Trim imports
[ghc-hetmet.git] / rts / Linker.c
1 /* -----------------------------------------------------------------------------
2  *
3  * (c) The GHC Team, 2000-2004
4  *
5  * RTS Object Linker
6  *
7  * ---------------------------------------------------------------------------*/
8
9 #if 0
10 #include "PosixSource.h"
11 #endif
12
13 /* Linux needs _GNU_SOURCE to get RTLD_DEFAULT from <dlfcn.h> and 
14    MREMAP_MAYMOVE from <sys/mman.h>.
15  */
16 #ifdef __linux__
17 #define _GNU_SOURCE
18 #endif
19
20 #include "Rts.h"
21 #include "RtsFlags.h"
22 #include "HsFFI.h"
23 #include "Hash.h"
24 #include "Linker.h"
25 #include "LinkerInternals.h"
26 #include "RtsUtils.h"
27 #include "Schedule.h"
28 #include "Storage.h"
29 #include "Sparks.h"
30
31 #ifdef HAVE_SYS_TYPES_H
32 #include <sys/types.h>
33 #endif
34
35 #include <stdlib.h>
36 #include <string.h>
37
38 #ifdef HAVE_SYS_STAT_H
39 #include <sys/stat.h>
40 #endif
41
42 #if defined(HAVE_DLFCN_H)
43 #include <dlfcn.h>
44 #endif
45
46 #if defined(cygwin32_HOST_OS)
47 #ifdef HAVE_DIRENT_H
48 #include <dirent.h>
49 #endif
50
51 #ifdef HAVE_SYS_TIME_H
52 #include <sys/time.h>
53 #endif
54 #include <regex.h>
55 #include <sys/fcntl.h>
56 #include <sys/termios.h>
57 #include <sys/utime.h>
58 #include <sys/utsname.h>
59 #include <sys/wait.h>
60 #endif
61
62 #if defined(ia64_HOST_ARCH) || defined(openbsd_HOST_OS) || defined(linux_HOST_OS) || defined(freebsd_HOST_OS)
63 #define USE_MMAP
64 #include <fcntl.h>
65 #include <sys/mman.h>
66
67 #if defined(openbsd_HOST_OS) || defined(linux_HOST_OS) || defined(freebsd_HOST_OS)
68 #ifdef HAVE_UNISTD_H
69 #include <unistd.h>
70 #endif
71 #endif
72
73 #endif
74
75 #if defined(linux_HOST_OS) || defined(solaris2_HOST_OS) || defined(freebsd_HOST_OS) || defined(netbsd_HOST_OS) || defined(openbsd_HOST_OS)
76 #  define OBJFORMAT_ELF
77 #elif defined(cygwin32_HOST_OS) || defined (mingw32_HOST_OS)
78 #  define OBJFORMAT_PEi386
79 #  include <windows.h>
80 #  include <math.h>
81 #elif defined(darwin_HOST_OS)
82 #  define OBJFORMAT_MACHO
83 #  include <mach-o/loader.h>
84 #  include <mach-o/nlist.h>
85 #  include <mach-o/reloc.h>
86 #  include <mach-o/dyld.h>
87 #if defined(powerpc_HOST_ARCH)
88 #  include <mach-o/ppc/reloc.h>
89 #endif
90 #endif
91
92 /* Hash table mapping symbol names to Symbol */
93 static /*Str*/HashTable *symhash;
94
95 typedef struct {
96   void *addr;
97 } rootEntry;
98
99 /* Hash table mapping symbol names to StgStablePtr */
100 static /*Str*/HashTable *stablehash;
101 rootEntry *root_ptr_table = NULL;
102 static rootEntry *root_ptr_free = NULL;
103
104 static unsigned int RPT_size = 0;
105
106 /* List of currently loaded objects */
107 ObjectCode *objects = NULL;     /* initially empty */
108
109 #if defined(OBJFORMAT_ELF)
110 static int ocVerifyImage_ELF    ( ObjectCode* oc );
111 static int ocGetNames_ELF       ( ObjectCode* oc );
112 static int ocResolve_ELF        ( ObjectCode* oc );
113 #if defined(powerpc_HOST_ARCH)
114 static int ocAllocateJumpIslands_ELF ( ObjectCode* oc );
115 #endif
116 #elif defined(OBJFORMAT_PEi386)
117 static int ocVerifyImage_PEi386 ( ObjectCode* oc );
118 static int ocGetNames_PEi386    ( ObjectCode* oc );
119 static int ocResolve_PEi386     ( ObjectCode* oc );
120 #elif defined(OBJFORMAT_MACHO)
121 static int ocVerifyImage_MachO    ( ObjectCode* oc );
122 static int ocGetNames_MachO       ( ObjectCode* oc );
123 static int ocResolve_MachO        ( ObjectCode* oc );
124
125 static int machoGetMisalignment( FILE * );
126 #ifdef powerpc_HOST_ARCH
127 static int ocAllocateJumpIslands_MachO ( ObjectCode* oc );
128 static void machoInitSymbolsWithoutUnderscore( void );
129 #endif
130 #endif
131
132 #if defined(x86_64_HOST_ARCH)
133 static void*x86_64_high_symbol( char *lbl, void *addr );
134 #endif
135
136 /* -----------------------------------------------------------------------------
137  * Built-in symbols from the RTS
138  */
139
140 typedef struct _RtsSymbolVal {
141     char   *lbl;
142     void   *addr;
143 } RtsSymbolVal;
144
145
146 #if !defined(PAR)
147 #define Maybe_Stable_Names      SymX(mkWeakzh_fast)                     \
148                                 SymX(makeStableNamezh_fast)             \
149                                 SymX(finalizzeWeakzh_fast)
150 #else
151 /* These are not available in GUM!!! -- HWL */
152 #define Maybe_Stable_Names
153 #endif
154
155 #if !defined (mingw32_HOST_OS)
156 #define RTS_POSIX_ONLY_SYMBOLS                  \
157       SymX(signal_handlers)                     \
158       SymX(stg_sig_install)                     \
159       Sym(nocldstop)
160 #endif
161
162 #if defined (cygwin32_HOST_OS)
163 #define RTS_MINGW_ONLY_SYMBOLS /**/
164 /* Don't have the ability to read import libs / archives, so
165  * we have to stupidly list a lot of what libcygwin.a
166  * exports; sigh.
167  */
168 #define RTS_CYGWIN_ONLY_SYMBOLS                 \
169       SymX(regfree)                             \
170       SymX(regexec)                             \
171       SymX(regerror)                            \
172       SymX(regcomp)                             \
173       SymX(__errno)                             \
174       SymX(access)                              \
175       SymX(chmod)                               \
176       SymX(chdir)                               \
177       SymX(close)                               \
178       SymX(creat)                               \
179       SymX(dup)                                 \
180       SymX(dup2)                                \
181       SymX(fstat)                               \
182       SymX(fcntl)                               \
183       SymX(getcwd)                              \
184       SymX(getenv)                              \
185       SymX(lseek)                               \
186       SymX(open)                                \
187       SymX(fpathconf)                           \
188       SymX(pathconf)                            \
189       SymX(stat)                                \
190       SymX(pow)                                 \
191       SymX(tanh)                                \
192       SymX(cosh)                                \
193       SymX(sinh)                                \
194       SymX(atan)                                \
195       SymX(acos)                                \
196       SymX(asin)                                \
197       SymX(tan)                                 \
198       SymX(cos)                                 \
199       SymX(sin)                                 \
200       SymX(exp)                                 \
201       SymX(log)                                 \
202       SymX(sqrt)                                \
203       SymX(localtime_r)                         \
204       SymX(gmtime_r)                            \
205       SymX(mktime)                              \
206       Sym(_imp___tzname)                        \
207       SymX(gettimeofday)                        \
208       SymX(timezone)                            \
209       SymX(tcgetattr)                           \
210       SymX(tcsetattr)                           \
211       SymX(memcpy)                              \
212       SymX(memmove)                             \
213       SymX(realloc)                             \
214       SymX(malloc)                              \
215       SymX(free)                                \
216       SymX(fork)                                \
217       SymX(lstat)                               \
218       SymX(isatty)                              \
219       SymX(mkdir)                               \
220       SymX(opendir)                             \
221       SymX(readdir)                             \
222       SymX(rewinddir)                           \
223       SymX(closedir)                            \
224       SymX(link)                                \
225       SymX(mkfifo)                              \
226       SymX(pipe)                                \
227       SymX(read)                                \
228       SymX(rename)                              \
229       SymX(rmdir)                               \
230       SymX(select)                              \
231       SymX(system)                              \
232       SymX(write)                               \
233       SymX(strcmp)                              \
234       SymX(strcpy)                              \
235       SymX(strncpy)                             \
236       SymX(strerror)                            \
237       SymX(sigaddset)                           \
238       SymX(sigemptyset)                         \
239       SymX(sigprocmask)                         \
240       SymX(umask)                               \
241       SymX(uname)                               \
242       SymX(unlink)                              \
243       SymX(utime)                               \
244       SymX(waitpid)
245
246 #elif !defined(mingw32_HOST_OS)
247 #define RTS_MINGW_ONLY_SYMBOLS /**/
248 #define RTS_CYGWIN_ONLY_SYMBOLS /**/
249 #else /* defined(mingw32_HOST_OS) */
250 #define RTS_POSIX_ONLY_SYMBOLS  /**/
251 #define RTS_CYGWIN_ONLY_SYMBOLS /**/
252
253 /* Extra syms gen'ed by mingw-2's gcc-3.2: */
254 #if __GNUC__>=3
255 #define RTS_MINGW_EXTRA_SYMS                    \
256       Sym(_imp____mb_cur_max)                   \
257       Sym(_imp___pctype)
258 #else
259 #define RTS_MINGW_EXTRA_SYMS
260 #endif
261
262 /* These are statically linked from the mingw libraries into the ghc
263    executable, so we have to employ this hack. */
264 #define RTS_MINGW_ONLY_SYMBOLS                  \
265       SymX(asyncReadzh_fast)                    \
266       SymX(asyncWritezh_fast)                   \
267       SymX(asyncDoProczh_fast)                  \
268       SymX(memset)                              \
269       SymX(inet_ntoa)                           \
270       SymX(inet_addr)                           \
271       SymX(htonl)                               \
272       SymX(recvfrom)                            \
273       SymX(listen)                              \
274       SymX(bind)                                \
275       SymX(shutdown)                            \
276       SymX(connect)                             \
277       SymX(htons)                               \
278       SymX(ntohs)                               \
279       SymX(getservbyname)                       \
280       SymX(getservbyport)                       \
281       SymX(getprotobynumber)                    \
282       SymX(getprotobyname)                      \
283       SymX(gethostbyname)                       \
284       SymX(gethostbyaddr)                       \
285       SymX(gethostname)                         \
286       SymX(strcpy)                              \
287       SymX(strncpy)                             \
288       SymX(abort)                               \
289       Sym(_alloca)                              \
290       Sym(isxdigit)                             \
291       Sym(isupper)                              \
292       Sym(ispunct)                              \
293       Sym(islower)                              \
294       Sym(isspace)                              \
295       Sym(isprint)                              \
296       Sym(isdigit)                              \
297       Sym(iscntrl)                              \
298       Sym(isalpha)                              \
299       Sym(isalnum)                              \
300       SymX(strcmp)                              \
301       SymX(memmove)                             \
302       SymX(realloc)                             \
303       SymX(malloc)                              \
304       SymX(pow)                                 \
305       SymX(tanh)                                \
306       SymX(cosh)                                \
307       SymX(sinh)                                \
308       SymX(atan)                                \
309       SymX(acos)                                \
310       SymX(asin)                                \
311       SymX(tan)                                 \
312       SymX(cos)                                 \
313       SymX(sin)                                 \
314       SymX(exp)                                 \
315       SymX(log)                                 \
316       SymX(sqrt)                                \
317       SymX(powf)                                 \
318       SymX(tanhf)                                \
319       SymX(coshf)                                \
320       SymX(sinhf)                                \
321       SymX(atanf)                                \
322       SymX(acosf)                                \
323       SymX(asinf)                                \
324       SymX(tanf)                                 \
325       SymX(cosf)                                 \
326       SymX(sinf)                                 \
327       SymX(expf)                                 \
328       SymX(logf)                                 \
329       SymX(sqrtf)                                \
330       SymX(memcpy)                              \
331       SymX(rts_InstallConsoleEvent)             \
332       SymX(rts_ConsoleHandlerDone)              \
333       Sym(mktime)                               \
334       Sym(_imp___timezone)                      \
335       Sym(_imp___tzname)                        \
336       Sym(_imp___iob)                           \
337       Sym(_imp___osver)                         \
338       Sym(localtime)                            \
339       Sym(gmtime)                               \
340       Sym(opendir)                              \
341       Sym(readdir)                              \
342       Sym(rewinddir)                            \
343       RTS_MINGW_EXTRA_SYMS                      \
344       Sym(closedir)
345 #endif
346
347 #if defined(darwin_TARGET_OS) && HAVE_PRINTF_LDBLSTUB
348 #define RTS_DARWIN_ONLY_SYMBOLS                 \
349      Sym(asprintf$LDBLStub)                     \
350      Sym(err$LDBLStub)                          \
351      Sym(errc$LDBLStub)                         \
352      Sym(errx$LDBLStub)                         \
353      Sym(fprintf$LDBLStub)                      \
354      Sym(fscanf$LDBLStub)                       \
355      Sym(fwprintf$LDBLStub)                     \
356      Sym(fwscanf$LDBLStub)                      \
357      Sym(printf$LDBLStub)                       \
358      Sym(scanf$LDBLStub)                        \
359      Sym(snprintf$LDBLStub)                     \
360      Sym(sprintf$LDBLStub)                      \
361      Sym(sscanf$LDBLStub)                       \
362      Sym(strtold$LDBLStub)                      \
363      Sym(swprintf$LDBLStub)                     \
364      Sym(swscanf$LDBLStub)                      \
365      Sym(syslog$LDBLStub)                       \
366      Sym(vasprintf$LDBLStub)                    \
367      Sym(verr$LDBLStub)                         \
368      Sym(verrc$LDBLStub)                        \
369      Sym(verrx$LDBLStub)                        \
370      Sym(vfprintf$LDBLStub)                     \
371      Sym(vfscanf$LDBLStub)                      \
372      Sym(vfwprintf$LDBLStub)                    \
373      Sym(vfwscanf$LDBLStub)                     \
374      Sym(vprintf$LDBLStub)                      \
375      Sym(vscanf$LDBLStub)                       \
376      Sym(vsnprintf$LDBLStub)                    \
377      Sym(vsprintf$LDBLStub)                     \
378      Sym(vsscanf$LDBLStub)                      \
379      Sym(vswprintf$LDBLStub)                    \
380      Sym(vswscanf$LDBLStub)                     \
381      Sym(vsyslog$LDBLStub)                      \
382      Sym(vwarn$LDBLStub)                        \
383      Sym(vwarnc$LDBLStub)                       \
384      Sym(vwarnx$LDBLStub)                       \
385      Sym(vwprintf$LDBLStub)                     \
386      Sym(vwscanf$LDBLStub)                      \
387      Sym(warn$LDBLStub)                         \
388      Sym(warnc$LDBLStub)                        \
389      Sym(warnx$LDBLStub)                        \
390      Sym(wcstold$LDBLStub)                      \
391      Sym(wprintf$LDBLStub)                      \
392      Sym(wscanf$LDBLStub)
393 #else
394 #define RTS_DARWIN_ONLY_SYMBOLS
395 #endif
396
397 #ifndef SMP
398 # define MAIN_CAP_SYM SymX(MainCapability)
399 #else
400 # define MAIN_CAP_SYM
401 #endif
402
403 #if !defined(mingw32_HOST_OS)
404 #define RTS_USER_SIGNALS_SYMBOLS \
405    SymX(setIOManagerPipe)
406 #else
407 #define RTS_USER_SIGNALS_SYMBOLS /* nothing */
408 #endif
409
410 #ifdef TABLES_NEXT_TO_CODE
411 #define RTS_RET_SYMBOLS /* nothing */
412 #else
413 #define RTS_RET_SYMBOLS                         \
414       SymX(stg_enter_ret)                       \
415       SymX(stg_gc_fun_ret)                      \
416       SymX(stg_ap_v_ret)                        \
417       SymX(stg_ap_f_ret)                        \
418       SymX(stg_ap_d_ret)                        \
419       SymX(stg_ap_l_ret)                        \
420       SymX(stg_ap_n_ret)                        \
421       SymX(stg_ap_p_ret)                        \
422       SymX(stg_ap_pv_ret)                       \
423       SymX(stg_ap_pp_ret)                       \
424       SymX(stg_ap_ppv_ret)                      \
425       SymX(stg_ap_ppp_ret)                      \
426       SymX(stg_ap_pppv_ret)                     \
427       SymX(stg_ap_pppp_ret)                     \
428       SymX(stg_ap_ppppp_ret)                    \
429       SymX(stg_ap_pppppp_ret)
430 #endif
431
432 #define RTS_SYMBOLS                             \
433       Maybe_Stable_Names                        \
434       Sym(StgReturn)                            \
435       SymX(stg_enter_info)                      \
436       SymX(stg_gc_void_info)                    \
437       SymX(__stg_gc_enter_1)                    \
438       SymX(stg_gc_noregs)                       \
439       SymX(stg_gc_unpt_r1_info)                 \
440       SymX(stg_gc_unpt_r1)                      \
441       SymX(stg_gc_unbx_r1_info)                 \
442       SymX(stg_gc_unbx_r1)                      \
443       SymX(stg_gc_f1_info)                      \
444       SymX(stg_gc_f1)                           \
445       SymX(stg_gc_d1_info)                      \
446       SymX(stg_gc_d1)                           \
447       SymX(stg_gc_l1_info)                      \
448       SymX(stg_gc_l1)                           \
449       SymX(__stg_gc_fun)                        \
450       SymX(stg_gc_fun_info)                     \
451       SymX(stg_gc_gen)                          \
452       SymX(stg_gc_gen_info)                     \
453       SymX(stg_gc_gen_hp)                       \
454       SymX(stg_gc_ut)                           \
455       SymX(stg_gen_yield)                       \
456       SymX(stg_yield_noregs)                    \
457       SymX(stg_yield_to_interpreter)            \
458       SymX(stg_gen_block)                       \
459       SymX(stg_block_noregs)                    \
460       SymX(stg_block_1)                         \
461       SymX(stg_block_takemvar)                  \
462       SymX(stg_block_putmvar)                   \
463       SymX(stg_seq_frame_info)                  \
464       MAIN_CAP_SYM                              \
465       SymX(MallocFailHook)                      \
466       SymX(OnExitHook)                          \
467       SymX(OutOfHeapHook)                       \
468       SymX(StackOverflowHook)                   \
469       SymX(__encodeDouble)                      \
470       SymX(__encodeFloat)                       \
471       SymX(addDLL)                              \
472       SymX(__gmpn_gcd_1)                        \
473       SymX(__gmpz_cmp)                          \
474       SymX(__gmpz_cmp_si)                       \
475       SymX(__gmpz_cmp_ui)                       \
476       SymX(__gmpz_get_si)                       \
477       SymX(__gmpz_get_ui)                       \
478       SymX(__int_encodeDouble)                  \
479       SymX(__int_encodeFloat)                   \
480       SymX(andIntegerzh_fast)                   \
481       SymX(atomicallyzh_fast)                   \
482       SymX(barf)                                \
483       SymX(debugBelch)                          \
484       SymX(errorBelch)                          \
485       SymX(blockAsyncExceptionszh_fast)         \
486       SymX(catchzh_fast)                        \
487       SymX(catchRetryzh_fast)                   \
488       SymX(catchSTMzh_fast)                     \
489       SymX(closure_flags)                       \
490       SymX(cmp_thread)                          \
491       SymX(cmpIntegerzh_fast)                   \
492       SymX(cmpIntegerIntzh_fast)                \
493       SymX(complementIntegerzh_fast)            \
494       SymX(createAdjustor)                      \
495       SymX(decodeDoublezh_fast)                 \
496       SymX(decodeFloatzh_fast)                  \
497       SymX(defaultsHook)                        \
498       SymX(delayzh_fast)                        \
499       SymX(deRefWeakzh_fast)                    \
500       SymX(deRefStablePtrzh_fast)               \
501       SymX(dirty_MUT_VAR)                       \
502       SymX(divExactIntegerzh_fast)              \
503       SymX(divModIntegerzh_fast)                \
504       SymX(forkzh_fast)                         \
505       SymX(forkOnzh_fast)                       \
506       SymX(forkProcess)                         \
507       SymX(forkOS_createThread)                 \
508       SymX(freeHaskellFunctionPtr)              \
509       SymX(freeStablePtr)                       \
510       SymX(gcdIntegerzh_fast)                   \
511       SymX(gcdIntegerIntzh_fast)                \
512       SymX(gcdIntzh_fast)                       \
513       SymX(genSymZh)                            \
514       SymX(genericRaise)                        \
515       SymX(getProgArgv)                         \
516       SymX(getStablePtr)                        \
517       SymX(hs_init)                             \
518       SymX(hs_exit)                             \
519       SymX(hs_set_argv)                         \
520       SymX(hs_add_root)                         \
521       SymX(hs_perform_gc)                       \
522       SymX(hs_free_stable_ptr)                  \
523       SymX(hs_free_fun_ptr)                     \
524       SymX(initLinker)                          \
525       SymX(int2Integerzh_fast)                  \
526       SymX(integer2Intzh_fast)                  \
527       SymX(integer2Wordzh_fast)                 \
528       SymX(isCurrentThreadBoundzh_fast)         \
529       SymX(isDoubleDenormalized)                \
530       SymX(isDoubleInfinite)                    \
531       SymX(isDoubleNaN)                         \
532       SymX(isDoubleNegativeZero)                \
533       SymX(isEmptyMVarzh_fast)                  \
534       SymX(isFloatDenormalized)                 \
535       SymX(isFloatInfinite)                     \
536       SymX(isFloatNaN)                          \
537       SymX(isFloatNegativeZero)                 \
538       SymX(killThreadzh_fast)                   \
539       SymX(loadObj)                             \
540       SymX(insertStableSymbol)                  \
541       SymX(insertSymbol)                        \
542       SymX(lookupSymbol)                        \
543       SymX(makeStablePtrzh_fast)                \
544       SymX(minusIntegerzh_fast)                 \
545       SymX(mkApUpd0zh_fast)                     \
546       SymX(myThreadIdzh_fast)                   \
547       SymX(labelThreadzh_fast)                  \
548       SymX(newArrayzh_fast)                     \
549       SymX(newBCOzh_fast)                       \
550       SymX(newByteArrayzh_fast)                 \
551       SymX_redirect(newCAF, newDynCAF)          \
552       SymX(newMVarzh_fast)                      \
553       SymX(newMutVarzh_fast)                    \
554       SymX(newTVarzh_fast)                      \
555       SymX(atomicModifyMutVarzh_fast)           \
556       SymX(newPinnedByteArrayzh_fast)           \
557       SymX(newSpark)                            \
558       SymX(orIntegerzh_fast)                    \
559       SymX(performGC)                           \
560       SymX(performMajorGC)                      \
561       SymX(plusIntegerzh_fast)                  \
562       SymX(prog_argc)                           \
563       SymX(prog_argv)                           \
564       SymX(putMVarzh_fast)                      \
565       SymX(quotIntegerzh_fast)                  \
566       SymX(quotRemIntegerzh_fast)               \
567       SymX(raisezh_fast)                        \
568       SymX(raiseIOzh_fast)                      \
569       SymX(readTVarzh_fast)                     \
570       SymX(remIntegerzh_fast)                   \
571       SymX(resetNonBlockingFd)                  \
572       SymX(resumeThread)                        \
573       SymX(resolveObjs)                         \
574       SymX(retryzh_fast)                        \
575       SymX(rts_apply)                           \
576       SymX(rts_checkSchedStatus)                \
577       SymX(rts_eval)                            \
578       SymX(rts_evalIO)                          \
579       SymX(rts_evalLazyIO)                      \
580       SymX(rts_evalStableIO)                    \
581       SymX(rts_eval_)                           \
582       SymX(rts_getBool)                         \
583       SymX(rts_getChar)                         \
584       SymX(rts_getDouble)                       \
585       SymX(rts_getFloat)                        \
586       SymX(rts_getInt)                          \
587       SymX(rts_getInt32)                        \
588       SymX(rts_getPtr)                          \
589       SymX(rts_getFunPtr)                       \
590       SymX(rts_getStablePtr)                    \
591       SymX(rts_getThreadId)                     \
592       SymX(rts_getWord)                         \
593       SymX(rts_getWord32)                       \
594       SymX(rts_lock)                            \
595       SymX(rts_mkBool)                          \
596       SymX(rts_mkChar)                          \
597       SymX(rts_mkDouble)                        \
598       SymX(rts_mkFloat)                         \
599       SymX(rts_mkInt)                           \
600       SymX(rts_mkInt16)                         \
601       SymX(rts_mkInt32)                         \
602       SymX(rts_mkInt64)                         \
603       SymX(rts_mkInt8)                          \
604       SymX(rts_mkPtr)                           \
605       SymX(rts_mkFunPtr)                        \
606       SymX(rts_mkStablePtr)                     \
607       SymX(rts_mkString)                        \
608       SymX(rts_mkWord)                          \
609       SymX(rts_mkWord16)                        \
610       SymX(rts_mkWord32)                        \
611       SymX(rts_mkWord64)                        \
612       SymX(rts_mkWord8)                         \
613       SymX(rts_unlock)                          \
614       SymX(rtsSupportsBoundThreads)             \
615       SymX(__hscore_get_saved_termios)          \
616       SymX(__hscore_set_saved_termios)          \
617       SymX(setProgArgv)                         \
618       SymX(startupHaskell)                      \
619       SymX(shutdownHaskell)                     \
620       SymX(shutdownHaskellAndExit)              \
621       SymX(stable_ptr_table)                    \
622       SymX(stackOverflow)                       \
623       SymX(stg_CAF_BLACKHOLE_info)              \
624       SymX(awakenBlockedQueue)                  \
625       SymX(stg_CHARLIKE_closure)                \
626       SymX(stg_EMPTY_MVAR_info)                 \
627       SymX(stg_IND_STATIC_info)                 \
628       SymX(stg_INTLIKE_closure)                 \
629       SymX(stg_MUT_ARR_PTRS_DIRTY_info)         \
630       SymX(stg_MUT_ARR_PTRS_FROZEN_info)        \
631       SymX(stg_MUT_ARR_PTRS_FROZEN0_info)       \
632       SymX(stg_WEAK_info)                       \
633       SymX(stg_ap_v_info)                       \
634       SymX(stg_ap_f_info)                       \
635       SymX(stg_ap_d_info)                       \
636       SymX(stg_ap_l_info)                       \
637       SymX(stg_ap_n_info)                       \
638       SymX(stg_ap_p_info)                       \
639       SymX(stg_ap_pv_info)                      \
640       SymX(stg_ap_pp_info)                      \
641       SymX(stg_ap_ppv_info)                     \
642       SymX(stg_ap_ppp_info)                     \
643       SymX(stg_ap_pppv_info)                    \
644       SymX(stg_ap_pppp_info)                    \
645       SymX(stg_ap_ppppp_info)                   \
646       SymX(stg_ap_pppppp_info)                  \
647       SymX(stg_ap_0_fast)                       \
648       SymX(stg_ap_v_fast)                       \
649       SymX(stg_ap_f_fast)                       \
650       SymX(stg_ap_d_fast)                       \
651       SymX(stg_ap_l_fast)                       \
652       SymX(stg_ap_n_fast)                       \
653       SymX(stg_ap_p_fast)                       \
654       SymX(stg_ap_pv_fast)                      \
655       SymX(stg_ap_pp_fast)                      \
656       SymX(stg_ap_ppv_fast)                     \
657       SymX(stg_ap_ppp_fast)                     \
658       SymX(stg_ap_pppv_fast)                    \
659       SymX(stg_ap_pppp_fast)                    \
660       SymX(stg_ap_ppppp_fast)                   \
661       SymX(stg_ap_pppppp_fast)                  \
662       SymX(stg_ap_1_upd_info)                   \
663       SymX(stg_ap_2_upd_info)                   \
664       SymX(stg_ap_3_upd_info)                   \
665       SymX(stg_ap_4_upd_info)                   \
666       SymX(stg_ap_5_upd_info)                   \
667       SymX(stg_ap_6_upd_info)                   \
668       SymX(stg_ap_7_upd_info)                   \
669       SymX(stg_exit)                            \
670       SymX(stg_sel_0_upd_info)                  \
671       SymX(stg_sel_10_upd_info)                 \
672       SymX(stg_sel_11_upd_info)                 \
673       SymX(stg_sel_12_upd_info)                 \
674       SymX(stg_sel_13_upd_info)                 \
675       SymX(stg_sel_14_upd_info)                 \
676       SymX(stg_sel_15_upd_info)                 \
677       SymX(stg_sel_1_upd_info)                  \
678       SymX(stg_sel_2_upd_info)                  \
679       SymX(stg_sel_3_upd_info)                  \
680       SymX(stg_sel_4_upd_info)                  \
681       SymX(stg_sel_5_upd_info)                  \
682       SymX(stg_sel_6_upd_info)                  \
683       SymX(stg_sel_7_upd_info)                  \
684       SymX(stg_sel_8_upd_info)                  \
685       SymX(stg_sel_9_upd_info)                  \
686       SymX(stg_upd_frame_info)                  \
687       SymX(suspendThread)                       \
688       SymX(takeMVarzh_fast)                     \
689       SymX(timesIntegerzh_fast)                 \
690       SymX(tryPutMVarzh_fast)                   \
691       SymX(tryTakeMVarzh_fast)                  \
692       SymX(unblockAsyncExceptionszh_fast)       \
693       SymX(unloadObj)                           \
694       SymX(unsafeThawArrayzh_fast)              \
695       SymX(waitReadzh_fast)                     \
696       SymX(waitWritezh_fast)                    \
697       SymX(word2Integerzh_fast)                 \
698       SymX(writeTVarzh_fast)                    \
699       SymX(xorIntegerzh_fast)                   \
700       SymX(yieldzh_fast)                        \
701       SymX(stg_interp_constr_entry)             \
702       SymX(stg_interp_constr1_entry)            \
703       SymX(stg_interp_constr2_entry)            \
704       SymX(stg_interp_constr3_entry)            \
705       SymX(stg_interp_constr4_entry)            \
706       SymX(stg_interp_constr5_entry)            \
707       SymX(stg_interp_constr6_entry)            \
708       SymX(stg_interp_constr7_entry)            \
709       SymX(stg_interp_constr8_entry)            \
710       SymX(stgMallocBytesRWX)                   \
711       SymX(getAllocations)                      \
712       SymX(revertCAFs)                          \
713       SymX(RtsFlags)                            \
714       RTS_USER_SIGNALS_SYMBOLS
715
716 #ifdef SUPPORT_LONG_LONGS
717 #define RTS_LONG_LONG_SYMS                      \
718       SymX(int64ToIntegerzh_fast)               \
719       SymX(word64ToIntegerzh_fast)
720 #else
721 #define RTS_LONG_LONG_SYMS /* nothing */
722 #endif
723
724 // 64-bit support functions in libgcc.a
725 #if defined(__GNUC__) && SIZEOF_VOID_P <= 4
726 #define RTS_LIBGCC_SYMBOLS                      \
727       Sym(__divdi3)                             \
728       Sym(__udivdi3)                            \
729       Sym(__moddi3)                             \
730       Sym(__umoddi3)                            \
731       Sym(__muldi3)                             \
732       Sym(__ashldi3)                            \
733       Sym(__ashrdi3)                            \
734       Sym(__lshrdi3)                            \
735       Sym(__eprintf)
736 #elif defined(ia64_HOST_ARCH)
737 #define RTS_LIBGCC_SYMBOLS                      \
738       Sym(__divdi3)                             \
739       Sym(__udivdi3)                            \
740       Sym(__moddi3)                             \
741       Sym(__umoddi3)                            \
742       Sym(__divsf3)                             \
743       Sym(__divdf3)
744 #else
745 #define RTS_LIBGCC_SYMBOLS
746 #endif
747
748 #if defined(darwin_HOST_OS) && defined(powerpc_HOST_ARCH)
749       // Symbols that don't have a leading underscore
750       // on Mac OS X. They have to receive special treatment,
751       // see machoInitSymbolsWithoutUnderscore()
752 #define RTS_MACHO_NOUNDERLINE_SYMBOLS           \
753       Sym(saveFP)                               \
754       Sym(restFP)
755 #endif
756
757 /* entirely bogus claims about types of these symbols */
758 #define Sym(vvv)  extern void vvv(void);
759 #define SymX(vvv) /**/
760 #define SymX_redirect(vvv,xxx) /**/
761 RTS_SYMBOLS
762 RTS_RET_SYMBOLS
763 RTS_LONG_LONG_SYMS
764 RTS_POSIX_ONLY_SYMBOLS
765 RTS_MINGW_ONLY_SYMBOLS
766 RTS_CYGWIN_ONLY_SYMBOLS
767 RTS_DARWIN_ONLY_SYMBOLS
768 RTS_LIBGCC_SYMBOLS
769 #undef Sym
770 #undef SymX
771 #undef SymX_redirect
772
773 #ifdef LEADING_UNDERSCORE
774 #define MAYBE_LEADING_UNDERSCORE_STR(s) ("_" s)
775 #else
776 #define MAYBE_LEADING_UNDERSCORE_STR(s) (s)
777 #endif
778
779 #define Sym(vvv) { MAYBE_LEADING_UNDERSCORE_STR(#vvv), \
780                     (void*)(&(vvv)) },
781 #define SymX(vvv) Sym(vvv)
782
783 // SymX_redirect allows us to redirect references to one symbol to
784 // another symbol.  See newCAF/newDynCAF for an example.
785 #define SymX_redirect(vvv,xxx) \
786     { MAYBE_LEADING_UNDERSCORE_STR(#vvv), \
787       (void*)(&(xxx)) },
788
789 static RtsSymbolVal rtsSyms[] = {
790       RTS_SYMBOLS
791       RTS_RET_SYMBOLS
792       RTS_LONG_LONG_SYMS
793       RTS_POSIX_ONLY_SYMBOLS
794       RTS_MINGW_ONLY_SYMBOLS
795       RTS_CYGWIN_ONLY_SYMBOLS
796       RTS_LIBGCC_SYMBOLS
797 #if defined(darwin_HOST_OS) && defined(i386_HOST_ARCH)
798       // dyld stub code contains references to this,
799       // but it should never be called because we treat
800       // lazy pointers as nonlazy.
801       { "dyld_stub_binding_helper", (void*)0xDEADBEEF },
802 #endif
803       { 0, 0 } /* sentinel */
804 };
805
806
807 /* -----------------------------------------------------------------------------
808  * Utilities for handling root pointers.
809  * -------------------------------------------------------------------------- */
810
811
812 #define INIT_RPT_SIZE 64
813
814 STATIC_INLINE void
815 initFreeList(rootEntry *table, nat n, rootEntry *free)
816 {
817   rootEntry *p;
818
819   for (p = table + n - 1; p >= table; p--) {
820     p->addr   = (P_)free;
821     free = p;
822   }
823   root_ptr_free = table;
824 }
825
826 void
827 initRootPtrTable(void)
828 {
829   if (RPT_size > 0)
830     return;
831
832   RPT_size = INIT_RPT_SIZE;
833   root_ptr_table = stgMallocBytes(RPT_size * sizeof(rootEntry),
834                                     "initRootPtrTable");
835
836   initFreeList(root_ptr_table,INIT_RPT_SIZE,NULL);
837 }
838
839
840 void
841 enlargeRootPtrTable(void)
842 {
843   nat old_RPT_size = RPT_size;
844
845   // 2nd and subsequent times
846   RPT_size *= 2;
847   root_ptr_table =
848     stgReallocBytes(root_ptr_table,
849                     RPT_size * sizeof(rootEntry),
850                     "enlargeRootPtrTable");
851
852   initFreeList(root_ptr_table + old_RPT_size, old_RPT_size, NULL);
853 }
854
855 static void
856 addRootObject(void *addr)
857 {
858   StgWord rt;
859   initRootPtrTable();
860   if (root_ptr_free == NULL) {
861     enlargeRootPtrTable();
862   }
863
864   rt = root_ptr_free - root_ptr_table;
865   root_ptr_free  = (rootEntry*)(root_ptr_free->addr);
866   root_ptr_table[rt].addr = addr;
867 }
868
869 /* -----------------------------------------------------------------------------
870  * Treat root pointers as roots for the garbage collector.
871  * -------------------------------------------------------------------------- */
872
873 void
874 markRootPtrTable(evac_fn evac)
875 {
876   rootEntry *p, *end_root_ptr_table;
877   StgPtr q;
878
879   end_root_ptr_table = &root_ptr_table[RPT_size];
880
881   for (p = root_ptr_table; p < end_root_ptr_table; p++) {
882     q = p->addr;
883
884     if (q && (q < (P_)root_ptr_table || q >= (P_)end_root_ptr_table)) {
885         evac((StgClosure **)p->addr);
886     }
887   }
888 }
889
890 /* -----------------------------------------------------------------------------
891  * End of utilities for handling root pointers.
892  * -------------------------------------------------------------------------- */
893
894
895 /* -----------------------------------------------------------------------------
896  * Insert symbols into hash tables, checking for duplicates.
897  */
898 static void ghciInsertStrHashTable ( char* obj_name,
899                                      HashTable *table,
900                                      char* key,
901                                      void *data
902                                    )
903 {
904    if (lookupHashTable(table, (StgWord)key) == NULL)
905    {
906       insertStrHashTable(table, (StgWord)key, data);
907       return;
908    }
909    debugBelch(
910       "\n\n"
911       "GHCi runtime linker: fatal error: I found a duplicate definition for symbol\n"
912       "   %s\n"
913       "whilst processing object file\n"
914       "   %s\n"
915       "This could be caused by:\n"
916       "   * Loading two different object files which export the same symbol\n"
917       "   * Specifying the same object file twice on the GHCi command line\n"
918       "   * An incorrect `package.conf' entry, causing some object to be\n"
919       "     loaded twice.\n"
920       "GHCi cannot safely continue in this situation.  Exiting now.  Sorry.\n"
921       "\n",
922       (char*)key,
923       obj_name
924    );
925    exit(1);
926 }
927
928
929 /* -----------------------------------------------------------------------------
930  * initialize the object linker
931  */
932
933
934 static int linker_init_done = 0 ;
935
936 #if defined(OBJFORMAT_ELF) || defined(OBJFORMAT_MACHO)
937 static void *dl_prog_handle;
938 #endif
939
940 /* dlopen(NULL,..) doesn't work so we grab libc explicitly */
941 #if defined(openbsd_HOST_OS)
942 static void *dl_libc_handle;
943 #endif
944
945 void
946 initLinker( void )
947 {
948     RtsSymbolVal *sym;
949
950     /* Make initLinker idempotent, so we can call it
951        before evey relevant operation; that means we
952        don't need to initialise the linker separately */
953     if (linker_init_done == 1) { return; } else {
954       linker_init_done = 1;
955     }
956
957     stablehash = allocStrHashTable();
958     symhash = allocStrHashTable();
959
960     /* populate the symbol table with stuff from the RTS */
961     for (sym = rtsSyms; sym->lbl != NULL; sym++) {
962         ghciInsertStrHashTable("(GHCi built-in symbols)",
963                                symhash, sym->lbl, sym->addr);
964     }
965 #   if defined(OBJFORMAT_MACHO) && defined(powerpc_HOST_ARCH)
966     machoInitSymbolsWithoutUnderscore();
967 #   endif
968
969 #   if defined(OBJFORMAT_ELF) || defined(OBJFORMAT_MACHO)
970 #   if defined(RTLD_DEFAULT)
971     dl_prog_handle = RTLD_DEFAULT;
972 #   else
973     dl_prog_handle = dlopen(NULL, RTLD_LAZY);
974 #   if defined(openbsd_HOST_OS)
975     dl_libc_handle = dlopen("libc.so", RTLD_LAZY);
976 #   endif
977 #   endif /* RTLD_DEFAULT */
978 #   endif
979 }
980
981 /* -----------------------------------------------------------------------------
982  *                  Loading DLL or .so dynamic libraries
983  * -----------------------------------------------------------------------------
984  *
985  * Add a DLL from which symbols may be found.  In the ELF case, just
986  * do RTLD_GLOBAL-style add, so no further messing around needs to
987  * happen in order that symbols in the loaded .so are findable --
988  * lookupSymbol() will subsequently see them by dlsym on the program's
989  * dl-handle.  Returns NULL if success, otherwise ptr to an err msg.
990  *
991  * In the PEi386 case, open the DLLs and put handles to them in a
992  * linked list.  When looking for a symbol, try all handles in the
993  * list.  This means that we need to load even DLLs that are guaranteed
994  * to be in the ghc.exe image already, just so we can get a handle
995  * to give to loadSymbol, so that we can find the symbols.  For such
996  * libraries, the LoadLibrary call should be a no-op except for returning
997  * the handle.
998  *
999  */
1000
1001 #if defined(OBJFORMAT_PEi386)
1002 /* A record for storing handles into DLLs. */
1003
1004 typedef
1005    struct _OpenedDLL {
1006       char*              name;
1007       struct _OpenedDLL* next;
1008       HINSTANCE instance;
1009    }
1010    OpenedDLL;
1011
1012 /* A list thereof. */
1013 static OpenedDLL* opened_dlls = NULL;
1014 #endif
1015
1016 char *
1017 addDLL( char *dll_name )
1018 {
1019 #  if defined(OBJFORMAT_ELF) || defined(OBJFORMAT_MACHO)
1020    /* ------------------- ELF DLL loader ------------------- */
1021    void *hdl;
1022    char *errmsg;
1023
1024    initLinker();
1025
1026    hdl= dlopen(dll_name, RTLD_NOW | RTLD_GLOBAL);
1027
1028    if (hdl == NULL) {
1029       /* dlopen failed; return a ptr to the error msg. */
1030       errmsg = dlerror();
1031       if (errmsg == NULL) errmsg = "addDLL: unknown error";
1032       return errmsg;
1033    } else {
1034       return NULL;
1035    }
1036    /*NOTREACHED*/
1037
1038 #  elif defined(OBJFORMAT_PEi386)
1039    /* ------------------- Win32 DLL loader ------------------- */
1040
1041    char*      buf;
1042    OpenedDLL* o_dll;
1043    HINSTANCE  instance;
1044
1045    initLinker();
1046
1047    /* debugBelch("\naddDLL; dll_name = `%s'\n", dll_name); */
1048
1049    /* See if we've already got it, and ignore if so. */
1050    for (o_dll = opened_dlls; o_dll != NULL; o_dll = o_dll->next) {
1051       if (0 == strcmp(o_dll->name, dll_name))
1052          return NULL;
1053    }
1054
1055    /* The file name has no suffix (yet) so that we can try
1056       both foo.dll and foo.drv
1057
1058       The documentation for LoadLibrary says:
1059         If no file name extension is specified in the lpFileName
1060         parameter, the default library extension .dll is
1061         appended. However, the file name string can include a trailing
1062         point character (.) to indicate that the module name has no
1063         extension. */
1064
1065    buf = stgMallocBytes(strlen(dll_name) + 10, "addDLL");
1066    sprintf(buf, "%s.DLL", dll_name);
1067    instance = LoadLibrary(buf);
1068    if (instance == NULL) {
1069          sprintf(buf, "%s.DRV", dll_name);      // KAA: allow loading of drivers (like winspool.drv)
1070          instance = LoadLibrary(buf);
1071          if (instance == NULL) {
1072                 stgFree(buf);
1073
1074             /* LoadLibrary failed; return a ptr to the error msg. */
1075             return "addDLL: unknown error";
1076          }
1077    }
1078    stgFree(buf);
1079
1080    /* Add this DLL to the list of DLLs in which to search for symbols. */
1081    o_dll = stgMallocBytes( sizeof(OpenedDLL), "addDLL" );
1082    o_dll->name     = stgMallocBytes(1+strlen(dll_name), "addDLL");
1083    strcpy(o_dll->name, dll_name);
1084    o_dll->instance = instance;
1085    o_dll->next     = opened_dlls;
1086    opened_dlls     = o_dll;
1087
1088    return NULL;
1089 #  else
1090    barf("addDLL: not implemented on this platform");
1091 #  endif
1092 }
1093
1094 /* -----------------------------------------------------------------------------
1095  * insert a stable symbol in the hash table
1096  */
1097
1098 void
1099 insertStableSymbol(char* obj_name, char* key, StgPtr p)
1100 {
1101   ghciInsertStrHashTable(obj_name, stablehash, key, getStablePtr(p));
1102 }
1103
1104
1105 /* -----------------------------------------------------------------------------
1106  * insert a symbol in the hash table
1107  */
1108 void
1109 insertSymbol(char* obj_name, char* key, void* data)
1110 {
1111   ghciInsertStrHashTable(obj_name, symhash, key, data);
1112 }
1113
1114 /* -----------------------------------------------------------------------------
1115  * lookup a symbol in the hash table
1116  */
1117 void *
1118 lookupSymbol( char *lbl )
1119 {
1120     void *val;
1121     initLinker() ;
1122     ASSERT(symhash != NULL);
1123     val = lookupStrHashTable(symhash, lbl);
1124
1125     if (val == NULL) {
1126 #       if defined(OBJFORMAT_ELF)
1127 #       if defined(openbsd_HOST_OS)
1128         val = dlsym(dl_prog_handle, lbl);
1129         return (val != NULL) ? val : dlsym(dl_libc_handle,lbl);
1130 #       elif defined(x86_64_HOST_ARCH)
1131         val = dlsym(dl_prog_handle, lbl);
1132         if (val >= (void *)0x80000000) {
1133             void *new_val;
1134             new_val = x86_64_high_symbol(lbl, val);
1135             IF_DEBUG(linker,debugBelch("lookupSymbol: relocating out of range symbol: %s = %p, now %p\n", lbl, val, new_val));
1136             return new_val;
1137         } else {
1138             return val;
1139         }
1140 #       else /* not openbsd */
1141         return dlsym(dl_prog_handle, lbl);
1142 #       endif
1143 #       elif defined(OBJFORMAT_MACHO)
1144         if(NSIsSymbolNameDefined(lbl)) {
1145             NSSymbol symbol = NSLookupAndBindSymbol(lbl);
1146             return NSAddressOfSymbol(symbol);
1147         } else {
1148             return NULL;
1149         }
1150 #       elif defined(OBJFORMAT_PEi386)
1151         OpenedDLL* o_dll;
1152         void* sym;
1153         for (o_dll = opened_dlls; o_dll != NULL; o_dll = o_dll->next) {
1154           /* debugBelch("look in %s for %s\n", o_dll->name, lbl); */
1155            if (lbl[0] == '_') {
1156               /* HACK: if the name has an initial underscore, try stripping
1157                  it off & look that up first. I've yet to verify whether there's
1158                  a Rule that governs whether an initial '_' *should always* be
1159                  stripped off when mapping from import lib name to the DLL name.
1160               */
1161               sym = GetProcAddress(o_dll->instance, (lbl+1));
1162               if (sym != NULL) {
1163                 /*debugBelch("found %s in %s\n", lbl+1,o_dll->name);*/
1164                 return sym;
1165               }
1166            }
1167            sym = GetProcAddress(o_dll->instance, lbl);
1168            if (sym != NULL) {
1169              /*debugBelch("found %s in %s\n", lbl,o_dll->name);*/
1170              return sym;
1171            }
1172         }
1173         return NULL;
1174 #       else
1175         ASSERT(2+2 == 5);
1176         return NULL;
1177 #       endif
1178     } else {
1179         return val;
1180     }
1181 }
1182
1183 static
1184 __attribute((unused))
1185 void *
1186 lookupLocalSymbol( ObjectCode* oc, char *lbl )
1187 {
1188     void *val;
1189     initLinker() ;
1190     val = lookupStrHashTable(oc->lochash, lbl);
1191
1192     if (val == NULL) {
1193         return NULL;
1194     } else {
1195         return val;
1196     }
1197 }
1198
1199
1200 /* -----------------------------------------------------------------------------
1201  * Debugging aid: look in GHCi's object symbol tables for symbols
1202  * within DELTA bytes of the specified address, and show their names.
1203  */
1204 #ifdef DEBUG
1205 void ghci_enquire ( char* addr );
1206
1207 void ghci_enquire ( char* addr )
1208 {
1209    int   i;
1210    char* sym;
1211    char* a;
1212    const int DELTA = 64;
1213    ObjectCode* oc;
1214
1215    initLinker();
1216
1217    for (oc = objects; oc; oc = oc->next) {
1218       for (i = 0; i < oc->n_symbols; i++) {
1219          sym = oc->symbols[i];
1220          if (sym == NULL) continue;
1221          // debugBelch("enquire %p %p\n", sym, oc->lochash);
1222          a = NULL;
1223          if (oc->lochash != NULL) {
1224             a = lookupStrHashTable(oc->lochash, sym);
1225          }
1226          if (a == NULL) {
1227             a = lookupStrHashTable(symhash, sym);
1228          }
1229          if (a == NULL) {
1230              // debugBelch("ghci_enquire: can't find %s\n", sym);
1231          }
1232          else if (addr-DELTA <= a && a <= addr+DELTA) {
1233             debugBelch("%p + %3d  ==  `%s'\n", addr, (int)(a - addr), sym);
1234          }
1235       }
1236    }
1237 }
1238 #endif
1239
1240 #ifdef ia64_HOST_ARCH
1241 static unsigned int PLTSize(void);
1242 #endif
1243
1244 /* -----------------------------------------------------------------------------
1245  * Load an obj (populate the global symbol table, but don't resolve yet)
1246  *
1247  * Returns: 1 if ok, 0 on error.
1248  */
1249 HsInt
1250 loadObj( char *path )
1251 {
1252    ObjectCode* oc;
1253    struct stat st;
1254    int r, n;
1255 #ifdef USE_MMAP
1256    int fd, pagesize;
1257    void *map_addr = NULL;
1258 #else
1259    FILE *f;
1260    int misalignment;
1261 #endif
1262    initLinker();
1263
1264    /* debugBelch("loadObj %s\n", path ); */
1265
1266    /* Check that we haven't already loaded this object. 
1267       Ignore requests to load multiple times */
1268    {
1269        ObjectCode *o;
1270        int is_dup = 0;
1271        for (o = objects; o; o = o->next) {
1272           if (0 == strcmp(o->fileName, path)) {
1273              is_dup = 1;
1274              break; /* don't need to search further */
1275           }
1276        }
1277        if (is_dup) {
1278           IF_DEBUG(linker, debugBelch(
1279             "GHCi runtime linker: warning: looks like you're trying to load the\n"
1280             "same object file twice:\n"
1281             "   %s\n"
1282             "GHCi will ignore this, but be warned.\n"
1283             , path));
1284           return 1; /* success */
1285        }
1286    }
1287
1288    oc = stgMallocBytes(sizeof(ObjectCode), "loadObj(oc)");
1289
1290 #  if defined(OBJFORMAT_ELF)
1291    oc->formatName = "ELF";
1292 #  elif defined(OBJFORMAT_PEi386)
1293    oc->formatName = "PEi386";
1294 #  elif defined(OBJFORMAT_MACHO)
1295    oc->formatName = "Mach-O";
1296 #  else
1297    stgFree(oc);
1298    barf("loadObj: not implemented on this platform");
1299 #  endif
1300
1301    r = stat(path, &st);
1302    if (r == -1) { return 0; }
1303
1304    /* sigh, strdup() isn't a POSIX function, so do it the long way */
1305    oc->fileName = stgMallocBytes( strlen(path)+1, "loadObj" );
1306    strcpy(oc->fileName, path);
1307
1308    oc->fileSize          = st.st_size;
1309    oc->symbols           = NULL;
1310    oc->sections          = NULL;
1311    oc->lochash           = allocStrHashTable();
1312    oc->proddables        = NULL;
1313
1314    /* chain it onto the list of objects */
1315    oc->next              = objects;
1316    objects               = oc;
1317
1318 #ifdef USE_MMAP
1319 #define ROUND_UP(x,size) ((x + size - 1) & ~(size - 1))
1320
1321    /* On many architectures malloc'd memory isn't executable, so we need to use mmap. */
1322
1323 #if defined(openbsd_HOST_OS)
1324    fd = open(path, O_RDONLY, S_IRUSR);
1325 #else
1326    fd = open(path, O_RDONLY);
1327 #endif
1328    if (fd == -1)
1329       barf("loadObj: can't open `%s'", path);
1330
1331    pagesize = getpagesize();
1332
1333 #ifdef ia64_HOST_ARCH
1334    /* The PLT needs to be right before the object */
1335    n = ROUND_UP(PLTSize(), pagesize);
1336    oc->plt = mmap(NULL, n, PROT_EXEC|PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1337    if (oc->plt == MAP_FAILED)
1338       barf("loadObj: can't allocate PLT");
1339
1340    oc->pltIndex = 0;
1341    map_addr = oc->plt + n;
1342 #endif
1343
1344    n = ROUND_UP(oc->fileSize, pagesize);
1345
1346    /* Link objects into the lower 2Gb on x86_64.  GHC assumes the
1347     * small memory model on this architecture (see gcc docs,
1348     * -mcmodel=small).
1349     */
1350 #ifdef x86_64_HOST_ARCH
1351 #define EXTRA_MAP_FLAGS MAP_32BIT
1352 #else
1353 #define EXTRA_MAP_FLAGS 0
1354 #endif
1355
1356    oc->image = mmap(map_addr, n, PROT_EXEC|PROT_READ|PROT_WRITE, 
1357                     MAP_PRIVATE|EXTRA_MAP_FLAGS, fd, 0);
1358    if (oc->image == MAP_FAILED)
1359       barf("loadObj: can't map `%s'", path);
1360
1361    close(fd);
1362
1363 #else /* !USE_MMAP */
1364
1365    /* load the image into memory */
1366    f = fopen(path, "rb");
1367    if (!f)
1368        barf("loadObj: can't read `%s'", path);
1369
1370 #ifdef darwin_HOST_OS
1371     // In a Mach-O .o file, all sections can and will be misaligned
1372     // if the total size of the headers is not a multiple of the
1373     // desired alignment. This is fine for .o files that only serve
1374     // as input for the static linker, but it's not fine for us,
1375     // as SSE (used by gcc for floating point) and Altivec require
1376     // 16-byte alignment.
1377     // We calculate the correct alignment from the header before
1378     // reading the file, and then we misalign oc->image on purpose so
1379     // that the actual sections end up aligned again.
1380    misalignment = machoGetMisalignment(f);
1381    oc->misalignment = misalignment;
1382 #else
1383    misalignment = 0;
1384 #endif
1385
1386    oc->image = stgMallocBytes(oc->fileSize + misalignment, "loadObj(image)");
1387    oc->image += misalignment;
1388    
1389    n = fread ( oc->image, 1, oc->fileSize, f );
1390    if (n != oc->fileSize)
1391       barf("loadObj: error whilst reading `%s'", path);
1392
1393    fclose(f);
1394
1395 #endif /* USE_MMAP */
1396
1397 #  if defined(OBJFORMAT_MACHO) && defined(powerpc_HOST_ARCH)
1398    r = ocAllocateJumpIslands_MachO ( oc );
1399    if (!r) { return r; }
1400 #  elif defined(OBJFORMAT_ELF) && defined(powerpc_HOST_ARCH)
1401    r = ocAllocateJumpIslands_ELF ( oc );
1402    if (!r) { return r; }
1403 #endif
1404
1405    /* verify the in-memory image */
1406 #  if defined(OBJFORMAT_ELF)
1407    r = ocVerifyImage_ELF ( oc );
1408 #  elif defined(OBJFORMAT_PEi386)
1409    r = ocVerifyImage_PEi386 ( oc );
1410 #  elif defined(OBJFORMAT_MACHO)
1411    r = ocVerifyImage_MachO ( oc );
1412 #  else
1413    barf("loadObj: no verify method");
1414 #  endif
1415    if (!r) { return r; }
1416
1417    /* build the symbol list for this image */
1418 #  if defined(OBJFORMAT_ELF)
1419    r = ocGetNames_ELF ( oc );
1420 #  elif defined(OBJFORMAT_PEi386)
1421    r = ocGetNames_PEi386 ( oc );
1422 #  elif defined(OBJFORMAT_MACHO)
1423    r = ocGetNames_MachO ( oc );
1424 #  else
1425    barf("loadObj: no getNames method");
1426 #  endif
1427    if (!r) { return r; }
1428
1429    /* loaded, but not resolved yet */
1430    oc->status = OBJECT_LOADED;
1431
1432    return 1;
1433 }
1434
1435 /* -----------------------------------------------------------------------------
1436  * resolve all the currently unlinked objects in memory
1437  *
1438  * Returns: 1 if ok, 0 on error.
1439  */
1440 HsInt
1441 resolveObjs( void )
1442 {
1443     ObjectCode *oc;
1444     int r;
1445
1446     initLinker();
1447
1448     for (oc = objects; oc; oc = oc->next) {
1449         if (oc->status != OBJECT_RESOLVED) {
1450 #           if defined(OBJFORMAT_ELF)
1451             r = ocResolve_ELF ( oc );
1452 #           elif defined(OBJFORMAT_PEi386)
1453             r = ocResolve_PEi386 ( oc );
1454 #           elif defined(OBJFORMAT_MACHO)
1455             r = ocResolve_MachO ( oc );
1456 #           else
1457             barf("resolveObjs: not implemented on this platform");
1458 #           endif
1459             if (!r) { return r; }
1460             oc->status = OBJECT_RESOLVED;
1461         }
1462     }
1463     return 1;
1464 }
1465
1466 /* -----------------------------------------------------------------------------
1467  * delete an object from the pool
1468  */
1469 HsInt
1470 unloadObj( char *path )
1471 {
1472     ObjectCode *oc, *prev;
1473
1474     ASSERT(symhash != NULL);
1475     ASSERT(objects != NULL);
1476
1477     initLinker();
1478
1479     prev = NULL;
1480     for (oc = objects; oc; prev = oc, oc = oc->next) {
1481         if (!strcmp(oc->fileName,path)) {
1482
1483             /* Remove all the mappings for the symbols within this
1484              * object..
1485              */
1486             {
1487                 int i;
1488                 for (i = 0; i < oc->n_symbols; i++) {
1489                    if (oc->symbols[i] != NULL) {
1490                        removeStrHashTable(symhash, oc->symbols[i], NULL);
1491                    }
1492                 }
1493             }
1494
1495             if (prev == NULL) {
1496                 objects = oc->next;
1497             } else {
1498                 prev->next = oc->next;
1499             }
1500
1501             /* We're going to leave this in place, in case there are
1502                any pointers from the heap into it: */
1503             /* stgFree(oc->image); */
1504             stgFree(oc->fileName);
1505             stgFree(oc->symbols);
1506             stgFree(oc->sections);
1507             /* The local hash table should have been freed at the end
1508                of the ocResolve_ call on it. */
1509             ASSERT(oc->lochash == NULL);
1510             stgFree(oc);
1511             return 1;
1512         }
1513     }
1514
1515     errorBelch("unloadObj: can't find `%s' to unload", path);
1516     return 0;
1517 }
1518
1519 /* -----------------------------------------------------------------------------
1520  * Sanity checking.  For each ObjectCode, maintain a list of address ranges
1521  * which may be prodded during relocation, and abort if we try and write
1522  * outside any of these.
1523  */
1524 static void addProddableBlock ( ObjectCode* oc, void* start, int size )
1525 {
1526    ProddableBlock* pb
1527       = stgMallocBytes(sizeof(ProddableBlock), "addProddableBlock");
1528    /* debugBelch("aPB %p %p %d\n", oc, start, size); */
1529    ASSERT(size > 0);
1530    pb->start      = start;
1531    pb->size       = size;
1532    pb->next       = oc->proddables;
1533    oc->proddables = pb;
1534 }
1535
1536 static void checkProddableBlock ( ObjectCode* oc, void* addr )
1537 {
1538    ProddableBlock* pb;
1539    for (pb = oc->proddables; pb != NULL; pb = pb->next) {
1540       char* s = (char*)(pb->start);
1541       char* e = s + pb->size - 1;
1542       char* a = (char*)addr;
1543       /* Assumes that the biggest fixup involves a 4-byte write.  This
1544          probably needs to be changed to 8 (ie, +7) on 64-bit
1545          plats. */
1546       if (a >= s && (a+3) <= e) return;
1547    }
1548    barf("checkProddableBlock: invalid fixup in runtime linker");
1549 }
1550
1551 /* -----------------------------------------------------------------------------
1552  * Section management.
1553  */
1554 static void addSection ( ObjectCode* oc, SectionKind kind,
1555                          void* start, void* end )
1556 {
1557    Section* s   = stgMallocBytes(sizeof(Section), "addSection");
1558    s->start     = start;
1559    s->end       = end;
1560    s->kind      = kind;
1561    s->next      = oc->sections;
1562    oc->sections = s;
1563    /*
1564    debugBelch("addSection: %p-%p (size %d), kind %d\n",
1565                    start, ((char*)end)-1, end - start + 1, kind );
1566    */
1567 }
1568
1569
1570 /* --------------------------------------------------------------------------
1571  * PowerPC specifics (jump islands)
1572  * ------------------------------------------------------------------------*/
1573
1574 #if defined(powerpc_HOST_ARCH)
1575
1576 /*
1577   ocAllocateJumpIslands
1578   
1579   Allocate additional space at the end of the object file image to make room
1580   for jump islands.
1581   
1582   PowerPC relative branch instructions have a 24 bit displacement field.
1583   As PPC code is always 4-byte-aligned, this yields a +-32MB range.
1584   If a particular imported symbol is outside this range, we have to redirect
1585   the jump to a short piece of new code that just loads the 32bit absolute
1586   address and jumps there.
1587   This function just allocates space for one 16 byte ppcJumpIsland for every
1588   undefined symbol in the object file. The code for the islands is filled in by
1589   makeJumpIsland below.
1590 */
1591
1592 static int ocAllocateJumpIslands( ObjectCode* oc, int count, int first )
1593 {
1594 #ifdef USE_MMAP
1595   int pagesize, n, m;
1596 #endif
1597   int aligned;
1598   int misalignment = 0;
1599 #if darwin_HOST_OS
1600   misalignment = oc->misalignment;
1601 #endif
1602
1603   if( count > 0 )
1604   {
1605     // round up to the nearest 4
1606     aligned = (oc->fileSize + 3) & ~3;
1607
1608 #ifdef USE_MMAP
1609     #ifndef linux_HOST_OS /* mremap is a linux extension */
1610         #error ocAllocateJumpIslands doesnt want USE_MMAP to be defined
1611     #endif
1612
1613     pagesize = getpagesize();
1614     n = ROUND_UP( oc->fileSize, pagesize );
1615     m = ROUND_UP( aligned + sizeof (ppcJumpIsland) * count, pagesize );
1616
1617     /* If we have a half-page-size file and map one page of it then
1618      * the part of the page after the size of the file remains accessible.
1619      * If, however, we map in 2 pages, the 2nd page is not accessible
1620      * and will give a "Bus Error" on access.  To get around this, we check
1621      * if we need any extra pages for the jump islands and map them in
1622      * anonymously.  We must check that we actually require extra pages
1623      * otherwise the attempt to mmap 0 pages of anonymous memory will
1624      * fail -EINVAL.
1625      */
1626
1627     if( m > n )
1628     {
1629       /* The effect of this mremap() call is only the ensure that we have
1630        * a sufficient number of virtually contiguous pages.  As returned from
1631        * mremap, the pages past the end of the file are not backed.  We give
1632        * them a backing by using MAP_FIXED to map in anonymous pages.
1633        */
1634       oc->image = mremap( oc->image, n, m, MREMAP_MAYMOVE );
1635
1636       if( oc->image == MAP_FAILED )
1637       {
1638         errorBelch( "Unable to mremap for Jump Islands\n" );
1639         return 0;
1640       }
1641
1642       if( mmap( oc->image + n, m - n, PROT_READ | PROT_WRITE | PROT_EXEC,
1643                 MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, 0, 0 ) == MAP_FAILED )
1644       {
1645         errorBelch( "Unable to mmap( MAP_FIXED ) for Jump Islands\n" );
1646         return 0;
1647       }
1648     }
1649
1650 #else
1651     oc->image -= misalignment;
1652     oc->image = stgReallocBytes( oc->image,
1653                                  misalignment + 
1654                                  aligned + sizeof (ppcJumpIsland) * count,
1655                                  "ocAllocateJumpIslands" );
1656     oc->image += misalignment;
1657 #endif /* USE_MMAP */
1658
1659     oc->jump_islands = (ppcJumpIsland *) (oc->image + aligned);
1660     memset( oc->jump_islands, 0, sizeof (ppcJumpIsland) * count );
1661   }
1662   else
1663     oc->jump_islands = NULL;
1664
1665   oc->island_start_symbol = first;
1666   oc->n_islands = count;
1667
1668   return 1;
1669 }
1670
1671 static unsigned long makeJumpIsland( ObjectCode* oc,
1672                                      unsigned long symbolNumber,
1673                                      unsigned long target )
1674 {
1675   ppcJumpIsland *island;
1676
1677   if( symbolNumber < oc->island_start_symbol ||
1678       symbolNumber - oc->island_start_symbol > oc->n_islands)
1679     return 0;
1680
1681   island = &oc->jump_islands[symbolNumber - oc->island_start_symbol];
1682
1683   // lis r12, hi16(target)
1684   island->lis_r12     = 0x3d80;
1685   island->hi_addr     = target >> 16;
1686
1687   // ori r12, r12, lo16(target)
1688   island->ori_r12_r12 = 0x618c;
1689   island->lo_addr     = target & 0xffff;
1690
1691   // mtctr r12
1692   island->mtctr_r12   = 0x7d8903a6;
1693
1694   // bctr
1695   island->bctr        = 0x4e800420;
1696     
1697   return (unsigned long) island;
1698 }
1699
1700 /*
1701    ocFlushInstructionCache
1702
1703    Flush the data & instruction caches.
1704    Because the PPC has split data/instruction caches, we have to
1705    do that whenever we modify code at runtime.
1706  */
1707
1708 static void ocFlushInstructionCache( ObjectCode *oc )
1709 {
1710     int n = (oc->fileSize + sizeof( ppcJumpIsland ) * oc->n_islands + 3) / 4;
1711     unsigned long *p = (unsigned long *) oc->image;
1712
1713     while( n-- )
1714     {
1715         __asm__ volatile ( "dcbf 0,%0\n\t"
1716                            "sync\n\t"
1717                            "icbi 0,%0"
1718                            :
1719                            : "r" (p)
1720                          );
1721         p++;
1722     }
1723     __asm__ volatile ( "sync\n\t"
1724                        "isync"
1725                      );
1726 }
1727 #endif
1728
1729 /* --------------------------------------------------------------------------
1730  * PEi386 specifics (Win32 targets)
1731  * ------------------------------------------------------------------------*/
1732
1733 /* The information for this linker comes from
1734       Microsoft Portable Executable
1735       and Common Object File Format Specification
1736       revision 5.1 January 1998
1737    which SimonM says comes from the MS Developer Network CDs.
1738
1739    It can be found there (on older CDs), but can also be found
1740    online at:
1741
1742       http://www.microsoft.com/hwdev/hardware/PECOFF.asp
1743
1744    (this is Rev 6.0 from February 1999).
1745
1746    Things move, so if that fails, try searching for it via
1747
1748       http://www.google.com/search?q=PE+COFF+specification
1749
1750    The ultimate reference for the PE format is the Winnt.h
1751    header file that comes with the Platform SDKs; as always,
1752    implementations will drift wrt their documentation.
1753
1754    A good background article on the PE format is Matt Pietrek's
1755    March 1994 article in Microsoft System Journal (MSJ)
1756    (Vol.9, No. 3): "Peering Inside the PE: A Tour of the
1757    Win32 Portable Executable File Format." The info in there
1758    has recently been updated in a two part article in
1759    MSDN magazine, issues Feb and March 2002,
1760    "Inside Windows: An In-Depth Look into the Win32 Portable
1761    Executable File Format"
1762
1763    John Levine's book "Linkers and Loaders" contains useful
1764    info on PE too.
1765 */
1766
1767
1768 #if defined(OBJFORMAT_PEi386)
1769
1770
1771
1772 typedef unsigned char  UChar;
1773 typedef unsigned short UInt16;
1774 typedef unsigned int   UInt32;
1775 typedef          int   Int32;
1776
1777
1778 typedef
1779    struct {
1780       UInt16 Machine;
1781       UInt16 NumberOfSections;
1782       UInt32 TimeDateStamp;
1783       UInt32 PointerToSymbolTable;
1784       UInt32 NumberOfSymbols;
1785       UInt16 SizeOfOptionalHeader;
1786       UInt16 Characteristics;
1787    }
1788    COFF_header;
1789
1790 #define sizeof_COFF_header 20
1791
1792
1793 typedef
1794    struct {
1795       UChar  Name[8];
1796       UInt32 VirtualSize;
1797       UInt32 VirtualAddress;
1798       UInt32 SizeOfRawData;
1799       UInt32 PointerToRawData;
1800       UInt32 PointerToRelocations;
1801       UInt32 PointerToLinenumbers;
1802       UInt16 NumberOfRelocations;
1803       UInt16 NumberOfLineNumbers;
1804       UInt32 Characteristics;
1805    }
1806    COFF_section;
1807
1808 #define sizeof_COFF_section 40
1809
1810
1811 typedef
1812    struct {
1813       UChar  Name[8];
1814       UInt32 Value;
1815       UInt16 SectionNumber;
1816       UInt16 Type;
1817       UChar  StorageClass;
1818       UChar  NumberOfAuxSymbols;
1819    }
1820    COFF_symbol;
1821
1822 #define sizeof_COFF_symbol 18
1823
1824
1825 typedef
1826    struct {
1827       UInt32 VirtualAddress;
1828       UInt32 SymbolTableIndex;
1829       UInt16 Type;
1830    }
1831    COFF_reloc;
1832
1833 #define sizeof_COFF_reloc 10
1834
1835
1836 /* From PE spec doc, section 3.3.2 */
1837 /* Note use of MYIMAGE_* since IMAGE_* are already defined in
1838    windows.h -- for the same purpose, but I want to know what I'm
1839    getting, here. */
1840 #define MYIMAGE_FILE_RELOCS_STRIPPED     0x0001
1841 #define MYIMAGE_FILE_EXECUTABLE_IMAGE    0x0002
1842 #define MYIMAGE_FILE_DLL                 0x2000
1843 #define MYIMAGE_FILE_SYSTEM              0x1000
1844 #define MYIMAGE_FILE_BYTES_REVERSED_HI   0x8000
1845 #define MYIMAGE_FILE_BYTES_REVERSED_LO   0x0080
1846 #define MYIMAGE_FILE_32BIT_MACHINE       0x0100
1847
1848 /* From PE spec doc, section 5.4.2 and 5.4.4 */
1849 #define MYIMAGE_SYM_CLASS_EXTERNAL       2
1850 #define MYIMAGE_SYM_CLASS_STATIC         3
1851 #define MYIMAGE_SYM_UNDEFINED            0
1852
1853 /* From PE spec doc, section 4.1 */
1854 #define MYIMAGE_SCN_CNT_CODE             0x00000020
1855 #define MYIMAGE_SCN_CNT_INITIALIZED_DATA 0x00000040
1856 #define MYIMAGE_SCN_LNK_NRELOC_OVFL      0x01000000
1857
1858 /* From PE spec doc, section 5.2.1 */
1859 #define MYIMAGE_REL_I386_DIR32           0x0006
1860 #define MYIMAGE_REL_I386_REL32           0x0014
1861
1862
1863 /* We use myindex to calculate array addresses, rather than
1864    simply doing the normal subscript thing.  That's because
1865    some of the above structs have sizes which are not
1866    a whole number of words.  GCC rounds their sizes up to a
1867    whole number of words, which means that the address calcs
1868    arising from using normal C indexing or pointer arithmetic
1869    are just plain wrong.  Sigh.
1870 */
1871 static UChar *
1872 myindex ( int scale, void* base, int index )
1873 {
1874    return
1875       ((UChar*)base) + scale * index;
1876 }
1877
1878
1879 static void
1880 printName ( UChar* name, UChar* strtab )
1881 {
1882    if (name[0]==0 && name[1]==0 && name[2]==0 && name[3]==0) {
1883       UInt32 strtab_offset = * (UInt32*)(name+4);
1884       debugBelch("%s", strtab + strtab_offset );
1885    } else {
1886       int i;
1887       for (i = 0; i < 8; i++) {
1888          if (name[i] == 0) break;
1889          debugBelch("%c", name[i] );
1890       }
1891    }
1892 }
1893
1894
1895 static void
1896 copyName ( UChar* name, UChar* strtab, UChar* dst, int dstSize )
1897 {
1898    if (name[0]==0 && name[1]==0 && name[2]==0 && name[3]==0) {
1899       UInt32 strtab_offset = * (UInt32*)(name+4);
1900       strncpy ( dst, strtab+strtab_offset, dstSize );
1901       dst[dstSize-1] = 0;
1902    } else {
1903       int i = 0;
1904       while (1) {
1905          if (i >= 8) break;
1906          if (name[i] == 0) break;
1907          dst[i] = name[i];
1908          i++;
1909       }
1910       dst[i] = 0;
1911    }
1912 }
1913
1914
1915 static UChar *
1916 cstring_from_COFF_symbol_name ( UChar* name, UChar* strtab )
1917 {
1918    UChar* newstr;
1919    /* If the string is longer than 8 bytes, look in the
1920       string table for it -- this will be correctly zero terminated.
1921    */
1922    if (name[0]==0 && name[1]==0 && name[2]==0 && name[3]==0) {
1923       UInt32 strtab_offset = * (UInt32*)(name+4);
1924       return ((UChar*)strtab) + strtab_offset;
1925    }
1926    /* Otherwise, if shorter than 8 bytes, return the original,
1927       which by defn is correctly terminated.
1928    */
1929    if (name[7]==0) return name;
1930    /* The annoying case: 8 bytes.  Copy into a temporary
1931       (which is never freed ...)
1932    */
1933    newstr = stgMallocBytes(9, "cstring_from_COFF_symbol_name");
1934    ASSERT(newstr);
1935    strncpy(newstr,name,8);
1936    newstr[8] = 0;
1937    return newstr;
1938 }
1939
1940
1941 /* Just compares the short names (first 8 chars) */
1942 static COFF_section *
1943 findPEi386SectionCalled ( ObjectCode* oc,  char* name )
1944 {
1945    int i;
1946    COFF_header* hdr
1947       = (COFF_header*)(oc->image);
1948    COFF_section* sectab
1949       = (COFF_section*) (
1950            ((UChar*)(oc->image))
1951            + sizeof_COFF_header + hdr->SizeOfOptionalHeader
1952         );
1953    for (i = 0; i < hdr->NumberOfSections; i++) {
1954       UChar* n1;
1955       UChar* n2;
1956       COFF_section* section_i
1957          = (COFF_section*)
1958            myindex ( sizeof_COFF_section, sectab, i );
1959       n1 = (UChar*) &(section_i->Name);
1960       n2 = name;
1961       if (n1[0]==n2[0] && n1[1]==n2[1] && n1[2]==n2[2] &&
1962           n1[3]==n2[3] && n1[4]==n2[4] && n1[5]==n2[5] &&
1963           n1[6]==n2[6] && n1[7]==n2[7])
1964          return section_i;
1965    }
1966
1967    return NULL;
1968 }
1969
1970
1971 static void
1972 zapTrailingAtSign ( UChar* sym )
1973 {
1974 #  define my_isdigit(c) ((c) >= '0' && (c) <= '9')
1975    int i, j;
1976    if (sym[0] == 0) return;
1977    i = 0;
1978    while (sym[i] != 0) i++;
1979    i--;
1980    j = i;
1981    while (j > 0 && my_isdigit(sym[j])) j--;
1982    if (j > 0 && sym[j] == '@' && j != i) sym[j] = 0;
1983 #  undef my_isdigit
1984 }
1985
1986
1987 static int
1988 ocVerifyImage_PEi386 ( ObjectCode* oc )
1989 {
1990    int i;
1991    UInt32 j, noRelocs;
1992    COFF_header*  hdr;
1993    COFF_section* sectab;
1994    COFF_symbol*  symtab;
1995    UChar*        strtab;
1996    /* debugBelch("\nLOADING %s\n", oc->fileName); */
1997    hdr = (COFF_header*)(oc->image);
1998    sectab = (COFF_section*) (
1999                ((UChar*)(oc->image))
2000                + sizeof_COFF_header + hdr->SizeOfOptionalHeader
2001             );
2002    symtab = (COFF_symbol*) (
2003                ((UChar*)(oc->image))
2004                + hdr->PointerToSymbolTable
2005             );
2006    strtab = ((UChar*)symtab)
2007             + hdr->NumberOfSymbols * sizeof_COFF_symbol;
2008
2009    if (hdr->Machine != 0x14c) {
2010       errorBelch("%s: Not x86 PEi386", oc->fileName);
2011       return 0;
2012    }
2013    if (hdr->SizeOfOptionalHeader != 0) {
2014       errorBelch("%s: PEi386 with nonempty optional header", oc->fileName);
2015       return 0;
2016    }
2017    if ( /* (hdr->Characteristics & MYIMAGE_FILE_RELOCS_STRIPPED) || */
2018         (hdr->Characteristics & MYIMAGE_FILE_EXECUTABLE_IMAGE) ||
2019         (hdr->Characteristics & MYIMAGE_FILE_DLL) ||
2020         (hdr->Characteristics & MYIMAGE_FILE_SYSTEM) ) {
2021       errorBelch("%s: Not a PEi386 object file", oc->fileName);
2022       return 0;
2023    }
2024    if ( (hdr->Characteristics & MYIMAGE_FILE_BYTES_REVERSED_HI)
2025         /* || !(hdr->Characteristics & MYIMAGE_FILE_32BIT_MACHINE) */ ) {
2026       errorBelch("%s: Invalid PEi386 word size or endiannness: %d",
2027                  oc->fileName,
2028                  (int)(hdr->Characteristics));
2029       return 0;
2030    }
2031    /* If the string table size is way crazy, this might indicate that
2032       there are more than 64k relocations, despite claims to the
2033       contrary.  Hence this test. */
2034    /* debugBelch("strtab size %d\n", * (UInt32*)strtab); */
2035 #if 0
2036    if ( (*(UInt32*)strtab) > 600000 ) {
2037       /* Note that 600k has no special significance other than being
2038          big enough to handle the almost-2MB-sized lumps that
2039          constitute HSwin32*.o. */
2040       debugBelch("PEi386 object has suspiciously large string table; > 64k relocs?");
2041       return 0;
2042    }
2043 #endif
2044
2045    /* No further verification after this point; only debug printing. */
2046    i = 0;
2047    IF_DEBUG(linker, i=1);
2048    if (i == 0) return 1;
2049
2050    debugBelch( "sectab offset = %d\n", ((UChar*)sectab) - ((UChar*)hdr) );
2051    debugBelch( "symtab offset = %d\n", ((UChar*)symtab) - ((UChar*)hdr) );
2052    debugBelch( "strtab offset = %d\n", ((UChar*)strtab) - ((UChar*)hdr) );
2053
2054    debugBelch("\n" );
2055    debugBelch( "Machine:           0x%x\n", (UInt32)(hdr->Machine) );
2056    debugBelch( "# sections:        %d\n",   (UInt32)(hdr->NumberOfSections) );
2057    debugBelch( "time/date:         0x%x\n", (UInt32)(hdr->TimeDateStamp) );
2058    debugBelch( "symtab offset:     %d\n",   (UInt32)(hdr->PointerToSymbolTable) );
2059    debugBelch( "# symbols:         %d\n",   (UInt32)(hdr->NumberOfSymbols) );
2060    debugBelch( "sz of opt hdr:     %d\n",   (UInt32)(hdr->SizeOfOptionalHeader) );
2061    debugBelch( "characteristics:   0x%x\n", (UInt32)(hdr->Characteristics) );
2062
2063    /* Print the section table. */
2064    debugBelch("\n" );
2065    for (i = 0; i < hdr->NumberOfSections; i++) {
2066       COFF_reloc* reltab;
2067       COFF_section* sectab_i
2068          = (COFF_section*)
2069            myindex ( sizeof_COFF_section, sectab, i );
2070       debugBelch(
2071                 "\n"
2072                 "section %d\n"
2073                 "     name `",
2074                 i
2075               );
2076       printName ( sectab_i->Name, strtab );
2077       debugBelch(
2078                 "'\n"
2079                 "    vsize %d\n"
2080                 "    vaddr %d\n"
2081                 "  data sz %d\n"
2082                 " data off %d\n"
2083                 "  num rel %d\n"
2084                 "  off rel %d\n"
2085                 "  ptr raw 0x%x\n",
2086                 sectab_i->VirtualSize,
2087                 sectab_i->VirtualAddress,
2088                 sectab_i->SizeOfRawData,
2089                 sectab_i->PointerToRawData,
2090                 sectab_i->NumberOfRelocations,
2091                 sectab_i->PointerToRelocations,
2092                 sectab_i->PointerToRawData
2093               );
2094       reltab = (COFF_reloc*) (
2095                   ((UChar*)(oc->image)) + sectab_i->PointerToRelocations
2096                );
2097
2098       if ( sectab_i->Characteristics & MYIMAGE_SCN_LNK_NRELOC_OVFL ) {
2099         /* If the relocation field (a short) has overflowed, the
2100          * real count can be found in the first reloc entry.
2101          *
2102          * See Section 4.1 (last para) of the PE spec (rev6.0).
2103          */
2104         COFF_reloc* rel = (COFF_reloc*)
2105                            myindex ( sizeof_COFF_reloc, reltab, 0 );
2106         noRelocs = rel->VirtualAddress;
2107         j = 1;
2108       } else {
2109         noRelocs = sectab_i->NumberOfRelocations;
2110         j = 0;
2111       }
2112
2113       for (; j < noRelocs; j++) {
2114          COFF_symbol* sym;
2115          COFF_reloc* rel = (COFF_reloc*)
2116                            myindex ( sizeof_COFF_reloc, reltab, j );
2117          debugBelch(
2118                    "        type 0x%-4x   vaddr 0x%-8x   name `",
2119                    (UInt32)rel->Type,
2120                    rel->VirtualAddress );
2121          sym = (COFF_symbol*)
2122                myindex ( sizeof_COFF_symbol, symtab, rel->SymbolTableIndex );
2123          /* Hmm..mysterious looking offset - what's it for? SOF */
2124          printName ( sym->Name, strtab -10 );
2125          debugBelch("'\n" );
2126       }
2127
2128       debugBelch("\n" );
2129    }
2130    debugBelch("\n" );
2131    debugBelch("string table has size 0x%x\n", * (UInt32*)strtab );
2132    debugBelch("---START of string table---\n");
2133    for (i = 4; i < *(Int32*)strtab; i++) {
2134       if (strtab[i] == 0)
2135          debugBelch("\n"); else
2136          debugBelch("%c", strtab[i] );
2137    }
2138    debugBelch("--- END  of string table---\n");
2139
2140    debugBelch("\n" );
2141    i = 0;
2142    while (1) {
2143       COFF_symbol* symtab_i;
2144       if (i >= (Int32)(hdr->NumberOfSymbols)) break;
2145       symtab_i = (COFF_symbol*)
2146                  myindex ( sizeof_COFF_symbol, symtab, i );
2147       debugBelch(
2148                 "symbol %d\n"
2149                 "     name `",
2150                 i
2151               );
2152       printName ( symtab_i->Name, strtab );
2153       debugBelch(
2154                 "'\n"
2155                 "    value 0x%x\n"
2156                 "   1+sec# %d\n"
2157                 "     type 0x%x\n"
2158                 "   sclass 0x%x\n"
2159                 "     nAux %d\n",
2160                 symtab_i->Value,
2161                 (Int32)(symtab_i->SectionNumber),
2162                 (UInt32)symtab_i->Type,
2163                 (UInt32)symtab_i->StorageClass,
2164                 (UInt32)symtab_i->NumberOfAuxSymbols
2165               );
2166       i += symtab_i->NumberOfAuxSymbols;
2167       i++;
2168    }
2169
2170    debugBelch("\n" );
2171    return 1;
2172 }
2173
2174
2175 static int
2176 ocGetNames_PEi386 ( ObjectCode* oc )
2177 {
2178    COFF_header*  hdr;
2179    COFF_section* sectab;
2180    COFF_symbol*  symtab;
2181    UChar*        strtab;
2182
2183    UChar* sname;
2184    void*  addr;
2185    int    i;
2186
2187    hdr = (COFF_header*)(oc->image);
2188    sectab = (COFF_section*) (
2189                ((UChar*)(oc->image))
2190                + sizeof_COFF_header + hdr->SizeOfOptionalHeader
2191             );
2192    symtab = (COFF_symbol*) (
2193                ((UChar*)(oc->image))
2194                + hdr->PointerToSymbolTable
2195             );
2196    strtab = ((UChar*)(oc->image))
2197             + hdr->PointerToSymbolTable
2198             + hdr->NumberOfSymbols * sizeof_COFF_symbol;
2199
2200    /* Allocate space for any (local, anonymous) .bss sections. */
2201
2202    for (i = 0; i < hdr->NumberOfSections; i++) {
2203       UInt32 bss_sz;
2204       UChar* zspace;
2205       COFF_section* sectab_i
2206          = (COFF_section*)
2207            myindex ( sizeof_COFF_section, sectab, i );
2208       if (0 != strcmp(sectab_i->Name, ".bss")) continue;
2209       /* sof 10/05: the PE spec text isn't too clear regarding what
2210        * the SizeOfRawData field is supposed to hold for object
2211        * file sections containing just uninitialized data -- for executables,
2212        * it is supposed to be zero; unclear what it's supposed to be
2213        * for object files. However, VirtualSize is guaranteed to be
2214        * zero for object files, which definitely suggests that SizeOfRawData
2215        * will be non-zero (where else would the size of this .bss section be
2216        * stored?) Looking at the COFF_section info for incoming object files,
2217        * this certainly appears to be the case.
2218        *
2219        * => I suspect we've been incorrectly handling .bss sections in (relocatable)
2220        * object files up until now. This turned out to bite us with ghc-6.4.1's use
2221        * of gcc-3.4.x, which has started to emit initially-zeroed-out local 'static'
2222        * variable decls into to the .bss section. (The specific function in Q which
2223        * triggered this is libraries/base/cbits/dirUtils.c:__hscore_getFolderPath())
2224        */
2225       if (sectab_i->VirtualSize == 0 && sectab_i->SizeOfRawData == 0) continue;
2226       /* This is a non-empty .bss section.  Allocate zeroed space for
2227          it, and set its PointerToRawData field such that oc->image +
2228          PointerToRawData == addr_of_zeroed_space.  */
2229       bss_sz = sectab_i->VirtualSize;
2230       if ( bss_sz < sectab_i->SizeOfRawData) { bss_sz = sectab_i->SizeOfRawData; }
2231       zspace = stgCallocBytes(1, bss_sz, "ocGetNames_PEi386(anonymous bss)");
2232       sectab_i->PointerToRawData = ((UChar*)zspace) - ((UChar*)(oc->image));
2233       addProddableBlock(oc, zspace, bss_sz);
2234       /* debugBelch("BSS anon section at 0x%x\n", zspace); */
2235    }
2236
2237    /* Copy section information into the ObjectCode. */
2238
2239    for (i = 0; i < hdr->NumberOfSections; i++) {
2240       UChar* start;
2241       UChar* end;
2242       UInt32 sz;
2243
2244       SectionKind kind
2245          = SECTIONKIND_OTHER;
2246       COFF_section* sectab_i
2247          = (COFF_section*)
2248            myindex ( sizeof_COFF_section, sectab, i );
2249       IF_DEBUG(linker, debugBelch("section name = %s\n", sectab_i->Name ));
2250
2251 #     if 0
2252       /* I'm sure this is the Right Way to do it.  However, the
2253          alternative of testing the sectab_i->Name field seems to
2254          work ok with Cygwin.
2255       */
2256       if (sectab_i->Characteristics & MYIMAGE_SCN_CNT_CODE ||
2257           sectab_i->Characteristics & MYIMAGE_SCN_CNT_INITIALIZED_DATA)
2258          kind = SECTIONKIND_CODE_OR_RODATA;
2259 #     endif
2260
2261       if (0==strcmp(".text",sectab_i->Name) ||
2262           0==strcmp(".rdata",sectab_i->Name)||
2263           0==strcmp(".rodata",sectab_i->Name))
2264          kind = SECTIONKIND_CODE_OR_RODATA;
2265       if (0==strcmp(".data",sectab_i->Name) ||
2266           0==strcmp(".bss",sectab_i->Name))
2267          kind = SECTIONKIND_RWDATA;
2268
2269       ASSERT(sectab_i->SizeOfRawData == 0 || sectab_i->VirtualSize == 0);
2270       sz = sectab_i->SizeOfRawData;
2271       if (sz < sectab_i->VirtualSize) sz = sectab_i->VirtualSize;
2272
2273       start = ((UChar*)(oc->image)) + sectab_i->PointerToRawData;
2274       end   = start + sz - 1;
2275
2276       if (kind == SECTIONKIND_OTHER
2277           /* Ignore sections called which contain stabs debugging
2278              information. */
2279           && 0 != strcmp(".stab", sectab_i->Name)
2280           && 0 != strcmp(".stabstr", sectab_i->Name)
2281           /* ignore constructor section for now */
2282           && 0 != strcmp(".ctors", sectab_i->Name)
2283          ) {
2284          errorBelch("Unknown PEi386 section name `%s' (while processing: %s)", sectab_i->Name, oc->fileName);
2285          return 0;
2286       }
2287
2288       if (kind != SECTIONKIND_OTHER && end >= start) {
2289          addSection(oc, kind, start, end);
2290          addProddableBlock(oc, start, end - start + 1);
2291       }
2292    }
2293
2294    /* Copy exported symbols into the ObjectCode. */
2295
2296    oc->n_symbols = hdr->NumberOfSymbols;
2297    oc->symbols   = stgMallocBytes(oc->n_symbols * sizeof(char*),
2298                                   "ocGetNames_PEi386(oc->symbols)");
2299    /* Call me paranoid; I don't care. */
2300    for (i = 0; i < oc->n_symbols; i++)
2301       oc->symbols[i] = NULL;
2302
2303    i = 0;
2304    while (1) {
2305       COFF_symbol* symtab_i;
2306       if (i >= (Int32)(hdr->NumberOfSymbols)) break;
2307       symtab_i = (COFF_symbol*)
2308                  myindex ( sizeof_COFF_symbol, symtab, i );
2309
2310       addr  = NULL;
2311
2312       if (symtab_i->StorageClass == MYIMAGE_SYM_CLASS_EXTERNAL
2313           && symtab_i->SectionNumber != MYIMAGE_SYM_UNDEFINED) {
2314          /* This symbol is global and defined, viz, exported */
2315          /* for MYIMAGE_SYMCLASS_EXTERNAL
2316                 && !MYIMAGE_SYM_UNDEFINED,
2317             the address of the symbol is:
2318                 address of relevant section + offset in section
2319          */
2320          COFF_section* sectabent
2321             = (COFF_section*) myindex ( sizeof_COFF_section,
2322                                         sectab,
2323                                         symtab_i->SectionNumber-1 );
2324          addr = ((UChar*)(oc->image))
2325                 + (sectabent->PointerToRawData
2326                    + symtab_i->Value);
2327       }
2328       else
2329       if (symtab_i->SectionNumber == MYIMAGE_SYM_UNDEFINED
2330           && symtab_i->Value > 0) {
2331          /* This symbol isn't in any section at all, ie, global bss.
2332             Allocate zeroed space for it. */
2333          addr = stgCallocBytes(1, symtab_i->Value,
2334                                "ocGetNames_PEi386(non-anonymous bss)");
2335          addSection(oc, SECTIONKIND_RWDATA, addr,
2336                         ((UChar*)addr) + symtab_i->Value - 1);
2337          addProddableBlock(oc, addr, symtab_i->Value);
2338          /* debugBelch("BSS      section at 0x%x\n", addr); */
2339       }
2340
2341       if (addr != NULL ) {
2342          sname = cstring_from_COFF_symbol_name ( symtab_i->Name, strtab );
2343          /* debugBelch("addSymbol %p `%s \n", addr,sname);  */
2344          IF_DEBUG(linker, debugBelch("addSymbol %p `%s'\n", addr,sname);)
2345          ASSERT(i >= 0 && i < oc->n_symbols);
2346          /* cstring_from_COFF_symbol_name always succeeds. */
2347          oc->symbols[i] = sname;
2348          ghciInsertStrHashTable(oc->fileName, symhash, sname, addr);
2349       } else {
2350 #        if 0
2351          debugBelch(
2352                    "IGNORING symbol %d\n"
2353                    "     name `",
2354                    i
2355                  );
2356          printName ( symtab_i->Name, strtab );
2357          debugBelch(
2358                    "'\n"
2359                    "    value 0x%x\n"
2360                    "   1+sec# %d\n"
2361                    "     type 0x%x\n"
2362                    "   sclass 0x%x\n"
2363                    "     nAux %d\n",
2364                    symtab_i->Value,
2365                    (Int32)(symtab_i->SectionNumber),
2366                    (UInt32)symtab_i->Type,
2367                    (UInt32)symtab_i->StorageClass,
2368                    (UInt32)symtab_i->NumberOfAuxSymbols
2369                  );
2370 #        endif
2371       }
2372
2373       i += symtab_i->NumberOfAuxSymbols;
2374       i++;
2375    }
2376
2377    return 1;
2378 }
2379
2380
2381 static int
2382 ocResolve_PEi386 ( ObjectCode* oc )
2383 {
2384    COFF_header*  hdr;
2385    COFF_section* sectab;
2386    COFF_symbol*  symtab;
2387    UChar*        strtab;
2388
2389    UInt32        A;
2390    UInt32        S;
2391    UInt32*       pP;
2392
2393    int i;
2394    UInt32 j, noRelocs;
2395
2396    /* ToDo: should be variable-sized?  But is at least safe in the
2397       sense of buffer-overrun-proof. */
2398    char symbol[1000];
2399    /* debugBelch("resolving for %s\n", oc->fileName); */
2400
2401    hdr = (COFF_header*)(oc->image);
2402    sectab = (COFF_section*) (
2403                ((UChar*)(oc->image))
2404                + sizeof_COFF_header + hdr->SizeOfOptionalHeader
2405             );
2406    symtab = (COFF_symbol*) (
2407                ((UChar*)(oc->image))
2408                + hdr->PointerToSymbolTable
2409             );
2410    strtab = ((UChar*)(oc->image))
2411             + hdr->PointerToSymbolTable
2412             + hdr->NumberOfSymbols * sizeof_COFF_symbol;
2413
2414    for (i = 0; i < hdr->NumberOfSections; i++) {
2415       COFF_section* sectab_i
2416          = (COFF_section*)
2417            myindex ( sizeof_COFF_section, sectab, i );
2418       COFF_reloc* reltab
2419          = (COFF_reloc*) (
2420               ((UChar*)(oc->image)) + sectab_i->PointerToRelocations
2421            );
2422
2423       /* Ignore sections called which contain stabs debugging
2424          information. */
2425       if (0 == strcmp(".stab", sectab_i->Name)
2426           || 0 == strcmp(".stabstr", sectab_i->Name)
2427           || 0 == strcmp(".ctors", sectab_i->Name))
2428          continue;
2429
2430       if ( sectab_i->Characteristics & MYIMAGE_SCN_LNK_NRELOC_OVFL ) {
2431         /* If the relocation field (a short) has overflowed, the
2432          * real count can be found in the first reloc entry.
2433          *
2434          * See Section 4.1 (last para) of the PE spec (rev6.0).
2435          *
2436          * Nov2003 update: the GNU linker still doesn't correctly
2437          * handle the generation of relocatable object files with
2438          * overflown relocations. Hence the output to warn of potential
2439          * troubles.
2440          */
2441         COFF_reloc* rel = (COFF_reloc*)
2442                            myindex ( sizeof_COFF_reloc, reltab, 0 );
2443         noRelocs = rel->VirtualAddress;
2444
2445         /* 10/05: we now assume (and check for) a GNU ld that is capable
2446          * of handling object files with (>2^16) of relocs.
2447          */
2448 #if 0
2449         debugBelch("WARNING: Overflown relocation field (# relocs found: %u)\n",
2450                    noRelocs);
2451 #endif
2452         j = 1;
2453       } else {
2454         noRelocs = sectab_i->NumberOfRelocations;
2455         j = 0;
2456       }
2457
2458
2459       for (; j < noRelocs; j++) {
2460          COFF_symbol* sym;
2461          COFF_reloc* reltab_j
2462             = (COFF_reloc*)
2463               myindex ( sizeof_COFF_reloc, reltab, j );
2464
2465          /* the location to patch */
2466          pP = (UInt32*)(
2467                  ((UChar*)(oc->image))
2468                  + (sectab_i->PointerToRawData
2469                     + reltab_j->VirtualAddress
2470                     - sectab_i->VirtualAddress )
2471               );
2472          /* the existing contents of pP */
2473          A = *pP;
2474          /* the symbol to connect to */
2475          sym = (COFF_symbol*)
2476                myindex ( sizeof_COFF_symbol,
2477                          symtab, reltab_j->SymbolTableIndex );
2478          IF_DEBUG(linker,
2479                   debugBelch(
2480                             "reloc sec %2d num %3d:  type 0x%-4x   "
2481                             "vaddr 0x%-8x   name `",
2482                             i, j,
2483                             (UInt32)reltab_j->Type,
2484                             reltab_j->VirtualAddress );
2485                             printName ( sym->Name, strtab );
2486                             debugBelch("'\n" ));
2487
2488          if (sym->StorageClass == MYIMAGE_SYM_CLASS_STATIC) {
2489             COFF_section* section_sym
2490                = findPEi386SectionCalled ( oc, sym->Name );
2491             if (!section_sym) {
2492                errorBelch("%s: can't find section `%s'", oc->fileName, sym->Name);
2493                return 0;
2494             }
2495             S = ((UInt32)(oc->image))
2496                 + (section_sym->PointerToRawData
2497                    + sym->Value);
2498          } else {
2499             copyName ( sym->Name, strtab, symbol, 1000-1 );
2500             (void*)S = lookupLocalSymbol( oc, symbol );
2501             if ((void*)S != NULL) goto foundit;
2502             (void*)S = lookupSymbol( symbol );
2503             if ((void*)S != NULL) goto foundit;
2504             zapTrailingAtSign ( symbol );
2505             (void*)S = lookupLocalSymbol( oc, symbol );
2506             if ((void*)S != NULL) goto foundit;
2507             (void*)S = lookupSymbol( symbol );
2508             if ((void*)S != NULL) goto foundit;
2509             /* Newline first because the interactive linker has printed "linking..." */
2510             errorBelch("\n%s: unknown symbol `%s'", oc->fileName, symbol);
2511             return 0;
2512            foundit:;
2513          }
2514          checkProddableBlock(oc, pP);
2515          switch (reltab_j->Type) {
2516             case MYIMAGE_REL_I386_DIR32:
2517                *pP = A + S;
2518                break;
2519             case MYIMAGE_REL_I386_REL32:
2520                /* Tricky.  We have to insert a displacement at
2521                   pP which, when added to the PC for the _next_
2522                   insn, gives the address of the target (S).
2523                   Problem is to know the address of the next insn
2524                   when we only know pP.  We assume that this
2525                   literal field is always the last in the insn,
2526                   so that the address of the next insn is pP+4
2527                   -- hence the constant 4.
2528                   Also I don't know if A should be added, but so
2529                   far it has always been zero.
2530
2531                   SOF 05/2005: 'A' (old contents of *pP) have been observed
2532                   to contain values other than zero (the 'wx' object file
2533                   that came with wxhaskell-0.9.4; dunno how it was compiled..).
2534                   So, add displacement to old value instead of asserting
2535                   A to be zero. Fixes wxhaskell-related crashes, and no other
2536                   ill effects have been observed.
2537                   
2538                   Update: the reason why we're seeing these more elaborate
2539                   relocations is due to a switch in how the NCG compiles SRTs 
2540                   and offsets to them from info tables. SRTs live in .(ro)data, 
2541                   while info tables live in .text, causing GAS to emit REL32/DISP32 
2542                   relocations with non-zero values. Adding the displacement is
2543                   the right thing to do.
2544                */
2545                *pP = S - ((UInt32)pP) - 4 + A;
2546                break;
2547             default:
2548                debugBelch("%s: unhandled PEi386 relocation type %d",
2549                      oc->fileName, reltab_j->Type);
2550                return 0;
2551          }
2552
2553       }
2554    }
2555
2556    IF_DEBUG(linker, debugBelch("completed %s", oc->fileName));
2557    return 1;
2558 }
2559
2560 #endif /* defined(OBJFORMAT_PEi386) */
2561
2562
2563 /* --------------------------------------------------------------------------
2564  * ELF specifics
2565  * ------------------------------------------------------------------------*/
2566
2567 #if defined(OBJFORMAT_ELF)
2568
2569 #define FALSE 0
2570 #define TRUE  1
2571
2572 #if defined(sparc_HOST_ARCH)
2573 #  define ELF_TARGET_SPARC  /* Used inside <elf.h> */
2574 #elif defined(i386_HOST_ARCH)
2575 #  define ELF_TARGET_386    /* Used inside <elf.h> */
2576 #elif defined(x86_64_HOST_ARCH)
2577 #  define ELF_TARGET_X64_64
2578 #  define ELF_64BIT
2579 #elif defined (ia64_HOST_ARCH)
2580 #  define ELF_TARGET_IA64   /* Used inside <elf.h> */
2581 #  define ELF_64BIT
2582 #  define ELF_FUNCTION_DESC /* calling convention uses function descriptors */
2583 #  define ELF_NEED_GOT      /* needs Global Offset Table */
2584 #  define ELF_NEED_PLT      /* needs Procedure Linkage Tables */
2585 #endif
2586
2587 #if !defined(openbsd_HOST_OS)
2588 #include <elf.h>
2589 #else
2590 /* openbsd elf has things in different places, with diff names */
2591 #include <elf_abi.h>
2592 #include <machine/reloc.h>
2593 #define R_386_32    RELOC_32
2594 #define R_386_PC32  RELOC_PC32
2595 #endif
2596
2597 /*
2598  * Define a set of types which can be used for both ELF32 and ELF64
2599  */
2600
2601 #ifdef ELF_64BIT
2602 #define ELFCLASS    ELFCLASS64
2603 #define Elf_Addr    Elf64_Addr
2604 #define Elf_Word    Elf64_Word
2605 #define Elf_Sword   Elf64_Sword
2606 #define Elf_Ehdr    Elf64_Ehdr
2607 #define Elf_Phdr    Elf64_Phdr
2608 #define Elf_Shdr    Elf64_Shdr
2609 #define Elf_Sym     Elf64_Sym
2610 #define Elf_Rel     Elf64_Rel
2611 #define Elf_Rela    Elf64_Rela
2612 #define ELF_ST_TYPE ELF64_ST_TYPE
2613 #define ELF_ST_BIND ELF64_ST_BIND
2614 #define ELF_R_TYPE  ELF64_R_TYPE
2615 #define ELF_R_SYM   ELF64_R_SYM
2616 #else
2617 #define ELFCLASS    ELFCLASS32
2618 #define Elf_Addr    Elf32_Addr
2619 #define Elf_Word    Elf32_Word
2620 #define Elf_Sword   Elf32_Sword
2621 #define Elf_Ehdr    Elf32_Ehdr
2622 #define Elf_Phdr    Elf32_Phdr
2623 #define Elf_Shdr    Elf32_Shdr
2624 #define Elf_Sym     Elf32_Sym
2625 #define Elf_Rel     Elf32_Rel
2626 #define Elf_Rela    Elf32_Rela
2627 #ifndef ELF_ST_TYPE
2628 #define ELF_ST_TYPE ELF32_ST_TYPE
2629 #endif
2630 #ifndef ELF_ST_BIND
2631 #define ELF_ST_BIND ELF32_ST_BIND
2632 #endif
2633 #ifndef ELF_R_TYPE
2634 #define ELF_R_TYPE  ELF32_R_TYPE
2635 #endif
2636 #ifndef ELF_R_SYM
2637 #define ELF_R_SYM   ELF32_R_SYM
2638 #endif
2639 #endif
2640
2641
2642 /*
2643  * Functions to allocate entries in dynamic sections.  Currently we simply
2644  * preallocate a large number, and we don't check if a entry for the given
2645  * target already exists (a linear search is too slow).  Ideally these
2646  * entries would be associated with symbols.
2647  */
2648
2649 /* These sizes sufficient to load HSbase + HShaskell98 + a few modules */
2650 #define GOT_SIZE            0x20000
2651 #define FUNCTION_TABLE_SIZE 0x10000
2652 #define PLT_SIZE            0x08000
2653
2654 #ifdef ELF_NEED_GOT
2655 static Elf_Addr got[GOT_SIZE];
2656 static unsigned int gotIndex;
2657 static Elf_Addr gp_val = (Elf_Addr)got;
2658
2659 static Elf_Addr
2660 allocateGOTEntry(Elf_Addr target)
2661 {
2662    Elf_Addr *entry;
2663
2664    if (gotIndex >= GOT_SIZE)
2665       barf("Global offset table overflow");
2666
2667    entry = &got[gotIndex++];
2668    *entry = target;
2669    return (Elf_Addr)entry;
2670 }
2671 #endif
2672
2673 #ifdef ELF_FUNCTION_DESC
2674 typedef struct {
2675    Elf_Addr ip;
2676    Elf_Addr gp;
2677 } FunctionDesc;
2678
2679 static FunctionDesc functionTable[FUNCTION_TABLE_SIZE];
2680 static unsigned int functionTableIndex;
2681
2682 static Elf_Addr
2683 allocateFunctionDesc(Elf_Addr target)
2684 {
2685    FunctionDesc *entry;
2686
2687    if (functionTableIndex >= FUNCTION_TABLE_SIZE)
2688       barf("Function table overflow");
2689
2690    entry = &functionTable[functionTableIndex++];
2691    entry->ip = target;
2692    entry->gp = (Elf_Addr)gp_val;
2693    return (Elf_Addr)entry;
2694 }
2695
2696 static Elf_Addr
2697 copyFunctionDesc(Elf_Addr target)
2698 {
2699    FunctionDesc *olddesc = (FunctionDesc *)target;
2700    FunctionDesc *newdesc;
2701
2702    newdesc = (FunctionDesc *)allocateFunctionDesc(olddesc->ip);
2703    newdesc->gp = olddesc->gp;
2704    return (Elf_Addr)newdesc;
2705 }
2706 #endif
2707
2708 #ifdef ELF_NEED_PLT
2709 #ifdef ia64_HOST_ARCH
2710 static void ia64_reloc_gprel22(Elf_Addr target, Elf_Addr value);
2711 static void ia64_reloc_pcrel21(Elf_Addr target, Elf_Addr value, ObjectCode *oc);
2712
2713 static unsigned char plt_code[] =
2714 {
2715    /* taken from binutils bfd/elfxx-ia64.c */
2716    0x0b, 0x78, 0x00, 0x02, 0x00, 0x24,  /*   [MMI]       addl r15=0,r1;;    */
2717    0x00, 0x41, 0x3c, 0x30, 0x28, 0xc0,  /*               ld8 r16=[r15],8    */
2718    0x01, 0x08, 0x00, 0x84,              /*               mov r14=r1;;       */
2719    0x11, 0x08, 0x00, 0x1e, 0x18, 0x10,  /*   [MIB]       ld8 r1=[r15]       */
2720    0x60, 0x80, 0x04, 0x80, 0x03, 0x00,  /*               mov b6=r16         */
2721    0x60, 0x00, 0x80, 0x00               /*               br.few b6;;        */
2722 };
2723
2724 /* If we can't get to the function descriptor via gp, take a local copy of it */
2725 #define PLT_RELOC(code, target) { \
2726    Elf64_Sxword rel_value = target - gp_val; \
2727    if ((rel_value > 0x1fffff) || (rel_value < -0x1fffff)) \
2728       ia64_reloc_gprel22((Elf_Addr)code, copyFunctionDesc(target)); \
2729    else \
2730       ia64_reloc_gprel22((Elf_Addr)code, target); \
2731    }
2732 #endif
2733
2734 typedef struct {
2735    unsigned char code[sizeof(plt_code)];
2736 } PLTEntry;
2737
2738 static Elf_Addr
2739 allocatePLTEntry(Elf_Addr target, ObjectCode *oc)
2740 {
2741    PLTEntry *plt = (PLTEntry *)oc->plt;
2742    PLTEntry *entry;
2743
2744    if (oc->pltIndex >= PLT_SIZE)
2745       barf("Procedure table overflow");
2746
2747    entry = &plt[oc->pltIndex++];
2748    memcpy(entry->code, plt_code, sizeof(entry->code));
2749    PLT_RELOC(entry->code, target);
2750    return (Elf_Addr)entry;
2751 }
2752
2753 static unsigned int
2754 PLTSize(void)
2755 {
2756    return (PLT_SIZE * sizeof(PLTEntry));
2757 }
2758 #endif
2759
2760
2761 #if x86_64_HOST_ARCH
2762 // On x86_64, 32-bit relocations are often used, which requires that
2763 // we can resolve a symbol to a 32-bit offset.  However, shared
2764 // libraries are placed outside the 2Gb area, which leaves us with a
2765 // problem when we need to give a 32-bit offset to a symbol in a
2766 // shared library.
2767 // 
2768 // For a function symbol, we can allocate a bounce sequence inside the
2769 // 2Gb area and resolve the symbol to this.  The bounce sequence is
2770 // simply a long jump instruction to the real location of the symbol.
2771 //
2772 // For data references, we're screwed.
2773 //
2774 typedef struct {
2775     unsigned char jmp[8];  /* 6 byte instruction: jmpq *0x00000002(%rip) */
2776     void *addr;
2777 } x86_64_bounce;
2778
2779 #define X86_64_BB_SIZE 1024
2780
2781 static x86_64_bounce *x86_64_bounce_buffer = NULL;
2782 static nat x86_64_bb_next_off;
2783
2784 static void*
2785 x86_64_high_symbol( char *lbl, void *addr )
2786 {
2787     x86_64_bounce *bounce;
2788
2789     if ( x86_64_bounce_buffer == NULL || 
2790          x86_64_bb_next_off >= X86_64_BB_SIZE ) {
2791         x86_64_bounce_buffer = 
2792             mmap(NULL, X86_64_BB_SIZE * sizeof(x86_64_bounce), 
2793                  PROT_EXEC|PROT_READ|PROT_WRITE, 
2794                  MAP_PRIVATE|MAP_32BIT|MAP_ANONYMOUS, -1, 0);
2795         if (x86_64_bounce_buffer == MAP_FAILED) {
2796             barf("x86_64_high_symbol: mmap failed");
2797         }
2798         x86_64_bb_next_off = 0;
2799     }
2800     bounce = &x86_64_bounce_buffer[x86_64_bb_next_off];
2801     bounce->jmp[0] = 0xff;
2802     bounce->jmp[1] = 0x25;
2803     bounce->jmp[2] = 0x02;
2804     bounce->jmp[3] = 0x00;
2805     bounce->jmp[4] = 0x00;
2806     bounce->jmp[5] = 0x00;
2807     bounce->addr = addr;
2808     x86_64_bb_next_off++;
2809
2810     IF_DEBUG(linker, debugBelch("x86_64: allocated bounce entry for %s->%p at %p\n",
2811                                 lbl, addr, bounce));
2812
2813     insertStrHashTable(symhash, lbl, bounce);
2814     return bounce;
2815 }
2816 #endif
2817
2818
2819 /*
2820  * Generic ELF functions
2821  */
2822
2823 static char *
2824 findElfSection ( void* objImage, Elf_Word sh_type )
2825 {
2826    char* ehdrC = (char*)objImage;
2827    Elf_Ehdr* ehdr = (Elf_Ehdr*)ehdrC;
2828    Elf_Shdr* shdr = (Elf_Shdr*)(ehdrC + ehdr->e_shoff);
2829    char* sh_strtab = ehdrC + shdr[ehdr->e_shstrndx].sh_offset;
2830    char* ptr = NULL;
2831    int i;
2832
2833    for (i = 0; i < ehdr->e_shnum; i++) {
2834       if (shdr[i].sh_type == sh_type
2835           /* Ignore the section header's string table. */
2836           && i != ehdr->e_shstrndx
2837           /* Ignore string tables named .stabstr, as they contain
2838              debugging info. */
2839           && 0 != memcmp(".stabstr", sh_strtab + shdr[i].sh_name, 8)
2840          ) {
2841          ptr = ehdrC + shdr[i].sh_offset;
2842          break;
2843       }
2844    }
2845    return ptr;
2846 }
2847
2848 #if defined(ia64_HOST_ARCH)
2849 static Elf_Addr
2850 findElfSegment ( void* objImage, Elf_Addr vaddr )
2851 {
2852    char* ehdrC = (char*)objImage;
2853    Elf_Ehdr* ehdr = (Elf_Ehdr*)ehdrC;
2854    Elf_Phdr* phdr = (Elf_Phdr*)(ehdrC + ehdr->e_phoff);
2855    Elf_Addr segaddr = 0;
2856    int i;
2857
2858    for (i = 0; i < ehdr->e_phnum; i++) {
2859       segaddr = phdr[i].p_vaddr;
2860       if ((vaddr >= segaddr) && (vaddr < segaddr + phdr[i].p_memsz))
2861               break;
2862    }
2863    return segaddr;
2864 }
2865 #endif
2866
2867 static int
2868 ocVerifyImage_ELF ( ObjectCode* oc )
2869 {
2870    Elf_Shdr* shdr;
2871    Elf_Sym*  stab;
2872    int i, j, nent, nstrtab, nsymtabs;
2873    char* sh_strtab;
2874    char* strtab;
2875
2876    char*     ehdrC = (char*)(oc->image);
2877    Elf_Ehdr* ehdr  = (Elf_Ehdr*)ehdrC;
2878
2879    if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
2880        ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
2881        ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
2882        ehdr->e_ident[EI_MAG3] != ELFMAG3) {
2883       errorBelch("%s: not an ELF object", oc->fileName);
2884       return 0;
2885    }
2886
2887    if (ehdr->e_ident[EI_CLASS] != ELFCLASS) {
2888       errorBelch("%s: unsupported ELF format", oc->fileName);
2889       return 0;
2890    }
2891
2892    if (ehdr->e_ident[EI_DATA] == ELFDATA2LSB) {
2893        IF_DEBUG(linker,debugBelch( "Is little-endian\n" ));
2894    } else
2895    if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB) {
2896        IF_DEBUG(linker,debugBelch( "Is big-endian\n" ));
2897    } else {
2898        errorBelch("%s: unknown endiannness", oc->fileName);
2899        return 0;
2900    }
2901
2902    if (ehdr->e_type != ET_REL) {
2903       errorBelch("%s: not a relocatable object (.o) file", oc->fileName);
2904       return 0;
2905    }
2906    IF_DEBUG(linker, debugBelch( "Is a relocatable object (.o) file\n" ));
2907
2908    IF_DEBUG(linker,debugBelch( "Architecture is " ));
2909    switch (ehdr->e_machine) {
2910       case EM_386:   IF_DEBUG(linker,debugBelch( "x86" )); break;
2911       case EM_SPARC: IF_DEBUG(linker,debugBelch( "sparc" )); break;
2912 #ifdef EM_IA_64
2913       case EM_IA_64: IF_DEBUG(linker,debugBelch( "ia64" )); break;
2914 #endif
2915       case EM_PPC:   IF_DEBUG(linker,debugBelch( "powerpc32" )); break;
2916 #ifdef EM_X86_64
2917       case EM_X86_64: IF_DEBUG(linker,debugBelch( "x86_64" )); break;
2918 #endif
2919       default:       IF_DEBUG(linker,debugBelch( "unknown" ));
2920                      errorBelch("%s: unknown architecture", oc->fileName);
2921                      return 0;
2922    }
2923
2924    IF_DEBUG(linker,debugBelch(
2925              "\nSection header table: start %ld, n_entries %d, ent_size %d\n",
2926              (long)ehdr->e_shoff, ehdr->e_shnum, ehdr->e_shentsize  ));
2927
2928    ASSERT (ehdr->e_shentsize == sizeof(Elf_Shdr));
2929
2930    shdr = (Elf_Shdr*) (ehdrC + ehdr->e_shoff);
2931
2932    if (ehdr->e_shstrndx == SHN_UNDEF) {
2933       errorBelch("%s: no section header string table", oc->fileName);
2934       return 0;
2935    } else {
2936       IF_DEBUG(linker,debugBelch( "Section header string table is section %d\n",
2937                           ehdr->e_shstrndx));
2938       sh_strtab = ehdrC + shdr[ehdr->e_shstrndx].sh_offset;
2939    }
2940
2941    for (i = 0; i < ehdr->e_shnum; i++) {
2942       IF_DEBUG(linker,debugBelch("%2d:  ", i ));
2943       IF_DEBUG(linker,debugBelch("type=%2d  ", (int)shdr[i].sh_type ));
2944       IF_DEBUG(linker,debugBelch("size=%4d  ", (int)shdr[i].sh_size ));
2945       IF_DEBUG(linker,debugBelch("offs=%4d  ", (int)shdr[i].sh_offset ));
2946       IF_DEBUG(linker,debugBelch("  (%p .. %p)  ",
2947                ehdrC + shdr[i].sh_offset,
2948                       ehdrC + shdr[i].sh_offset + shdr[i].sh_size - 1));
2949
2950       if (shdr[i].sh_type == SHT_REL) {
2951           IF_DEBUG(linker,debugBelch("Rel  " ));
2952       } else if (shdr[i].sh_type == SHT_RELA) {
2953           IF_DEBUG(linker,debugBelch("RelA " ));
2954       } else {
2955           IF_DEBUG(linker,debugBelch("     "));
2956       }
2957       if (sh_strtab) {
2958           IF_DEBUG(linker,debugBelch("sname=%s\n", sh_strtab + shdr[i].sh_name ));
2959       }
2960    }
2961
2962    IF_DEBUG(linker,debugBelch( "\nString tables" ));
2963    strtab = NULL;
2964    nstrtab = 0;
2965    for (i = 0; i < ehdr->e_shnum; i++) {
2966       if (shdr[i].sh_type == SHT_STRTAB
2967           /* Ignore the section header's string table. */
2968           && i != ehdr->e_shstrndx
2969           /* Ignore string tables named .stabstr, as they contain
2970              debugging info. */
2971           && 0 != memcmp(".stabstr", sh_strtab + shdr[i].sh_name, 8)
2972          ) {
2973          IF_DEBUG(linker,debugBelch("   section %d is a normal string table", i ));
2974          strtab = ehdrC + shdr[i].sh_offset;
2975          nstrtab++;
2976       }
2977    }
2978    if (nstrtab != 1) {
2979       errorBelch("%s: no string tables, or too many", oc->fileName);
2980       return 0;
2981    }
2982
2983    nsymtabs = 0;
2984    IF_DEBUG(linker,debugBelch( "\nSymbol tables" ));
2985    for (i = 0; i < ehdr->e_shnum; i++) {
2986       if (shdr[i].sh_type != SHT_SYMTAB) continue;
2987       IF_DEBUG(linker,debugBelch( "section %d is a symbol table\n", i ));
2988       nsymtabs++;
2989       stab = (Elf_Sym*) (ehdrC + shdr[i].sh_offset);
2990       nent = shdr[i].sh_size / sizeof(Elf_Sym);
2991       IF_DEBUG(linker,debugBelch( "   number of entries is apparently %d (%ld rem)\n",
2992                nent,
2993                (long)shdr[i].sh_size % sizeof(Elf_Sym)
2994              ));
2995       if (0 != shdr[i].sh_size % sizeof(Elf_Sym)) {
2996          errorBelch("%s: non-integral number of symbol table entries", oc->fileName);
2997          return 0;
2998       }
2999       for (j = 0; j < nent; j++) {
3000          IF_DEBUG(linker,debugBelch("   %2d  ", j ));
3001          IF_DEBUG(linker,debugBelch("  sec=%-5d  size=%-3d  val=%5p  ",
3002                              (int)stab[j].st_shndx,
3003                              (int)stab[j].st_size,
3004                              (char*)stab[j].st_value ));
3005
3006          IF_DEBUG(linker,debugBelch("type=" ));
3007          switch (ELF_ST_TYPE(stab[j].st_info)) {
3008             case STT_NOTYPE:  IF_DEBUG(linker,debugBelch("notype " )); break;
3009             case STT_OBJECT:  IF_DEBUG(linker,debugBelch("object " )); break;
3010             case STT_FUNC  :  IF_DEBUG(linker,debugBelch("func   " )); break;
3011             case STT_SECTION: IF_DEBUG(linker,debugBelch("section" )); break;
3012             case STT_FILE:    IF_DEBUG(linker,debugBelch("file   " )); break;
3013             default:          IF_DEBUG(linker,debugBelch("?      " )); break;
3014          }
3015          IF_DEBUG(linker,debugBelch("  " ));
3016
3017          IF_DEBUG(linker,debugBelch("bind=" ));
3018          switch (ELF_ST_BIND(stab[j].st_info)) {
3019             case STB_LOCAL :  IF_DEBUG(linker,debugBelch("local " )); break;
3020             case STB_GLOBAL:  IF_DEBUG(linker,debugBelch("global" )); break;
3021             case STB_WEAK  :  IF_DEBUG(linker,debugBelch("weak  " )); break;
3022             default:          IF_DEBUG(linker,debugBelch("?     " )); break;
3023          }
3024          IF_DEBUG(linker,debugBelch("  " ));
3025
3026          IF_DEBUG(linker,debugBelch("name=%s\n", strtab + stab[j].st_name ));
3027       }
3028    }
3029
3030    if (nsymtabs == 0) {
3031       errorBelch("%s: didn't find any symbol tables", oc->fileName);
3032       return 0;
3033    }
3034
3035    return 1;
3036 }
3037
3038 static int getSectionKind_ELF( Elf_Shdr *hdr, int *is_bss )
3039 {
3040     *is_bss = FALSE;
3041
3042     if (hdr->sh_type == SHT_PROGBITS
3043         && (hdr->sh_flags & SHF_ALLOC) && (hdr->sh_flags & SHF_EXECINSTR)) {
3044         /* .text-style section */
3045         return SECTIONKIND_CODE_OR_RODATA;
3046     }
3047
3048     if (hdr->sh_type == SHT_PROGBITS
3049             && (hdr->sh_flags & SHF_ALLOC) && (hdr->sh_flags & SHF_WRITE)) {
3050             /* .data-style section */
3051             return SECTIONKIND_RWDATA;
3052     }
3053
3054     if (hdr->sh_type == SHT_PROGBITS
3055         && (hdr->sh_flags & SHF_ALLOC) && !(hdr->sh_flags & SHF_WRITE)) {
3056         /* .rodata-style section */
3057         return SECTIONKIND_CODE_OR_RODATA;
3058     }
3059
3060     if (hdr->sh_type == SHT_NOBITS
3061         && (hdr->sh_flags & SHF_ALLOC) && (hdr->sh_flags & SHF_WRITE)) {
3062         /* .bss-style section */
3063         *is_bss = TRUE;
3064         return SECTIONKIND_RWDATA;
3065     }
3066
3067     return SECTIONKIND_OTHER;
3068 }
3069
3070
3071 static int
3072 ocGetNames_ELF ( ObjectCode* oc )
3073 {
3074    int i, j, k, nent;
3075    Elf_Sym* stab;
3076
3077    char*     ehdrC    = (char*)(oc->image);
3078    Elf_Ehdr* ehdr     = (Elf_Ehdr*)ehdrC;
3079    char*     strtab   = findElfSection ( ehdrC, SHT_STRTAB );
3080    Elf_Shdr* shdr     = (Elf_Shdr*) (ehdrC + ehdr->e_shoff);
3081
3082    ASSERT(symhash != NULL);
3083
3084    if (!strtab) {
3085       errorBelch("%s: no strtab", oc->fileName);
3086       return 0;
3087    }
3088
3089    k = 0;
3090    for (i = 0; i < ehdr->e_shnum; i++) {
3091       /* Figure out what kind of section it is.  Logic derived from
3092          Figure 1.14 ("Special Sections") of the ELF document
3093          ("Portable Formats Specification, Version 1.1"). */
3094       int         is_bss = FALSE;
3095       SectionKind kind   = getSectionKind_ELF(&shdr[i], &is_bss);
3096
3097       if (is_bss && shdr[i].sh_size > 0) {
3098          /* This is a non-empty .bss section.  Allocate zeroed space for
3099             it, and set its .sh_offset field such that
3100             ehdrC + .sh_offset == addr_of_zeroed_space.  */
3101          char* zspace = stgCallocBytes(1, shdr[i].sh_size,
3102                                        "ocGetNames_ELF(BSS)");
3103          shdr[i].sh_offset = ((char*)zspace) - ((char*)ehdrC);
3104          /*
3105          debugBelch("BSS section at 0x%x, size %d\n",
3106                          zspace, shdr[i].sh_size);
3107          */
3108       }
3109
3110       /* fill in the section info */
3111       if (kind != SECTIONKIND_OTHER && shdr[i].sh_size > 0) {
3112          addProddableBlock(oc, ehdrC + shdr[i].sh_offset, shdr[i].sh_size);
3113          addSection(oc, kind, ehdrC + shdr[i].sh_offset,
3114                         ehdrC + shdr[i].sh_offset + shdr[i].sh_size - 1);
3115       }
3116
3117       if (shdr[i].sh_type != SHT_SYMTAB) continue;
3118
3119       /* copy stuff into this module's object symbol table */
3120       stab = (Elf_Sym*) (ehdrC + shdr[i].sh_offset);
3121       nent = shdr[i].sh_size / sizeof(Elf_Sym);
3122
3123       oc->n_symbols = nent;
3124       oc->symbols = stgMallocBytes(oc->n_symbols * sizeof(char*),
3125                                    "ocGetNames_ELF(oc->symbols)");
3126
3127       for (j = 0; j < nent; j++) {
3128
3129          char  isLocal = FALSE; /* avoids uninit-var warning */
3130          char* ad      = NULL;
3131          char* nm      = strtab + stab[j].st_name;
3132          int   secno   = stab[j].st_shndx;
3133
3134          /* Figure out if we want to add it; if so, set ad to its
3135             address.  Otherwise leave ad == NULL. */
3136
3137          if (secno == SHN_COMMON) {
3138             isLocal = FALSE;
3139             ad = stgCallocBytes(1, stab[j].st_size, "ocGetNames_ELF(COMMON)");
3140             /*
3141             debugBelch("COMMON symbol, size %d name %s\n",
3142                             stab[j].st_size, nm);
3143             */
3144             /* Pointless to do addProddableBlock() for this area,
3145                since the linker should never poke around in it. */
3146          }
3147          else
3148          if ( ( ELF_ST_BIND(stab[j].st_info)==STB_GLOBAL
3149                 || ELF_ST_BIND(stab[j].st_info)==STB_LOCAL
3150               )
3151               /* and not an undefined symbol */
3152               && stab[j].st_shndx != SHN_UNDEF
3153               /* and not in a "special section" */
3154               && stab[j].st_shndx < SHN_LORESERVE
3155               &&
3156               /* and it's a not a section or string table or anything silly */
3157               ( ELF_ST_TYPE(stab[j].st_info)==STT_FUNC ||
3158                 ELF_ST_TYPE(stab[j].st_info)==STT_OBJECT ||
3159                 ELF_ST_TYPE(stab[j].st_info)==STT_NOTYPE
3160               )
3161             ) {
3162             /* Section 0 is the undefined section, hence > and not >=. */
3163             ASSERT(secno > 0 && secno < ehdr->e_shnum);
3164             /*
3165             if (shdr[secno].sh_type == SHT_NOBITS) {
3166                debugBelch("   BSS symbol, size %d off %d name %s\n",
3167                                stab[j].st_size, stab[j].st_value, nm);
3168             }
3169             */
3170             ad = ehdrC + shdr[ secno ].sh_offset + stab[j].st_value;
3171             if (ELF_ST_BIND(stab[j].st_info)==STB_LOCAL) {
3172                isLocal = TRUE;
3173             } else {
3174 #ifdef ELF_FUNCTION_DESC
3175                /* dlsym() and the initialisation table both give us function
3176                 * descriptors, so to be consistent we store function descriptors
3177                 * in the symbol table */
3178                if (ELF_ST_TYPE(stab[j].st_info) == STT_FUNC)
3179                    ad = (char *)allocateFunctionDesc((Elf_Addr)ad);
3180 #endif
3181                IF_DEBUG(linker,debugBelch( "addOTabName(GLOB): %10p  %s %s",
3182                                       ad, oc->fileName, nm ));
3183                isLocal = FALSE;
3184             }
3185          }
3186
3187          /* And the decision is ... */
3188
3189          if (ad != NULL) {
3190             ASSERT(nm != NULL);
3191             oc->symbols[j] = nm;
3192             /* Acquire! */
3193             if (isLocal) {
3194                /* Ignore entirely. */
3195             } else {
3196                ghciInsertStrHashTable(oc->fileName, symhash, nm, ad);
3197             }
3198          } else {
3199             /* Skip. */
3200             IF_DEBUG(linker,debugBelch( "skipping `%s'\n",
3201                                    strtab + stab[j].st_name ));
3202             /*
3203             debugBelch(
3204                     "skipping   bind = %d,  type = %d,  shndx = %d   `%s'\n",
3205                     (int)ELF_ST_BIND(stab[j].st_info),
3206                     (int)ELF_ST_TYPE(stab[j].st_info),
3207                     (int)stab[j].st_shndx,
3208                     strtab + stab[j].st_name
3209                    );
3210             */
3211             oc->symbols[j] = NULL;
3212          }
3213
3214       }
3215    }
3216
3217    return 1;
3218 }
3219
3220 /* Do ELF relocations which lack an explicit addend.  All x86-linux
3221    relocations appear to be of this form. */
3222 static int
3223 do_Elf_Rel_relocations ( ObjectCode* oc, char* ehdrC,
3224                          Elf_Shdr* shdr, int shnum,
3225                          Elf_Sym*  stab, char* strtab )
3226 {
3227    int j;
3228    char *symbol;
3229    Elf_Word* targ;
3230    Elf_Rel*  rtab = (Elf_Rel*) (ehdrC + shdr[shnum].sh_offset);
3231    int         nent = shdr[shnum].sh_size / sizeof(Elf_Rel);
3232    int target_shndx = shdr[shnum].sh_info;
3233    int symtab_shndx = shdr[shnum].sh_link;
3234
3235    stab  = (Elf_Sym*) (ehdrC + shdr[ symtab_shndx ].sh_offset);
3236    targ  = (Elf_Word*)(ehdrC + shdr[ target_shndx ].sh_offset);
3237    IF_DEBUG(linker,debugBelch( "relocations for section %d using symtab %d\n",
3238                           target_shndx, symtab_shndx ));
3239
3240    /* Skip sections that we're not interested in. */
3241    {
3242        int is_bss;
3243        SectionKind kind = getSectionKind_ELF(&shdr[target_shndx], &is_bss);
3244        if (kind == SECTIONKIND_OTHER) {
3245            IF_DEBUG(linker,debugBelch( "skipping (target section not loaded)"));
3246            return 1;
3247        }
3248    }
3249
3250    for (j = 0; j < nent; j++) {
3251       Elf_Addr offset = rtab[j].r_offset;
3252       Elf_Addr info   = rtab[j].r_info;
3253
3254       Elf_Addr  P  = ((Elf_Addr)targ) + offset;
3255       Elf_Word* pP = (Elf_Word*)P;
3256       Elf_Addr  A  = *pP;
3257       Elf_Addr  S;
3258       void*     S_tmp;
3259       Elf_Addr  value;
3260       StgStablePtr stablePtr;
3261       StgPtr stableVal;
3262
3263       IF_DEBUG(linker,debugBelch( "Rel entry %3d is raw(%6p %6p)",
3264                              j, (void*)offset, (void*)info ));
3265       if (!info) {
3266          IF_DEBUG(linker,debugBelch( " ZERO" ));
3267          S = 0;
3268       } else {
3269          Elf_Sym sym = stab[ELF_R_SYM(info)];
3270          /* First see if it is a local symbol. */
3271          if (ELF_ST_BIND(sym.st_info) == STB_LOCAL) {
3272             /* Yes, so we can get the address directly from the ELF symbol
3273                table. */
3274             symbol = sym.st_name==0 ? "(noname)" : strtab+sym.st_name;
3275             S = (Elf_Addr)
3276                 (ehdrC + shdr[ sym.st_shndx ].sh_offset
3277                        + stab[ELF_R_SYM(info)].st_value);
3278
3279          } else {
3280             symbol = strtab + sym.st_name;
3281             stablePtr = (StgStablePtr)lookupHashTable(stablehash, (StgWord)symbol);
3282             if (NULL == stablePtr) {
3283               /* No, so look up the name in our global table. */
3284               S_tmp = lookupSymbol( symbol );
3285               S = (Elf_Addr)S_tmp;
3286             } else {
3287               stableVal = deRefStablePtr( stablePtr );
3288               addRootObject((void*)P);
3289               S_tmp = stableVal;
3290               S = (Elf_Addr)S_tmp;
3291             }
3292          }
3293          if (!S) {
3294             errorBelch("%s: unknown symbol `%s'", oc->fileName, symbol);
3295             return 0;
3296          }
3297          IF_DEBUG(linker,debugBelch( "`%s' resolves to %p\n", symbol, (void*)S ));
3298       }
3299
3300       IF_DEBUG(linker,debugBelch( "Reloc: P = %p   S = %p   A = %p\n",
3301                              (void*)P, (void*)S, (void*)A ));
3302       checkProddableBlock ( oc, pP );
3303
3304       value = S + A;
3305
3306       switch (ELF_R_TYPE(info)) {
3307 #        ifdef i386_HOST_ARCH
3308          case R_386_32:   *pP = value;     break;
3309          case R_386_PC32: *pP = value - P; break;
3310 #        endif
3311          default:
3312             errorBelch("%s: unhandled ELF relocation(Rel) type %lu\n",
3313                   oc->fileName, (lnat)ELF_R_TYPE(info));
3314             return 0;
3315       }
3316
3317    }
3318    return 1;
3319 }
3320
3321 /* Do ELF relocations for which explicit addends are supplied.
3322    sparc-solaris relocations appear to be of this form. */
3323 static int
3324 do_Elf_Rela_relocations ( ObjectCode* oc, char* ehdrC,
3325                           Elf_Shdr* shdr, int shnum,
3326                           Elf_Sym*  stab, char* strtab )
3327 {
3328    int j;
3329    char *symbol = NULL;
3330    Elf_Addr targ;
3331    Elf_Rela* rtab = (Elf_Rela*) (ehdrC + shdr[shnum].sh_offset);
3332    int         nent = shdr[shnum].sh_size / sizeof(Elf_Rela);
3333    int target_shndx = shdr[shnum].sh_info;
3334    int symtab_shndx = shdr[shnum].sh_link;
3335
3336    stab  = (Elf_Sym*) (ehdrC + shdr[ symtab_shndx ].sh_offset);
3337    targ  = (Elf_Addr) (ehdrC + shdr[ target_shndx ].sh_offset);
3338    IF_DEBUG(linker,debugBelch( "relocations for section %d using symtab %d\n",
3339                           target_shndx, symtab_shndx ));
3340
3341    for (j = 0; j < nent; j++) {
3342 #if defined(DEBUG) || defined(sparc_HOST_ARCH) || defined(ia64_HOST_ARCH) || defined(powerpc_HOST_ARCH) || defined(x86_64_HOST_ARCH)
3343       /* This #ifdef only serves to avoid unused-var warnings. */
3344       Elf_Addr  offset = rtab[j].r_offset;
3345       Elf_Addr  P      = targ + offset;
3346 #endif
3347       Elf_Addr  info   = rtab[j].r_info;
3348       Elf_Addr  A      = rtab[j].r_addend;
3349       Elf_Addr  S;
3350       void*     S_tmp;
3351       Elf_Addr  value;
3352 #     if defined(sparc_HOST_ARCH)
3353       Elf_Word* pP = (Elf_Word*)P;
3354       Elf_Word  w1, w2;
3355 #     elif defined(ia64_HOST_ARCH)
3356       Elf64_Xword *pP = (Elf64_Xword *)P;
3357       Elf_Addr addr;
3358 #     elif defined(powerpc_HOST_ARCH)
3359       Elf_Sword delta;
3360 #     endif
3361
3362       IF_DEBUG(linker,debugBelch( "Rel entry %3d is raw(%6p %6p %6p)   ",
3363                              j, (void*)offset, (void*)info,
3364                                 (void*)A ));
3365       if (!info) {
3366          IF_DEBUG(linker,debugBelch( " ZERO" ));
3367          S = 0;
3368       } else {
3369          Elf_Sym sym = stab[ELF_R_SYM(info)];
3370          /* First see if it is a local symbol. */
3371          if (ELF_ST_BIND(sym.st_info) == STB_LOCAL) {
3372             /* Yes, so we can get the address directly from the ELF symbol
3373                table. */
3374             symbol = sym.st_name==0 ? "(noname)" : strtab+sym.st_name;
3375             S = (Elf_Addr)
3376                 (ehdrC + shdr[ sym.st_shndx ].sh_offset
3377                        + stab[ELF_R_SYM(info)].st_value);
3378 #ifdef ELF_FUNCTION_DESC
3379             /* Make a function descriptor for this function */
3380             if (S && ELF_ST_TYPE(sym.st_info) == STT_FUNC) {
3381                S = allocateFunctionDesc(S + A);
3382                A = 0;
3383             }
3384 #endif
3385          } else {
3386             /* No, so look up the name in our global table. */
3387             symbol = strtab + sym.st_name;
3388             S_tmp = lookupSymbol( symbol );
3389             S = (Elf_Addr)S_tmp;
3390
3391 #ifdef ELF_FUNCTION_DESC
3392             /* If a function, already a function descriptor - we would
3393                have to copy it to add an offset. */
3394             if (S && (ELF_ST_TYPE(sym.st_info) == STT_FUNC) && (A != 0))
3395                errorBelch("%s: function %s with addend %p", oc->fileName, symbol, (void *)A);
3396 #endif
3397          }
3398          if (!S) {
3399            errorBelch("%s: unknown symbol `%s'", oc->fileName, symbol);
3400            return 0;
3401          }
3402          IF_DEBUG(linker,debugBelch( "`%s' resolves to %p", symbol, (void*)S ));
3403       }
3404
3405       IF_DEBUG(linker,debugBelch("Reloc: P = %p   S = %p   A = %p\n",
3406                                         (void*)P, (void*)S, (void*)A ));
3407       /* checkProddableBlock ( oc, (void*)P ); */
3408
3409       value = S + A;
3410
3411       switch (ELF_R_TYPE(info)) {
3412 #        if defined(sparc_HOST_ARCH)
3413          case R_SPARC_WDISP30:
3414             w1 = *pP & 0xC0000000;
3415             w2 = (Elf_Word)((value - P) >> 2);
3416             ASSERT((w2 & 0xC0000000) == 0);
3417             w1 |= w2;
3418             *pP = w1;
3419             break;
3420          case R_SPARC_HI22:
3421             w1 = *pP & 0xFFC00000;
3422             w2 = (Elf_Word)(value >> 10);
3423             ASSERT((w2 & 0xFFC00000) == 0);
3424             w1 |= w2;
3425             *pP = w1;
3426             break;
3427          case R_SPARC_LO10:
3428             w1 = *pP & ~0x3FF;
3429             w2 = (Elf_Word)(value & 0x3FF);
3430             ASSERT((w2 & ~0x3FF) == 0);
3431             w1 |= w2;
3432             *pP = w1;
3433             break;
3434          /* According to the Sun documentation:
3435             R_SPARC_UA32
3436             This relocation type resembles R_SPARC_32, except it refers to an
3437             unaligned word. That is, the word to be relocated must be treated
3438             as four separate bytes with arbitrary alignment, not as a word
3439             aligned according to the architecture requirements.
3440
3441             (JRS: which means that freeloading on the R_SPARC_32 case
3442             is probably wrong, but hey ...)
3443          */
3444          case R_SPARC_UA32:
3445          case R_SPARC_32:
3446             w2 = (Elf_Word)value;
3447             *pP = w2;
3448             break;
3449 #        elif defined(ia64_HOST_ARCH)
3450          case R_IA64_DIR64LSB:
3451          case R_IA64_FPTR64LSB:
3452             *pP = value;
3453             break;
3454          case R_IA64_PCREL64LSB:
3455             *pP = value - P;
3456             break;
3457          case R_IA64_SEGREL64LSB:
3458             addr = findElfSegment(ehdrC, value);
3459             *pP = value - addr;
3460             break;
3461          case R_IA64_GPREL22:
3462             ia64_reloc_gprel22(P, value);
3463             break;
3464          case R_IA64_LTOFF22:
3465          case R_IA64_LTOFF22X:
3466          case R_IA64_LTOFF_FPTR22:
3467             addr = allocateGOTEntry(value);
3468             ia64_reloc_gprel22(P, addr);
3469             break;
3470          case R_IA64_PCREL21B:
3471             ia64_reloc_pcrel21(P, S, oc);
3472             break;
3473          case R_IA64_LDXMOV:
3474             /* This goes with R_IA64_LTOFF22X and points to the load to
3475              * convert into a move.  We don't implement relaxation. */
3476             break;
3477 #        elif defined(powerpc_HOST_ARCH)
3478          case R_PPC_ADDR16_LO:
3479             *(Elf32_Half*) P = value;
3480             break;
3481
3482          case R_PPC_ADDR16_HI:
3483             *(Elf32_Half*) P = value >> 16;
3484             break;
3485  
3486          case R_PPC_ADDR16_HA:
3487             *(Elf32_Half*) P = (value + 0x8000) >> 16;
3488             break;
3489
3490          case R_PPC_ADDR32:
3491             *(Elf32_Word *) P = value;
3492             break;
3493
3494          case R_PPC_REL32:
3495             *(Elf32_Word *) P = value - P;
3496             break;
3497
3498          case R_PPC_REL24:
3499             delta = value - P;
3500
3501             if( delta << 6 >> 6 != delta )
3502             {
3503                value = makeJumpIsland( oc, ELF_R_SYM(info), value );
3504                delta = value - P;
3505
3506                if( value == 0 || delta << 6 >> 6 != delta )
3507                {
3508                   barf( "Unable to make ppcJumpIsland for #%d",
3509                         ELF_R_SYM(info) );
3510                   return 0;
3511                }
3512             }
3513
3514             *(Elf_Word *) P = (*(Elf_Word *) P & 0xfc000003)
3515                                           | (delta & 0x3fffffc);
3516             break;
3517 #        endif
3518
3519 #if x86_64_HOST_ARCH
3520       case R_X86_64_64:
3521           *(Elf64_Xword *)P = value;
3522           break;
3523
3524       case R_X86_64_PC32:
3525       {
3526           StgInt64 off = value - P;
3527           if (off >= 0x7fffffffL || off < -0x80000000L) {
3528               barf("R_X86_64_PC32 relocation out of range: %s = %p",
3529                    symbol, off);
3530           }
3531           *(Elf64_Word *)P = (Elf64_Word)off;
3532           break;
3533       }
3534
3535       case R_X86_64_32:
3536           if (value >= 0x7fffffffL) {
3537               barf("R_X86_64_32 relocation out of range: %s = %p\n",
3538                    symbol, value);
3539           }
3540           *(Elf64_Word *)P = (Elf64_Word)value;
3541           break;
3542
3543       case R_X86_64_32S:
3544           if ((StgInt64)value > 0x7fffffffL || (StgInt64)value < -0x80000000L) {
3545               barf("R_X86_64_32S relocation out of range: %s = %p\n",
3546                    symbol, value);
3547           }
3548           *(Elf64_Sword *)P = (Elf64_Sword)value;
3549           break;
3550 #endif
3551
3552          default:
3553             errorBelch("%s: unhandled ELF relocation(RelA) type %lu\n",
3554                   oc->fileName, (lnat)ELF_R_TYPE(info));
3555             return 0;
3556       }
3557
3558    }
3559    return 1;
3560 }
3561
3562 static int
3563 ocResolve_ELF ( ObjectCode* oc )
3564 {
3565    char *strtab;
3566    int   shnum, ok;
3567    Elf_Sym*  stab  = NULL;
3568    char*     ehdrC = (char*)(oc->image);
3569    Elf_Ehdr* ehdr  = (Elf_Ehdr*) ehdrC;
3570    Elf_Shdr* shdr  = (Elf_Shdr*) (ehdrC + ehdr->e_shoff);
3571
3572    /* first find "the" symbol table */
3573    stab = (Elf_Sym*) findElfSection ( ehdrC, SHT_SYMTAB );
3574
3575    /* also go find the string table */
3576    strtab = findElfSection ( ehdrC, SHT_STRTAB );
3577
3578    if (stab == NULL || strtab == NULL) {
3579       errorBelch("%s: can't find string or symbol table", oc->fileName);
3580       return 0;
3581    }
3582
3583    /* Process the relocation sections. */
3584    for (shnum = 0; shnum < ehdr->e_shnum; shnum++) {
3585       if (shdr[shnum].sh_type == SHT_REL) {
3586          ok = do_Elf_Rel_relocations ( oc, ehdrC, shdr,
3587                                        shnum, stab, strtab );
3588          if (!ok) return ok;
3589       }
3590       else
3591       if (shdr[shnum].sh_type == SHT_RELA) {
3592          ok = do_Elf_Rela_relocations ( oc, ehdrC, shdr,
3593                                         shnum, stab, strtab );
3594          if (!ok) return ok;
3595       }
3596    }
3597
3598    /* Free the local symbol table; we won't need it again. */
3599    freeHashTable(oc->lochash, NULL);
3600    oc->lochash = NULL;
3601
3602 #if defined(powerpc_HOST_ARCH)
3603    ocFlushInstructionCache( oc );
3604 #endif
3605
3606    return 1;
3607 }
3608
3609 /*
3610  * IA64 specifics
3611  * Instructions are 41 bits long, packed into 128 bit bundles with a 5-bit template
3612  * at the front.  The following utility functions pack and unpack instructions, and
3613  * take care of the most common relocations.
3614  */
3615
3616 #ifdef ia64_HOST_ARCH
3617
3618 static Elf64_Xword
3619 ia64_extract_instruction(Elf64_Xword *target)
3620 {
3621    Elf64_Xword w1, w2;
3622    int slot = (Elf_Addr)target & 3;
3623    target = (Elf_Addr)target & ~3;
3624
3625    w1 = *target;
3626    w2 = *(target+1);
3627
3628    switch (slot)
3629    {
3630       case 0:
3631          return ((w1 >> 5) & 0x1ffffffffff);
3632       case 1:
3633          return (w1 >> 46) | ((w2 & 0x7fffff) << 18);
3634       case 2:
3635          return (w2 >> 23);
3636       default:
3637          barf("ia64_extract_instruction: invalid slot %p", target);
3638    }
3639 }
3640
3641 static void
3642 ia64_deposit_instruction(Elf64_Xword *target, Elf64_Xword value)
3643 {
3644    int slot = (Elf_Addr)target & 3;
3645    target = (Elf_Addr)target & ~3;
3646
3647    switch (slot)
3648    {
3649       case 0:
3650          *target |= value << 5;
3651          break;
3652       case 1:
3653          *target |= value << 46;
3654          *(target+1) |= value >> 18;
3655          break;
3656       case 2:
3657          *(target+1) |= value << 23;
3658          break;
3659    }
3660 }
3661
3662 static void
3663 ia64_reloc_gprel22(Elf_Addr target, Elf_Addr value)
3664 {
3665    Elf64_Xword instruction;
3666    Elf64_Sxword rel_value;
3667
3668    rel_value = value - gp_val;
3669    if ((rel_value > 0x1fffff) || (rel_value < -0x1fffff))
3670       barf("GP-relative data out of range (address = 0x%lx, gp = 0x%lx)", value, gp_val);
3671
3672    instruction = ia64_extract_instruction((Elf64_Xword *)target);
3673    instruction |= (((rel_value >> 0) & 0x07f) << 13)            /* imm7b */
3674                     | (((rel_value >> 7) & 0x1ff) << 27)        /* imm9d */
3675                     | (((rel_value >> 16) & 0x01f) << 22)       /* imm5c */
3676                     | ((Elf64_Xword)(rel_value < 0) << 36);     /* s */
3677    ia64_deposit_instruction((Elf64_Xword *)target, instruction);
3678 }
3679
3680 static void
3681 ia64_reloc_pcrel21(Elf_Addr target, Elf_Addr value, ObjectCode *oc)
3682 {
3683    Elf64_Xword instruction;
3684    Elf64_Sxword rel_value;
3685    Elf_Addr entry;
3686
3687    entry = allocatePLTEntry(value, oc);
3688
3689    rel_value = (entry >> 4) - (target >> 4);
3690    if ((rel_value > 0xfffff) || (rel_value < -0xfffff))
3691       barf("PLT entry too far away (entry = 0x%lx, target = 0x%lx)", entry, target);
3692
3693    instruction = ia64_extract_instruction((Elf64_Xword *)target);
3694    instruction |= ((rel_value & 0xfffff) << 13)                 /* imm20b */
3695                     | ((Elf64_Xword)(rel_value < 0) << 36);     /* s */
3696    ia64_deposit_instruction((Elf64_Xword *)target, instruction);
3697 }
3698
3699 #endif /* ia64 */
3700
3701 /*
3702  * PowerPC ELF specifics
3703  */
3704
3705 #ifdef powerpc_HOST_ARCH
3706
3707 static int ocAllocateJumpIslands_ELF( ObjectCode *oc )
3708 {
3709   Elf_Ehdr *ehdr;
3710   Elf_Shdr* shdr;
3711   int i;
3712
3713   ehdr = (Elf_Ehdr *) oc->image;
3714   shdr = (Elf_Shdr *) ( ((char *)oc->image) + ehdr->e_shoff );
3715
3716   for( i = 0; i < ehdr->e_shnum; i++ )
3717     if( shdr[i].sh_type == SHT_SYMTAB )
3718       break;
3719
3720   if( i == ehdr->e_shnum )
3721   {
3722     errorBelch( "This ELF file contains no symtab" );
3723     return 0;
3724   }
3725
3726   if( shdr[i].sh_entsize != sizeof( Elf_Sym ) )
3727   {
3728     errorBelch( "The entry size (%d) of the symtab isn't %d\n",
3729       shdr[i].sh_entsize, sizeof( Elf_Sym ) );
3730     
3731     return 0;
3732   }
3733
3734   return ocAllocateJumpIslands( oc, shdr[i].sh_size / sizeof( Elf_Sym ), 0 );
3735 }
3736
3737 #endif /* powerpc */
3738
3739 #endif /* ELF */
3740
3741 /* --------------------------------------------------------------------------
3742  * Mach-O specifics
3743  * ------------------------------------------------------------------------*/
3744
3745 #if defined(OBJFORMAT_MACHO)
3746
3747 /*
3748   Support for MachO linking on Darwin/MacOS X
3749   by Wolfgang Thaller (wolfgang.thaller@gmx.net)
3750
3751   I hereby formally apologize for the hackish nature of this code.
3752   Things that need to be done:
3753   *) implement ocVerifyImage_MachO
3754   *) add still more sanity checks.
3755 */
3756
3757 #ifdef powerpc_HOST_ARCH
3758 static int ocAllocateJumpIslands_MachO(ObjectCode* oc)
3759 {
3760     struct mach_header *header = (struct mach_header *) oc->image;
3761     struct load_command *lc = (struct load_command *) (header + 1);
3762     unsigned i;
3763
3764     for( i = 0; i < header->ncmds; i++ )
3765     {   
3766         if( lc->cmd == LC_SYMTAB )
3767         {
3768                 // Find out the first and last undefined external
3769                 // symbol, so we don't have to allocate too many
3770                 // jump islands.
3771             struct symtab_command *symLC = (struct symtab_command *) lc;
3772             unsigned min = symLC->nsyms, max = 0;
3773             struct nlist *nlist =
3774                 symLC ? (struct nlist*) ((char*) oc->image + symLC->symoff)
3775                       : NULL;
3776             for(i=0;i<symLC->nsyms;i++)
3777             {
3778                 if(nlist[i].n_type & N_STAB)
3779                     ;
3780                 else if(nlist[i].n_type & N_EXT)
3781                 {
3782                     if((nlist[i].n_type & N_TYPE) == N_UNDF
3783                         && (nlist[i].n_value == 0))
3784                     {
3785                         if(i < min)
3786                             min = i;
3787                         if(i > max)
3788                             max = i;
3789                     }
3790                 }
3791             }
3792             if(max >= min)
3793                 return ocAllocateJumpIslands(oc, max - min + 1, min);
3794
3795             break;
3796         }
3797         
3798         lc = (struct load_command *) ( ((char *)lc) + lc->cmdsize );
3799     }
3800     return ocAllocateJumpIslands(oc,0,0);
3801 }
3802 #endif
3803
3804 static int ocVerifyImage_MachO(ObjectCode* oc STG_UNUSED)
3805 {
3806     // FIXME: do some verifying here
3807     return 1;
3808 }
3809
3810 static int resolveImports(
3811     ObjectCode* oc,
3812     char *image,
3813     struct symtab_command *symLC,
3814     struct section *sect,    // ptr to lazy or non-lazy symbol pointer section
3815     unsigned long *indirectSyms,
3816     struct nlist *nlist)
3817 {
3818     unsigned i;
3819     size_t itemSize = 4;
3820
3821 #if i386_HOST_ARCH
3822     int isJumpTable = 0;
3823     if(!strcmp(sect->sectname,"__jump_table"))
3824     {
3825         isJumpTable = 1;
3826         itemSize = 5;
3827         ASSERT(sect->reserved2 == itemSize);
3828     }
3829 #endif
3830
3831     for(i=0; i*itemSize < sect->size;i++)
3832     {
3833         // according to otool, reserved1 contains the first index into the indirect symbol table
3834         struct nlist *symbol = &nlist[indirectSyms[sect->reserved1+i]];
3835         char *nm = image + symLC->stroff + symbol->n_un.n_strx;
3836         void *addr = NULL;
3837
3838         if((symbol->n_type & N_TYPE) == N_UNDF
3839             && (symbol->n_type & N_EXT) && (symbol->n_value != 0))
3840             addr = (void*) (symbol->n_value);
3841         else if((addr = lookupLocalSymbol(oc,nm)) != NULL)
3842             ;
3843         else
3844             addr = lookupSymbol(nm);
3845         if(!addr)
3846         {
3847             errorBelch("\n%s: unknown symbol `%s'", oc->fileName, nm);
3848             return 0;
3849         }
3850         ASSERT(addr);
3851
3852 #if i386_HOST_ARCH
3853         if(isJumpTable)
3854         {
3855             checkProddableBlock(oc,image + sect->offset + i*itemSize);
3856             *(image + sect->offset + i*itemSize) = 0xe9; // jmp
3857             *(unsigned*)(image + sect->offset + i*itemSize + 1)
3858                 = (char*)addr - (image + sect->offset + i*itemSize + 5);
3859         }
3860         else
3861 #endif
3862         {
3863             checkProddableBlock(oc,((void**)(image + sect->offset)) + i);
3864             ((void**)(image + sect->offset))[i] = addr;
3865         }
3866     }
3867
3868     return 1;
3869 }
3870
3871 static unsigned long relocateAddress(
3872     ObjectCode* oc,
3873     int nSections,
3874     struct section* sections,
3875     unsigned long address)
3876 {
3877     int i;
3878     for(i = 0; i < nSections; i++)
3879     {
3880         if(sections[i].addr <= address
3881             && address < sections[i].addr + sections[i].size)
3882         {
3883             return (unsigned long)oc->image
3884                     + sections[i].offset + address - sections[i].addr;
3885         }
3886     }
3887     barf("Invalid Mach-O file:"
3888          "Address out of bounds while relocating object file");
3889     return 0;
3890 }
3891
3892 static int relocateSection(
3893     ObjectCode* oc,
3894     char *image,
3895     struct symtab_command *symLC, struct nlist *nlist,
3896     int nSections, struct section* sections, struct section *sect)
3897 {
3898     struct relocation_info *relocs;
3899     int i,n;
3900
3901     if(!strcmp(sect->sectname,"__la_symbol_ptr"))
3902         return 1;
3903     else if(!strcmp(sect->sectname,"__nl_symbol_ptr"))
3904         return 1;
3905     else if(!strcmp(sect->sectname,"__la_sym_ptr2"))
3906         return 1;
3907     else if(!strcmp(sect->sectname,"__la_sym_ptr3"))
3908         return 1;
3909
3910     n = sect->nreloc;
3911     relocs = (struct relocation_info*) (image + sect->reloff);
3912
3913     for(i=0;i<n;i++)
3914     {
3915         if(relocs[i].r_address & R_SCATTERED)
3916         {
3917             struct scattered_relocation_info *scat =
3918                 (struct scattered_relocation_info*) &relocs[i];
3919
3920             if(!scat->r_pcrel)
3921             {
3922                 if(scat->r_length == 2)
3923                 {
3924                     unsigned long word = 0;
3925                     unsigned long* wordPtr = (unsigned long*) (image + sect->offset + scat->r_address);
3926                     checkProddableBlock(oc,wordPtr);
3927
3928                     // Note on relocation types:
3929                     // i386 uses the GENERIC_RELOC_* types,
3930                     // while ppc uses special PPC_RELOC_* types.
3931                     // *_RELOC_VANILLA and *_RELOC_PAIR have the same value
3932                     // in both cases, all others are different.
3933                     // Therefore, we use GENERIC_RELOC_VANILLA
3934                     // and GENERIC_RELOC_PAIR instead of the PPC variants,
3935                     // and use #ifdefs for the other types.
3936                     
3937                     // Step 1: Figure out what the relocated value should be
3938                     if(scat->r_type == GENERIC_RELOC_VANILLA)
3939                     {
3940                         word = *wordPtr + (unsigned long) relocateAddress(
3941                                                                 oc,
3942                                                                 nSections,
3943                                                                 sections,
3944                                                                 scat->r_value)
3945                                         - scat->r_value;
3946                     }
3947 #ifdef powerpc_HOST_ARCH
3948                     else if(scat->r_type == PPC_RELOC_SECTDIFF
3949                         || scat->r_type == PPC_RELOC_LO16_SECTDIFF
3950                         || scat->r_type == PPC_RELOC_HI16_SECTDIFF
3951                         || scat->r_type == PPC_RELOC_HA16_SECTDIFF)
3952 #else
3953                     else if(scat->r_type == GENERIC_RELOC_SECTDIFF)
3954 #endif
3955                     {
3956                         struct scattered_relocation_info *pair =
3957                                 (struct scattered_relocation_info*) &relocs[i+1];
3958
3959                         if(!pair->r_scattered || pair->r_type != GENERIC_RELOC_PAIR)
3960                             barf("Invalid Mach-O file: "
3961                                  "RELOC_*_SECTDIFF not followed by RELOC_PAIR");
3962
3963                         word = (unsigned long)
3964                                (relocateAddress(oc, nSections, sections, scat->r_value)
3965                               - relocateAddress(oc, nSections, sections, pair->r_value));
3966                         i++;
3967                     }
3968 #ifdef powerpc_HOST_ARCH
3969                     else if(scat->r_type == PPC_RELOC_HI16
3970                          || scat->r_type == PPC_RELOC_LO16
3971                          || scat->r_type == PPC_RELOC_HA16
3972                          || scat->r_type == PPC_RELOC_LO14)
3973                     {   // these are generated by label+offset things
3974                         struct relocation_info *pair = &relocs[i+1];
3975                         if((pair->r_address & R_SCATTERED) || pair->r_type != PPC_RELOC_PAIR)
3976                             barf("Invalid Mach-O file: "
3977                                  "PPC_RELOC_* not followed by PPC_RELOC_PAIR");
3978                         
3979                         if(scat->r_type == PPC_RELOC_LO16)
3980                         {
3981                             word = ((unsigned short*) wordPtr)[1];
3982                             word |= ((unsigned long) relocs[i+1].r_address & 0xFFFF) << 16;
3983                         }
3984                         else if(scat->r_type == PPC_RELOC_LO14)
3985                         {
3986                             barf("Unsupported Relocation: PPC_RELOC_LO14");
3987                             word = ((unsigned short*) wordPtr)[1] & 0xFFFC;
3988                             word |= ((unsigned long) relocs[i+1].r_address & 0xFFFF) << 16;
3989                         }
3990                         else if(scat->r_type == PPC_RELOC_HI16)
3991                         {
3992                             word = ((unsigned short*) wordPtr)[1] << 16;
3993                             word |= ((unsigned long) relocs[i+1].r_address & 0xFFFF);
3994                         }
3995                         else if(scat->r_type == PPC_RELOC_HA16)
3996                         {
3997                             word = ((unsigned short*) wordPtr)[1] << 16;
3998                             word += ((short)relocs[i+1].r_address & (short)0xFFFF);
3999                         }
4000                        
4001                         
4002                         word += (unsigned long) relocateAddress(oc, nSections, sections, scat->r_value)
4003                                                 - scat->r_value;
4004                         
4005                         i++;
4006                     }
4007  #endif
4008                     else
4009                         continue;  // ignore the others
4010
4011 #ifdef powerpc_HOST_ARCH
4012                     if(scat->r_type == GENERIC_RELOC_VANILLA
4013                         || scat->r_type == PPC_RELOC_SECTDIFF)
4014 #else
4015                     if(scat->r_type == GENERIC_RELOC_VANILLA
4016                         || scat->r_type == GENERIC_RELOC_SECTDIFF)
4017 #endif
4018                     {
4019                         *wordPtr = word;
4020                     }
4021 #ifdef powerpc_HOST_ARCH
4022                     else if(scat->r_type == PPC_RELOC_LO16_SECTDIFF || scat->r_type == PPC_RELOC_LO16)
4023                     {
4024                         ((unsigned short*) wordPtr)[1] = word & 0xFFFF;
4025                     }
4026                     else if(scat->r_type == PPC_RELOC_HI16_SECTDIFF || scat->r_type == PPC_RELOC_HI16)
4027                     {
4028                         ((unsigned short*) wordPtr)[1] = (word >> 16) & 0xFFFF;
4029                     }
4030                     else if(scat->r_type == PPC_RELOC_HA16_SECTDIFF || scat->r_type == PPC_RELOC_HA16)
4031                     {
4032                         ((unsigned short*) wordPtr)[1] = ((word >> 16) & 0xFFFF)
4033                             + ((word & (1<<15)) ? 1 : 0);
4034                     }
4035 #endif
4036                 }
4037             }
4038
4039             continue; // FIXME: I hope it's OK to ignore all the others.
4040         }
4041         else
4042         {
4043             struct relocation_info *reloc = &relocs[i];
4044             if(reloc->r_pcrel && !reloc->r_extern)
4045                 continue;
4046
4047             if(reloc->r_length == 2)
4048             {
4049                 unsigned long word = 0;
4050 #ifdef powerpc_HOST_ARCH
4051                 unsigned long jumpIsland = 0;
4052                 long offsetToJumpIsland = 0xBADBAD42; // initialise to bad value
4053                                                       // to avoid warning and to catch
4054                                                       // bugs.
4055 #endif
4056
4057                 unsigned long* wordPtr = (unsigned long*) (image + sect->offset + reloc->r_address);
4058                 checkProddableBlock(oc,wordPtr);
4059
4060                 if(reloc->r_type == GENERIC_RELOC_VANILLA)
4061                 {
4062                     word = *wordPtr;
4063                 }
4064 #ifdef powerpc_HOST_ARCH
4065                 else if(reloc->r_type == PPC_RELOC_LO16)
4066                 {
4067                     word = ((unsigned short*) wordPtr)[1];
4068                     word |= ((unsigned long) relocs[i+1].r_address & 0xFFFF) << 16;
4069                 }
4070                 else if(reloc->r_type == PPC_RELOC_HI16)
4071                 {
4072                     word = ((unsigned short*) wordPtr)[1] << 16;
4073                     word |= ((unsigned long) relocs[i+1].r_address & 0xFFFF);
4074                 }
4075                 else if(reloc->r_type == PPC_RELOC_HA16)
4076                 {
4077                     word = ((unsigned short*) wordPtr)[1] << 16;
4078                     word += ((short)relocs[i+1].r_address & (short)0xFFFF);
4079                 }
4080                 else if(reloc->r_type == PPC_RELOC_BR24)
4081                 {
4082                     word = *wordPtr;
4083                     word = (word & 0x03FFFFFC) | ((word & 0x02000000) ? 0xFC000000 : 0);
4084                 }
4085 #endif
4086
4087                 if(!reloc->r_extern)
4088                 {
4089                     long delta =
4090                         sections[reloc->r_symbolnum-1].offset
4091                         - sections[reloc->r_symbolnum-1].addr
4092                         + ((long) image);
4093
4094                     word += delta;
4095                 }
4096                 else
4097                 {
4098                     struct nlist *symbol = &nlist[reloc->r_symbolnum];
4099                     char *nm = image + symLC->stroff + symbol->n_un.n_strx;
4100                     void *symbolAddress = lookupSymbol(nm);
4101                     if(!symbolAddress)
4102                     {
4103                         errorBelch("\nunknown symbol `%s'", nm);
4104                         return 0;
4105                     }
4106
4107                     if(reloc->r_pcrel)
4108                     {  
4109 #ifdef powerpc_HOST_ARCH
4110                             // In the .o file, this should be a relative jump to NULL
4111                             // and we'll change it to a relative jump to the symbol
4112                         ASSERT(-word == reloc->r_address);
4113                         jumpIsland = makeJumpIsland(oc,reloc->r_symbolnum,(unsigned long) symbolAddress);
4114                         if(jumpIsland != 0)
4115                         {
4116                             offsetToJumpIsland = word + jumpIsland
4117                                 - (((long)image) + sect->offset - sect->addr);
4118                         }
4119 #endif
4120                         word += (unsigned long) symbolAddress
4121                                 - (((long)image) + sect->offset - sect->addr);
4122                     }
4123                     else
4124                     {
4125                         word += (unsigned long) symbolAddress;
4126                     }
4127                 }
4128
4129                 if(reloc->r_type == GENERIC_RELOC_VANILLA)
4130                 {
4131                     *wordPtr = word;
4132                     continue;
4133                 }
4134 #ifdef powerpc_HOST_ARCH
4135                 else if(reloc->r_type == PPC_RELOC_LO16)
4136                 {
4137                     ((unsigned short*) wordPtr)[1] = word & 0xFFFF;
4138                     i++; continue;
4139                 }
4140                 else if(reloc->r_type == PPC_RELOC_HI16)
4141                 {
4142                     ((unsigned short*) wordPtr)[1] = (word >> 16) & 0xFFFF;
4143                     i++; continue;
4144                 }
4145                 else if(reloc->r_type == PPC_RELOC_HA16)
4146                 {
4147                     ((unsigned short*) wordPtr)[1] = ((word >> 16) & 0xFFFF)
4148                         + ((word & (1<<15)) ? 1 : 0);
4149                     i++; continue;
4150                 }
4151                 else if(reloc->r_type == PPC_RELOC_BR24)
4152                 {
4153                     if((long)word > (long)0x01FFFFFF || (long)word < (long)0xFFE00000)
4154                     {
4155                         // The branch offset is too large.
4156                         // Therefore, we try to use a jump island.
4157                         if(jumpIsland == 0)
4158                         {
4159                             barf("unconditional relative branch out of range: "
4160                                  "no jump island available");
4161                         }
4162                         
4163                         word = offsetToJumpIsland;
4164                         if((long)word > (long)0x01FFFFFF || (long)word < (long)0xFFE00000)
4165                             barf("unconditional relative branch out of range: "
4166                                  "jump island out of range");
4167                     }
4168                     *wordPtr = (*wordPtr & 0xFC000003) | (word & 0x03FFFFFC);
4169                     continue;
4170                 }
4171 #endif
4172             }
4173             barf("\nunknown relocation %d",reloc->r_type);
4174             return 0;
4175         }
4176     }
4177     return 1;
4178 }
4179
4180 static int ocGetNames_MachO(ObjectCode* oc)
4181 {
4182     char *image = (char*) oc->image;
4183     struct mach_header *header = (struct mach_header*) image;
4184     struct load_command *lc = (struct load_command*) (image + sizeof(struct mach_header));
4185     unsigned i,curSymbol = 0;
4186     struct segment_command *segLC = NULL;
4187     struct section *sections;
4188     struct symtab_command *symLC = NULL;
4189     struct nlist *nlist;
4190     unsigned long commonSize = 0;
4191     char    *commonStorage = NULL;
4192     unsigned long commonCounter;
4193
4194     for(i=0;i<header->ncmds;i++)
4195     {
4196         if(lc->cmd == LC_SEGMENT)
4197             segLC = (struct segment_command*) lc;
4198         else if(lc->cmd == LC_SYMTAB)
4199             symLC = (struct symtab_command*) lc;
4200         lc = (struct load_command *) ( ((char*)lc) + lc->cmdsize );
4201     }
4202
4203     sections = (struct section*) (segLC+1);
4204     nlist = symLC ? (struct nlist*) (image + symLC->symoff)
4205                   : NULL;
4206
4207     for(i=0;i<segLC->nsects;i++)
4208     {
4209         if(sections[i].size == 0)
4210             continue;
4211
4212         if((sections[i].flags & SECTION_TYPE) == S_ZEROFILL)
4213         {
4214             char * zeroFillArea = stgCallocBytes(1,sections[i].size,
4215                                       "ocGetNames_MachO(common symbols)");
4216             sections[i].offset = zeroFillArea - image;
4217         }
4218
4219         if(!strcmp(sections[i].sectname,"__text"))
4220             addSection(oc, SECTIONKIND_CODE_OR_RODATA,
4221                 (void*) (image + sections[i].offset),
4222                 (void*) (image + sections[i].offset + sections[i].size));
4223         else if(!strcmp(sections[i].sectname,"__const"))
4224             addSection(oc, SECTIONKIND_RWDATA,
4225                 (void*) (image + sections[i].offset),
4226                 (void*) (image + sections[i].offset + sections[i].size));
4227         else if(!strcmp(sections[i].sectname,"__data"))
4228             addSection(oc, SECTIONKIND_RWDATA,
4229                 (void*) (image + sections[i].offset),
4230                 (void*) (image + sections[i].offset + sections[i].size));
4231         else if(!strcmp(sections[i].sectname,"__bss")
4232                 || !strcmp(sections[i].sectname,"__common"))
4233             addSection(oc, SECTIONKIND_RWDATA,
4234                 (void*) (image + sections[i].offset),
4235                 (void*) (image + sections[i].offset + sections[i].size));
4236
4237         addProddableBlock(oc, (void*) (image + sections[i].offset),
4238                                         sections[i].size);
4239     }
4240
4241         // count external symbols defined here
4242     oc->n_symbols = 0;
4243     if(symLC)
4244     {
4245         for(i=0;i<symLC->nsyms;i++)
4246         {
4247             if(nlist[i].n_type & N_STAB)
4248                 ;
4249             else if(nlist[i].n_type & N_EXT)
4250             {
4251                 if((nlist[i].n_type & N_TYPE) == N_UNDF
4252                     && (nlist[i].n_value != 0))
4253                 {
4254                     commonSize += nlist[i].n_value;
4255                     oc->n_symbols++;
4256                 }
4257                 else if((nlist[i].n_type & N_TYPE) == N_SECT)
4258                     oc->n_symbols++;
4259             }
4260         }
4261     }
4262     oc->symbols = stgMallocBytes(oc->n_symbols * sizeof(char*),
4263                                    "ocGetNames_MachO(oc->symbols)");
4264
4265     if(symLC)
4266     {
4267         for(i=0;i<symLC->nsyms;i++)
4268         {
4269             if(nlist[i].n_type & N_STAB)
4270                 ;
4271             else if((nlist[i].n_type & N_TYPE) == N_SECT)
4272             {
4273                 if(nlist[i].n_type & N_EXT)
4274                 {
4275                     char *nm = image + symLC->stroff + nlist[i].n_un.n_strx;
4276                     ghciInsertStrHashTable(oc->fileName, symhash, nm,
4277                                             image
4278                                             + sections[nlist[i].n_sect-1].offset
4279                                             - sections[nlist[i].n_sect-1].addr
4280                                             + nlist[i].n_value);
4281                     oc->symbols[curSymbol++] = nm;
4282                 }
4283                 else
4284                 {
4285                     char *nm = image + symLC->stroff + nlist[i].n_un.n_strx;
4286                     ghciInsertStrHashTable(oc->fileName, oc->lochash, nm,
4287                                             image
4288                                             + sections[nlist[i].n_sect-1].offset
4289                                             - sections[nlist[i].n_sect-1].addr
4290                                             + nlist[i].n_value);
4291                 }
4292             }
4293         }
4294     }
4295
4296     commonStorage = stgCallocBytes(1,commonSize,"ocGetNames_MachO(common symbols)");
4297     commonCounter = (unsigned long)commonStorage;
4298     if(symLC)
4299     {
4300         for(i=0;i<symLC->nsyms;i++)
4301         {
4302             if((nlist[i].n_type & N_TYPE) == N_UNDF
4303                     && (nlist[i].n_type & N_EXT) && (nlist[i].n_value != 0))
4304             {
4305                 char *nm = image + symLC->stroff + nlist[i].n_un.n_strx;
4306                 unsigned long sz = nlist[i].n_value;
4307
4308                 nlist[i].n_value = commonCounter;
4309
4310                 ghciInsertStrHashTable(oc->fileName, symhash, nm,
4311                                        (void*)commonCounter);
4312                 oc->symbols[curSymbol++] = nm;
4313
4314                 commonCounter += sz;
4315             }
4316         }
4317     }
4318     return 1;
4319 }
4320
4321 static int ocResolve_MachO(ObjectCode* oc)
4322 {
4323     char *image = (char*) oc->image;
4324     struct mach_header *header = (struct mach_header*) image;
4325     struct load_command *lc = (struct load_command*) (image + sizeof(struct mach_header));
4326     unsigned i;
4327     struct segment_command *segLC = NULL;
4328     struct section *sections;
4329     struct symtab_command *symLC = NULL;
4330     struct dysymtab_command *dsymLC = NULL;
4331     struct nlist *nlist;
4332
4333     for(i=0;i<header->ncmds;i++)
4334     {
4335         if(lc->cmd == LC_SEGMENT)
4336             segLC = (struct segment_command*) lc;
4337         else if(lc->cmd == LC_SYMTAB)
4338             symLC = (struct symtab_command*) lc;
4339         else if(lc->cmd == LC_DYSYMTAB)
4340             dsymLC = (struct dysymtab_command*) lc;
4341         lc = (struct load_command *) ( ((char*)lc) + lc->cmdsize );
4342     }
4343
4344     sections = (struct section*) (segLC+1);
4345     nlist = symLC ? (struct nlist*) (image + symLC->symoff)
4346                   : NULL;
4347
4348     if(dsymLC)
4349     {
4350         unsigned long *indirectSyms
4351             = (unsigned long*) (image + dsymLC->indirectsymoff);
4352
4353         for(i=0;i<segLC->nsects;i++)
4354         {
4355             if(    !strcmp(sections[i].sectname,"__la_symbol_ptr")
4356                 || !strcmp(sections[i].sectname,"__la_sym_ptr2")
4357                 || !strcmp(sections[i].sectname,"__la_sym_ptr3"))
4358             {
4359                 if(!resolveImports(oc,image,symLC,&sections[i],indirectSyms,nlist))
4360                     return 0;
4361             }
4362             else if(!strcmp(sections[i].sectname,"__nl_symbol_ptr")
4363                 ||  !strcmp(sections[i].sectname,"__pointers"))
4364             {
4365                 if(!resolveImports(oc,image,symLC,&sections[i],indirectSyms,nlist))
4366                     return 0;
4367             }
4368             else if(!strcmp(sections[i].sectname,"__jump_table"))
4369             {
4370                 if(!resolveImports(oc,image,symLC,&sections[i],indirectSyms,nlist))
4371                     return 0;
4372             }
4373         }
4374     }
4375     
4376     for(i=0;i<segLC->nsects;i++)
4377     {
4378         if(!relocateSection(oc,image,symLC,nlist,segLC->nsects,sections,&sections[i]))
4379             return 0;
4380     }
4381
4382     /* Free the local symbol table; we won't need it again. */
4383     freeHashTable(oc->lochash, NULL);
4384     oc->lochash = NULL;
4385
4386 #if defined (powerpc_HOST_ARCH)
4387     ocFlushInstructionCache( oc );
4388 #endif
4389
4390     return 1;
4391 }
4392
4393 #ifdef powerpc_HOST_ARCH
4394 /*
4395  * The Mach-O object format uses leading underscores. But not everywhere.
4396  * There is a small number of runtime support functions defined in
4397  * libcc_dynamic.a whose name does not have a leading underscore.
4398  * As a consequence, we can't get their address from C code.
4399  * We have to use inline assembler just to take the address of a function.
4400  * Yuck.
4401  */
4402
4403 static void machoInitSymbolsWithoutUnderscore()
4404 {
4405     extern void* symbolsWithoutUnderscore[];
4406     void **p = symbolsWithoutUnderscore;
4407     __asm__ volatile(".globl _symbolsWithoutUnderscore\n.data\n_symbolsWithoutUnderscore:");
4408
4409 #undef Sym
4410 #define Sym(x)  \
4411     __asm__ volatile(".long " # x);
4412
4413     RTS_MACHO_NOUNDERLINE_SYMBOLS
4414
4415     __asm__ volatile(".text");
4416     
4417 #undef Sym
4418 #define Sym(x)  \
4419     ghciInsertStrHashTable("(GHCi built-in symbols)", symhash, #x, *p++);
4420     
4421     RTS_MACHO_NOUNDERLINE_SYMBOLS
4422     
4423 #undef Sym
4424 }
4425 #endif
4426
4427 /*
4428  * Figure out by how much to shift the entire Mach-O file in memory
4429  * when loading so that its single segment ends up 16-byte-aligned
4430  */
4431 static int machoGetMisalignment( FILE * f )
4432 {
4433     struct mach_header header;
4434     int misalignment;
4435     
4436     fread(&header, sizeof(header), 1, f);
4437     rewind(f);
4438
4439     if(header.magic != MH_MAGIC)
4440         return 0;
4441     
4442     misalignment = (header.sizeofcmds + sizeof(header))
4443                     & 0xF;
4444
4445     return misalignment ? (16 - misalignment) : 0;
4446 }
4447
4448 #endif