0, type, , EF_,"" # type "","" # type "");
762
763 ArrayInfo(ARR_WORDS);
764 NON_ENTERABLE_ENTRY_CODE(ARR_WORDS);
765 ArrayInfo(MUT_ARR_PTRS);
766 NON_ENTERABLE_ENTRY_CODE(MUT_ARR_PTRS);
767 ArrayInfo(MUT_ARR_PTRS_FROZEN);
768 NON_ENTERABLE_ENTRY_CODE(MUT_ARR_PTRS_FROZEN);
769
770 #undef ArrayInfo
771
772 /* -----------------------------------------------------------------------------
773    Mutable Variables
774    -------------------------------------------------------------------------- */
775
776 INFO_TABLE(stg_MUT_VAR_info, stg_MUT_VAR_entry, 1, 1, MUT_VAR, , EF_, "MUT_VAR", "MUT_VAR");
777 NON_ENTERABLE_ENTRY_CODE(MUT_VAR);
778
779 /* -----------------------------------------------------------------------------
780    Standard Error Entry.
781
782    This is used for filling in vector-table entries that can never happen,
783    for instance.
784    -------------------------------------------------------------------------- */
785 /* No longer used; we use NULL, because a) it never happens, right? and b)
786    Windows doesn't like DLL entry points being used as static initialisers
787 STGFUN(stg_error_entry)                                                 \
788 {                                                                       \
789   FB_                                                                   \
790     DUMP_ERRMSG("fatal: stg_error_entry");                              \
791     STGCALL1(shutdownHaskellAndExit, EXIT_FAILURE);                     \
792     return NULL;                                                        \
793   FE_                                                                   \
794 }
795 */
796 /* -----------------------------------------------------------------------------
797    Dummy return closure
798  
799    Entering this closure will just return to the address on the top of the
800    stack.  Useful for getting a thread in a canonical form where we can
801    just enter the top stack word to start the thread.  (see deleteThread)
802  * -------------------------------------------------------------------------- */
803
804 INFO_TABLE(stg_dummy_ret_info, stg_dummy_ret_entry, 0, 0, CONSTR_NOCAF_STATIC, , EF_, 0, 0);
805 STGFUN(stg_dummy_ret_entry)
806 {
807   W_ ret_addr;
808   FB_
809   ret_addr = Sp[0];
810   Sp++;
811   JMP_(ENTRY_CODE(ret_addr));
812   FE_
813 }
814 SET_STATIC_HDR(stg_dummy_ret_closure,stg_dummy_ret_info,CCS_DONT_CARE,,EI_)
815 , /*payload*/{} };
816
817 /* -----------------------------------------------------------------------------
818     Strict IO application - performing an IO action and entering its result.
819     
820     rts_evalIO() lets you perform Haskell IO actions from outside of Haskell-land,
821     returning back to you their result. Want this result to be evaluated to WHNF
822     by that time, so that we can easily get at the int/char/whatever using the
823     various get{Ty} functions provided by the RTS API.
824
825     forceIO takes care of this, performing the IO action and entering the
826     results that comes back.
827
828  * -------------------------------------------------------------------------- */
829
830 #ifdef REG_R1
831 INFO_TABLE_SRT_BITMAP(stg_forceIO_ret_info,stg_forceIO_ret_entry,0,0,0,0,RET_SMALL,,EF_,0,0);
832 STGFUN(stg_forceIO_ret_entry)
833 {
834   FB_
835   Sp++;
836   Sp -= sizeofW(StgSeqFrame);
837   PUSH_SEQ_FRAME(Sp);
838   JMP_(GET_ENTRY(R1.cl));
839 }
840 #else
841 INFO_TABLE_SRT_BITMAP(stg_forceIO_ret_info,stg_forceIO_ret_entry,0,0,0,0,RET_SMALL,,EF_,0,0);
842 STGFUN(stg_forceIO_ret_entry)
843 {
844   StgClosure *rval;
845   FB_
846   rval = (StgClosure *)Sp[0];
847   Sp += 2;
848   Sp -= sizeofW(StgSeqFrame);
849   PUSH_SEQ_FRAME(Sp);
850   R1.cl = rval;
851   JMP_(GET_ENTRY(R1.cl));
852 }
853 #endif
854
855 INFO_TABLE(stg_forceIO_info,stg_forceIO_entry,1,0,FUN_STATIC,,EF_,0,0);
856 FN_(stg_forceIO_entry)
857 {
858   FB_
859   /* Sp[0] contains the IO action we want to perform */
860   R1.p  = (P_)Sp[0];
861   /* Replace it with the return continuation that enters the result. */
862   Sp[0] = (W_)&stg_forceIO_ret_info;
863   Sp--;
864   /* Push the RealWorld# tag and enter */
865   Sp[0] =(W_)REALWORLD_TAG;
866   JMP_(GET_ENTRY(R1.cl));
867   FE_
868 }
869 SET_STATIC_HDR(stg_forceIO_closure,stg_forceIO_info,CCS_DONT_CARE,,EI_)
870 , /*payload*/{} };
871
872
873 /* -----------------------------------------------------------------------------
874    CHARLIKE and INTLIKE closures.  
875
876    These are static representations of Chars and small Ints, so that
877    we can remove dynamic Chars and Ints during garbage collection and
878    replace them with references to the static objects.
879    -------------------------------------------------------------------------- */
880
881 #if defined(INTERPRETER) || defined(ENABLE_WIN32_DLL_SUPPORT)
882 /*
883  * When sticking the RTS in a DLL, we delay populating the
884  * Charlike and Intlike tables until load-time, which is only
885  * when we've got the real addresses to the C# and I# closures.
886  *
887  */
888 static INFO_TBL_CONST StgInfoTable czh_static_info;
889 static INFO_TBL_CONST StgInfoTable izh_static_info;
890 #define Char_hash_static_info czh_static_info
891 #define Int_hash_static_info izh_static_info
892 #else
893 #define Char_hash_static_info PrelBase_Czh_static_info
894 #define Int_hash_static_info PrelBase_Izh_static_info
895 #endif
896
897 #define CHARLIKE_HDR(n)                                         \
898         {                                                       \
899           STATIC_HDR(Char_hash_static_info, /* C# */            \
900                          CCS_DONT_CARE),                        \
901           data : n                                              \
902         }
903                                              
904 #define INTLIKE_HDR(n)                                          \
905         {                                                       \
906           STATIC_HDR(Int_hash_static_info,  /* I# */            \
907                          CCS_DONT_CARE),                        \
908           data : n                                              \
909         }
910
911 /* put these in the *data* section, since the garbage collector relies
912  * on the fact that static closures live in the data section.
913  */
914
915 /* end the name with _closure, to convince the mangler this is a closure */
916
917 StgIntCharlikeClosure stg_CHARLIKE_closure[] = {
918     CHARLIKE_HDR(0),
919     CHARLIKE_HDR(1),
920     CHARLIKE_HDR(2),
921     CHARLIKE_HDR(3),
922     CHARLIKE_HDR(4),
923     CHARLIKE_HDR(5),
924     CHARLIKE_HDR(6),
925     CHARLIKE_HDR(7),
926     CHARLIKE_HDR(8),
927     CHARLIKE_HDR(9),
928     CHARLIKE_HDR(10),
929     CHARLIKE_HDR(11),
930     CHARLIKE_HDR(12),
931     CHARLIKE_HDR(13),
932     CHARLIKE_HDR(14),
933     CHARLIKE_HDR(15),
934     CHARLIKE_HDR(16),
935     CHARLIKE_HDR(17),
936     CHARLIKE_HDR(18),
937     CHARLIKE_HDR(19),
938     CHARLIKE_HDR(20),
939     CHARLIKE_HDR(21),
940     CHARLIKE_HDR(22),
941     CHARLIKE_HDR(23),
942     CHARLIKE_HDR(24),
943     CHARLIKE_HDR(25),
944     CHARLIKE_HDR(26),
945     CHARLIKE_HDR(27),
946     CHARLIKE_HDR(28),
947     CHARLIKE_HDR(29),
948     CHARLIKE_HDR(30),
949     CHARLIKE_HDR(31),
950     CHARLIKE_HDR(32),
951     CHARLIKE_HDR(33),
952     CHARLIKE_HDR(34),
953     CHARLIKE_HDR(35),
954     CHARLIKE_HDR(36),
955     CHARLIKE_HDR(37),
956     CHARLIKE_HDR(38),
957     CHARLIKE_HDR(39),
958     CHARLIKE_HDR(40),
959     CHARLIKE_HDR(41),
960     CHARLIKE_HDR(42),
961     CHARLIKE_HDR(43),
962     CHARLIKE_HDR(44),
963     CHARLIKE_HDR(45),
964     CHARLIKE_HDR(46),
965     CHARLIKE_HDR(47),
966     CHARLIKE_HDR(48),
967     CHARLIKE_HDR(49),
968     CHARLIKE_HDR(50),
969     CHARLIKE_HDR(51),
970     CHARLIKE_HDR(52),
971     CHARLIKE_HDR(53),
972     CHARLIKE_HDR(54),
973     CHARLIKE_HDR(55),
974     CHARLIKE_HDR(56),
975     CHARLIKE_HDR(57),
976     CHARLIKE_HDR(58),
977     CHARLIKE_HDR(59),
978     CHARLIKE_HDR(60),
979     CHARLIKE_HDR(61),
980     CHARLIKE_HDR(62),
981     CHARLIKE_HDR(63),
982     CHARLIKE_HDR(64),
983     CHARLIKE_HDR(65),
984     CHARLIKE_HDR(66),
985     CHARLIKE_HDR(67),
986     CHARLIKE_HDR(68),
987     CHARLIKE_HDR(69),
988     CHARLIKE_HDR(70),
989     CHARLIKE_HDR(71),
990     CHARLIKE_HDR(72),
991     CHARLIKE_HDR(73),
992     CHARLIKE_HDR(74),
993     CHARLIKE_HDR(75),
994     CHARLIKE_HDR(76),
995     CHARLIKE_HDR(77),
996     CHARLIKE_HDR(78),
997     CHARLIKE_HDR(79),
998     CHARLIKE_HDR(80),
999     CHARLIKE_HDR(81),
1000     CHARLIKE_HDR(82),
1001     CHARLIKE_HDR(83),
1002     CHARLIKE_HDR(84),
1003     CHARLIKE_HDR(85),
1004     CHARLIKE_HDR(86),
1005     CHARLIKE_HDR(87),
1006     CHARLIKE_HDR(88),
1007     CHARLIKE_HDR(89),
1008     CHARLIKE_HDR(90),
1009     CHARLIKE_HDR(91),
1010     CHARLIKE_HDR(92),
1011     CHARLIKE_HDR(93),
1012     CHARLIKE_HDR(94),
1013     CHARLIKE_HDR(95),
1014     CHARLIKE_HDR(96),
1015     CHARLIKE_HDR(97),
1016     CHARLIKE_HDR(98),
1017     CHARLIKE_HDR(99),
1018     CHARLIKE_HDR(100),
1019     CHARLIKE_HDR(101),
1020     CHARLIKE_HDR(102),
1021     CHARLIKE_HDR(103),
1022     CHARLIKE_HDR(104),
1023     CHARLIKE_HDR(105),
1024     CHARLIKE_HDR(106),
1025     CHARLIKE_HDR(107),
1026     CHARLIKE_HDR(108),
1027     CHARLIKE_HDR(109),
1028     CHARLIKE_HDR(110),
1029     CHARLIKE_HDR(111),
1030     CHARLIKE_HDR(112),
1031     CHARLIKE_HDR(113),
1032     CHARLIKE_HDR(114),
1033     CHARLIKE_HDR(115),
1034     CHARLIKE_HDR(116),
1035     CHARLIKE_HDR(117),
1036     CHARLIKE_HDR(118),
1037     CHARLIKE_HDR(119),
1038     CHARLIKE_HDR(120),
1039     CHARLIKE_HDR(121),
1040     CHARLIKE_HDR(122),
1041     CHARLIKE_HDR(123),
1042     CHARLIKE_HDR(124),
1043     CHARLIKE_HDR(125),
1044     CHARLIKE_HDR(126),
1045     CHARLIKE_HDR(127),
1046     CHARLIKE_HDR(128),
1047     CHARLIKE_HDR(129),
1048     CHARLIKE_HDR(130),
1049     CHARLIKE_HDR(131),
1050     CHARLIKE_HDR(132),
1051     CHARLIKE_HDR(133),
1052     CHARLIKE_HDR(134),
1053     CHARLIKE_HDR(135),
1054     CHARLIKE_HDR(136),
1055     CHARLIKE_HDR(137),
1056     CHARLIKE_HDR(138),
1057     CHARLIKE_HDR(139),
1058     CHARLIKE_HDR(140),
1059     CHARLIKE_HDR(141),
1060     CHARLIKE_HDR(142),
1061     CHARLIKE_HDR(143),
1062     CHARLIKE_HDR(144),
1063     CHARLIKE_HDR(145),
1064     CHARLIKE_HDR(146),
1065     CHARLIKE_HDR(147),
1066     CHARLIKE_HDR(148),
1067     CHARLIKE_HDR(149),
1068     CHARLIKE_HDR(150),
1069     CHARLIKE_HDR(151),
1070     CHARLIKE_HDR(152),
1071     CHARLIKE_HDR(153),
1072     CHARLIKE_HDR(154),
1073     CHARLIKE_HDR(155),
1074     CHARLIKE_HDR(156),
1075     CHARLIKE_HDR(157),
1076     CHARLIKE_HDR(158),
1077     CHARLIKE_HDR(159),
1078     CHARLIKE_HDR(160),
1079     CHARLIKE_HDR(161),
1080     CHARLIKE_HDR(162),
1081     CHARLIKE_HDR(163),
1082     CHARLIKE_HDR(164),
1083     CHARLIKE_HDR(165),
1084     CHARLIKE_HDR(166),
1085     CHARLIKE_HDR(167),
1086     CHARLIKE_HDR(168),
1087     CHARLIKE_HDR(169),
1088     CHARLIKE_HDR(170),
1089     CHARLIKE_HDR(171),
1090     CHARLIKE_HDR(172),
1091     CHARLIKE_HDR(173),
1092     CHARLIKE_HDR(174),
1093     CHARLIKE_HDR(175),
1094     CHARLIKE_HDR(176),
1095     CHARLIKE_HDR(177),
1096     CHARLIKE_HDR(178),
1097     CHARLIKE_HDR(179),
1098     CHARLIKE_HDR(180),
1099     CHARLIKE_HDR(181),
1100     CHARLIKE_HDR(182),
1101     CHARLIKE_HDR(183),
1102     CHARLIKE_HDR(184),
1103     CHARLIKE_HDR(185),
1104     CHARLIKE_HDR(186),
1105     CHARLIKE_HDR(187),
1106     CHARLIKE_HDR(188),
1107     CHARLIKE_HDR(189),
1108     CHARLIKE_HDR(190),
1109     CHARLIKE_HDR(191),
1110     CHARLIKE_HDR(192),
1111     CHARLIKE_HDR(193),
1112     CHARLIKE_HDR(194),
1113     CHARLIKE_HDR(195),
1114     CHARLIKE_HDR(196),
1115     CHARLIKE_HDR(197),
1116     CHARLIKE_HDR(198),
1117     CHARLIKE_HDR(199),
1118     CHARLIKE_HDR(200),
1119     CHARLIKE_HDR(201),
1120     CHARLIKE_HDR(202),
1121     CHARLIKE_HDR(203),
1122     CHARLIKE_HDR(204),
1123     CHARLIKE_HDR(205),
1124     CHARLIKE_HDR(206),
1125     CHARLIKE_HDR(207),
1126     CHARLIKE_HDR(208),
1127     CHARLIKE_HDR(209),
1128     CHARLIKE_HDR(210),
1129     CHARLIKE_HDR(211),
1130     CHARLIKE_HDR(212),
1131     CHARLIKE_HDR(213),
1132     CHARLIKE_HDR(214),
1133     CHARLIKE_HDR(215),
1134     CHARLIKE_HDR(216),
1135     CHARLIKE_HDR(217),
1136     CHARLIKE_HDR(218),
1137     CHARLIKE_HDR(219),
1138     CHARLIKE_HDR(220),
1139     CHARLIKE_HDR(221),
1140     CHARLIKE_HDR(222),
1141     CHARLIKE_HDR(223),
1142     CHARLIKE_HDR(224),
1143     CHARLIKE_HDR(225),
1144     CHARLIKE_HDR(226),
1145     CHARLIKE_HDR(227),
1146     CHARLIKE_HDR(228),
1147     CHARLIKE_HDR(229),
1148     CHARLIKE_HDR(230),
1149     CHARLIKE_HDR(231),
1150     CHARLIKE_HDR(232),
1151     CHARLIKE_HDR(233),
1152     CHARLIKE_HDR(234),
1153     CHARLIKE_HDR(235),
1154     CHARLIKE_HDR(236),
1155     CHARLIKE_HDR(237),
1156     CHARLIKE_HDR(238),
1157     CHARLIKE_HDR(239),
1158     CHARLIKE_HDR(240),
1159     CHARLIKE_HDR(241),
1160     CHARLIKE_HDR(242),
1161     CHARLIKE_HDR(243),
1162     CHARLIKE_HDR(244),
1163     CHARLIKE_HDR(245),
1164     CHARLIKE_HDR(246),
1165     CHARLIKE_HDR(247),
1166     CHARLIKE_HDR(248),
1167     CHARLIKE_HDR(249),
1168     CHARLIKE_HDR(250),
1169     CHARLIKE_HDR(251),
1170     CHARLIKE_HDR(252),
1171     CHARLIKE_HDR(253),
1172     CHARLIKE_HDR(254),
1173     CHARLIKE_HDR(255)
1174 };
1175
1176 StgIntCharlikeClosure stg_INTLIKE_closure[] = {
1177     INTLIKE_HDR(-16),   /* MIN_INTLIKE == -16 */
1178     INTLIKE_HDR(-15),
1179     INTLIKE_HDR(-14),
1180     INTLIKE_HDR(-13),
1181     INTLIKE_HDR(-12),
1182     INTLIKE_HDR(-11),
1183     INTLIKE_HDR(-10),
1184     INTLIKE_HDR(-9),
1185     INTLIKE_HDR(-8),
1186     INTLIKE_HDR(-7),
1187     INTLIKE_HDR(-6),
1188     INTLIKE_HDR(-5),
1189     INTLIKE_HDR(-4),
1190     INTLIKE_HDR(-3),
1191     INTLIKE_HDR(-2),
1192     INTLIKE_HDR(-1),
1193     INTLIKE_HDR(0),
1194     INTLIKE_HDR(1),
1195     INTLIKE_HDR(2),
1196     INTLIKE_HDR(3),
1197     INTLIKE_HDR(4),
1198     INTLIKE_HDR(5),
1199     INTLIKE_HDR(6),
1200     INTLIKE_HDR(7),
1201     INTLIKE_HDR(8),
1202     INTLIKE_HDR(9),
1203     INTLIKE_HDR(10),
1204     INTLIKE_HDR(11),
1205     INTLIKE_HDR(12),
1206     INTLIKE_HDR(13),
1207     INTLIKE_HDR(14),
1208     INTLIKE_HDR(15),
1209     INTLIKE_HDR(16)     /* MAX_INTLIKE == 16 */
1210 };