workaround #2277: turn off the RTS timer when calling into editline
[ghc-hetmet.git] / rts / Linker.c
1 /* -----------------------------------------------------------------------------
2  *
3  * (c) The GHC Team, 2000-2004
4  *
5  * RTS Object Linker
6  *
7  * ---------------------------------------------------------------------------*/
8
9 #if 0
10 #include "PosixSource.h"
11 #endif
12
13 /* Linux needs _GNU_SOURCE to get RTLD_DEFAULT from <dlfcn.h> and
14    MREMAP_MAYMOVE from <sys/mman.h>.
15  */
16 #ifdef __linux__
17 #define _GNU_SOURCE
18 #endif
19
20 #include "Rts.h"
21 #include "RtsFlags.h"
22 #include "HsFFI.h"
23 #include "Hash.h"
24 #include "Linker.h"
25 #include "LinkerInternals.h"
26 #include "RtsUtils.h"
27 #include "Schedule.h"
28 #include "Sparks.h"
29 #include "RtsTypeable.h"
30 #include "Timer.h"
31
32 #ifdef HAVE_SYS_TYPES_H
33 #include <sys/types.h>
34 #endif
35
36 #include <stdlib.h>
37 #include <string.h>
38
39 #ifdef HAVE_SYS_STAT_H
40 #include <sys/stat.h>
41 #endif
42
43 #if defined(HAVE_DLFCN_H)
44 #include <dlfcn.h>
45 #endif
46
47 #if defined(cygwin32_HOST_OS)
48 #ifdef HAVE_DIRENT_H
49 #include <dirent.h>
50 #endif
51
52 #ifdef HAVE_SYS_TIME_H
53 #include <sys/time.h>
54 #endif
55 #include <regex.h>
56 #include <sys/fcntl.h>
57 #include <sys/termios.h>
58 #include <sys/utime.h>
59 #include <sys/utsname.h>
60 #include <sys/wait.h>
61 #endif
62
63 #if defined(ia64_HOST_ARCH) || defined(linux_HOST_OS) || defined(freebsd_HOST_OS) || defined(netbsd_HOST_OS) || defined(openbsd_HOST_OS)
64 #define USE_MMAP
65 #include <fcntl.h>
66 #include <sys/mman.h>
67
68 #if defined(linux_HOST_OS) || defined(freebsd_HOST_OS) || defined(netbsd_HOST_OS) || defined(openbsd_HOST_OS)
69 #ifdef HAVE_UNISTD_H
70 #include <unistd.h>
71 #endif
72 #endif
73
74 #endif
75
76 #if defined(linux_HOST_OS) || defined(solaris2_HOST_OS) || defined(freebsd_HOST_OS) || defined(netbsd_HOST_OS) || defined(openbsd_HOST_OS)
77 #  define OBJFORMAT_ELF
78 #elif defined(cygwin32_HOST_OS) || defined (mingw32_HOST_OS)
79 #  define OBJFORMAT_PEi386
80 #  include <windows.h>
81 #  include <math.h>
82 #elif defined(darwin_HOST_OS)
83 #  define OBJFORMAT_MACHO
84 #  include <mach-o/loader.h>
85 #  include <mach-o/nlist.h>
86 #  include <mach-o/reloc.h>
87 #if !defined(HAVE_DLFCN_H)
88 #  include <mach-o/dyld.h>
89 #endif
90 #if defined(powerpc_HOST_ARCH)
91 #  include <mach-o/ppc/reloc.h>
92 #endif
93 #if defined(x86_64_HOST_ARCH)
94 #  include <mach-o/x86_64/reloc.h>
95 #endif
96 #endif
97
98 /* Hash table mapping symbol names to Symbol */
99 static /*Str*/HashTable *symhash;
100
101 /* Hash table mapping symbol names to StgStablePtr */
102 static /*Str*/HashTable *stablehash;
103
104 /* List of currently loaded objects */
105 ObjectCode *objects = NULL;     /* initially empty */
106
107 #if defined(OBJFORMAT_ELF)
108 static int ocVerifyImage_ELF    ( ObjectCode* oc );
109 static int ocGetNames_ELF       ( ObjectCode* oc );
110 static int ocResolve_ELF        ( ObjectCode* oc );
111 #if defined(powerpc_HOST_ARCH) || defined(x86_64_HOST_ARCH)
112 static int ocAllocateSymbolExtras_ELF ( ObjectCode* oc );
113 #endif
114 #elif defined(OBJFORMAT_PEi386)
115 static int ocVerifyImage_PEi386 ( ObjectCode* oc );
116 static int ocGetNames_PEi386    ( ObjectCode* oc );
117 static int ocResolve_PEi386     ( ObjectCode* oc );
118 #elif defined(OBJFORMAT_MACHO)
119 static int ocVerifyImage_MachO    ( ObjectCode* oc );
120 static int ocGetNames_MachO       ( ObjectCode* oc );
121 static int ocResolve_MachO        ( ObjectCode* oc );
122
123 static int machoGetMisalignment( FILE * );
124 #if defined(powerpc_HOST_ARCH) || defined(x86_64_HOST_ARCH)
125 static int ocAllocateSymbolExtras_MachO ( ObjectCode* oc );
126 #endif
127 #ifdef powerpc_HOST_ARCH
128 static void machoInitSymbolsWithoutUnderscore( void );
129 #endif
130 #endif
131
132 /* on x86_64 we have a problem with relocating symbol references in
133  * code that was compiled without -fPIC.  By default, the small memory
134  * model is used, which assumes that symbol references can fit in a
135  * 32-bit slot.  The system dynamic linker makes this work for
136  * references to shared libraries by either (a) allocating a jump
137  * table slot for code references, or (b) moving the symbol at load
138  * time (and copying its contents, if necessary) for data references.
139  *
140  * We unfortunately can't tell whether symbol references are to code
141  * or data.  So for now we assume they are code (the vast majority
142  * are), and allocate jump-table slots.  Unfortunately this will
143  * SILENTLY generate crashing code for data references.  This hack is
144  * enabled by X86_64_ELF_NONPIC_HACK.
145  * 
146  * One workaround is to use shared Haskell libraries.  This is
147  * coming.  Another workaround is to keep the static libraries but
148  * compile them with -fPIC, because that will generate PIC references
149  * to data which can be relocated.  The PIC code is still too green to
150  * do this systematically, though.
151  *
152  * See bug #781
153  * See thread http://www.haskell.org/pipermail/cvs-ghc/2007-September/038458.html
154  */
155 #define X86_64_ELF_NONPIC_HACK 1
156
157 /* -----------------------------------------------------------------------------
158  * Built-in symbols from the RTS
159  */
160
161 typedef struct _RtsSymbolVal {
162     char   *lbl;
163     void   *addr;
164 } RtsSymbolVal;
165
166
167 #if !defined(PAR)
168 #define Maybe_Stable_Names      SymX(mkWeakzh_fast)                     \
169                                 SymX(makeStableNamezh_fast)             \
170                                 SymX(finalizzeWeakzh_fast)
171 #else
172 /* These are not available in GUM!!! -- HWL */
173 #define Maybe_Stable_Names
174 #endif
175
176 #if !defined (mingw32_HOST_OS)
177 #define RTS_POSIX_ONLY_SYMBOLS                  \
178       SymX(shutdownHaskellAndSignal)            \
179       Sym(lockFile)                             \
180       Sym(unlockFile)                           \
181       SymX(signal_handlers)                     \
182       SymX(stg_sig_install)                     \
183       Sym(nocldstop)
184 #endif
185
186 #if defined (cygwin32_HOST_OS)
187 #define RTS_MINGW_ONLY_SYMBOLS /**/
188 /* Don't have the ability to read import libs / archives, so
189  * we have to stupidly list a lot of what libcygwin.a
190  * exports; sigh.
191  */
192 #define RTS_CYGWIN_ONLY_SYMBOLS                 \
193       SymX(regfree)                             \
194       SymX(regexec)                             \
195       SymX(regerror)                            \
196       SymX(regcomp)                             \
197       SymX(__errno)                             \
198       SymX(access)                              \
199       SymX(chmod)                               \
200       SymX(chdir)                               \
201       SymX(close)                               \
202       SymX(creat)                               \
203       SymX(dup)                                 \
204       SymX(dup2)                                \
205       SymX(fstat)                               \
206       SymX(fcntl)                               \
207       SymX(getcwd)                              \
208       SymX(getenv)                              \
209       SymX(lseek)                               \
210       SymX(open)                                \
211       SymX(fpathconf)                           \
212       SymX(pathconf)                            \
213       SymX(stat)                                \
214       SymX(pow)                                 \
215       SymX(tanh)                                \
216       SymX(cosh)                                \
217       SymX(sinh)                                \
218       SymX(atan)                                \
219       SymX(acos)                                \
220       SymX(asin)                                \
221       SymX(tan)                                 \
222       SymX(cos)                                 \
223       SymX(sin)                                 \
224       SymX(exp)                                 \
225       SymX(log)                                 \
226       SymX(sqrt)                                \
227       SymX(localtime_r)                         \
228       SymX(gmtime_r)                            \
229       SymX(mktime)                              \
230       Sym(_imp___tzname)                        \
231       SymX(gettimeofday)                        \
232       SymX(timezone)                            \
233       SymX(tcgetattr)                           \
234       SymX(tcsetattr)                           \
235       SymX(memcpy)                              \
236       SymX(memmove)                             \
237       SymX(realloc)                             \
238       SymX(malloc)                              \
239       SymX(free)                                \
240       SymX(fork)                                \
241       SymX(lstat)                               \
242       SymX(isatty)                              \
243       SymX(mkdir)                               \
244       SymX(opendir)                             \
245       SymX(readdir)                             \
246       SymX(rewinddir)                           \
247       SymX(closedir)                            \
248       SymX(link)                                \
249       SymX(mkfifo)                              \
250       SymX(pipe)                                \
251       SymX(read)                                \
252       SymX(rename)                              \
253       SymX(rmdir)                               \
254       SymX(select)                              \
255       SymX(system)                              \
256       SymX(write)                               \
257       SymX(strcmp)                              \
258       SymX(strcpy)                              \
259       SymX(strncpy)                             \
260       SymX(strerror)                            \
261       SymX(sigaddset)                           \
262       SymX(sigemptyset)                         \
263       SymX(sigprocmask)                         \
264       SymX(umask)                               \
265       SymX(uname)                               \
266       SymX(unlink)                              \
267       SymX(utime)                               \
268       SymX(waitpid)
269
270 #elif !defined(mingw32_HOST_OS)
271 #define RTS_MINGW_ONLY_SYMBOLS /**/
272 #define RTS_CYGWIN_ONLY_SYMBOLS /**/
273 #else /* defined(mingw32_HOST_OS) */
274 #define RTS_POSIX_ONLY_SYMBOLS  /**/
275 #define RTS_CYGWIN_ONLY_SYMBOLS /**/
276
277 /* Extra syms gen'ed by mingw-2's gcc-3.2: */
278 #if __GNUC__>=3
279 #define RTS_MINGW_EXTRA_SYMS                    \
280       Sym(_imp____mb_cur_max)                   \
281       Sym(_imp___pctype)
282 #else
283 #define RTS_MINGW_EXTRA_SYMS
284 #endif
285
286 #if HAVE_GETTIMEOFDAY
287 #define RTS_MINGW_GETTIMEOFDAY_SYM Sym(gettimeofday)
288 #else
289 #define RTS_MINGW_GETTIMEOFDAY_SYM /**/
290 #endif
291
292 /* These are statically linked from the mingw libraries into the ghc
293    executable, so we have to employ this hack. */
294 #define RTS_MINGW_ONLY_SYMBOLS                  \
295       SymX(asyncReadzh_fast)                    \
296       SymX(asyncWritezh_fast)                   \
297       SymX(asyncDoProczh_fast)                  \
298       SymX(memset)                              \
299       SymX(inet_ntoa)                           \
300       SymX(inet_addr)                           \
301       SymX(htonl)                               \
302       SymX(recvfrom)                            \
303       SymX(listen)                              \
304       SymX(bind)                                \
305       SymX(shutdown)                            \
306       SymX(connect)                             \
307       SymX(htons)                               \
308       SymX(ntohs)                               \
309       SymX(getservbyname)                       \
310       SymX(getservbyport)                       \
311       SymX(getprotobynumber)                    \
312       SymX(getprotobyname)                      \
313       SymX(gethostbyname)                       \
314       SymX(gethostbyaddr)                       \
315       SymX(gethostname)                         \
316       SymX(strcpy)                              \
317       SymX(strncpy)                             \
318       SymX(abort)                               \
319       Sym(_alloca)                              \
320       Sym(isxdigit)                             \
321       Sym(isupper)                              \
322       Sym(ispunct)                              \
323       Sym(islower)                              \
324       Sym(isspace)                              \
325       Sym(isprint)                              \
326       Sym(isdigit)                              \
327       Sym(iscntrl)                              \
328       Sym(isalpha)                              \
329       Sym(isalnum)                              \
330       SymX(strcmp)                              \
331       SymX(memmove)                             \
332       SymX(realloc)                             \
333       SymX(malloc)                              \
334       SymX(pow)                                 \
335       SymX(tanh)                                \
336       SymX(cosh)                                \
337       SymX(sinh)                                \
338       SymX(atan)                                \
339       SymX(acos)                                \
340       SymX(asin)                                \
341       SymX(tan)                                 \
342       SymX(cos)                                 \
343       SymX(sin)                                 \
344       SymX(exp)                                 \
345       SymX(log)                                 \
346       SymX(sqrt)                                \
347       SymX(powf)                                 \
348       SymX(tanhf)                                \
349       SymX(coshf)                                \
350       SymX(sinhf)                                \
351       SymX(atanf)                                \
352       SymX(acosf)                                \
353       SymX(asinf)                                \
354       SymX(tanf)                                 \
355       SymX(cosf)                                 \
356       SymX(sinf)                                 \
357       SymX(expf)                                 \
358       SymX(logf)                                 \
359       SymX(sqrtf)                                \
360       SymX(memcpy)                              \
361       SymX(rts_InstallConsoleEvent)             \
362       SymX(rts_ConsoleHandlerDone)              \
363       Sym(mktime)                               \
364       Sym(_imp___timezone)                      \
365       Sym(_imp___tzname)                        \
366       Sym(_imp__tzname)                         \
367       Sym(_imp___iob)                           \
368       Sym(_imp___osver)                         \
369       Sym(localtime)                            \
370       Sym(gmtime)                               \
371       Sym(opendir)                              \
372       Sym(readdir)                              \
373       Sym(rewinddir)                            \
374       RTS_MINGW_EXTRA_SYMS                      \
375       RTS_MINGW_GETTIMEOFDAY_SYM                \
376       Sym(closedir)
377 #endif
378
379 #if defined(darwin_TARGET_OS) && HAVE_PRINTF_LDBLSTUB
380 #define RTS_DARWIN_ONLY_SYMBOLS                 \
381      Sym(asprintf$LDBLStub)                     \
382      Sym(err$LDBLStub)                          \
383      Sym(errc$LDBLStub)                         \
384      Sym(errx$LDBLStub)                         \
385      Sym(fprintf$LDBLStub)                      \
386      Sym(fscanf$LDBLStub)                       \
387      Sym(fwprintf$LDBLStub)                     \
388      Sym(fwscanf$LDBLStub)                      \
389      Sym(printf$LDBLStub)                       \
390      Sym(scanf$LDBLStub)                        \
391      Sym(snprintf$LDBLStub)                     \
392      Sym(sprintf$LDBLStub)                      \
393      Sym(sscanf$LDBLStub)                       \
394      Sym(strtold$LDBLStub)                      \
395      Sym(swprintf$LDBLStub)                     \
396      Sym(swscanf$LDBLStub)                      \
397      Sym(syslog$LDBLStub)                       \
398      Sym(vasprintf$LDBLStub)                    \
399      Sym(verr$LDBLStub)                         \
400      Sym(verrc$LDBLStub)                        \
401      Sym(verrx$LDBLStub)                        \
402      Sym(vfprintf$LDBLStub)                     \
403      Sym(vfscanf$LDBLStub)                      \
404      Sym(vfwprintf$LDBLStub)                    \
405      Sym(vfwscanf$LDBLStub)                     \
406      Sym(vprintf$LDBLStub)                      \
407      Sym(vscanf$LDBLStub)                       \
408      Sym(vsnprintf$LDBLStub)                    \
409      Sym(vsprintf$LDBLStub)                     \
410      Sym(vsscanf$LDBLStub)                      \
411      Sym(vswprintf$LDBLStub)                    \
412      Sym(vswscanf$LDBLStub)                     \
413      Sym(vsyslog$LDBLStub)                      \
414      Sym(vwarn$LDBLStub)                        \
415      Sym(vwarnc$LDBLStub)                       \
416      Sym(vwarnx$LDBLStub)                       \
417      Sym(vwprintf$LDBLStub)                     \
418      Sym(vwscanf$LDBLStub)                      \
419      Sym(warn$LDBLStub)                         \
420      Sym(warnc$LDBLStub)                        \
421      Sym(warnx$LDBLStub)                        \
422      Sym(wcstold$LDBLStub)                      \
423      Sym(wprintf$LDBLStub)                      \
424      Sym(wscanf$LDBLStub)
425 #else
426 #define RTS_DARWIN_ONLY_SYMBOLS
427 #endif
428
429 #ifndef SMP
430 # define MAIN_CAP_SYM SymX(MainCapability)
431 #else
432 # define MAIN_CAP_SYM
433 #endif
434
435 #if !defined(mingw32_HOST_OS)
436 #define RTS_USER_SIGNALS_SYMBOLS \
437    SymX(setIOManagerPipe)
438 #else
439 #define RTS_USER_SIGNALS_SYMBOLS \
440    SymX(sendIOManagerEvent) \
441    SymX(readIOManagerEvent) \
442    SymX(getIOManagerEvent) \
443    SymX(console_handler)
444 #endif
445
446 #define RTS_LIBFFI_SYMBOLS                      \
447      Sym(ffi_prep_cif)                          \
448      Sym(ffi_call)                              \
449      Sym(ffi_type_void)                         \
450      Sym(ffi_type_float)                        \
451      Sym(ffi_type_double)                       \
452      Sym(ffi_type_sint64)                       \
453      Sym(ffi_type_uint64)                       \
454      Sym(ffi_type_sint32)                       \
455      Sym(ffi_type_uint32)                       \
456      Sym(ffi_type_sint16)                       \
457      Sym(ffi_type_uint16)                       \
458      Sym(ffi_type_sint8)                        \
459      Sym(ffi_type_uint8)                        \
460      Sym(ffi_type_pointer)
461
462 #ifdef TABLES_NEXT_TO_CODE
463 #define RTS_RET_SYMBOLS /* nothing */
464 #else
465 #define RTS_RET_SYMBOLS                         \
466       SymX(stg_enter_ret)                       \
467       SymX(stg_gc_fun_ret)                      \
468       SymX(stg_ap_v_ret)                        \
469       SymX(stg_ap_f_ret)                        \
470       SymX(stg_ap_d_ret)                        \
471       SymX(stg_ap_l_ret)                        \
472       SymX(stg_ap_n_ret)                        \
473       SymX(stg_ap_p_ret)                        \
474       SymX(stg_ap_pv_ret)                       \
475       SymX(stg_ap_pp_ret)                       \
476       SymX(stg_ap_ppv_ret)                      \
477       SymX(stg_ap_ppp_ret)                      \
478       SymX(stg_ap_pppv_ret)                     \
479       SymX(stg_ap_pppp_ret)                     \
480       SymX(stg_ap_ppppp_ret)                    \
481       SymX(stg_ap_pppppp_ret)
482 #endif
483
484 /* On Windows, we link libgmp.a statically into libHSrts.dll */
485 #ifdef mingw32_HOST_OS
486 #define GMP_SYMS                                \
487       SymX(__gmpz_cmp)                          \
488       SymX(__gmpz_cmp_si)                       \
489       SymX(__gmpz_cmp_ui)                       \
490       SymX(__gmpz_get_si)                       \
491       SymX(__gmpz_get_ui)
492 #else
493 #define GMP_SYMS                                \
494       SymExtern(__gmpz_cmp)                     \
495       SymExtern(__gmpz_cmp_si)                  \
496       SymExtern(__gmpz_cmp_ui)                  \
497       SymExtern(__gmpz_get_si)                  \
498       SymExtern(__gmpz_get_ui)
499 #endif
500
501 #define RTS_SYMBOLS                             \
502       Maybe_Stable_Names                        \
503       SymX(StgReturn)                           \
504       SymX(stg_enter_info)                      \
505       SymX(stg_gc_void_info)                    \
506       SymX(__stg_gc_enter_1)                    \
507       SymX(stg_gc_noregs)                       \
508       SymX(stg_gc_unpt_r1_info)                 \
509       SymX(stg_gc_unpt_r1)                      \
510       SymX(stg_gc_unbx_r1_info)                 \
511       SymX(stg_gc_unbx_r1)                      \
512       SymX(stg_gc_f1_info)                      \
513       SymX(stg_gc_f1)                           \
514       SymX(stg_gc_d1_info)                      \
515       SymX(stg_gc_d1)                           \
516       SymX(stg_gc_l1_info)                      \
517       SymX(stg_gc_l1)                           \
518       SymX(__stg_gc_fun)                        \
519       SymX(stg_gc_fun_info)                     \
520       SymX(stg_gc_gen)                          \
521       SymX(stg_gc_gen_info)                     \
522       SymX(stg_gc_gen_hp)                       \
523       SymX(stg_gc_ut)                           \
524       SymX(stg_gen_yield)                       \
525       SymX(stg_yield_noregs)                    \
526       SymX(stg_yield_to_interpreter)            \
527       SymX(stg_gen_block)                       \
528       SymX(stg_block_noregs)                    \
529       SymX(stg_block_1)                         \
530       SymX(stg_block_takemvar)                  \
531       SymX(stg_block_putmvar)                   \
532       MAIN_CAP_SYM                              \
533       SymX(MallocFailHook)                      \
534       SymX(OnExitHook)                          \
535       SymX(OutOfHeapHook)                       \
536       SymX(StackOverflowHook)                   \
537       SymX(__encodeDouble)                      \
538       SymX(__encodeFloat)                       \
539       SymX(addDLL)                              \
540       GMP_SYMS                                  \
541       SymX(__int_encodeDouble)                  \
542       SymX(__word_encodeDouble)                 \
543       SymX(__2Int_encodeDouble)                 \
544       SymX(__int_encodeFloat)                   \
545       SymX(__word_encodeFloat)                  \
546       SymX(andIntegerzh_fast)                   \
547       SymX(atomicallyzh_fast)                   \
548       SymX(barf)                                \
549       SymX(debugBelch)                          \
550       SymX(errorBelch)                          \
551       SymX(asyncExceptionsBlockedzh_fast)       \
552       SymX(blockAsyncExceptionszh_fast)         \
553       SymX(catchzh_fast)                        \
554       SymX(catchRetryzh_fast)                   \
555       SymX(catchSTMzh_fast)                     \
556       SymX(checkzh_fast)                        \
557       SymX(closure_flags)                       \
558       SymX(cmp_thread)                          \
559       SymX(cmpIntegerzh_fast)                   \
560       SymX(cmpIntegerIntzh_fast)                \
561       SymX(complementIntegerzh_fast)            \
562       SymX(createAdjustor)                      \
563       SymX(decodeDoublezh_fast)                 \
564       SymX(decodeFloatzh_fast)                  \
565       SymX(decodeDoublezu2Intzh_fast)                   \
566       SymX(decodeFloatzuIntzh_fast)                     \
567       SymX(defaultsHook)                        \
568       SymX(delayzh_fast)                        \
569       SymX(deRefWeakzh_fast)                    \
570       SymX(deRefStablePtrzh_fast)               \
571       SymX(dirty_MUT_VAR)                       \
572       SymX(divExactIntegerzh_fast)              \
573       SymX(divModIntegerzh_fast)                \
574       SymX(forkzh_fast)                         \
575       SymX(forkOnzh_fast)                       \
576       SymX(forkProcess)                         \
577       SymX(forkOS_createThread)                 \
578       SymX(freeHaskellFunctionPtr)              \
579       SymX(freeStablePtr)                       \
580       SymX(getOrSetTypeableStore)               \
581       SymX(gcdIntegerzh_fast)                   \
582       SymX(gcdIntegerIntzh_fast)                \
583       SymX(gcdIntzh_fast)                       \
584       SymX(genSymZh)                            \
585       SymX(genericRaise)                        \
586       SymX(getProgArgv)                         \
587       SymX(getFullProgArgv)                             \
588       SymX(getStablePtr)                        \
589       SymX(hs_init)                             \
590       SymX(hs_exit)                             \
591       SymX(hs_set_argv)                         \
592       SymX(hs_add_root)                         \
593       SymX(hs_perform_gc)                       \
594       SymX(hs_free_stable_ptr)                  \
595       SymX(hs_free_fun_ptr)                     \
596       SymX(hs_hpc_rootModule)                   \
597       SymX(initLinker)                          \
598       SymX(unpackClosurezh_fast)                \
599       SymX(getApStackValzh_fast)                \
600       SymX(int2Integerzh_fast)                  \
601       SymX(integer2Intzh_fast)                  \
602       SymX(integer2Wordzh_fast)                 \
603       SymX(isCurrentThreadBoundzh_fast)         \
604       SymX(isDoubleDenormalized)                \
605       SymX(isDoubleInfinite)                    \
606       SymX(isDoubleNaN)                         \
607       SymX(isDoubleNegativeZero)                \
608       SymX(isEmptyMVarzh_fast)                  \
609       SymX(isFloatDenormalized)                 \
610       SymX(isFloatInfinite)                     \
611       SymX(isFloatNaN)                          \
612       SymX(isFloatNegativeZero)                 \
613       SymX(killThreadzh_fast)                   \
614       SymX(loadObj)                             \
615       SymX(insertStableSymbol)                  \
616       SymX(insertSymbol)                        \
617       SymX(lookupSymbol)                        \
618       SymX(makeStablePtrzh_fast)                \
619       SymX(minusIntegerzh_fast)                 \
620       SymX(mkApUpd0zh_fast)                     \
621       SymX(myThreadIdzh_fast)                   \
622       SymX(labelThreadzh_fast)                  \
623       SymX(newArrayzh_fast)                     \
624       SymX(newBCOzh_fast)                       \
625       SymX(newByteArrayzh_fast)                 \
626       SymX_redirect(newCAF, newDynCAF)          \
627       SymX(newMVarzh_fast)                      \
628       SymX(newMutVarzh_fast)                    \
629       SymX(newTVarzh_fast)                      \
630       SymX(noDuplicatezh_fast)                  \
631       SymX(atomicModifyMutVarzh_fast)           \
632       SymX(newPinnedByteArrayzh_fast)           \
633       SymX(newSpark)                            \
634       SymX(orIntegerzh_fast)                    \
635       SymX(performGC)                           \
636       SymX(performMajorGC)                      \
637       SymX(plusIntegerzh_fast)                  \
638       SymX(prog_argc)                           \
639       SymX(prog_argv)                           \
640       SymX(putMVarzh_fast)                      \
641       SymX(quotIntegerzh_fast)                  \
642       SymX(quotRemIntegerzh_fast)               \
643       SymX(raisezh_fast)                        \
644       SymX(raiseIOzh_fast)                      \
645       SymX(readTVarzh_fast)                     \
646       SymX(remIntegerzh_fast)                   \
647       SymX(resetNonBlockingFd)                  \
648       SymX(resumeThread)                        \
649       SymX(resolveObjs)                         \
650       SymX(retryzh_fast)                        \
651       SymX(rts_apply)                           \
652       SymX(rts_checkSchedStatus)                \
653       SymX(rts_eval)                            \
654       SymX(rts_evalIO)                          \
655       SymX(rts_evalLazyIO)                      \
656       SymX(rts_evalStableIO)                    \
657       SymX(rts_eval_)                           \
658       SymX(rts_getBool)                         \
659       SymX(rts_getChar)                         \
660       SymX(rts_getDouble)                       \
661       SymX(rts_getFloat)                        \
662       SymX(rts_getInt)                          \
663       SymX(rts_getInt8)                         \
664       SymX(rts_getInt16)                        \
665       SymX(rts_getInt32)                        \
666       SymX(rts_getInt64)                        \
667       SymX(rts_getPtr)                          \
668       SymX(rts_getFunPtr)                       \
669       SymX(rts_getStablePtr)                    \
670       SymX(rts_getThreadId)                     \
671       SymX(rts_getWord)                         \
672       SymX(rts_getWord8)                        \
673       SymX(rts_getWord16)                       \
674       SymX(rts_getWord32)                       \
675       SymX(rts_getWord64)                       \
676       SymX(rts_lock)                            \
677       SymX(rts_mkBool)                          \
678       SymX(rts_mkChar)                          \
679       SymX(rts_mkDouble)                        \
680       SymX(rts_mkFloat)                         \
681       SymX(rts_mkInt)                           \
682       SymX(rts_mkInt8)                          \
683       SymX(rts_mkInt16)                         \
684       SymX(rts_mkInt32)                         \
685       SymX(rts_mkInt64)                         \
686       SymX(rts_mkPtr)                           \
687       SymX(rts_mkFunPtr)                        \
688       SymX(rts_mkStablePtr)                     \
689       SymX(rts_mkString)                        \
690       SymX(rts_mkWord)                          \
691       SymX(rts_mkWord8)                         \
692       SymX(rts_mkWord16)                        \
693       SymX(rts_mkWord32)                        \
694       SymX(rts_mkWord64)                        \
695       SymX(rts_unlock)                          \
696       SymX(rtsSupportsBoundThreads)             \
697       SymX(__hscore_get_saved_termios)          \
698       SymX(__hscore_set_saved_termios)          \
699       SymX(setProgArgv)                         \
700       SymX(startupHaskell)                      \
701       SymX(shutdownHaskell)                     \
702       SymX(shutdownHaskellAndExit)              \
703       SymX(stable_ptr_table)                    \
704       SymX(stackOverflow)                       \
705       SymX(stg_CAF_BLACKHOLE_info)              \
706       SymX(awakenBlockedQueue)                  \
707       SymX(startTimer)                          \
708       SymX(stg_CHARLIKE_closure)                \
709       SymX(stg_MVAR_CLEAN_info)                 \
710       SymX(stg_MVAR_DIRTY_info)                 \
711       SymX(stg_IND_STATIC_info)                 \
712       SymX(stg_INTLIKE_closure)                 \
713       SymX(stg_MUT_ARR_PTRS_DIRTY_info)         \
714       SymX(stg_MUT_ARR_PTRS_FROZEN_info)        \
715       SymX(stg_MUT_ARR_PTRS_FROZEN0_info)       \
716       SymX(stg_WEAK_info)                       \
717       SymX(stg_ap_v_info)                       \
718       SymX(stg_ap_f_info)                       \
719       SymX(stg_ap_d_info)                       \
720       SymX(stg_ap_l_info)                       \
721       SymX(stg_ap_n_info)                       \
722       SymX(stg_ap_p_info)                       \
723       SymX(stg_ap_pv_info)                      \
724       SymX(stg_ap_pp_info)                      \
725       SymX(stg_ap_ppv_info)                     \
726       SymX(stg_ap_ppp_info)                     \
727       SymX(stg_ap_pppv_info)                    \
728       SymX(stg_ap_pppp_info)                    \
729       SymX(stg_ap_ppppp_info)                   \
730       SymX(stg_ap_pppppp_info)                  \
731       SymX(stg_ap_0_fast)                       \
732       SymX(stg_ap_v_fast)                       \
733       SymX(stg_ap_f_fast)                       \
734       SymX(stg_ap_d_fast)                       \
735       SymX(stg_ap_l_fast)                       \
736       SymX(stg_ap_n_fast)                       \
737       SymX(stg_ap_p_fast)                       \
738       SymX(stg_ap_pv_fast)                      \
739       SymX(stg_ap_pp_fast)                      \
740       SymX(stg_ap_ppv_fast)                     \
741       SymX(stg_ap_ppp_fast)                     \
742       SymX(stg_ap_pppv_fast)                    \
743       SymX(stg_ap_pppp_fast)                    \
744       SymX(stg_ap_ppppp_fast)                   \
745       SymX(stg_ap_pppppp_fast)                  \
746       SymX(stg_ap_1_upd_info)                   \
747       SymX(stg_ap_2_upd_info)                   \
748       SymX(stg_ap_3_upd_info)                   \
749       SymX(stg_ap_4_upd_info)                   \
750       SymX(stg_ap_5_upd_info)                   \
751       SymX(stg_ap_6_upd_info)                   \
752       SymX(stg_ap_7_upd_info)                   \
753       SymX(stg_exit)                            \
754       SymX(stg_sel_0_upd_info)                  \
755       SymX(stg_sel_10_upd_info)                 \
756       SymX(stg_sel_11_upd_info)                 \
757       SymX(stg_sel_12_upd_info)                 \
758       SymX(stg_sel_13_upd_info)                 \
759       SymX(stg_sel_14_upd_info)                 \
760       SymX(stg_sel_15_upd_info)                 \
761       SymX(stg_sel_1_upd_info)                  \
762       SymX(stg_sel_2_upd_info)                  \
763       SymX(stg_sel_3_upd_info)                  \
764       SymX(stg_sel_4_upd_info)                  \
765       SymX(stg_sel_5_upd_info)                  \
766       SymX(stg_sel_6_upd_info)                  \
767       SymX(stg_sel_7_upd_info)                  \
768       SymX(stg_sel_8_upd_info)                  \
769       SymX(stg_sel_9_upd_info)                  \
770       SymX(stg_upd_frame_info)                  \
771       SymX(suspendThread)                       \
772       SymX(takeMVarzh_fast)                     \
773       SymX(threadStatuszh_fast)                 \
774       SymX(timesIntegerzh_fast)                 \
775       SymX(tryPutMVarzh_fast)                   \
776       SymX(tryTakeMVarzh_fast)                  \
777       SymX(unblockAsyncExceptionszh_fast)       \
778       SymX(unloadObj)                           \
779       SymX(unsafeThawArrayzh_fast)              \
780       SymX(waitReadzh_fast)                     \
781       SymX(waitWritezh_fast)                    \
782       SymX(word2Integerzh_fast)                 \
783       SymX(writeTVarzh_fast)                    \
784       SymX(xorIntegerzh_fast)                   \
785       SymX(yieldzh_fast)                        \
786       Sym(stg_interp_constr_entry)              \
787       SymX(allocateExec)                        \
788       SymX(freeExec)                            \
789       SymX(getAllocations)                      \
790       SymX(revertCAFs)                          \
791       SymX(RtsFlags)                            \
792       Sym(rts_breakpoint_io_action)             \
793       Sym(rts_stop_next_breakpoint)             \
794       Sym(rts_stop_on_exception)                \
795       SymX(stopTimer)                           \
796       SymX(n_capabilities)                      \
797       RTS_USER_SIGNALS_SYMBOLS
798
799 #ifdef SUPPORT_LONG_LONGS
800 #define RTS_LONG_LONG_SYMS                      \
801       SymX(int64ToIntegerzh_fast)               \
802       SymX(word64ToIntegerzh_fast)
803 #else
804 #define RTS_LONG_LONG_SYMS /* nothing */
805 #endif
806
807 // 64-bit support functions in libgcc.a
808 #if defined(__GNUC__) && SIZEOF_VOID_P <= 4
809 #define RTS_LIBGCC_SYMBOLS                      \
810       Sym(__divdi3)                             \
811       Sym(__udivdi3)                            \
812       Sym(__moddi3)                             \
813       Sym(__umoddi3)                            \
814       Sym(__muldi3)                             \
815       Sym(__ashldi3)                            \
816       Sym(__ashrdi3)                            \
817       Sym(__lshrdi3)                            \
818       Sym(__eprintf)
819 #elif defined(ia64_HOST_ARCH)
820 #define RTS_LIBGCC_SYMBOLS                      \
821       Sym(__divdi3)                             \
822       Sym(__udivdi3)                            \
823       Sym(__moddi3)                             \
824       Sym(__umoddi3)                            \
825       Sym(__divsf3)                             \
826       Sym(__divdf3)
827 #else
828 #define RTS_LIBGCC_SYMBOLS
829 #endif
830
831 #if defined(darwin_HOST_OS) && defined(powerpc_HOST_ARCH)
832       // Symbols that don't have a leading underscore
833       // on Mac OS X. They have to receive special treatment,
834       // see machoInitSymbolsWithoutUnderscore()
835 #define RTS_MACHO_NOUNDERLINE_SYMBOLS           \
836       Sym(saveFP)                               \
837       Sym(restFP)
838 #endif
839
840 /* entirely bogus claims about types of these symbols */
841 #define Sym(vvv)  extern void vvv(void);
842 #if defined(__PIC__) && defined(mingw32_TARGET_OS)
843 #define SymExtern(vvv)  extern void _imp__ ## vvv (void);
844 #else
845 #define SymExtern(vvv)  SymX(vvv)
846 #endif
847 #define SymX(vvv) /**/
848 #define SymX_redirect(vvv,xxx) /**/
849 RTS_SYMBOLS
850 RTS_RET_SYMBOLS
851 RTS_LONG_LONG_SYMS
852 RTS_POSIX_ONLY_SYMBOLS
853 RTS_MINGW_ONLY_SYMBOLS
854 RTS_CYGWIN_ONLY_SYMBOLS
855 RTS_DARWIN_ONLY_SYMBOLS
856 RTS_LIBGCC_SYMBOLS
857 RTS_LIBFFI_SYMBOLS
858 #undef Sym
859 #undef SymX
860 #undef SymX_redirect
861 #undef SymExtern
862
863 #ifdef LEADING_UNDERSCORE
864 #define MAYBE_LEADING_UNDERSCORE_STR(s) ("_" s)
865 #else
866 #define MAYBE_LEADING_UNDERSCORE_STR(s) (s)
867 #endif
868
869 #define Sym(vvv) { MAYBE_LEADING_UNDERSCORE_STR(#vvv), \
870                     (void*)(&(vvv)) },
871 #define SymX(vvv) Sym(vvv)
872 #define SymExtern(vvv) { MAYBE_LEADING_UNDERSCORE_STR(#vvv), \
873             (void*)DLL_IMPORT_DATA_REF(vvv) },
874
875 // SymX_redirect allows us to redirect references to one symbol to
876 // another symbol.  See newCAF/newDynCAF for an example.
877 #define SymX_redirect(vvv,xxx) \
878     { MAYBE_LEADING_UNDERSCORE_STR(#vvv), \
879       (void*)(&(xxx)) },
880
881 static RtsSymbolVal rtsSyms[] = {
882       RTS_SYMBOLS
883       RTS_RET_SYMBOLS
884       RTS_LONG_LONG_SYMS
885       RTS_POSIX_ONLY_SYMBOLS
886       RTS_MINGW_ONLY_SYMBOLS
887       RTS_CYGWIN_ONLY_SYMBOLS
888       RTS_DARWIN_ONLY_SYMBOLS
889       RTS_LIBGCC_SYMBOLS
890       RTS_LIBFFI_SYMBOLS
891 #if defined(darwin_HOST_OS) && defined(i386_HOST_ARCH)
892       // dyld stub code contains references to this,
893       // but it should never be called because we treat
894       // lazy pointers as nonlazy.
895       { "dyld_stub_binding_helper", (void*)0xDEADBEEF },
896 #endif
897       { 0, 0 } /* sentinel */
898 };
899
900
901
902 /* -----------------------------------------------------------------------------
903  * Insert symbols into hash tables, checking for duplicates.
904  */
905
906 static void ghciInsertStrHashTable ( char* obj_name,
907                                      HashTable *table,
908                                      char* key,
909                                      void *data
910                                    )
911 {
912    if (lookupHashTable(table, (StgWord)key) == NULL)
913    {
914       insertStrHashTable(table, (StgWord)key, data);
915       return;
916    }
917    debugBelch(
918       "\n\n"
919       "GHCi runtime linker: fatal error: I found a duplicate definition for symbol\n"
920       "   %s\n"
921       "whilst processing object file\n"
922       "   %s\n"
923       "This could be caused by:\n"
924       "   * Loading two different object files which export the same symbol\n"
925       "   * Specifying the same object file twice on the GHCi command line\n"
926       "   * An incorrect `package.conf' entry, causing some object to be\n"
927       "     loaded twice.\n"
928       "GHCi cannot safely continue in this situation.  Exiting now.  Sorry.\n"
929       "\n",
930       (char*)key,
931       obj_name
932    );
933    exit(1);
934 }
935 /* -----------------------------------------------------------------------------
936  * initialize the object linker
937  */
938
939
940 static int linker_init_done = 0 ;
941
942 #if defined(OBJFORMAT_ELF) || defined(OBJFORMAT_MACHO)
943 static void *dl_prog_handle;
944 #endif
945
946 void
947 initLinker( void )
948 {
949     RtsSymbolVal *sym;
950
951     /* Make initLinker idempotent, so we can call it
952        before evey relevant operation; that means we
953        don't need to initialise the linker separately */
954     if (linker_init_done == 1) { return; } else {
955       linker_init_done = 1;
956     }
957
958     stablehash = allocStrHashTable();
959     symhash = allocStrHashTable();
960
961     /* populate the symbol table with stuff from the RTS */
962     for (sym = rtsSyms; sym->lbl != NULL; sym++) {
963         ghciInsertStrHashTable("(GHCi built-in symbols)",
964                                symhash, sym->lbl, sym->addr);
965     }
966 #   if defined(OBJFORMAT_MACHO) && defined(powerpc_HOST_ARCH)
967     machoInitSymbolsWithoutUnderscore();
968 #   endif
969
970 #   if defined(OBJFORMAT_ELF) || defined(OBJFORMAT_MACHO)
971 #   if defined(RTLD_DEFAULT)
972     dl_prog_handle = RTLD_DEFAULT;
973 #   else
974     dl_prog_handle = dlopen(NULL, RTLD_LAZY);
975 #   endif /* RTLD_DEFAULT */
976 #   endif
977 }
978
979 /* -----------------------------------------------------------------------------
980  *                  Loading DLL or .so dynamic libraries
981  * -----------------------------------------------------------------------------
982  *
983  * Add a DLL from which symbols may be found.  In the ELF case, just
984  * do RTLD_GLOBAL-style add, so no further messing around needs to
985  * happen in order that symbols in the loaded .so are findable --
986  * lookupSymbol() will subsequently see them by dlsym on the program's
987  * dl-handle.  Returns NULL if success, otherwise ptr to an err msg.
988  *
989  * In the PEi386 case, open the DLLs and put handles to them in a
990  * linked list.  When looking for a symbol, try all handles in the
991  * list.  This means that we need to load even DLLs that are guaranteed
992  * to be in the ghc.exe image already, just so we can get a handle
993  * to give to loadSymbol, so that we can find the symbols.  For such
994  * libraries, the LoadLibrary call should be a no-op except for returning
995  * the handle.
996  *
997  */
998
999 #if defined(OBJFORMAT_PEi386)
1000 /* A record for storing handles into DLLs. */
1001
1002 typedef
1003    struct _OpenedDLL {
1004       char*              name;
1005       struct _OpenedDLL* next;
1006       HINSTANCE instance;
1007    }
1008    OpenedDLL;
1009
1010 /* A list thereof. */
1011 static OpenedDLL* opened_dlls = NULL;
1012 #endif
1013
1014 const char *
1015 addDLL( char *dll_name )
1016 {
1017 #  if defined(OBJFORMAT_ELF) || defined(OBJFORMAT_MACHO)
1018    /* ------------------- ELF DLL loader ------------------- */
1019    void *hdl;
1020    const char *errmsg;
1021
1022    initLinker();
1023
1024    // omitted: RTLD_NOW
1025    // see http://www.haskell.org/pipermail/cvs-ghc/2007-September/038570.html
1026    hdl= dlopen(dll_name, RTLD_LAZY | RTLD_GLOBAL);
1027
1028    if (hdl == NULL) {
1029       /* dlopen failed; return a ptr to the error msg. */
1030       errmsg = dlerror();
1031       if (errmsg == NULL) errmsg = "addDLL: unknown error";
1032       return errmsg;
1033    } else {
1034       return NULL;
1035    }
1036    /*NOTREACHED*/
1037
1038 #  elif defined(OBJFORMAT_PEi386)
1039    /* ------------------- Win32 DLL loader ------------------- */
1040
1041    char*      buf;
1042    OpenedDLL* o_dll;
1043    HINSTANCE  instance;
1044
1045    initLinker();
1046
1047    /* debugBelch("\naddDLL; dll_name = `%s'\n", dll_name); */
1048
1049    /* See if we've already got it, and ignore if so. */
1050    for (o_dll = opened_dlls; o_dll != NULL; o_dll = o_dll->next) {
1051       if (0 == strcmp(o_dll->name, dll_name))
1052          return NULL;
1053    }
1054
1055    /* The file name has no suffix (yet) so that we can try
1056       both foo.dll and foo.drv
1057
1058       The documentation for LoadLibrary says:
1059         If no file name extension is specified in the lpFileName
1060         parameter, the default library extension .dll is
1061         appended. However, the file name string can include a trailing
1062         point character (.) to indicate that the module name has no
1063         extension. */
1064
1065    buf = stgMallocBytes(strlen(dll_name) + 10, "addDLL");
1066    sprintf(buf, "%s.DLL", dll_name);
1067    instance = LoadLibrary(buf);
1068    if (instance == NULL) {
1069          sprintf(buf, "%s.DRV", dll_name);      // KAA: allow loading of drivers (like winspool.drv)
1070          instance = LoadLibrary(buf);
1071          if (instance == NULL) {
1072                 stgFree(buf);
1073
1074             /* LoadLibrary failed; return a ptr to the error msg. */
1075             return "addDLL: unknown error";
1076          }
1077    }
1078    stgFree(buf);
1079
1080    /* Add this DLL to the list of DLLs in which to search for symbols. */
1081    o_dll = stgMallocBytes( sizeof(OpenedDLL), "addDLL" );
1082    o_dll->name     = stgMallocBytes(1+strlen(dll_name), "addDLL");
1083    strcpy(o_dll->name, dll_name);
1084    o_dll->instance = instance;
1085    o_dll->next     = opened_dlls;
1086    opened_dlls     = o_dll;
1087
1088    return NULL;
1089 #  else
1090    barf("addDLL: not implemented on this platform");
1091 #  endif
1092 }
1093
1094 /* -----------------------------------------------------------------------------
1095  * insert a stable symbol in the hash table
1096  */
1097
1098 void
1099 insertStableSymbol(char* obj_name, char* key, StgPtr p)
1100 {
1101   ghciInsertStrHashTable(obj_name, stablehash, key, getStablePtr(p));
1102 }
1103
1104
1105 /* -----------------------------------------------------------------------------
1106  * insert a symbol in the hash table
1107  */
1108 void
1109 insertSymbol(char* obj_name, char* key, void* data)
1110 {
1111   ghciInsertStrHashTable(obj_name, symhash, key, data);
1112 }
1113
1114 /* -----------------------------------------------------------------------------
1115  * lookup a symbol in the hash table
1116  */
1117 void *
1118 lookupSymbol( char *lbl )
1119 {
1120     void *val;
1121     initLinker() ;
1122     ASSERT(symhash != NULL);
1123     val = lookupStrHashTable(symhash, lbl);
1124
1125     if (val == NULL) {
1126 #       if defined(OBJFORMAT_ELF)
1127         return dlsym(dl_prog_handle, lbl);
1128 #       elif defined(OBJFORMAT_MACHO)
1129 #       if HAVE_DLFCN_H
1130         /* On OS X 10.3 and later, we use dlsym instead of the old legacy
1131            interface.
1132
1133            HACK: On OS X, global symbols are prefixed with an underscore.
1134                  However, dlsym wants us to omit the leading underscore from the
1135                  symbol name. For now, we simply strip it off here (and ONLY
1136                  here).
1137         */
1138         ASSERT(lbl[0] == '_');
1139         return dlsym(dl_prog_handle, lbl+1);
1140 #       else
1141         if(NSIsSymbolNameDefined(lbl)) {
1142             NSSymbol symbol = NSLookupAndBindSymbol(lbl);
1143             return NSAddressOfSymbol(symbol);
1144         } else {
1145             return NULL;
1146         }
1147 #       endif /* HAVE_DLFCN_H */
1148 #       elif defined(OBJFORMAT_PEi386)
1149         OpenedDLL* o_dll;
1150         void* sym;
1151         for (o_dll = opened_dlls; o_dll != NULL; o_dll = o_dll->next) {
1152           /* debugBelch("look in %s for %s\n", o_dll->name, lbl); */
1153            if (lbl[0] == '_') {
1154               /* HACK: if the name has an initial underscore, try stripping
1155                  it off & look that up first. I've yet to verify whether there's
1156                  a Rule that governs whether an initial '_' *should always* be
1157                  stripped off when mapping from import lib name to the DLL name.
1158               */
1159               sym = GetProcAddress(o_dll->instance, (lbl+1));
1160               if (sym != NULL) {
1161                 /*debugBelch("found %s in %s\n", lbl+1,o_dll->name);*/
1162                 return sym;
1163               }
1164            }
1165            sym = GetProcAddress(o_dll->instance, lbl);
1166            if (sym != NULL) {
1167              /*debugBelch("found %s in %s\n", lbl,o_dll->name);*/
1168              return sym;
1169            }
1170         }
1171         return NULL;
1172 #       else
1173         ASSERT(2+2 == 5);
1174         return NULL;
1175 #       endif
1176     } else {
1177         return val;
1178     }
1179 }
1180
1181 /* -----------------------------------------------------------------------------
1182  * Debugging aid: look in GHCi's object symbol tables for symbols
1183  * within DELTA bytes of the specified address, and show their names.
1184  */
1185 #ifdef DEBUG
1186 void ghci_enquire ( char* addr );
1187
1188 void ghci_enquire ( char* addr )
1189 {
1190    int   i;
1191    char* sym;
1192    char* a;
1193    const int DELTA = 64;
1194    ObjectCode* oc;
1195
1196    initLinker();
1197
1198    for (oc = objects; oc; oc = oc->next) {
1199       for (i = 0; i < oc->n_symbols; i++) {
1200          sym = oc->symbols[i];
1201          if (sym == NULL) continue;
1202          a = NULL;
1203          if (a == NULL) {
1204             a = lookupStrHashTable(symhash, sym);
1205          }
1206          if (a == NULL) {
1207              // debugBelch("ghci_enquire: can't find %s\n", sym);
1208          }
1209          else if (addr-DELTA <= a && a <= addr+DELTA) {
1210             debugBelch("%p + %3d  ==  `%s'\n", addr, (int)(a - addr), sym);
1211          }
1212       }
1213    }
1214 }
1215 #endif
1216
1217 #ifdef ia64_HOST_ARCH
1218 static unsigned int PLTSize(void);
1219 #endif
1220
1221 /* -----------------------------------------------------------------------------
1222  * Load an obj (populate the global symbol table, but don't resolve yet)
1223  *
1224  * Returns: 1 if ok, 0 on error.
1225  */
1226 HsInt
1227 loadObj( char *path )
1228 {
1229    ObjectCode* oc;
1230    struct stat st;
1231    int r, n;
1232 #ifdef USE_MMAP
1233    int fd, pagesize;
1234    void *map_addr = NULL;
1235 #else
1236    FILE *f;
1237 #endif
1238    initLinker();
1239
1240    /* debugBelch("loadObj %s\n", path ); */
1241
1242    /* Check that we haven't already loaded this object.
1243       Ignore requests to load multiple times */
1244    {
1245        ObjectCode *o;
1246        int is_dup = 0;
1247        for (o = objects; o; o = o->next) {
1248           if (0 == strcmp(o->fileName, path)) {
1249              is_dup = 1;
1250              break; /* don't need to search further */
1251           }
1252        }
1253        if (is_dup) {
1254           IF_DEBUG(linker, debugBelch(
1255             "GHCi runtime linker: warning: looks like you're trying to load the\n"
1256             "same object file twice:\n"
1257             "   %s\n"
1258             "GHCi will ignore this, but be warned.\n"
1259             , path));
1260           return 1; /* success */
1261        }
1262    }
1263
1264    oc = stgMallocBytes(sizeof(ObjectCode), "loadObj(oc)");
1265
1266 #  if defined(OBJFORMAT_ELF)
1267    oc->formatName = "ELF";
1268 #  elif defined(OBJFORMAT_PEi386)
1269    oc->formatName = "PEi386";
1270 #  elif defined(OBJFORMAT_MACHO)
1271    oc->formatName = "Mach-O";
1272 #  else
1273    stgFree(oc);
1274    barf("loadObj: not implemented on this platform");
1275 #  endif
1276
1277    r = stat(path, &st);
1278    if (r == -1) { return 0; }
1279
1280    /* sigh, strdup() isn't a POSIX function, so do it the long way */
1281    oc->fileName = stgMallocBytes( strlen(path)+1, "loadObj" );
1282    strcpy(oc->fileName, path);
1283
1284    oc->fileSize          = st.st_size;
1285    oc->symbols           = NULL;
1286    oc->sections          = NULL;
1287    oc->proddables        = NULL;
1288
1289    /* chain it onto the list of objects */
1290    oc->next              = objects;
1291    objects               = oc;
1292
1293 #ifdef USE_MMAP
1294 #define ROUND_UP(x,size) ((x + size - 1) & ~(size - 1))
1295
1296    /* On many architectures malloc'd memory isn't executable, so we need to use mmap. */
1297
1298 #if defined(openbsd_HOST_OS)
1299    fd = open(path, O_RDONLY, S_IRUSR);
1300 #else
1301    fd = open(path, O_RDONLY);
1302 #endif
1303    if (fd == -1)
1304       barf("loadObj: can't open `%s'", path);
1305
1306    pagesize = getpagesize();
1307
1308 #ifdef ia64_HOST_ARCH
1309    /* The PLT needs to be right before the object */
1310    n = ROUND_UP(PLTSize(), pagesize);
1311    oc->plt = mmap(NULL, n, PROT_EXEC|PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1312    if (oc->plt == MAP_FAILED)
1313       barf("loadObj: can't allocate PLT");
1314
1315    oc->pltIndex = 0;
1316    map_addr = oc->plt + n;
1317 #endif
1318
1319    n = ROUND_UP(oc->fileSize, pagesize);
1320
1321    /* Link objects into the lower 2Gb on x86_64.  GHC assumes the
1322     * small memory model on this architecture (see gcc docs,
1323     * -mcmodel=small).
1324     *
1325     * MAP_32BIT not available on OpenBSD/amd64
1326     */
1327 #if defined(x86_64_HOST_ARCH) && defined(MAP_32BIT)
1328 #define EXTRA_MAP_FLAGS MAP_32BIT
1329 #else
1330 #define EXTRA_MAP_FLAGS 0
1331 #endif
1332
1333    /* MAP_ANONYMOUS is MAP_ANON on some systems, e.g. OpenBSD */
1334 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1335 #define MAP_ANONYMOUS MAP_ANON
1336 #endif
1337
1338    oc->image = mmap(map_addr, n, PROT_EXEC|PROT_READ|PROT_WRITE,
1339                     MAP_PRIVATE|EXTRA_MAP_FLAGS, fd, 0);
1340    if (oc->image == MAP_FAILED)
1341       barf("loadObj: can't map `%s'", path);
1342
1343    close(fd);
1344
1345 #else /* !USE_MMAP */
1346
1347    /* load the image into memory */
1348    f = fopen(path, "rb");
1349    if (!f)
1350        barf("loadObj: can't read `%s'", path);
1351
1352 #   if defined(mingw32_HOST_OS)
1353         // TODO: We would like to use allocateExec here, but allocateExec
1354         //       cannot currently allocate blocks large enough.
1355     oc->image = VirtualAlloc(NULL, oc->fileSize, MEM_RESERVE | MEM_COMMIT,
1356                              PAGE_EXECUTE_READWRITE);
1357 #   elif defined(darwin_HOST_OS)
1358     // In a Mach-O .o file, all sections can and will be misaligned
1359     // if the total size of the headers is not a multiple of the
1360     // desired alignment. This is fine for .o files that only serve
1361     // as input for the static linker, but it's not fine for us,
1362     // as SSE (used by gcc for floating point) and Altivec require
1363     // 16-byte alignment.
1364     // We calculate the correct alignment from the header before
1365     // reading the file, and then we misalign oc->image on purpose so
1366     // that the actual sections end up aligned again.
1367    oc->misalignment = machoGetMisalignment(f);
1368    oc->image = stgMallocBytes(oc->fileSize + oc->misalignment, "loadObj(image)");
1369    oc->image += oc->misalignment;
1370 #  else
1371    oc->image = stgMallocBytes(oc->fileSize, "loadObj(image)");
1372 #  endif
1373
1374    n = fread ( oc->image, 1, oc->fileSize, f );
1375    if (n != oc->fileSize)
1376       barf("loadObj: error whilst reading `%s'", path);
1377
1378    fclose(f);
1379 #endif /* USE_MMAP */
1380
1381 #  if defined(OBJFORMAT_MACHO) && (defined(powerpc_HOST_ARCH) || defined(x86_64_HOST_ARCH))
1382    r = ocAllocateSymbolExtras_MachO ( oc );
1383    if (!r) { return r; }
1384 #  elif defined(OBJFORMAT_ELF) && (defined(powerpc_HOST_ARCH) || defined(x86_64_HOST_ARCH))
1385    r = ocAllocateSymbolExtras_ELF ( oc );
1386    if (!r) { return r; }
1387 #endif
1388
1389    /* verify the in-memory image */
1390 #  if defined(OBJFORMAT_ELF)
1391    r = ocVerifyImage_ELF ( oc );
1392 #  elif defined(OBJFORMAT_PEi386)
1393    r = ocVerifyImage_PEi386 ( oc );
1394 #  elif defined(OBJFORMAT_MACHO)
1395    r = ocVerifyImage_MachO ( oc );
1396 #  else
1397    barf("loadObj: no verify method");
1398 #  endif
1399    if (!r) { return r; }
1400
1401    /* build the symbol list for this image */
1402 #  if defined(OBJFORMAT_ELF)
1403    r = ocGetNames_ELF ( oc );
1404 #  elif defined(OBJFORMAT_PEi386)
1405    r = ocGetNames_PEi386 ( oc );
1406 #  elif defined(OBJFORMAT_MACHO)
1407    r = ocGetNames_MachO ( oc );
1408 #  else
1409    barf("loadObj: no getNames method");
1410 #  endif
1411    if (!r) { return r; }
1412
1413    /* loaded, but not resolved yet */
1414    oc->status = OBJECT_LOADED;
1415
1416    return 1;
1417 }
1418
1419 /* -----------------------------------------------------------------------------
1420  * resolve all the currently unlinked objects in memory
1421  *
1422  * Returns: 1 if ok, 0 on error.
1423  */
1424 HsInt
1425 resolveObjs( void )
1426 {
1427     ObjectCode *oc;
1428     int r;
1429
1430     initLinker();
1431
1432     for (oc = objects; oc; oc = oc->next) {
1433         if (oc->status != OBJECT_RESOLVED) {
1434 #           if defined(OBJFORMAT_ELF)
1435             r = ocResolve_ELF ( oc );
1436 #           elif defined(OBJFORMAT_PEi386)
1437             r = ocResolve_PEi386 ( oc );
1438 #           elif defined(OBJFORMAT_MACHO)
1439             r = ocResolve_MachO ( oc );
1440 #           else
1441             barf("resolveObjs: not implemented on this platform");
1442 #           endif
1443             if (!r) { return r; }
1444             oc->status = OBJECT_RESOLVED;
1445         }
1446     }
1447     return 1;
1448 }
1449
1450 /* -----------------------------------------------------------------------------
1451  * delete an object from the pool
1452  */
1453 HsInt
1454 unloadObj( char *path )
1455 {
1456     ObjectCode *oc, *prev;
1457
1458     ASSERT(symhash != NULL);
1459     ASSERT(objects != NULL);
1460
1461     initLinker();
1462
1463     prev = NULL;
1464     for (oc = objects; oc; prev = oc, oc = oc->next) {
1465         if (!strcmp(oc->fileName,path)) {
1466
1467             /* Remove all the mappings for the symbols within this
1468              * object..
1469              */
1470             {
1471                 int i;
1472                 for (i = 0; i < oc->n_symbols; i++) {
1473                    if (oc->symbols[i] != NULL) {
1474                        removeStrHashTable(symhash, oc->symbols[i], NULL);
1475                    }
1476                 }
1477             }
1478
1479             if (prev == NULL) {
1480                 objects = oc->next;
1481             } else {
1482                 prev->next = oc->next;
1483             }
1484
1485             // We're going to leave this in place, in case there are
1486             // any pointers from the heap into it:
1487                 // #ifdef mingw32_HOST_OS
1488                 //  VirtualFree(oc->image);
1489                 // #else
1490             //  stgFree(oc->image);
1491             // #endif
1492             stgFree(oc->fileName);
1493             stgFree(oc->symbols);
1494             stgFree(oc->sections);
1495             stgFree(oc);
1496             return 1;
1497         }
1498     }
1499
1500     errorBelch("unloadObj: can't find `%s' to unload", path);
1501     return 0;
1502 }
1503
1504 /* -----------------------------------------------------------------------------
1505  * Sanity checking.  For each ObjectCode, maintain a list of address ranges
1506  * which may be prodded during relocation, and abort if we try and write
1507  * outside any of these.
1508  */
1509 static void addProddableBlock ( ObjectCode* oc, void* start, int size )
1510 {
1511    ProddableBlock* pb
1512       = stgMallocBytes(sizeof(ProddableBlock), "addProddableBlock");
1513    /* debugBelch("aPB %p %p %d\n", oc, start, size); */
1514    ASSERT(size > 0);
1515    pb->start      = start;
1516    pb->size       = size;
1517    pb->next       = oc->proddables;
1518    oc->proddables = pb;
1519 }
1520
1521 static void checkProddableBlock ( ObjectCode* oc, void* addr )
1522 {
1523    ProddableBlock* pb;
1524    for (pb = oc->proddables; pb != NULL; pb = pb->next) {
1525       char* s = (char*)(pb->start);
1526       char* e = s + pb->size - 1;
1527       char* a = (char*)addr;
1528       /* Assumes that the biggest fixup involves a 4-byte write.  This
1529          probably needs to be changed to 8 (ie, +7) on 64-bit
1530          plats. */
1531       if (a >= s && (a+3) <= e) return;
1532    }
1533    barf("checkProddableBlock: invalid fixup in runtime linker");
1534 }
1535
1536 /* -----------------------------------------------------------------------------
1537  * Section management.
1538  */
1539 static void addSection ( ObjectCode* oc, SectionKind kind,
1540                          void* start, void* end )
1541 {
1542    Section* s   = stgMallocBytes(sizeof(Section), "addSection");
1543    s->start     = start;
1544    s->end       = end;
1545    s->kind      = kind;
1546    s->next      = oc->sections;
1547    oc->sections = s;
1548    /*
1549    debugBelch("addSection: %p-%p (size %d), kind %d\n",
1550                    start, ((char*)end)-1, end - start + 1, kind );
1551    */
1552 }
1553
1554
1555 /* --------------------------------------------------------------------------
1556  * Symbol Extras.
1557  * This is about allocating a small chunk of memory for every symbol in the
1558  * object file. We make sure that the SymboLExtras are always "in range" of
1559  * limited-range PC-relative instructions on various platforms by allocating
1560  * them right next to the object code itself.
1561  */
1562
1563 #if defined(powerpc_HOST_ARCH) || defined(x86_64_HOST_ARCH)
1564
1565 /*
1566   ocAllocateSymbolExtras
1567
1568   Allocate additional space at the end of the object file image to make room
1569   for jump islands (powerpc, x86_64) and GOT entries (x86_64).
1570   
1571   PowerPC relative branch instructions have a 24 bit displacement field.
1572   As PPC code is always 4-byte-aligned, this yields a +-32MB range.
1573   If a particular imported symbol is outside this range, we have to redirect
1574   the jump to a short piece of new code that just loads the 32bit absolute
1575   address and jumps there.
1576   On x86_64, PC-relative jumps and PC-relative accesses to the GOT are limited
1577   to 32 bits (+-2GB).
1578   
1579   This function just allocates space for one SymbolExtra for every
1580   undefined symbol in the object file. The code for the jump islands is
1581   filled in by makeSymbolExtra below.
1582 */
1583
1584 static int ocAllocateSymbolExtras( ObjectCode* oc, int count, int first )
1585 {
1586 #ifdef USE_MMAP
1587   int pagesize, n, m;
1588 #endif
1589   int aligned;
1590 #ifndef USE_MMAP
1591   int misalignment = 0;
1592 #ifdef darwin_HOST_OS
1593   misalignment = oc->misalignment;
1594 #endif
1595 #endif
1596
1597   if( count > 0 )
1598   {
1599     // round up to the nearest 4
1600     aligned = (oc->fileSize + 3) & ~3;
1601
1602 #ifdef USE_MMAP
1603     #ifndef linux_HOST_OS /* mremap is a linux extension */
1604         #error ocAllocateSymbolExtras doesnt want USE_MMAP to be defined
1605     #endif
1606
1607     pagesize = getpagesize();
1608     n = ROUND_UP( oc->fileSize, pagesize );
1609     m = ROUND_UP( aligned + sizeof (SymbolExtra) * count, pagesize );
1610
1611     /* If we have a half-page-size file and map one page of it then
1612      * the part of the page after the size of the file remains accessible.
1613      * If, however, we map in 2 pages, the 2nd page is not accessible
1614      * and will give a "Bus Error" on access.  To get around this, we check
1615      * if we need any extra pages for the jump islands and map them in
1616      * anonymously.  We must check that we actually require extra pages
1617      * otherwise the attempt to mmap 0 pages of anonymous memory will
1618      * fail -EINVAL.
1619      */
1620
1621     if( m > n )
1622     {
1623       /* The effect of this mremap() call is only the ensure that we have
1624        * a sufficient number of virtually contiguous pages.  As returned from
1625        * mremap, the pages past the end of the file are not backed.  We give
1626        * them a backing by using MAP_FIXED to map in anonymous pages.
1627        */
1628       oc->image = mremap( oc->image, n, m, MREMAP_MAYMOVE );
1629
1630       if( oc->image == MAP_FAILED )
1631       {
1632         errorBelch( "Unable to mremap for Jump Islands\n" );
1633         return 0;
1634       }
1635
1636       if( mmap( oc->image + n, m - n, PROT_READ | PROT_WRITE | PROT_EXEC,
1637                 MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, 0, 0 ) == MAP_FAILED )
1638       {
1639         errorBelch( "Unable to mmap( MAP_FIXED ) for Jump Islands\n" );
1640         return 0;
1641       }
1642     }
1643
1644 #else
1645     oc->image -= misalignment;
1646     oc->image = stgReallocBytes( oc->image,
1647                                  misalignment + 
1648                                  aligned + sizeof (SymbolExtra) * count,
1649                                  "ocAllocateSymbolExtras" );
1650     oc->image += misalignment;
1651 #endif /* USE_MMAP */
1652
1653     oc->symbol_extras = (SymbolExtra *) (oc->image + aligned);
1654     memset( oc->symbol_extras, 0, sizeof (SymbolExtra) * count );
1655   }
1656   else
1657     oc->symbol_extras = NULL;
1658
1659   oc->first_symbol_extra = first;
1660   oc->n_symbol_extras = count;
1661
1662   return 1;
1663 }
1664
1665 static SymbolExtra* makeSymbolExtra( ObjectCode* oc,
1666                                      unsigned long symbolNumber,
1667                                      unsigned long target )
1668 {
1669   SymbolExtra *extra;
1670
1671   ASSERT( symbolNumber >= oc->first_symbol_extra
1672         && symbolNumber - oc->first_symbol_extra < oc->n_symbol_extras);
1673
1674   extra = &oc->symbol_extras[symbolNumber - oc->first_symbol_extra];
1675
1676 #ifdef powerpc_HOST_ARCH
1677   // lis r12, hi16(target)
1678   extra->jumpIsland.lis_r12     = 0x3d80;
1679   extra->jumpIsland.hi_addr     = target >> 16;
1680
1681   // ori r12, r12, lo16(target)
1682   extra->jumpIsland.ori_r12_r12 = 0x618c;
1683   extra->jumpIsland.lo_addr     = target & 0xffff;
1684
1685   // mtctr r12
1686   extra->jumpIsland.mtctr_r12   = 0x7d8903a6;
1687
1688   // bctr
1689   extra->jumpIsland.bctr        = 0x4e800420;
1690 #endif
1691 #ifdef x86_64_HOST_ARCH
1692         // jmp *-14(%rip)
1693   static uint8_t jmp[] = { 0xFF, 0x25, 0xF2, 0xFF, 0xFF, 0xFF };
1694   extra->addr = target;
1695   memcpy(extra->jumpIsland, jmp, 6);
1696 #endif
1697     
1698   return extra;
1699 }
1700
1701 #endif
1702
1703 /* --------------------------------------------------------------------------
1704  * PowerPC specifics (instruction cache flushing)
1705  * ------------------------------------------------------------------------*/
1706
1707 #ifdef powerpc_TARGET_ARCH
1708 /*
1709    ocFlushInstructionCache
1710
1711    Flush the data & instruction caches.
1712    Because the PPC has split data/instruction caches, we have to
1713    do that whenever we modify code at runtime.
1714  */
1715
1716 static void ocFlushInstructionCache( ObjectCode *oc )
1717 {
1718     int n = (oc->fileSize + sizeof( SymbolExtra ) * oc->n_symbol_extras + 3) / 4;
1719     unsigned long *p = (unsigned long *) oc->image;
1720
1721     while( n-- )
1722     {
1723         __asm__ volatile ( "dcbf 0,%0\n\t"
1724                            "sync\n\t"
1725                            "icbi 0,%0"
1726                            :
1727                            : "r" (p)
1728                          );
1729         p++;
1730     }
1731     __asm__ volatile ( "sync\n\t"
1732                        "isync"
1733                      );
1734 }
1735 #endif
1736
1737 /* --------------------------------------------------------------------------
1738  * PEi386 specifics (Win32 targets)
1739  * ------------------------------------------------------------------------*/
1740
1741 /* The information for this linker comes from
1742       Microsoft Portable Executable
1743       and Common Object File Format Specification
1744       revision 5.1 January 1998
1745    which SimonM says comes from the MS Developer Network CDs.
1746
1747    It can be found there (on older CDs), but can also be found
1748    online at:
1749
1750       http://www.microsoft.com/hwdev/hardware/PECOFF.asp
1751
1752    (this is Rev 6.0 from February 1999).
1753
1754    Things move, so if that fails, try searching for it via
1755
1756       http://www.google.com/search?q=PE+COFF+specification
1757
1758    The ultimate reference for the PE format is the Winnt.h
1759    header file that comes with the Platform SDKs; as always,
1760    implementations will drift wrt their documentation.
1761
1762    A good background article on the PE format is Matt Pietrek's
1763    March 1994 article in Microsoft System Journal (MSJ)
1764    (Vol.9, No. 3): "Peering Inside the PE: A Tour of the
1765    Win32 Portable Executable File Format." The info in there
1766    has recently been updated in a two part article in
1767    MSDN magazine, issues Feb and March 2002,
1768    "Inside Windows: An In-Depth Look into the Win32 Portable
1769    Executable File Format"
1770
1771    John Levine's book "Linkers and Loaders" contains useful
1772    info on PE too.
1773 */
1774
1775
1776 #if defined(OBJFORMAT_PEi386)
1777
1778
1779
1780 typedef unsigned char  UChar;
1781 typedef unsigned short UInt16;
1782 typedef unsigned int   UInt32;
1783 typedef          int   Int32;
1784
1785
1786 typedef
1787    struct {
1788       UInt16 Machine;
1789       UInt16 NumberOfSections;
1790       UInt32 TimeDateStamp;
1791       UInt32 PointerToSymbolTable;
1792       UInt32 NumberOfSymbols;
1793       UInt16 SizeOfOptionalHeader;
1794       UInt16 Characteristics;
1795    }
1796    COFF_header;
1797
1798 #define sizeof_COFF_header 20
1799
1800
1801 typedef
1802    struct {
1803       UChar  Name[8];
1804       UInt32 VirtualSize;
1805       UInt32 VirtualAddress;
1806       UInt32 SizeOfRawData;
1807       UInt32 PointerToRawData;
1808       UInt32 PointerToRelocations;
1809       UInt32 PointerToLinenumbers;
1810       UInt16 NumberOfRelocations;
1811       UInt16 NumberOfLineNumbers;
1812       UInt32 Characteristics;
1813    }
1814    COFF_section;
1815
1816 #define sizeof_COFF_section 40
1817
1818
1819 typedef
1820    struct {
1821       UChar  Name[8];
1822       UInt32 Value;
1823       UInt16 SectionNumber;
1824       UInt16 Type;
1825       UChar  StorageClass;
1826       UChar  NumberOfAuxSymbols;
1827    }
1828    COFF_symbol;
1829
1830 #define sizeof_COFF_symbol 18
1831
1832
1833 typedef
1834    struct {
1835       UInt32 VirtualAddress;
1836       UInt32 SymbolTableIndex;
1837       UInt16 Type;
1838    }
1839    COFF_reloc;
1840
1841 #define sizeof_COFF_reloc 10
1842
1843
1844 /* From PE spec doc, section 3.3.2 */
1845 /* Note use of MYIMAGE_* since IMAGE_* are already defined in
1846    windows.h -- for the same purpose, but I want to know what I'm
1847    getting, here. */
1848 #define MYIMAGE_FILE_RELOCS_STRIPPED     0x0001
1849 #define MYIMAGE_FILE_EXECUTABLE_IMAGE    0x0002
1850 #define MYIMAGE_FILE_DLL                 0x2000
1851 #define MYIMAGE_FILE_SYSTEM              0x1000
1852 #define MYIMAGE_FILE_BYTES_REVERSED_HI   0x8000
1853 #define MYIMAGE_FILE_BYTES_REVERSED_LO   0x0080
1854 #define MYIMAGE_FILE_32BIT_MACHINE       0x0100
1855
1856 /* From PE spec doc, section 5.4.2 and 5.4.4 */
1857 #define MYIMAGE_SYM_CLASS_EXTERNAL       2
1858 #define MYIMAGE_SYM_CLASS_STATIC         3
1859 #define MYIMAGE_SYM_UNDEFINED            0
1860
1861 /* From PE spec doc, section 4.1 */
1862 #define MYIMAGE_SCN_CNT_CODE             0x00000020
1863 #define MYIMAGE_SCN_CNT_INITIALIZED_DATA 0x00000040
1864 #define MYIMAGE_SCN_LNK_NRELOC_OVFL      0x01000000
1865
1866 /* From PE spec doc, section 5.2.1 */
1867 #define MYIMAGE_REL_I386_DIR32           0x0006
1868 #define MYIMAGE_REL_I386_REL32           0x0014
1869
1870
1871 /* We use myindex to calculate array addresses, rather than
1872    simply doing the normal subscript thing.  That's because
1873    some of the above structs have sizes which are not
1874    a whole number of words.  GCC rounds their sizes up to a
1875    whole number of words, which means that the address calcs
1876    arising from using normal C indexing or pointer arithmetic
1877    are just plain wrong.  Sigh.
1878 */
1879 static UChar *
1880 myindex ( int scale, void* base, int index )
1881 {
1882    return
1883       ((UChar*)base) + scale * index;
1884 }
1885
1886
1887 static void
1888 printName ( UChar* name, UChar* strtab )
1889 {
1890    if (name[0]==0 && name[1]==0 && name[2]==0 && name[3]==0) {
1891       UInt32 strtab_offset = * (UInt32*)(name+4);
1892       debugBelch("%s", strtab + strtab_offset );
1893    } else {
1894       int i;
1895       for (i = 0; i < 8; i++) {
1896          if (name[i] == 0) break;
1897          debugBelch("%c", name[i] );
1898       }
1899    }
1900 }
1901
1902
1903 static void
1904 copyName ( UChar* name, UChar* strtab, UChar* dst, int dstSize )
1905 {
1906    if (name[0]==0 && name[1]==0 && name[2]==0 && name[3]==0) {
1907       UInt32 strtab_offset = * (UInt32*)(name+4);
1908       strncpy ( dst, strtab+strtab_offset, dstSize );
1909       dst[dstSize-1] = 0;
1910    } else {
1911       int i = 0;
1912       while (1) {
1913          if (i >= 8) break;
1914          if (name[i] == 0) break;
1915          dst[i] = name[i];
1916          i++;
1917       }
1918       dst[i] = 0;
1919    }
1920 }
1921
1922
1923 static UChar *
1924 cstring_from_COFF_symbol_name ( UChar* name, UChar* strtab )
1925 {
1926    UChar* newstr;
1927    /* If the string is longer than 8 bytes, look in the
1928       string table for it -- this will be correctly zero terminated.
1929    */
1930    if (name[0]==0 && name[1]==0 && name[2]==0 && name[3]==0) {
1931       UInt32 strtab_offset = * (UInt32*)(name+4);
1932       return ((UChar*)strtab) + strtab_offset;
1933    }
1934    /* Otherwise, if shorter than 8 bytes, return the original,
1935       which by defn is correctly terminated.
1936    */
1937    if (name[7]==0) return name;
1938    /* The annoying case: 8 bytes.  Copy into a temporary
1939       (which is never freed ...)
1940    */
1941    newstr = stgMallocBytes(9, "cstring_from_COFF_symbol_name");
1942    ASSERT(newstr);
1943    strncpy(newstr,name,8);
1944    newstr[8] = 0;
1945    return newstr;
1946 }
1947
1948
1949 /* Just compares the short names (first 8 chars) */
1950 static COFF_section *
1951 findPEi386SectionCalled ( ObjectCode* oc,  char* name )
1952 {
1953    int i;
1954    COFF_header* hdr
1955       = (COFF_header*)(oc->image);
1956    COFF_section* sectab
1957       = (COFF_section*) (
1958            ((UChar*)(oc->image))
1959            + sizeof_COFF_header + hdr->SizeOfOptionalHeader
1960         );
1961    for (i = 0; i < hdr->NumberOfSections; i++) {
1962       UChar* n1;
1963       UChar* n2;
1964       COFF_section* section_i
1965          = (COFF_section*)
1966            myindex ( sizeof_COFF_section, sectab, i );
1967       n1 = (UChar*) &(section_i->Name);
1968       n2 = name;
1969       if (n1[0]==n2[0] && n1[1]==n2[1] && n1[2]==n2[2] &&
1970           n1[3]==n2[3] && n1[4]==n2[4] && n1[5]==n2[5] &&
1971           n1[6]==n2[6] && n1[7]==n2[7])
1972          return section_i;
1973    }
1974
1975    return NULL;
1976 }
1977
1978
1979 static void
1980 zapTrailingAtSign ( UChar* sym )
1981 {
1982 #  define my_isdigit(c) ((c) >= '0' && (c) <= '9')
1983    int i, j;
1984    if (sym[0] == 0) return;
1985    i = 0;
1986    while (sym[i] != 0) i++;
1987    i--;
1988    j = i;
1989    while (j > 0 && my_isdigit(sym[j])) j--;
1990    if (j > 0 && sym[j] == '@' && j != i) sym[j] = 0;
1991 #  undef my_isdigit
1992 }
1993
1994
1995 static int
1996 ocVerifyImage_PEi386 ( ObjectCode* oc )
1997 {
1998    int i;
1999    UInt32 j, noRelocs;
2000    COFF_header*  hdr;
2001    COFF_section* sectab;
2002    COFF_symbol*  symtab;
2003    UChar*        strtab;
2004    /* debugBelch("\nLOADING %s\n", oc->fileName); */
2005    hdr = (COFF_header*)(oc->image);
2006    sectab = (COFF_section*) (
2007                ((UChar*)(oc->image))
2008                + sizeof_COFF_header + hdr->SizeOfOptionalHeader
2009             );
2010    symtab = (COFF_symbol*) (
2011                ((UChar*)(oc->image))
2012                + hdr->PointerToSymbolTable
2013             );
2014    strtab = ((UChar*)symtab)
2015             + hdr->NumberOfSymbols * sizeof_COFF_symbol;
2016
2017    if (hdr->Machine != 0x14c) {
2018       errorBelch("%s: Not x86 PEi386", oc->fileName);
2019       return 0;
2020    }
2021    if (hdr->SizeOfOptionalHeader != 0) {
2022       errorBelch("%s: PEi386 with nonempty optional header", oc->fileName);
2023       return 0;
2024    }
2025    if ( /* (hdr->Characteristics & MYIMAGE_FILE_RELOCS_STRIPPED) || */
2026         (hdr->Characteristics & MYIMAGE_FILE_EXECUTABLE_IMAGE) ||
2027         (hdr->Characteristics & MYIMAGE_FILE_DLL) ||
2028         (hdr->Characteristics & MYIMAGE_FILE_SYSTEM) ) {
2029       errorBelch("%s: Not a PEi386 object file", oc->fileName);
2030       return 0;
2031    }
2032    if ( (hdr->Characteristics & MYIMAGE_FILE_BYTES_REVERSED_HI)
2033         /* || !(hdr->Characteristics & MYIMAGE_FILE_32BIT_MACHINE) */ ) {
2034       errorBelch("%s: Invalid PEi386 word size or endiannness: %d",
2035                  oc->fileName,
2036                  (int)(hdr->Characteristics));
2037       return 0;
2038    }
2039    /* If the string table size is way crazy, this might indicate that
2040       there are more than 64k relocations, despite claims to the
2041       contrary.  Hence this test. */
2042    /* debugBelch("strtab size %d\n", * (UInt32*)strtab); */
2043 #if 0
2044    if ( (*(UInt32*)strtab) > 600000 ) {
2045       /* Note that 600k has no special significance other than being
2046          big enough to handle the almost-2MB-sized lumps that
2047          constitute HSwin32*.o. */
2048       debugBelch("PEi386 object has suspiciously large string table; > 64k relocs?");
2049       return 0;
2050    }
2051 #endif
2052
2053    /* No further verification after this point; only debug printing. */
2054    i = 0;
2055    IF_DEBUG(linker, i=1);
2056    if (i == 0) return 1;
2057
2058    debugBelch( "sectab offset = %d\n", ((UChar*)sectab) - ((UChar*)hdr) );
2059    debugBelch( "symtab offset = %d\n", ((UChar*)symtab) - ((UChar*)hdr) );
2060    debugBelch( "strtab offset = %d\n", ((UChar*)strtab) - ((UChar*)hdr) );
2061
2062    debugBelch("\n" );
2063    debugBelch( "Machine:           0x%x\n", (UInt32)(hdr->Machine) );
2064    debugBelch( "# sections:        %d\n",   (UInt32)(hdr->NumberOfSections) );
2065    debugBelch( "time/date:         0x%x\n", (UInt32)(hdr->TimeDateStamp) );
2066    debugBelch( "symtab offset:     %d\n",   (UInt32)(hdr->PointerToSymbolTable) );
2067    debugBelch( "# symbols:         %d\n",   (UInt32)(hdr->NumberOfSymbols) );
2068    debugBelch( "sz of opt hdr:     %d\n",   (UInt32)(hdr->SizeOfOptionalHeader) );
2069    debugBelch( "characteristics:   0x%x\n", (UInt32)(hdr->Characteristics) );
2070
2071    /* Print the section table. */
2072    debugBelch("\n" );
2073    for (i = 0; i < hdr->NumberOfSections; i++) {
2074       COFF_reloc* reltab;
2075       COFF_section* sectab_i
2076          = (COFF_section*)
2077            myindex ( sizeof_COFF_section, sectab, i );
2078       debugBelch(
2079                 "\n"
2080                 "section %d\n"
2081                 "     name `",
2082                 i
2083               );
2084       printName ( sectab_i->Name, strtab );
2085       debugBelch(
2086                 "'\n"
2087                 "    vsize %d\n"
2088                 "    vaddr %d\n"
2089                 "  data sz %d\n"
2090                 " data off %d\n"
2091                 "  num rel %d\n"
2092                 "  off rel %d\n"
2093                 "  ptr raw 0x%x\n",
2094                 sectab_i->VirtualSize,
2095                 sectab_i->VirtualAddress,
2096                 sectab_i->SizeOfRawData,
2097                 sectab_i->PointerToRawData,
2098                 sectab_i->NumberOfRelocations,
2099                 sectab_i->PointerToRelocations,
2100                 sectab_i->PointerToRawData
2101               );
2102       reltab = (COFF_reloc*) (
2103                   ((UChar*)(oc->image)) + sectab_i->PointerToRelocations
2104                );
2105
2106       if ( sectab_i->Characteristics & MYIMAGE_SCN_LNK_NRELOC_OVFL ) {
2107         /* If the relocation field (a short) has overflowed, the
2108          * real count can be found in the first reloc entry.
2109          *
2110          * See Section 4.1 (last para) of the PE spec (rev6.0).
2111          */
2112         COFF_reloc* rel = (COFF_reloc*)
2113                            myindex ( sizeof_COFF_reloc, reltab, 0 );
2114         noRelocs = rel->VirtualAddress;
2115         j = 1;
2116       } else {
2117         noRelocs = sectab_i->NumberOfRelocations;
2118         j = 0;
2119       }
2120
2121       for (; j < noRelocs; j++) {
2122          COFF_symbol* sym;
2123          COFF_reloc* rel = (COFF_reloc*)
2124                            myindex ( sizeof_COFF_reloc, reltab, j );
2125          debugBelch(
2126                    "        type 0x%-4x   vaddr 0x%-8x   name `",
2127                    (UInt32)rel->Type,
2128                    rel->VirtualAddress );
2129          sym = (COFF_symbol*)
2130                myindex ( sizeof_COFF_symbol, symtab, rel->SymbolTableIndex );
2131          /* Hmm..mysterious looking offset - what's it for? SOF */
2132          printName ( sym->Name, strtab -10 );
2133          debugBelch("'\n" );
2134       }
2135
2136       debugBelch("\n" );
2137    }
2138    debugBelch("\n" );
2139    debugBelch("string table has size 0x%x\n", * (UInt32*)strtab );
2140    debugBelch("---START of string table---\n");
2141    for (i = 4; i < *(Int32*)strtab; i++) {
2142       if (strtab[i] == 0)
2143          debugBelch("\n"); else
2144          debugBelch("%c", strtab[i] );
2145    }
2146    debugBelch("--- END  of string table---\n");
2147
2148    debugBelch("\n" );
2149    i = 0;
2150    while (1) {
2151       COFF_symbol* symtab_i;
2152       if (i >= (Int32)(hdr->NumberOfSymbols)) break;
2153       symtab_i = (COFF_symbol*)
2154                  myindex ( sizeof_COFF_symbol, symtab, i );
2155       debugBelch(
2156                 "symbol %d\n"
2157                 "     name `",
2158                 i
2159               );
2160       printName ( symtab_i->Name, strtab );
2161       debugBelch(
2162                 "'\n"
2163                 "    value 0x%x\n"
2164                 "   1+sec# %d\n"
2165                 "     type 0x%x\n"
2166                 "   sclass 0x%x\n"
2167                 "     nAux %d\n",
2168                 symtab_i->Value,
2169                 (Int32)(symtab_i->SectionNumber),
2170                 (UInt32)symtab_i->Type,
2171                 (UInt32)symtab_i->StorageClass,
2172                 (UInt32)symtab_i->NumberOfAuxSymbols
2173               );
2174       i += symtab_i->NumberOfAuxSymbols;
2175       i++;
2176    }
2177
2178    debugBelch("\n" );
2179    return 1;
2180 }
2181
2182
2183 static int
2184 ocGetNames_PEi386 ( ObjectCode* oc )
2185 {
2186    COFF_header*  hdr;
2187    COFF_section* sectab;
2188    COFF_symbol*  symtab;
2189    UChar*        strtab;
2190
2191    UChar* sname;
2192    void*  addr;
2193    int    i;
2194
2195    hdr = (COFF_header*)(oc->image);
2196    sectab = (COFF_section*) (
2197                ((UChar*)(oc->image))
2198                + sizeof_COFF_header + hdr->SizeOfOptionalHeader
2199             );
2200    symtab = (COFF_symbol*) (
2201                ((UChar*)(oc->image))
2202                + hdr->PointerToSymbolTable
2203             );
2204    strtab = ((UChar*)(oc->image))
2205             + hdr->PointerToSymbolTable
2206             + hdr->NumberOfSymbols * sizeof_COFF_symbol;
2207
2208    /* Allocate space for any (local, anonymous) .bss sections. */
2209
2210    for (i = 0; i < hdr->NumberOfSections; i++) {
2211       UInt32 bss_sz;
2212       UChar* zspace;
2213       COFF_section* sectab_i
2214          = (COFF_section*)
2215            myindex ( sizeof_COFF_section, sectab, i );
2216       if (0 != strcmp(sectab_i->Name, ".bss")) continue;
2217       /* sof 10/05: the PE spec text isn't too clear regarding what
2218        * the SizeOfRawData field is supposed to hold for object
2219        * file sections containing just uninitialized data -- for executables,
2220        * it is supposed to be zero; unclear what it's supposed to be
2221        * for object files. However, VirtualSize is guaranteed to be
2222        * zero for object files, which definitely suggests that SizeOfRawData
2223        * will be non-zero (where else would the size of this .bss section be
2224        * stored?) Looking at the COFF_section info for incoming object files,
2225        * this certainly appears to be the case.
2226        *
2227        * => I suspect we've been incorrectly handling .bss sections in (relocatable)
2228        * object files up until now. This turned out to bite us with ghc-6.4.1's use
2229        * of gcc-3.4.x, which has started to emit initially-zeroed-out local 'static'
2230        * variable decls into to the .bss section. (The specific function in Q which
2231        * triggered this is libraries/base/cbits/dirUtils.c:__hscore_getFolderPath())
2232        */
2233       if (sectab_i->VirtualSize == 0 && sectab_i->SizeOfRawData == 0) continue;
2234       /* This is a non-empty .bss section.  Allocate zeroed space for
2235          it, and set its PointerToRawData field such that oc->image +
2236          PointerToRawData == addr_of_zeroed_space.  */
2237       bss_sz = sectab_i->VirtualSize;
2238       if ( bss_sz < sectab_i->SizeOfRawData) { bss_sz = sectab_i->SizeOfRawData; }
2239       zspace = stgCallocBytes(1, bss_sz, "ocGetNames_PEi386(anonymous bss)");
2240       sectab_i->PointerToRawData = ((UChar*)zspace) - ((UChar*)(oc->image));
2241       addProddableBlock(oc, zspace, bss_sz);
2242       /* debugBelch("BSS anon section at 0x%x\n", zspace); */
2243    }
2244
2245    /* Copy section information into the ObjectCode. */
2246
2247    for (i = 0; i < hdr->NumberOfSections; i++) {
2248       UChar* start;
2249       UChar* end;
2250       UInt32 sz;
2251
2252       SectionKind kind
2253          = SECTIONKIND_OTHER;
2254       COFF_section* sectab_i
2255          = (COFF_section*)
2256            myindex ( sizeof_COFF_section, sectab, i );
2257       IF_DEBUG(linker, debugBelch("section name = %s\n", sectab_i->Name ));
2258
2259 #     if 0
2260       /* I'm sure this is the Right Way to do it.  However, the
2261          alternative of testing the sectab_i->Name field seems to
2262          work ok with Cygwin.
2263       */
2264       if (sectab_i->Characteristics & MYIMAGE_SCN_CNT_CODE ||
2265           sectab_i->Characteristics & MYIMAGE_SCN_CNT_INITIALIZED_DATA)
2266          kind = SECTIONKIND_CODE_OR_RODATA;
2267 #     endif
2268
2269       if (0==strcmp(".text",sectab_i->Name) ||
2270           0==strcmp(".rdata",sectab_i->Name)||
2271           0==strcmp(".rodata",sectab_i->Name))
2272          kind = SECTIONKIND_CODE_OR_RODATA;
2273       if (0==strcmp(".data",sectab_i->Name) ||
2274           0==strcmp(".bss",sectab_i->Name))
2275          kind = SECTIONKIND_RWDATA;
2276
2277       ASSERT(sectab_i->SizeOfRawData == 0 || sectab_i->VirtualSize == 0);
2278       sz = sectab_i->SizeOfRawData;
2279       if (sz < sectab_i->VirtualSize) sz = sectab_i->VirtualSize;
2280
2281       start = ((UChar*)(oc->image)) + sectab_i->PointerToRawData;
2282       end   = start + sz - 1;
2283
2284       if (kind == SECTIONKIND_OTHER
2285           /* Ignore sections called which contain stabs debugging
2286              information. */
2287           && 0 != strcmp(".stab", sectab_i->Name)
2288           && 0 != strcmp(".stabstr", sectab_i->Name)
2289           /* ignore constructor section for now */
2290           && 0 != strcmp(".ctors", sectab_i->Name)
2291           /* ignore section generated from .ident */
2292           && 0!= strcmp("/4", sectab_i->Name)
2293           /* ignore unknown section that appeared in gcc 3.4.5(?) */
2294           && 0!= strcmp(".reloc", sectab_i->Name)
2295          ) {
2296          errorBelch("Unknown PEi386 section name `%s' (while processing: %s)", sectab_i->Name, oc->fileName);
2297          return 0;
2298       }
2299
2300       if (kind != SECTIONKIND_OTHER && end >= start) {
2301          addSection(oc, kind, start, end);
2302          addProddableBlock(oc, start, end - start + 1);
2303       }
2304    }
2305
2306    /* Copy exported symbols into the ObjectCode. */
2307
2308    oc->n_symbols = hdr->NumberOfSymbols;
2309    oc->symbols   = stgMallocBytes(oc->n_symbols * sizeof(char*),
2310                                   "ocGetNames_PEi386(oc->symbols)");
2311    /* Call me paranoid; I don't care. */
2312    for (i = 0; i < oc->n_symbols; i++)
2313       oc->symbols[i] = NULL;
2314
2315    i = 0;
2316    while (1) {
2317       COFF_symbol* symtab_i;
2318       if (i >= (Int32)(hdr->NumberOfSymbols)) break;
2319       symtab_i = (COFF_symbol*)
2320                  myindex ( sizeof_COFF_symbol, symtab, i );
2321
2322       addr  = NULL;
2323
2324       if (symtab_i->StorageClass == MYIMAGE_SYM_CLASS_EXTERNAL
2325           && symtab_i->SectionNumber != MYIMAGE_SYM_UNDEFINED) {
2326          /* This symbol is global and defined, viz, exported */
2327          /* for MYIMAGE_SYMCLASS_EXTERNAL
2328                 && !MYIMAGE_SYM_UNDEFINED,
2329             the address of the symbol is:
2330                 address of relevant section + offset in section
2331          */
2332          COFF_section* sectabent
2333             = (COFF_section*) myindex ( sizeof_COFF_section,
2334                                         sectab,
2335                                         symtab_i->SectionNumber-1 );
2336          addr = ((UChar*)(oc->image))
2337                 + (sectabent->PointerToRawData
2338                    + symtab_i->Value);
2339       }
2340       else
2341       if (symtab_i->SectionNumber == MYIMAGE_SYM_UNDEFINED
2342           && symtab_i->Value > 0) {
2343          /* This symbol isn't in any section at all, ie, global bss.
2344             Allocate zeroed space for it. */
2345          addr = stgCallocBytes(1, symtab_i->Value,
2346                                "ocGetNames_PEi386(non-anonymous bss)");
2347          addSection(oc, SECTIONKIND_RWDATA, addr,
2348                         ((UChar*)addr) + symtab_i->Value - 1);
2349          addProddableBlock(oc, addr, symtab_i->Value);
2350          /* debugBelch("BSS      section at 0x%x\n", addr); */
2351       }
2352
2353       if (addr != NULL ) {
2354          sname = cstring_from_COFF_symbol_name ( symtab_i->Name, strtab );
2355          /* debugBelch("addSymbol %p `%s \n", addr,sname);  */
2356          IF_DEBUG(linker, debugBelch("addSymbol %p `%s'\n", addr,sname);)
2357          ASSERT(i >= 0 && i < oc->n_symbols);
2358          /* cstring_from_COFF_symbol_name always succeeds. */
2359          oc->symbols[i] = sname;
2360          ghciInsertStrHashTable(oc->fileName, symhash, sname, addr);
2361       } else {
2362 #        if 0
2363          debugBelch(
2364                    "IGNORING symbol %d\n"
2365                    "     name `",
2366                    i
2367                  );
2368          printName ( symtab_i->Name, strtab );
2369          debugBelch(
2370                    "'\n"
2371                    "    value 0x%x\n"
2372                    "   1+sec# %d\n"
2373                    "     type 0x%x\n"
2374                    "   sclass 0x%x\n"
2375                    "     nAux %d\n",
2376                    symtab_i->Value,
2377                    (Int32)(symtab_i->SectionNumber),
2378                    (UInt32)symtab_i->Type,
2379                    (UInt32)symtab_i->StorageClass,
2380                    (UInt32)symtab_i->NumberOfAuxSymbols
2381                  );
2382 #        endif
2383       }
2384
2385       i += symtab_i->NumberOfAuxSymbols;
2386       i++;
2387    }
2388
2389    return 1;
2390 }
2391
2392
2393 static int
2394 ocResolve_PEi386 ( ObjectCode* oc )
2395 {
2396    COFF_header*  hdr;
2397    COFF_section* sectab;
2398    COFF_symbol*  symtab;
2399    UChar*        strtab;
2400
2401    UInt32        A;
2402    UInt32        S;
2403    UInt32*       pP;
2404
2405    int i;
2406    UInt32 j, noRelocs;
2407
2408    /* ToDo: should be variable-sized?  But is at least safe in the
2409       sense of buffer-overrun-proof. */
2410    char symbol[1000];
2411    /* debugBelch("resolving for %s\n", oc->fileName); */
2412
2413    hdr = (COFF_header*)(oc->image);
2414    sectab = (COFF_section*) (
2415                ((UChar*)(oc->image))
2416                + sizeof_COFF_header + hdr->SizeOfOptionalHeader
2417             );
2418    symtab = (COFF_symbol*) (
2419                ((UChar*)(oc->image))
2420                + hdr->PointerToSymbolTable
2421             );
2422    strtab = ((UChar*)(oc->image))
2423             + hdr->PointerToSymbolTable
2424             + hdr->NumberOfSymbols * sizeof_COFF_symbol;
2425
2426    for (i = 0; i < hdr->NumberOfSections; i++) {
2427       COFF_section* sectab_i
2428          = (COFF_section*)
2429            myindex ( sizeof_COFF_section, sectab, i );
2430       COFF_reloc* reltab
2431          = (COFF_reloc*) (
2432               ((UChar*)(oc->image)) + sectab_i->PointerToRelocations
2433            );
2434
2435       /* Ignore sections called which contain stabs debugging
2436          information. */
2437       if (0 == strcmp(".stab", sectab_i->Name)
2438           || 0 == strcmp(".stabstr", sectab_i->Name)
2439           || 0 == strcmp(".ctors", sectab_i->Name))
2440          continue;
2441
2442       if ( sectab_i->Characteristics & MYIMAGE_SCN_LNK_NRELOC_OVFL ) {
2443         /* If the relocation field (a short) has overflowed, the
2444          * real count can be found in the first reloc entry.
2445          *
2446          * See Section 4.1 (last para) of the PE spec (rev6.0).
2447          *
2448          * Nov2003 update: the GNU linker still doesn't correctly
2449          * handle the generation of relocatable object files with
2450          * overflown relocations. Hence the output to warn of potential
2451          * troubles.
2452          */
2453         COFF_reloc* rel = (COFF_reloc*)
2454                            myindex ( sizeof_COFF_reloc, reltab, 0 );
2455         noRelocs = rel->VirtualAddress;
2456
2457         /* 10/05: we now assume (and check for) a GNU ld that is capable
2458          * of handling object files with (>2^16) of relocs.
2459          */
2460 #if 0
2461         debugBelch("WARNING: Overflown relocation field (# relocs found: %u)\n",
2462                    noRelocs);
2463 #endif
2464         j = 1;
2465       } else {
2466         noRelocs = sectab_i->NumberOfRelocations;
2467         j = 0;
2468       }
2469
2470
2471       for (; j < noRelocs; j++) {
2472          COFF_symbol* sym;
2473          COFF_reloc* reltab_j
2474             = (COFF_reloc*)
2475               myindex ( sizeof_COFF_reloc, reltab, j );
2476
2477          /* the location to patch */
2478          pP = (UInt32*)(
2479                  ((UChar*)(oc->image))
2480                  + (sectab_i->PointerToRawData
2481                     + reltab_j->VirtualAddress
2482                     - sectab_i->VirtualAddress )
2483               );
2484          /* the existing contents of pP */
2485          A = *pP;
2486          /* the symbol to connect to */
2487          sym = (COFF_symbol*)
2488                myindex ( sizeof_COFF_symbol,
2489                          symtab, reltab_j->SymbolTableIndex );
2490          IF_DEBUG(linker,
2491                   debugBelch(
2492                             "reloc sec %2d num %3d:  type 0x%-4x   "
2493                             "vaddr 0x%-8x   name `",
2494                             i, j,
2495                             (UInt32)reltab_j->Type,
2496                             reltab_j->VirtualAddress );
2497                             printName ( sym->Name, strtab );
2498                             debugBelch("'\n" ));
2499
2500          if (sym->StorageClass == MYIMAGE_SYM_CLASS_STATIC) {
2501             COFF_section* section_sym
2502                = findPEi386SectionCalled ( oc, sym->Name );
2503             if (!section_sym) {
2504                errorBelch("%s: can't find section `%s'", oc->fileName, sym->Name);
2505                return 0;
2506             }
2507             S = ((UInt32)(oc->image))
2508                 + (section_sym->PointerToRawData
2509                    + sym->Value);
2510          } else {
2511             copyName ( sym->Name, strtab, symbol, 1000-1 );
2512             S = (UInt32) lookupLocalSymbol( oc, symbol );
2513             if ((void*)S != NULL) goto foundit;
2514             S = (UInt32) lookupSymbol( symbol );
2515             if ((void*)S != NULL) goto foundit;
2516             zapTrailingAtSign ( symbol );
2517             S = (UInt32) lookupLocalSymbol( oc, symbol );
2518             if ((void*)S != NULL) goto foundit;
2519             S = (UInt32) lookupSymbol( symbol );
2520             if ((void*)S != NULL) goto foundit;
2521             /* Newline first because the interactive linker has printed "linking..." */
2522             errorBelch("\n%s: unknown symbol `%s'", oc->fileName, symbol);
2523             return 0;
2524            foundit:;
2525          }
2526          checkProddableBlock(oc, pP);
2527          switch (reltab_j->Type) {
2528             case MYIMAGE_REL_I386_DIR32:
2529                *pP = A + S;
2530                break;
2531             case MYIMAGE_REL_I386_REL32:
2532                /* Tricky.  We have to insert a displacement at
2533                   pP which, when added to the PC for the _next_
2534                   insn, gives the address of the target (S).
2535                   Problem is to know the address of the next insn
2536                   when we only know pP.  We assume that this
2537                   literal field is always the last in the insn,
2538                   so that the address of the next insn is pP+4
2539                   -- hence the constant 4.
2540                   Also I don't know if A should be added, but so
2541                   far it has always been zero.
2542
2543                   SOF 05/2005: 'A' (old contents of *pP) have been observed
2544                   to contain values other than zero (the 'wx' object file
2545                   that came with wxhaskell-0.9.4; dunno how it was compiled..).
2546                   So, add displacement to old value instead of asserting
2547                   A to be zero. Fixes wxhaskell-related crashes, and no other
2548                   ill effects have been observed.
2549                   
2550                   Update: the reason why we're seeing these more elaborate
2551                   relocations is due to a switch in how the NCG compiles SRTs 
2552                   and offsets to them from info tables. SRTs live in .(ro)data, 
2553                   while info tables live in .text, causing GAS to emit REL32/DISP32 
2554                   relocations with non-zero values. Adding the displacement is
2555                   the right thing to do.
2556                */
2557                *pP = S - ((UInt32)pP) - 4 + A;
2558                break;
2559             default:
2560                debugBelch("%s: unhandled PEi386 relocation type %d",
2561                      oc->fileName, reltab_j->Type);
2562                return 0;
2563          }
2564
2565       }
2566    }
2567
2568    IF_DEBUG(linker, debugBelch("completed %s", oc->fileName));
2569    return 1;
2570 }
2571
2572 #endif /* defined(OBJFORMAT_PEi386) */
2573
2574
2575 /* --------------------------------------------------------------------------
2576  * ELF specifics
2577  * ------------------------------------------------------------------------*/
2578
2579 #if defined(OBJFORMAT_ELF)
2580
2581 #define FALSE 0
2582 #define TRUE  1
2583
2584 #if defined(sparc_HOST_ARCH)
2585 #  define ELF_TARGET_SPARC  /* Used inside <elf.h> */
2586 #elif defined(i386_HOST_ARCH)
2587 #  define ELF_TARGET_386    /* Used inside <elf.h> */
2588 #elif defined(x86_64_HOST_ARCH)
2589 #  define ELF_TARGET_X64_64
2590 #  define ELF_64BIT
2591 #elif defined (ia64_HOST_ARCH)
2592 #  define ELF_TARGET_IA64   /* Used inside <elf.h> */
2593 #  define ELF_64BIT
2594 #  define ELF_FUNCTION_DESC /* calling convention uses function descriptors */
2595 #  define ELF_NEED_GOT      /* needs Global Offset Table */
2596 #  define ELF_NEED_PLT      /* needs Procedure Linkage Tables */
2597 #endif
2598
2599 #if !defined(openbsd_HOST_OS)
2600 #  include <elf.h>
2601 #else
2602 /* openbsd elf has things in different places, with diff names */
2603 #  include <elf_abi.h>
2604 #  include <machine/reloc.h>
2605 #  define R_386_32    RELOC_32
2606 #  define R_386_PC32  RELOC_PC32
2607 #endif
2608
2609 /* If elf.h doesn't define it */
2610 #  ifndef R_X86_64_PC64     
2611 #    define R_X86_64_PC64 24
2612 #  endif
2613
2614 /*
2615  * Define a set of types which can be used for both ELF32 and ELF64
2616  */
2617
2618 #ifdef ELF_64BIT
2619 #define ELFCLASS    ELFCLASS64
2620 #define Elf_Addr    Elf64_Addr
2621 #define Elf_Word    Elf64_Word
2622 #define Elf_Sword   Elf64_Sword
2623 #define Elf_Ehdr    Elf64_Ehdr
2624 #define Elf_Phdr    Elf64_Phdr
2625 #define Elf_Shdr    Elf64_Shdr
2626 #define Elf_Sym     Elf64_Sym
2627 #define Elf_Rel     Elf64_Rel
2628 #define Elf_Rela    Elf64_Rela
2629 #define ELF_ST_TYPE ELF64_ST_TYPE
2630 #define ELF_ST_BIND ELF64_ST_BIND
2631 #define ELF_R_TYPE  ELF64_R_TYPE
2632 #define ELF_R_SYM   ELF64_R_SYM
2633 #else
2634 #define ELFCLASS    ELFCLASS32
2635 #define Elf_Addr    Elf32_Addr
2636 #define Elf_Word    Elf32_Word
2637 #define Elf_Sword   Elf32_Sword
2638 #define Elf_Ehdr    Elf32_Ehdr
2639 #define Elf_Phdr    Elf32_Phdr
2640 #define Elf_Shdr    Elf32_Shdr
2641 #define Elf_Sym     Elf32_Sym
2642 #define Elf_Rel     Elf32_Rel
2643 #define Elf_Rela    Elf32_Rela
2644 #ifndef ELF_ST_TYPE
2645 #define ELF_ST_TYPE ELF32_ST_TYPE
2646 #endif
2647 #ifndef ELF_ST_BIND
2648 #define ELF_ST_BIND ELF32_ST_BIND
2649 #endif
2650 #ifndef ELF_R_TYPE
2651 #define ELF_R_TYPE  ELF32_R_TYPE
2652 #endif
2653 #ifndef ELF_R_SYM
2654 #define ELF_R_SYM   ELF32_R_SYM
2655 #endif
2656 #endif
2657
2658
2659 /*
2660  * Functions to allocate entries in dynamic sections.  Currently we simply
2661  * preallocate a large number, and we don't check if a entry for the given
2662  * target already exists (a linear search is too slow).  Ideally these
2663  * entries would be associated with symbols.
2664  */
2665
2666 /* These sizes sufficient to load HSbase + HShaskell98 + a few modules */
2667 #define GOT_SIZE            0x20000
2668 #define FUNCTION_TABLE_SIZE 0x10000
2669 #define PLT_SIZE            0x08000
2670
2671 #ifdef ELF_NEED_GOT
2672 static Elf_Addr got[GOT_SIZE];
2673 static unsigned int gotIndex;
2674 static Elf_Addr gp_val = (Elf_Addr)got;
2675
2676 static Elf_Addr
2677 allocateGOTEntry(Elf_Addr target)
2678 {
2679    Elf_Addr *entry;
2680
2681    if (gotIndex >= GOT_SIZE)
2682       barf("Global offset table overflow");
2683
2684    entry = &got[gotIndex++];
2685    *entry = target;
2686    return (Elf_Addr)entry;
2687 }
2688 #endif
2689
2690 #ifdef ELF_FUNCTION_DESC
2691 typedef struct {
2692    Elf_Addr ip;
2693    Elf_Addr gp;
2694 } FunctionDesc;
2695
2696 static FunctionDesc functionTable[FUNCTION_TABLE_SIZE];
2697 static unsigned int functionTableIndex;
2698
2699 static Elf_Addr
2700 allocateFunctionDesc(Elf_Addr target)
2701 {
2702    FunctionDesc *entry;
2703
2704    if (functionTableIndex >= FUNCTION_TABLE_SIZE)
2705       barf("Function table overflow");
2706
2707    entry = &functionTable[functionTableIndex++];
2708    entry->ip = target;
2709    entry->gp = (Elf_Addr)gp_val;
2710    return (Elf_Addr)entry;
2711 }
2712
2713 static Elf_Addr
2714 copyFunctionDesc(Elf_Addr target)
2715 {
2716    FunctionDesc *olddesc = (FunctionDesc *)target;
2717    FunctionDesc *newdesc;
2718
2719    newdesc = (FunctionDesc *)allocateFunctionDesc(olddesc->ip);
2720    newdesc->gp = olddesc->gp;
2721    return (Elf_Addr)newdesc;
2722 }
2723 #endif
2724
2725 #ifdef ELF_NEED_PLT
2726 #ifdef ia64_HOST_ARCH
2727 static void ia64_reloc_gprel22(Elf_Addr target, Elf_Addr value);
2728 static void ia64_reloc_pcrel21(Elf_Addr target, Elf_Addr value, ObjectCode *oc);
2729
2730 static unsigned char plt_code[] =
2731 {
2732    /* taken from binutils bfd/elfxx-ia64.c */
2733    0x0b, 0x78, 0x00, 0x02, 0x00, 0x24,  /*   [MMI]       addl r15=0,r1;;    */
2734    0x00, 0x41, 0x3c, 0x30, 0x28, 0xc0,  /*               ld8 r16=[r15],8    */
2735    0x01, 0x08, 0x00, 0x84,              /*               mov r14=r1;;       */
2736    0x11, 0x08, 0x00, 0x1e, 0x18, 0x10,  /*   [MIB]       ld8 r1=[r15]       */
2737    0x60, 0x80, 0x04, 0x80, 0x03, 0x00,  /*               mov b6=r16         */
2738    0x60, 0x00, 0x80, 0x00               /*               br.few b6;;        */
2739 };
2740
2741 /* If we can't get to the function descriptor via gp, take a local copy of it */
2742 #define PLT_RELOC(code, target) { \
2743    Elf64_Sxword rel_value = target - gp_val; \
2744    if ((rel_value > 0x1fffff) || (rel_value < -0x1fffff)) \
2745       ia64_reloc_gprel22((Elf_Addr)code, copyFunctionDesc(target)); \
2746    else \
2747       ia64_reloc_gprel22((Elf_Addr)code, target); \
2748    }
2749 #endif
2750
2751 typedef struct {
2752    unsigned char code[sizeof(plt_code)];
2753 } PLTEntry;
2754
2755 static Elf_Addr
2756 allocatePLTEntry(Elf_Addr target, ObjectCode *oc)
2757 {
2758    PLTEntry *plt = (PLTEntry *)oc->plt;
2759    PLTEntry *entry;
2760
2761    if (oc->pltIndex >= PLT_SIZE)
2762       barf("Procedure table overflow");
2763
2764    entry = &plt[oc->pltIndex++];
2765    memcpy(entry->code, plt_code, sizeof(entry->code));
2766    PLT_RELOC(entry->code, target);
2767    return (Elf_Addr)entry;
2768 }
2769
2770 static unsigned int
2771 PLTSize(void)
2772 {
2773    return (PLT_SIZE * sizeof(PLTEntry));
2774 }
2775 #endif
2776
2777
2778 /*
2779  * Generic ELF functions
2780  */
2781
2782 static char *
2783 findElfSection ( void* objImage, Elf_Word sh_type )
2784 {
2785    char* ehdrC = (char*)objImage;
2786    Elf_Ehdr* ehdr = (Elf_Ehdr*)ehdrC;
2787    Elf_Shdr* shdr = (Elf_Shdr*)(ehdrC + ehdr->e_shoff);
2788    char* sh_strtab = ehdrC + shdr[ehdr->e_shstrndx].sh_offset;
2789    char* ptr = NULL;
2790    int i;
2791
2792    for (i = 0; i < ehdr->e_shnum; i++) {
2793       if (shdr[i].sh_type == sh_type
2794           /* Ignore the section header's string table. */
2795           && i != ehdr->e_shstrndx
2796           /* Ignore string tables named .stabstr, as they contain
2797              debugging info. */
2798           && 0 != memcmp(".stabstr", sh_strtab + shdr[i].sh_name, 8)
2799          ) {
2800          ptr = ehdrC + shdr[i].sh_offset;
2801          break;
2802       }
2803    }
2804    return ptr;
2805 }
2806
2807 #if defined(ia64_HOST_ARCH)
2808 static Elf_Addr
2809 findElfSegment ( void* objImage, Elf_Addr vaddr )
2810 {
2811    char* ehdrC = (char*)objImage;
2812    Elf_Ehdr* ehdr = (Elf_Ehdr*)ehdrC;
2813    Elf_Phdr* phdr = (Elf_Phdr*)(ehdrC + ehdr->e_phoff);
2814    Elf_Addr segaddr = 0;
2815    int i;
2816
2817    for (i = 0; i < ehdr->e_phnum; i++) {
2818       segaddr = phdr[i].p_vaddr;
2819       if ((vaddr >= segaddr) && (vaddr < segaddr + phdr[i].p_memsz))
2820               break;
2821    }
2822    return segaddr;
2823 }
2824 #endif
2825
2826 static int
2827 ocVerifyImage_ELF ( ObjectCode* oc )
2828 {
2829    Elf_Shdr* shdr;
2830    Elf_Sym*  stab;
2831    int i, j, nent, nstrtab, nsymtabs;
2832    char* sh_strtab;
2833    char* strtab;
2834
2835    char*     ehdrC = (char*)(oc->image);
2836    Elf_Ehdr* ehdr  = (Elf_Ehdr*)ehdrC;
2837
2838    if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
2839        ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
2840        ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
2841        ehdr->e_ident[EI_MAG3] != ELFMAG3) {
2842       errorBelch("%s: not an ELF object", oc->fileName);
2843       return 0;
2844    }
2845
2846    if (ehdr->e_ident[EI_CLASS] != ELFCLASS) {
2847       errorBelch("%s: unsupported ELF format", oc->fileName);
2848       return 0;
2849    }
2850
2851    if (ehdr->e_ident[EI_DATA] == ELFDATA2LSB) {
2852        IF_DEBUG(linker,debugBelch( "Is little-endian\n" ));
2853    } else
2854    if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB) {
2855        IF_DEBUG(linker,debugBelch( "Is big-endian\n" ));
2856    } else {
2857        errorBelch("%s: unknown endiannness", oc->fileName);
2858        return 0;
2859    }
2860
2861    if (ehdr->e_type != ET_REL) {
2862       errorBelch("%s: not a relocatable object (.o) file", oc->fileName);
2863       return 0;
2864    }
2865    IF_DEBUG(linker, debugBelch( "Is a relocatable object (.o) file\n" ));
2866
2867    IF_DEBUG(linker,debugBelch( "Architecture is " ));
2868    switch (ehdr->e_machine) {
2869       case EM_386:   IF_DEBUG(linker,debugBelch( "x86" )); break;
2870 #ifdef EM_SPARC32PLUS
2871       case EM_SPARC32PLUS:
2872 #endif
2873       case EM_SPARC: IF_DEBUG(linker,debugBelch( "sparc" )); break;
2874 #ifdef EM_IA_64
2875       case EM_IA_64: IF_DEBUG(linker,debugBelch( "ia64" )); break;
2876 #endif
2877       case EM_PPC:   IF_DEBUG(linker,debugBelch( "powerpc32" )); break;
2878 #ifdef EM_X86_64
2879       case EM_X86_64: IF_DEBUG(linker,debugBelch( "x86_64" )); break;
2880 #elif defined(EM_AMD64)
2881       case EM_AMD64: IF_DEBUG(linker,debugBelch( "amd64" )); break;
2882 #endif
2883       default:       IF_DEBUG(linker,debugBelch( "unknown" ));
2884                      errorBelch("%s: unknown architecture (e_machine == %d)"
2885                                 , oc->fileName, ehdr->e_machine);
2886                      return 0;
2887    }
2888
2889    IF_DEBUG(linker,debugBelch(
2890              "\nSection header table: start %ld, n_entries %d, ent_size %d\n",
2891              (long)ehdr->e_shoff, ehdr->e_shnum, ehdr->e_shentsize  ));
2892
2893    ASSERT (ehdr->e_shentsize == sizeof(Elf_Shdr));
2894
2895    shdr = (Elf_Shdr*) (ehdrC + ehdr->e_shoff);
2896
2897    if (ehdr->e_shstrndx == SHN_UNDEF) {
2898       errorBelch("%s: no section header string table", oc->fileName);
2899       return 0;
2900    } else {
2901       IF_DEBUG(linker,debugBelch( "Section header string table is section %d\n",
2902                           ehdr->e_shstrndx));
2903       sh_strtab = ehdrC + shdr[ehdr->e_shstrndx].sh_offset;
2904    }
2905
2906    for (i = 0; i < ehdr->e_shnum; i++) {
2907       IF_DEBUG(linker,debugBelch("%2d:  ", i ));
2908       IF_DEBUG(linker,debugBelch("type=%2d  ", (int)shdr[i].sh_type ));
2909       IF_DEBUG(linker,debugBelch("size=%4d  ", (int)shdr[i].sh_size ));
2910       IF_DEBUG(linker,debugBelch("offs=%4d  ", (int)shdr[i].sh_offset ));
2911       IF_DEBUG(linker,debugBelch("  (%p .. %p)  ",
2912                ehdrC + shdr[i].sh_offset,
2913                       ehdrC + shdr[i].sh_offset + shdr[i].sh_size - 1));
2914
2915       if (shdr[i].sh_type == SHT_REL) {
2916           IF_DEBUG(linker,debugBelch("Rel  " ));
2917       } else if (shdr[i].sh_type == SHT_RELA) {
2918           IF_DEBUG(linker,debugBelch("RelA " ));
2919       } else {
2920           IF_DEBUG(linker,debugBelch("     "));
2921       }
2922       if (sh_strtab) {
2923           IF_DEBUG(linker,debugBelch("sname=%s\n", sh_strtab + shdr[i].sh_name ));
2924       }
2925    }
2926
2927    IF_DEBUG(linker,debugBelch( "\nString tables" ));
2928    strtab = NULL;
2929    nstrtab = 0;
2930    for (i = 0; i < ehdr->e_shnum; i++) {
2931       if (shdr[i].sh_type == SHT_STRTAB
2932           /* Ignore the section header's string table. */
2933           && i != ehdr->e_shstrndx
2934           /* Ignore string tables named .stabstr, as they contain
2935              debugging info. */
2936           && 0 != memcmp(".stabstr", sh_strtab + shdr[i].sh_name, 8)
2937          ) {
2938          IF_DEBUG(linker,debugBelch("   section %d is a normal string table", i ));
2939          strtab = ehdrC + shdr[i].sh_offset;
2940          nstrtab++;
2941       }
2942    }
2943    if (nstrtab != 1) {
2944       errorBelch("%s: no string tables, or too many", oc->fileName);
2945       return 0;
2946    }
2947
2948    nsymtabs = 0;
2949    IF_DEBUG(linker,debugBelch( "\nSymbol tables" ));
2950    for (i = 0; i < ehdr->e_shnum; i++) {
2951       if (shdr[i].sh_type != SHT_SYMTAB) continue;
2952       IF_DEBUG(linker,debugBelch( "section %d is a symbol table\n", i ));
2953       nsymtabs++;
2954       stab = (Elf_Sym*) (ehdrC + shdr[i].sh_offset);
2955       nent = shdr[i].sh_size / sizeof(Elf_Sym);
2956       IF_DEBUG(linker,debugBelch( "   number of entries is apparently %d (%ld rem)\n",
2957                nent,
2958                (long)shdr[i].sh_size % sizeof(Elf_Sym)
2959              ));
2960       if (0 != shdr[i].sh_size % sizeof(Elf_Sym)) {
2961          errorBelch("%s: non-integral number of symbol table entries", oc->fileName);
2962          return 0;
2963       }
2964       for (j = 0; j < nent; j++) {
2965          IF_DEBUG(linker,debugBelch("   %2d  ", j ));
2966          IF_DEBUG(linker,debugBelch("  sec=%-5d  size=%-3d  val=%5p  ",
2967                              (int)stab[j].st_shndx,
2968                              (int)stab[j].st_size,
2969                              (char*)stab[j].st_value ));
2970
2971          IF_DEBUG(linker,debugBelch("type=" ));
2972          switch (ELF_ST_TYPE(stab[j].st_info)) {
2973             case STT_NOTYPE:  IF_DEBUG(linker,debugBelch("notype " )); break;
2974             case STT_OBJECT:  IF_DEBUG(linker,debugBelch("object " )); break;
2975             case STT_FUNC  :  IF_DEBUG(linker,debugBelch("func   " )); break;
2976             case STT_SECTION: IF_DEBUG(linker,debugBelch("section" )); break;
2977             case STT_FILE:    IF_DEBUG(linker,debugBelch("file   " )); break;
2978             default:          IF_DEBUG(linker,debugBelch("?      " )); break;
2979          }
2980          IF_DEBUG(linker,debugBelch("  " ));
2981
2982          IF_DEBUG(linker,debugBelch("bind=" ));
2983          switch (ELF_ST_BIND(stab[j].st_info)) {
2984             case STB_LOCAL :  IF_DEBUG(linker,debugBelch("local " )); break;
2985             case STB_GLOBAL:  IF_DEBUG(linker,debugBelch("global" )); break;
2986             case STB_WEAK  :  IF_DEBUG(linker,debugBelch("weak  " )); break;
2987             default:          IF_DEBUG(linker,debugBelch("?     " )); break;
2988          }
2989          IF_DEBUG(linker,debugBelch("  " ));
2990
2991          IF_DEBUG(linker,debugBelch("name=%s\n", strtab + stab[j].st_name ));
2992       }
2993    }
2994
2995    if (nsymtabs == 0) {
2996       errorBelch("%s: didn't find any symbol tables", oc->fileName);
2997       return 0;
2998    }
2999
3000    return 1;
3001 }
3002
3003 static int getSectionKind_ELF( Elf_Shdr *hdr, int *is_bss )
3004 {
3005     *is_bss = FALSE;
3006
3007     if (hdr->sh_type == SHT_PROGBITS
3008         && (hdr->sh_flags & SHF_ALLOC) && (hdr->sh_flags & SHF_EXECINSTR)) {
3009         /* .text-style section */
3010         return SECTIONKIND_CODE_OR_RODATA;
3011     }
3012
3013     if (hdr->sh_type == SHT_PROGBITS
3014             && (hdr->sh_flags & SHF_ALLOC) && (hdr->sh_flags & SHF_WRITE)) {
3015             /* .data-style section */
3016             return SECTIONKIND_RWDATA;
3017     }
3018
3019     if (hdr->sh_type == SHT_PROGBITS
3020         && (hdr->sh_flags & SHF_ALLOC) && !(hdr->sh_flags & SHF_WRITE)) {
3021         /* .rodata-style section */
3022         return SECTIONKIND_CODE_OR_RODATA;
3023     }
3024
3025     if (hdr->sh_type == SHT_NOBITS
3026         && (hdr->sh_flags & SHF_ALLOC) && (hdr->sh_flags & SHF_WRITE)) {
3027         /* .bss-style section */
3028         *is_bss = TRUE;
3029         return SECTIONKIND_RWDATA;
3030     }
3031
3032     return SECTIONKIND_OTHER;
3033 }
3034
3035
3036 static int
3037 ocGetNames_ELF ( ObjectCode* oc )
3038 {
3039    int i, j, k, nent;
3040    Elf_Sym* stab;
3041
3042    char*     ehdrC    = (char*)(oc->image);
3043    Elf_Ehdr* ehdr     = (Elf_Ehdr*)ehdrC;
3044    char*     strtab   = findElfSection ( ehdrC, SHT_STRTAB );
3045    Elf_Shdr* shdr     = (Elf_Shdr*) (ehdrC + ehdr->e_shoff);
3046
3047    ASSERT(symhash != NULL);
3048
3049    if (!strtab) {
3050       errorBelch("%s: no strtab", oc->fileName);
3051       return 0;
3052    }
3053
3054    k = 0;
3055    for (i = 0; i < ehdr->e_shnum; i++) {
3056       /* Figure out what kind of section it is.  Logic derived from
3057          Figure 1.14 ("Special Sections") of the ELF document
3058          ("Portable Formats Specification, Version 1.1"). */
3059       int         is_bss = FALSE;
3060       SectionKind kind   = getSectionKind_ELF(&shdr[i], &is_bss);
3061
3062       if (is_bss && shdr[i].sh_size > 0) {
3063          /* This is a non-empty .bss section.  Allocate zeroed space for
3064             it, and set its .sh_offset field such that
3065             ehdrC + .sh_offset == addr_of_zeroed_space.  */
3066          char* zspace = stgCallocBytes(1, shdr[i].sh_size,
3067                                        "ocGetNames_ELF(BSS)");
3068          shdr[i].sh_offset = ((char*)zspace) - ((char*)ehdrC);
3069          /*
3070          debugBelch("BSS section at 0x%x, size %d\n",
3071                          zspace, shdr[i].sh_size);
3072          */
3073       }
3074
3075       /* fill in the section info */
3076       if (kind != SECTIONKIND_OTHER && shdr[i].sh_size > 0) {
3077          addProddableBlock(oc, ehdrC + shdr[i].sh_offset, shdr[i].sh_size);
3078          addSection(oc, kind, ehdrC + shdr[i].sh_offset,
3079                         ehdrC + shdr[i].sh_offset + shdr[i].sh_size - 1);
3080       }
3081
3082       if (shdr[i].sh_type != SHT_SYMTAB) continue;
3083
3084       /* copy stuff into this module's object symbol table */
3085       stab = (Elf_Sym*) (ehdrC + shdr[i].sh_offset);
3086       nent = shdr[i].sh_size / sizeof(Elf_Sym);
3087
3088       oc->n_symbols = nent;
3089       oc->symbols = stgMallocBytes(oc->n_symbols * sizeof(char*),
3090                                    "ocGetNames_ELF(oc->symbols)");
3091
3092       for (j = 0; j < nent; j++) {
3093
3094          char  isLocal = FALSE; /* avoids uninit-var warning */
3095          char* ad      = NULL;
3096          char* nm      = strtab + stab[j].st_name;
3097          int   secno   = stab[j].st_shndx;
3098
3099          /* Figure out if we want to add it; if so, set ad to its
3100             address.  Otherwise leave ad == NULL. */
3101
3102          if (secno == SHN_COMMON) {
3103             isLocal = FALSE;
3104             ad = stgCallocBytes(1, stab[j].st_size, "ocGetNames_ELF(COMMON)");
3105             /*
3106             debugBelch("COMMON symbol, size %d name %s\n",
3107                             stab[j].st_size, nm);
3108             */
3109             /* Pointless to do addProddableBlock() for this area,
3110                since the linker should never poke around in it. */
3111          }
3112          else
3113          if ( ( ELF_ST_BIND(stab[j].st_info)==STB_GLOBAL
3114                 || ELF_ST_BIND(stab[j].st_info)==STB_LOCAL
3115               )
3116               /* and not an undefined symbol */
3117               && stab[j].st_shndx != SHN_UNDEF
3118               /* and not in a "special section" */
3119               && stab[j].st_shndx < SHN_LORESERVE
3120               &&
3121               /* and it's a not a section or string table or anything silly */
3122               ( ELF_ST_TYPE(stab[j].st_info)==STT_FUNC ||
3123                 ELF_ST_TYPE(stab[j].st_info)==STT_OBJECT ||
3124                 ELF_ST_TYPE(stab[j].st_info)==STT_NOTYPE
3125               )
3126             ) {
3127             /* Section 0 is the undefined section, hence > and not >=. */
3128             ASSERT(secno > 0 && secno < ehdr->e_shnum);
3129             /*
3130             if (shdr[secno].sh_type == SHT_NOBITS) {
3131                debugBelch("   BSS symbol, size %d off %d name %s\n",
3132                                stab[j].st_size, stab[j].st_value, nm);
3133             }
3134             */
3135             ad = ehdrC + shdr[ secno ].sh_offset + stab[j].st_value;
3136             if (ELF_ST_BIND(stab[j].st_info)==STB_LOCAL) {
3137                isLocal = TRUE;
3138             } else {
3139 #ifdef ELF_FUNCTION_DESC
3140                /* dlsym() and the initialisation table both give us function
3141                 * descriptors, so to be consistent we store function descriptors
3142                 * in the symbol table */
3143                if (ELF_ST_TYPE(stab[j].st_info) == STT_FUNC)
3144                    ad = (char *)allocateFunctionDesc((Elf_Addr)ad);
3145 #endif
3146                IF_DEBUG(linker,debugBelch( "addOTabName(GLOB): %10p  %s %s\n",
3147                                       ad, oc->fileName, nm ));
3148                isLocal = FALSE;
3149             }
3150          }
3151
3152          /* And the decision is ... */
3153
3154          if (ad != NULL) {
3155             ASSERT(nm != NULL);
3156             oc->symbols[j] = nm;
3157             /* Acquire! */
3158             if (isLocal) {
3159                /* Ignore entirely. */
3160             } else {
3161                ghciInsertStrHashTable(oc->fileName, symhash, nm, ad);
3162             }
3163          } else {
3164             /* Skip. */
3165             IF_DEBUG(linker,debugBelch( "skipping `%s'\n",
3166                                    strtab + stab[j].st_name ));
3167             /*
3168             debugBelch(
3169                     "skipping   bind = %d,  type = %d,  shndx = %d   `%s'\n",
3170                     (int)ELF_ST_BIND(stab[j].st_info),
3171                     (int)ELF_ST_TYPE(stab[j].st_info),
3172                     (int)stab[j].st_shndx,
3173                     strtab + stab[j].st_name
3174                    );
3175             */
3176             oc->symbols[j] = NULL;
3177          }
3178
3179       }
3180    }
3181
3182    return 1;
3183 }
3184
3185 /* Do ELF relocations which lack an explicit addend.  All x86-linux
3186    relocations appear to be of this form. */
3187 static int
3188 do_Elf_Rel_relocations ( ObjectCode* oc, char* ehdrC,
3189                          Elf_Shdr* shdr, int shnum,
3190                          Elf_Sym*  stab, char* strtab )
3191 {
3192    int j;
3193    char *symbol;
3194    Elf_Word* targ;
3195    Elf_Rel*  rtab = (Elf_Rel*) (ehdrC + shdr[shnum].sh_offset);
3196    int         nent = shdr[shnum].sh_size / sizeof(Elf_Rel);
3197    int target_shndx = shdr[shnum].sh_info;
3198    int symtab_shndx = shdr[shnum].sh_link;
3199
3200    stab  = (Elf_Sym*) (ehdrC + shdr[ symtab_shndx ].sh_offset);
3201    targ  = (Elf_Word*)(ehdrC + shdr[ target_shndx ].sh_offset);
3202    IF_DEBUG(linker,debugBelch( "relocations for section %d using symtab %d\n",
3203                           target_shndx, symtab_shndx ));
3204
3205    /* Skip sections that we're not interested in. */
3206    {
3207        int is_bss;
3208        SectionKind kind = getSectionKind_ELF(&shdr[target_shndx], &is_bss);
3209        if (kind == SECTIONKIND_OTHER) {
3210            IF_DEBUG(linker,debugBelch( "skipping (target section not loaded)"));
3211            return 1;
3212        }
3213    }
3214
3215    for (j = 0; j < nent; j++) {
3216       Elf_Addr offset = rtab[j].r_offset;
3217       Elf_Addr info   = rtab[j].r_info;
3218
3219       Elf_Addr  P  = ((Elf_Addr)targ) + offset;
3220       Elf_Word* pP = (Elf_Word*)P;
3221       Elf_Addr  A  = *pP;
3222       Elf_Addr  S;
3223       void*     S_tmp;
3224       Elf_Addr  value;
3225       StgStablePtr stablePtr;
3226       StgPtr stableVal;
3227
3228       IF_DEBUG(linker,debugBelch( "Rel entry %3d is raw(%6p %6p)",
3229                              j, (void*)offset, (void*)info ));
3230       if (!info) {
3231          IF_DEBUG(linker,debugBelch( " ZERO" ));
3232          S = 0;
3233       } else {
3234          Elf_Sym sym = stab[ELF_R_SYM(info)];
3235          /* First see if it is a local symbol. */
3236          if (ELF_ST_BIND(sym.st_info) == STB_LOCAL) {
3237             /* Yes, so we can get the address directly from the ELF symbol
3238                table. */
3239             symbol = sym.st_name==0 ? "(noname)" : strtab+sym.st_name;
3240             S = (Elf_Addr)
3241                 (ehdrC + shdr[ sym.st_shndx ].sh_offset
3242                        + stab[ELF_R_SYM(info)].st_value);
3243
3244          } else {
3245             symbol = strtab + sym.st_name;
3246             stablePtr = (StgStablePtr)lookupHashTable(stablehash, (StgWord)symbol);
3247             if (NULL == stablePtr) {
3248               /* No, so look up the name in our global table. */
3249               S_tmp = lookupSymbol( symbol );
3250               S = (Elf_Addr)S_tmp;
3251             } else {
3252               stableVal = deRefStablePtr( stablePtr );
3253               S_tmp = stableVal;
3254               S = (Elf_Addr)S_tmp;
3255             }
3256          }
3257          if (!S) {
3258             errorBelch("%s: unknown symbol `%s'", oc->fileName, symbol);
3259             return 0;
3260          }
3261          IF_DEBUG(linker,debugBelch( "`%s' resolves to %p\n", symbol, (void*)S ));
3262       }
3263
3264       IF_DEBUG(linker,debugBelch( "Reloc: P = %p   S = %p   A = %p\n",
3265                              (void*)P, (void*)S, (void*)A ));
3266       checkProddableBlock ( oc, pP );
3267
3268       value = S + A;
3269
3270       switch (ELF_R_TYPE(info)) {
3271 #        ifdef i386_HOST_ARCH
3272          case R_386_32:   *pP = value;     break;
3273          case R_386_PC32: *pP = value - P; break;
3274 #        endif
3275          default:
3276             errorBelch("%s: unhandled ELF relocation(Rel) type %lu\n",
3277                   oc->fileName, (lnat)ELF_R_TYPE(info));
3278             return 0;
3279       }
3280
3281    }
3282    return 1;
3283 }
3284
3285 /* Do ELF relocations for which explicit addends are supplied.
3286    sparc-solaris relocations appear to be of this form. */
3287 static int
3288 do_Elf_Rela_relocations ( ObjectCode* oc, char* ehdrC,
3289                           Elf_Shdr* shdr, int shnum,
3290                           Elf_Sym*  stab, char* strtab )
3291 {
3292    int j;
3293    char *symbol = NULL;
3294    Elf_Addr targ;
3295    Elf_Rela* rtab = (Elf_Rela*) (ehdrC + shdr[shnum].sh_offset);
3296    int         nent = shdr[shnum].sh_size / sizeof(Elf_Rela);
3297    int target_shndx = shdr[shnum].sh_info;
3298    int symtab_shndx = shdr[shnum].sh_link;
3299
3300    stab  = (Elf_Sym*) (ehdrC + shdr[ symtab_shndx ].sh_offset);
3301    targ  = (Elf_Addr) (ehdrC + shdr[ target_shndx ].sh_offset);
3302    IF_DEBUG(linker,debugBelch( "relocations for section %d using symtab %d\n",
3303                           target_shndx, symtab_shndx ));
3304
3305    for (j = 0; j < nent; j++) {
3306 #if defined(DEBUG) || defined(sparc_HOST_ARCH) || defined(ia64_HOST_ARCH) || defined(powerpc_HOST_ARCH) || defined(x86_64_HOST_ARCH)
3307       /* This #ifdef only serves to avoid unused-var warnings. */
3308       Elf_Addr  offset = rtab[j].r_offset;
3309       Elf_Addr  P      = targ + offset;
3310 #endif
3311       Elf_Addr  info   = rtab[j].r_info;
3312       Elf_Addr  A      = rtab[j].r_addend;
3313       Elf_Addr  S;
3314       void*     S_tmp;
3315       Elf_Addr  value;
3316 #     if defined(sparc_HOST_ARCH)
3317       Elf_Word* pP = (Elf_Word*)P;
3318       Elf_Word  w1, w2;
3319 #     elif defined(ia64_HOST_ARCH)
3320       Elf64_Xword *pP = (Elf64_Xword *)P;
3321       Elf_Addr addr;
3322 #     elif defined(powerpc_HOST_ARCH)
3323       Elf_Sword delta;
3324 #     endif
3325
3326       IF_DEBUG(linker,debugBelch( "Rel entry %3d is raw(%6p %6p %6p)   ",
3327                              j, (void*)offset, (void*)info,
3328                                 (void*)A ));
3329       if (!info) {
3330          IF_DEBUG(linker,debugBelch( " ZERO" ));
3331          S = 0;
3332       } else {
3333          Elf_Sym sym = stab[ELF_R_SYM(info)];
3334          /* First see if it is a local symbol. */
3335          if (ELF_ST_BIND(sym.st_info) == STB_LOCAL) {
3336             /* Yes, so we can get the address directly from the ELF symbol
3337                table. */
3338             symbol = sym.st_name==0 ? "(noname)" : strtab+sym.st_name;
3339             S = (Elf_Addr)
3340                 (ehdrC + shdr[ sym.st_shndx ].sh_offset
3341                        + stab[ELF_R_SYM(info)].st_value);
3342 #ifdef ELF_FUNCTION_DESC
3343             /* Make a function descriptor for this function */
3344             if (S && ELF_ST_TYPE(sym.st_info) == STT_FUNC) {
3345                S = allocateFunctionDesc(S + A);
3346                A = 0;
3347             }
3348 #endif
3349          } else {
3350             /* No, so look up the name in our global table. */
3351             symbol = strtab + sym.st_name;
3352             S_tmp = lookupSymbol( symbol );
3353             S = (Elf_Addr)S_tmp;
3354
3355 #ifdef ELF_FUNCTION_DESC
3356             /* If a function, already a function descriptor - we would
3357                have to copy it to add an offset. */
3358             if (S && (ELF_ST_TYPE(sym.st_info) == STT_FUNC) && (A != 0))
3359                errorBelch("%s: function %s with addend %p", oc->fileName, symbol, (void *)A);
3360 #endif
3361          }
3362          if (!S) {
3363            errorBelch("%s: unknown symbol `%s'", oc->fileName, symbol);
3364            return 0;
3365          }
3366          IF_DEBUG(linker,debugBelch( "`%s' resolves to %p", symbol, (void*)S ));
3367       }
3368
3369       IF_DEBUG(linker,debugBelch("Reloc: P = %p   S = %p   A = %p\n",
3370                                         (void*)P, (void*)S, (void*)A ));
3371       /* checkProddableBlock ( oc, (void*)P ); */
3372
3373       value = S + A;
3374
3375       switch (ELF_R_TYPE(info)) {
3376 #        if defined(sparc_HOST_ARCH)
3377          case R_SPARC_WDISP30:
3378             w1 = *pP & 0xC0000000;
3379             w2 = (Elf_Word)((value - P) >> 2);
3380             ASSERT((w2 & 0xC0000000) == 0);
3381             w1 |= w2;
3382             *pP = w1;
3383             break;
3384          case R_SPARC_HI22:
3385             w1 = *pP & 0xFFC00000;
3386             w2 = (Elf_Word)(value >> 10);
3387             ASSERT((w2 & 0xFFC00000) == 0);
3388             w1 |= w2;
3389             *pP = w1;
3390             break;
3391          case R_SPARC_LO10:
3392             w1 = *pP & ~0x3FF;
3393             w2 = (Elf_Word)(value & 0x3FF);
3394             ASSERT((w2 & ~0x3FF) == 0);
3395             w1 |= w2;
3396             *pP = w1;
3397             break;
3398          /* According to the Sun documentation:
3399             R_SPARC_UA32
3400             This relocation type resembles R_SPARC_32, except it refers to an
3401             unaligned word. That is, the word to be relocated must be treated
3402             as four separate bytes with arbitrary alignment, not as a word
3403             aligned according to the architecture requirements.
3404
3405             (JRS: which means that freeloading on the R_SPARC_32 case
3406             is probably wrong, but hey ...)
3407          */
3408          case R_SPARC_UA32:
3409          case R_SPARC_32:
3410             w2 = (Elf_Word)value;
3411             *pP = w2;
3412             break;
3413 #        elif defined(ia64_HOST_ARCH)
3414          case R_IA64_DIR64LSB:
3415          case R_IA64_FPTR64LSB:
3416             *pP = value;
3417             break;
3418          case R_IA64_PCREL64LSB:
3419             *pP = value - P;
3420             break;
3421          case R_IA64_SEGREL64LSB:
3422             addr = findElfSegment(ehdrC, value);
3423             *pP = value - addr;
3424             break;
3425          case R_IA64_GPREL22:
3426             ia64_reloc_gprel22(P, value);
3427             break;
3428          case R_IA64_LTOFF22:
3429          case R_IA64_LTOFF22X:
3430          case R_IA64_LTOFF_FPTR22:
3431             addr = allocateGOTEntry(value);
3432             ia64_reloc_gprel22(P, addr);
3433             break;
3434          case R_IA64_PCREL21B:
3435             ia64_reloc_pcrel21(P, S, oc);
3436             break;
3437          case R_IA64_LDXMOV:
3438             /* This goes with R_IA64_LTOFF22X and points to the load to
3439              * convert into a move.  We don't implement relaxation. */
3440             break;
3441 #        elif defined(powerpc_HOST_ARCH)
3442          case R_PPC_ADDR16_LO:
3443             *(Elf32_Half*) P = value;
3444             break;
3445
3446          case R_PPC_ADDR16_HI:
3447             *(Elf32_Half*) P = value >> 16;
3448             break;
3449  
3450          case R_PPC_ADDR16_HA:
3451             *(Elf32_Half*) P = (value + 0x8000) >> 16;
3452             break;
3453
3454          case R_PPC_ADDR32:
3455             *(Elf32_Word *) P = value;
3456             break;
3457
3458          case R_PPC_REL32:
3459             *(Elf32_Word *) P = value - P;
3460             break;
3461
3462          case R_PPC_REL24:
3463             delta = value - P;
3464
3465             if( delta << 6 >> 6 != delta )
3466             {
3467                value = (Elf_Addr) (&makeSymbolExtra( oc, ELF_R_SYM(info), value )
3468                                         ->jumpIsland);
3469                delta = value - P;
3470
3471                if( value == 0 || delta << 6 >> 6 != delta )
3472                {
3473                   barf( "Unable to make SymbolExtra for #%d",
3474                         ELF_R_SYM(info) );
3475                   return 0;
3476                }
3477             }
3478
3479             *(Elf_Word *) P = (*(Elf_Word *) P & 0xfc000003)
3480                                           | (delta & 0x3fffffc);
3481             break;
3482 #        endif
3483
3484 #if x86_64_HOST_ARCH
3485       case R_X86_64_64:
3486           *(Elf64_Xword *)P = value;
3487           break;
3488
3489       case R_X86_64_PC32:
3490       {
3491           StgInt64 off = value - P;
3492           if (off >= 0x7fffffffL || off < -0x80000000L) {
3493 #if X86_64_ELF_NONPIC_HACK
3494               StgInt64 pltAddress = (StgInt64) &makeSymbolExtra(oc, ELF_R_SYM(info), S)
3495                                                 -> jumpIsland;
3496               off = pltAddress + A - P;
3497 #else
3498               barf("R_X86_64_PC32 relocation out of range: %s = %p\nRecompile %s with -fPIC.",
3499                    symbol, off, oc->fileName );
3500 #endif
3501           }
3502           *(Elf64_Word *)P = (Elf64_Word)off;
3503           break;
3504       }
3505
3506       case R_X86_64_PC64:
3507       {
3508           StgInt64 off = value - P;
3509           *(Elf64_Word *)P = (Elf64_Word)off;
3510           break;
3511       }
3512
3513       case R_X86_64_32:
3514           if (value >= 0x7fffffffL) {
3515 #if X86_64_ELF_NONPIC_HACK            
3516               StgInt64 pltAddress = (StgInt64) &makeSymbolExtra(oc, ELF_R_SYM(info), S)
3517                                                 -> jumpIsland;
3518               value = pltAddress + A;
3519 #else
3520               barf("R_X86_64_32 relocation out of range: %s = %p\nRecompile %s with -fPIC.",
3521                    symbol, value, oc->fileName );
3522 #endif
3523           }
3524           *(Elf64_Word *)P = (Elf64_Word)value;
3525           break;
3526
3527       case R_X86_64_32S:
3528           if ((StgInt64)value > 0x7fffffffL || (StgInt64)value < -0x80000000L) {
3529 #if X86_64_ELF_NONPIC_HACK            
3530               StgInt64 pltAddress = (StgInt64) &makeSymbolExtra(oc, ELF_R_SYM(info), S)
3531                                                 -> jumpIsland;
3532               value = pltAddress + A;
3533 #else
3534               barf("R_X86_64_32S relocation out of range: %s = %p\nRecompile %s with -fPIC.",
3535                    symbol, value, oc->fileName );
3536 #endif
3537           }
3538           *(Elf64_Sword *)P = (Elf64_Sword)value;
3539           break;
3540           
3541       case R_X86_64_GOTPCREL:
3542       {
3543           StgInt64 gotAddress = (StgInt64) &makeSymbolExtra(oc, ELF_R_SYM(info), S)->addr;
3544           StgInt64 off = gotAddress + A - P;
3545           *(Elf64_Word *)P = (Elf64_Word)off;
3546           break;
3547       }
3548       
3549       case R_X86_64_PLT32:
3550       {
3551           StgInt64 off = value - P;
3552           if (off >= 0x7fffffffL || off < -0x80000000L) {
3553               StgInt64 pltAddress = (StgInt64) &makeSymbolExtra(oc, ELF_R_SYM(info), S)
3554                                                     -> jumpIsland;
3555               off = pltAddress + A - P;
3556           }
3557           *(Elf64_Word *)P = (Elf64_Word)off;
3558           break;
3559       }
3560 #endif
3561
3562          default:
3563             errorBelch("%s: unhandled ELF relocation(RelA) type %lu\n",
3564                   oc->fileName, (lnat)ELF_R_TYPE(info));
3565             return 0;
3566       }
3567
3568    }
3569    return 1;
3570 }
3571
3572 static int
3573 ocResolve_ELF ( ObjectCode* oc )
3574 {
3575    char *strtab;
3576    int   shnum, ok;
3577    Elf_Sym*  stab  = NULL;
3578    char*     ehdrC = (char*)(oc->image);
3579    Elf_Ehdr* ehdr  = (Elf_Ehdr*) ehdrC;
3580    Elf_Shdr* shdr  = (Elf_Shdr*) (ehdrC + ehdr->e_shoff);
3581
3582    /* first find "the" symbol table */
3583    stab = (Elf_Sym*) findElfSection ( ehdrC, SHT_SYMTAB );
3584
3585    /* also go find the string table */
3586    strtab = findElfSection ( ehdrC, SHT_STRTAB );
3587
3588    if (stab == NULL || strtab == NULL) {
3589       errorBelch("%s: can't find string or symbol table", oc->fileName);
3590       return 0;
3591    }
3592
3593    /* Process the relocation sections. */
3594    for (shnum = 0; shnum < ehdr->e_shnum; shnum++) {
3595       if (shdr[shnum].sh_type == SHT_REL) {
3596          ok = do_Elf_Rel_relocations ( oc, ehdrC, shdr,
3597                                        shnum, stab, strtab );
3598          if (!ok) return ok;
3599       }
3600       else
3601       if (shdr[shnum].sh_type == SHT_RELA) {
3602          ok = do_Elf_Rela_relocations ( oc, ehdrC, shdr,
3603                                         shnum, stab, strtab );
3604          if (!ok) return ok;
3605       }
3606    }
3607
3608 #if defined(powerpc_HOST_ARCH)
3609    ocFlushInstructionCache( oc );
3610 #endif
3611
3612    return 1;
3613 }
3614
3615 /*
3616  * IA64 specifics
3617  * Instructions are 41 bits long, packed into 128 bit bundles with a 5-bit template
3618  * at the front.  The following utility functions pack and unpack instructions, and
3619  * take care of the most common relocations.
3620  */
3621
3622 #ifdef ia64_HOST_ARCH
3623
3624 static Elf64_Xword
3625 ia64_extract_instruction(Elf64_Xword *target)
3626 {
3627    Elf64_Xword w1, w2;
3628    int slot = (Elf_Addr)target & 3;
3629    target = (Elf_Addr)target & ~3;
3630
3631    w1 = *target;
3632    w2 = *(target+1);
3633
3634    switch (slot)
3635    {
3636       case 0:
3637          return ((w1 >> 5) & 0x1ffffffffff);
3638       case 1:
3639          return (w1 >> 46) | ((w2 & 0x7fffff) << 18);
3640       case 2:
3641          return (w2 >> 23);
3642       default:
3643          barf("ia64_extract_instruction: invalid slot %p", target);
3644    }
3645 }
3646
3647 static void
3648 ia64_deposit_instruction(Elf64_Xword *target, Elf64_Xword value)
3649 {
3650    int slot = (Elf_Addr)target & 3;
3651    target = (Elf_Addr)target & ~3;
3652
3653    switch (slot)
3654    {
3655       case 0:
3656          *target |= value << 5;
3657          break;
3658       case 1:
3659          *target |= value << 46;
3660          *(target+1) |= value >> 18;
3661          break;
3662       case 2:
3663          *(target+1) |= value << 23;
3664          break;
3665    }
3666 }
3667
3668 static void
3669 ia64_reloc_gprel22(Elf_Addr target, Elf_Addr value)
3670 {
3671    Elf64_Xword instruction;
3672    Elf64_Sxword rel_value;
3673
3674    rel_value = value - gp_val;
3675    if ((rel_value > 0x1fffff) || (rel_value < -0x1fffff))
3676       barf("GP-relative data out of range (address = 0x%lx, gp = 0x%lx)", value, gp_val);
3677
3678    instruction = ia64_extract_instruction((Elf64_Xword *)target);
3679    instruction |= (((rel_value >> 0) & 0x07f) << 13)            /* imm7b */
3680                     | (((rel_value >> 7) & 0x1ff) << 27)        /* imm9d */
3681                     | (((rel_value >> 16) & 0x01f) << 22)       /* imm5c */
3682                     | ((Elf64_Xword)(rel_value < 0) << 36);     /* s */
3683    ia64_deposit_instruction((Elf64_Xword *)target, instruction);
3684 }
3685
3686 static void
3687 ia64_reloc_pcrel21(Elf_Addr target, Elf_Addr value, ObjectCode *oc)
3688 {
3689    Elf64_Xword instruction;
3690    Elf64_Sxword rel_value;
3691    Elf_Addr entry;
3692
3693    entry = allocatePLTEntry(value, oc);
3694
3695    rel_value = (entry >> 4) - (target >> 4);
3696    if ((rel_value > 0xfffff) || (rel_value < -0xfffff))
3697       barf("PLT entry too far away (entry = 0x%lx, target = 0x%lx)", entry, target);
3698
3699    instruction = ia64_extract_instruction((Elf64_Xword *)target);
3700    instruction |= ((rel_value & 0xfffff) << 13)                 /* imm20b */
3701                     | ((Elf64_Xword)(rel_value < 0) << 36);     /* s */
3702    ia64_deposit_instruction((Elf64_Xword *)target, instruction);
3703 }
3704
3705 #endif /* ia64 */
3706
3707 /*
3708  * PowerPC & X86_64 ELF specifics
3709  */
3710
3711 #if defined(powerpc_HOST_ARCH) || defined(x86_64_HOST_ARCH)
3712
3713 static int ocAllocateSymbolExtras_ELF( ObjectCode *oc )
3714 {
3715   Elf_Ehdr *ehdr;
3716   Elf_Shdr* shdr;
3717   int i;
3718
3719   ehdr = (Elf_Ehdr *) oc->image;
3720   shdr = (Elf_Shdr *) ( ((char *)oc->image) + ehdr->e_shoff );
3721
3722   for( i = 0; i < ehdr->e_shnum; i++ )
3723     if( shdr[i].sh_type == SHT_SYMTAB )
3724       break;
3725
3726   if( i == ehdr->e_shnum )
3727   {
3728     errorBelch( "This ELF file contains no symtab" );
3729     return 0;
3730   }
3731
3732   if( shdr[i].sh_entsize != sizeof( Elf_Sym ) )
3733   {
3734     errorBelch( "The entry size (%d) of the symtab isn't %d\n",
3735       (int) shdr[i].sh_entsize, (int) sizeof( Elf_Sym ) );
3736     
3737     return 0;
3738   }
3739
3740   return ocAllocateSymbolExtras( oc, shdr[i].sh_size / sizeof( Elf_Sym ), 0 );
3741 }
3742
3743 #endif /* powerpc */
3744
3745 #endif /* ELF */
3746
3747 /* --------------------------------------------------------------------------
3748  * Mach-O specifics
3749  * ------------------------------------------------------------------------*/
3750
3751 #if defined(OBJFORMAT_MACHO)
3752
3753 /*
3754   Support for MachO linking on Darwin/MacOS X
3755   by Wolfgang Thaller (wolfgang.thaller@gmx.net)
3756
3757   I hereby formally apologize for the hackish nature of this code.
3758   Things that need to be done:
3759   *) implement ocVerifyImage_MachO
3760   *) add still more sanity checks.
3761 */
3762
3763 #if x86_64_HOST_ARCH || powerpc64_HOST_ARCH
3764 #define mach_header mach_header_64
3765 #define segment_command segment_command_64
3766 #define section section_64
3767 #define nlist nlist_64
3768 #endif
3769
3770 #ifdef powerpc_HOST_ARCH
3771 static int ocAllocateSymbolExtras_MachO(ObjectCode* oc)
3772 {
3773     struct mach_header *header = (struct mach_header *) oc->image;
3774     struct load_command *lc = (struct load_command *) (header + 1);
3775     unsigned i;
3776
3777     for( i = 0; i < header->ncmds; i++ )
3778     {   
3779         if( lc->cmd == LC_SYMTAB )
3780         {
3781                 // Find out the first and last undefined external
3782                 // symbol, so we don't have to allocate too many
3783                 // jump islands.
3784             struct symtab_command *symLC = (struct symtab_command *) lc;
3785             unsigned min = symLC->nsyms, max = 0;
3786             struct nlist *nlist =
3787                 symLC ? (struct nlist*) ((char*) oc->image + symLC->symoff)
3788                       : NULL;
3789             for(i=0;i<symLC->nsyms;i++)
3790             {
3791                 if(nlist[i].n_type & N_STAB)
3792                     ;
3793                 else if(nlist[i].n_type & N_EXT)
3794                 {
3795                     if((nlist[i].n_type & N_TYPE) == N_UNDF
3796                         && (nlist[i].n_value == 0))
3797                     {
3798                         if(i < min)
3799                             min = i;
3800                         if(i > max)
3801                             max = i;
3802                     }
3803                 }
3804             }
3805             if(max >= min)
3806                 return ocAllocateSymbolExtras(oc, max - min + 1, min);
3807
3808             break;
3809         }
3810         
3811         lc = (struct load_command *) ( ((char *)lc) + lc->cmdsize );
3812     }
3813     return ocAllocateSymbolExtras(oc,0,0);
3814 }
3815 #endif
3816 #ifdef x86_64_HOST_ARCH
3817 static int ocAllocateSymbolExtras_MachO(ObjectCode* oc)
3818 {
3819     struct mach_header *header = (struct mach_header *) oc->image;
3820     struct load_command *lc = (struct load_command *) (header + 1);
3821     unsigned i;
3822
3823     for( i = 0; i < header->ncmds; i++ )
3824     {   
3825         if( lc->cmd == LC_SYMTAB )
3826         {
3827                 // Just allocate one entry for every symbol
3828             struct symtab_command *symLC = (struct symtab_command *) lc;
3829             
3830             return ocAllocateSymbolExtras(oc, symLC->nsyms, 0);
3831         }
3832         
3833         lc = (struct load_command *) ( ((char *)lc) + lc->cmdsize );
3834     }
3835     return ocAllocateSymbolExtras(oc,0,0);
3836 }
3837 #endif
3838
3839 static int ocVerifyImage_MachO(ObjectCode* oc)
3840 {
3841     char *image = (char*) oc->image;
3842     struct mach_header *header = (struct mach_header*) image;
3843
3844 #if x86_64_TARGET_ARCH || powerpc64_TARGET_ARCH
3845     if(header->magic != MH_MAGIC_64)
3846         return 0;
3847 #else
3848     if(header->magic != MH_MAGIC)
3849         return 0;
3850 #endif
3851     // FIXME: do some more verifying here
3852     return 1;
3853 }
3854
3855 static int resolveImports(
3856     ObjectCode* oc,
3857     char *image,
3858     struct symtab_command *symLC,
3859     struct section *sect,    // ptr to lazy or non-lazy symbol pointer section
3860     unsigned long *indirectSyms,
3861     struct nlist *nlist)
3862 {
3863     unsigned i;
3864     size_t itemSize = 4;
3865
3866 #if i386_HOST_ARCH
3867     int isJumpTable = 0;
3868     if(!strcmp(sect->sectname,"__jump_table"))
3869     {
3870         isJumpTable = 1;
3871         itemSize = 5;
3872         ASSERT(sect->reserved2 == itemSize);
3873     }
3874 #endif
3875
3876     for(i=0; i*itemSize < sect->size;i++)
3877     {
3878         // according to otool, reserved1 contains the first index into the indirect symbol table
3879         struct nlist *symbol = &nlist[indirectSyms[sect->reserved1+i]];
3880         char *nm = image + symLC->stroff + symbol->n_un.n_strx;
3881         void *addr = NULL;
3882
3883         if((symbol->n_type & N_TYPE) == N_UNDF
3884             && (symbol->n_type & N_EXT) && (symbol->n_value != 0))
3885             addr = (void*) (symbol->n_value);
3886         else
3887             addr = lookupSymbol(nm);
3888         if(!addr)
3889         {
3890             errorBelch("\n%s: unknown symbol `%s'", oc->fileName, nm);
3891             return 0;
3892         }
3893         ASSERT(addr);
3894
3895 #if i386_HOST_ARCH
3896         if(isJumpTable)
3897         {
3898             checkProddableBlock(oc,image + sect->offset + i*itemSize);
3899             *(image + sect->offset + i*itemSize) = 0xe9; // jmp
3900             *(unsigned*)(image + sect->offset + i*itemSize + 1)
3901                 = (char*)addr - (image + sect->offset + i*itemSize + 5);
3902         }
3903         else
3904 #endif
3905         {
3906             checkProddableBlock(oc,((void**)(image + sect->offset)) + i);
3907             ((void**)(image + sect->offset))[i] = addr;
3908         }
3909     }
3910
3911     return 1;
3912 }
3913
3914 static unsigned long relocateAddress(
3915     ObjectCode* oc,
3916     int nSections,
3917     struct section* sections,
3918     unsigned long address)
3919 {
3920     int i;
3921     for(i = 0; i < nSections; i++)
3922     {
3923         if(sections[i].addr <= address
3924             && address < sections[i].addr + sections[i].size)
3925         {
3926             return (unsigned long)oc->image
3927                     + sections[i].offset + address - sections[i].addr;
3928         }
3929     }
3930     barf("Invalid Mach-O file:"
3931          "Address out of bounds while relocating object file");
3932     return 0;
3933 }
3934
3935 static int relocateSection(
3936     ObjectCode* oc,
3937     char *image,
3938     struct symtab_command *symLC, struct nlist *nlist,
3939     int nSections, struct section* sections, struct section *sect)
3940 {
3941     struct relocation_info *relocs;
3942     int i,n;
3943
3944     if(!strcmp(sect->sectname,"__la_symbol_ptr"))
3945         return 1;
3946     else if(!strcmp(sect->sectname,"__nl_symbol_ptr"))
3947         return 1;
3948     else if(!strcmp(sect->sectname,"__la_sym_ptr2"))
3949         return 1;
3950     else if(!strcmp(sect->sectname,"__la_sym_ptr3"))
3951         return 1;
3952
3953     n = sect->nreloc;
3954     relocs = (struct relocation_info*) (image + sect->reloff);
3955
3956     for(i=0;i<n;i++)
3957     {
3958 #ifdef x86_64_HOST_ARCH
3959         struct relocation_info *reloc = &relocs[i];
3960         
3961         char    *thingPtr = image + sect->offset + reloc->r_address;
3962         uint64_t thing;
3963         uint64_t value;
3964         uint64_t baseValue;
3965         int type = reloc->r_type;
3966         
3967         checkProddableBlock(oc,thingPtr);
3968         switch(reloc->r_length)
3969         {
3970             case 0:
3971                 thing = *(uint8_t*)thingPtr;
3972                 baseValue = (uint64_t)thingPtr + 1;
3973                 break;
3974             case 1:
3975                 thing = *(uint16_t*)thingPtr;
3976                 baseValue = (uint64_t)thingPtr + 2;
3977                 break;
3978             case 2:
3979                 thing = *(uint32_t*)thingPtr;
3980                 baseValue = (uint64_t)thingPtr + 4;
3981                 break;
3982             case 3:
3983                 thing = *(uint64_t*)thingPtr;
3984                 baseValue = (uint64_t)thingPtr + 8;
3985                 break;
3986             default:
3987                 barf("Unknown size.");
3988         }
3989         
3990         if(type == X86_64_RELOC_GOT
3991            || type == X86_64_RELOC_GOT_LOAD)
3992         {
3993             ASSERT(reloc->r_extern);
3994             value = (uint64_t) &makeSymbolExtra(oc, reloc->r_symbolnum, value)->addr;
3995             
3996             type = X86_64_RELOC_SIGNED;
3997         }
3998         else if(reloc->r_extern)
3999         {
4000             struct nlist *symbol = &nlist[reloc->r_symbolnum];
4001             char *nm = image + symLC->stroff + symbol->n_un.n_strx;
4002             if(symbol->n_value == 0)
4003                 value = (uint64_t) lookupSymbol(nm);
4004             else
4005                 value = relocateAddress(oc, nSections, sections,
4006                                         symbol->n_value);
4007         }
4008         else
4009         {
4010             value = sections[reloc->r_symbolnum-1].offset
4011                   - sections[reloc->r_symbolnum-1].addr
4012                   + (uint64_t) image;
4013         }
4014         
4015         if(type == X86_64_RELOC_BRANCH)
4016         {
4017             if((int32_t)(value - baseValue) != (int64_t)(value - baseValue))
4018             {
4019                 ASSERT(reloc->r_extern);
4020                 value = (uint64_t) &makeSymbolExtra(oc, reloc->r_symbolnum, value)
4021                                         -> jumpIsland;
4022             }
4023             ASSERT((int32_t)(value - baseValue) == (int64_t)(value - baseValue));
4024             type = X86_64_RELOC_SIGNED;
4025         }
4026         
4027         switch(type)
4028         {
4029             case X86_64_RELOC_UNSIGNED:
4030                 ASSERT(!reloc->r_pcrel);
4031                 thing += value;
4032                 break;
4033             case X86_64_RELOC_SIGNED:
4034                 ASSERT(reloc->r_pcrel);
4035                 thing += value - baseValue;
4036                 break;
4037             case X86_64_RELOC_SUBTRACTOR:
4038                 ASSERT(!reloc->r_pcrel);
4039                 thing -= value;
4040                 break;
4041             default:
4042                 barf("unkown relocation");
4043         }
4044                 
4045         switch(reloc->r_length)
4046         {
4047             case 0:
4048                 *(uint8_t*)thingPtr = thing;
4049                 break;
4050             case 1:
4051                 *(uint16_t*)thingPtr = thing;
4052                 break;
4053             case 2:
4054                 *(uint32_t*)thingPtr = thing;
4055                 break;
4056             case 3:
4057                 *(uint64_t*)thingPtr = thing;
4058                 break;
4059         }
4060 #else
4061         if(relocs[i].r_address & R_SCATTERED)
4062         {
4063             struct scattered_relocation_info *scat =
4064                 (struct scattered_relocation_info*) &relocs[i];
4065
4066             if(!scat->r_pcrel)
4067             {
4068                 if(scat->r_length == 2)
4069                 {
4070                     unsigned long word = 0;
4071                     unsigned long* wordPtr = (unsigned long*) (image + sect->offset + scat->r_address);
4072                     checkProddableBlock(oc,wordPtr);
4073
4074                     // Note on relocation types:
4075                     // i386 uses the GENERIC_RELOC_* types,
4076                     // while ppc uses special PPC_RELOC_* types.
4077                     // *_RELOC_VANILLA and *_RELOC_PAIR have the same value
4078                     // in both cases, all others are different.
4079                     // Therefore, we use GENERIC_RELOC_VANILLA
4080                     // and GENERIC_RELOC_PAIR instead of the PPC variants,
4081                     // and use #ifdefs for the other types.
4082                     
4083                     // Step 1: Figure out what the relocated value should be
4084                     if(scat->r_type == GENERIC_RELOC_VANILLA)
4085                     {
4086                         word = *wordPtr + (unsigned long) relocateAddress(
4087                                                                 oc,
4088                                                                 nSections,
4089                                                                 sections,
4090                                                                 scat->r_value)
4091                                         - scat->r_value;
4092                     }
4093 #ifdef powerpc_HOST_ARCH
4094                     else if(scat->r_type == PPC_RELOC_SECTDIFF
4095                         || scat->r_type == PPC_RELOC_LO16_SECTDIFF
4096                         || scat->r_type == PPC_RELOC_HI16_SECTDIFF
4097                         || scat->r_type == PPC_RELOC_HA16_SECTDIFF)
4098 #else
4099                     else if(scat->r_type == GENERIC_RELOC_SECTDIFF)
4100 #endif
4101                     {
4102                         struct scattered_relocation_info *pair =
4103                                 (struct scattered_relocation_info*) &relocs[i+1];
4104
4105                         if(!pair->r_scattered || pair->r_type != GENERIC_RELOC_PAIR)
4106                             barf("Invalid Mach-O file: "
4107                                  "RELOC_*_SECTDIFF not followed by RELOC_PAIR");
4108
4109                         word = (unsigned long)
4110                                (relocateAddress(oc, nSections, sections, scat->r_value)
4111                               - relocateAddress(oc, nSections, sections, pair->r_value));
4112                         i++;
4113                     }
4114 #ifdef powerpc_HOST_ARCH
4115                     else if(scat->r_type == PPC_RELOC_HI16
4116                          || scat->r_type == PPC_RELOC_LO16
4117                          || scat->r_type == PPC_RELOC_HA16
4118                          || scat->r_type == PPC_RELOC_LO14)
4119                     {   // these are generated by label+offset things
4120                         struct relocation_info *pair = &relocs[i+1];
4121                         if((pair->r_address & R_SCATTERED) || pair->r_type != PPC_RELOC_PAIR)
4122                             barf("Invalid Mach-O file: "
4123                                  "PPC_RELOC_* not followed by PPC_RELOC_PAIR");
4124                         
4125                         if(scat->r_type == PPC_RELOC_LO16)
4126                         {
4127                             word = ((unsigned short*) wordPtr)[1];
4128                             word |= ((unsigned long) relocs[i+1].r_address & 0xFFFF) << 16;
4129                         }
4130                         else if(scat->r_type == PPC_RELOC_LO14)
4131                         {
4132                             barf("Unsupported Relocation: PPC_RELOC_LO14");
4133                             word = ((unsigned short*) wordPtr)[1] & 0xFFFC;
4134                             word |= ((unsigned long) relocs[i+1].r_address & 0xFFFF) << 16;
4135                         }
4136                         else if(scat->r_type == PPC_RELOC_HI16)
4137                         {
4138                             word = ((unsigned short*) wordPtr)[1] << 16;
4139                             word |= ((unsigned long) relocs[i+1].r_address & 0xFFFF);
4140                         }
4141                         else if(scat->r_type == PPC_RELOC_HA16)
4142                         {
4143                             word = ((unsigned short*) wordPtr)[1] << 16;
4144                             word += ((short)relocs[i+1].r_address & (short)0xFFFF);
4145                         }
4146                        
4147                         
4148                         word += (unsigned long) relocateAddress(oc, nSections, sections, scat->r_value)
4149                                                 - scat->r_value;
4150                         
4151                         i++;
4152                     }
4153  #endif
4154                     else
4155                         continue;  // ignore the others
4156
4157 #ifdef powerpc_HOST_ARCH
4158                     if(scat->r_type == GENERIC_RELOC_VANILLA
4159                         || scat->r_type == PPC_RELOC_SECTDIFF)
4160 #else
4161                     if(scat->r_type == GENERIC_RELOC_VANILLA
4162                         || scat->r_type == GENERIC_RELOC_SECTDIFF)
4163 #endif
4164                     {
4165                         *wordPtr = word;
4166                     }
4167 #ifdef powerpc_HOST_ARCH
4168                     else if(scat->r_type == PPC_RELOC_LO16_SECTDIFF || scat->r_type == PPC_RELOC_LO16)
4169                     {
4170                         ((unsigned short*) wordPtr)[1] = word & 0xFFFF;
4171                     }
4172                     else if(scat->r_type == PPC_RELOC_HI16_SECTDIFF || scat->r_type == PPC_RELOC_HI16)
4173                     {
4174                         ((unsigned short*) wordPtr)[1] = (word >> 16) & 0xFFFF;
4175                     }
4176                     else if(scat->r_type == PPC_RELOC_HA16_SECTDIFF || scat->r_type == PPC_RELOC_HA16)
4177                     {
4178                         ((unsigned short*) wordPtr)[1] = ((word >> 16) & 0xFFFF)
4179                             + ((word & (1<<15)) ? 1 : 0);
4180                     }
4181 #endif
4182                 }
4183             }
4184
4185             continue; // FIXME: I hope it's OK to ignore all the others.
4186         }
4187         else
4188         {
4189             struct relocation_info *reloc = &relocs[i];
4190             if(reloc->r_pcrel && !reloc->r_extern)
4191                 continue;
4192
4193             if(reloc->r_length == 2)
4194             {
4195                 unsigned long word = 0;
4196 #ifdef powerpc_HOST_ARCH
4197                 unsigned long jumpIsland = 0;
4198                 long offsetToJumpIsland = 0xBADBAD42; // initialise to bad value
4199                                                       // to avoid warning and to catch
4200                                                       // bugs.
4201 #endif
4202
4203                 unsigned long* wordPtr = (unsigned long*) (image + sect->offset + reloc->r_address);
4204                 checkProddableBlock(oc,wordPtr);
4205
4206                 if(reloc->r_type == GENERIC_RELOC_VANILLA)
4207                 {
4208                     word = *wordPtr;
4209                 }
4210 #ifdef powerpc_HOST_ARCH
4211                 else if(reloc->r_type == PPC_RELOC_LO16)
4212                 {
4213                     word = ((unsigned short*) wordPtr)[1];
4214                     word |= ((unsigned long) relocs[i+1].r_address & 0xFFFF) << 16;
4215                 }
4216                 else if(reloc->r_type == PPC_RELOC_HI16)
4217                 {
4218                     word = ((unsigned short*) wordPtr)[1] << 16;
4219                     word |= ((unsigned long) relocs[i+1].r_address & 0xFFFF);
4220                 }
4221                 else if(reloc->r_type == PPC_RELOC_HA16)
4222                 {
4223                     word = ((unsigned short*) wordPtr)[1] << 16;
4224                     word += ((short)relocs[i+1].r_address & (short)0xFFFF);
4225                 }
4226                 else if(reloc->r_type == PPC_RELOC_BR24)
4227                 {
4228                     word = *wordPtr;
4229                     word = (word & 0x03FFFFFC) | ((word & 0x02000000) ? 0xFC000000 : 0);
4230                 }
4231 #endif
4232
4233                 if(!reloc->r_extern)
4234                 {
4235                     long delta =
4236                         sections[reloc->r_symbolnum-1].offset
4237                         - sections[reloc->r_symbolnum-1].addr
4238                         + ((long) image);
4239
4240                     word += delta;
4241                 }
4242                 else
4243                 {
4244                     struct nlist *symbol = &nlist[reloc->r_symbolnum];
4245                     char *nm = image + symLC->stroff + symbol->n_un.n_strx;
4246                     void *symbolAddress = lookupSymbol(nm);
4247                     if(!symbolAddress)
4248                     {
4249                         errorBelch("\nunknown symbol `%s'", nm);
4250                         return 0;
4251                     }
4252
4253                     if(reloc->r_pcrel)
4254                     {  
4255 #ifdef powerpc_HOST_ARCH
4256                             // In the .o file, this should be a relative jump to NULL
4257                             // and we'll change it to a relative jump to the symbol
4258                         ASSERT(word + reloc->r_address == 0);
4259                         jumpIsland = (unsigned long)
4260                                         &makeSymbolExtra(oc,
4261                                                          reloc->r_symbolnum,
4262                                                          (unsigned long) symbolAddress)
4263                                          -> jumpIsland;
4264                         if(jumpIsland != 0)
4265                         {
4266                             offsetToJumpIsland = word + jumpIsland
4267                                 - (((long)image) + sect->offset - sect->addr);
4268                         }
4269 #endif
4270                         word += (unsigned long) symbolAddress
4271                                 - (((long)image) + sect->offset - sect->addr);
4272                     }
4273                     else
4274                     {
4275                         word += (unsigned long) symbolAddress;
4276                     }
4277                 }
4278
4279                 if(reloc->r_type == GENERIC_RELOC_VANILLA)
4280                 {
4281                     *wordPtr = word;
4282                     continue;
4283                 }
4284 #ifdef powerpc_HOST_ARCH
4285                 else if(reloc->r_type == PPC_RELOC_LO16)
4286                 {
4287                     ((unsigned short*) wordPtr)[1] = word & 0xFFFF;
4288                     i++; continue;
4289                 }
4290                 else if(reloc->r_type == PPC_RELOC_HI16)
4291                 {
4292                     ((unsigned short*) wordPtr)[1] = (word >> 16) & 0xFFFF;
4293                     i++; continue;
4294                 }
4295                 else if(reloc->r_type == PPC_RELOC_HA16)
4296                 {
4297                     ((unsigned short*) wordPtr)[1] = ((word >> 16) & 0xFFFF)
4298                         + ((word & (1<<15)) ? 1 : 0);
4299                     i++; continue;
4300                 }
4301                 else if(reloc->r_type == PPC_RELOC_BR24)
4302                 {
4303                     if((long)word > (long)0x01FFFFFF || (long)word < (long)0xFFE00000)
4304                     {
4305                         // The branch offset is too large.
4306                         // Therefore, we try to use a jump island.
4307                         if(jumpIsland == 0)
4308                         {
4309                             barf("unconditional relative branch out of range: "
4310                                  "no jump island available");
4311                         }
4312                         
4313                         word = offsetToJumpIsland;
4314                         if((long)word > (long)0x01FFFFFF || (long)word < (long)0xFFE00000)
4315                             barf("unconditional relative branch out of range: "
4316                                  "jump island out of range");
4317                     }
4318                     *wordPtr = (*wordPtr & 0xFC000003) | (word & 0x03FFFFFC);
4319                     continue;
4320                 }
4321 #endif
4322             }
4323             barf("\nunknown relocation %d",reloc->r_type);
4324             return 0;
4325         }
4326 #endif
4327     }
4328     return 1;
4329 }
4330
4331 static int ocGetNames_MachO(ObjectCode* oc)
4332 {
4333     char *image = (char*) oc->image;
4334     struct mach_header *header = (struct mach_header*) image;
4335     struct load_command *lc = (struct load_command*) (image + sizeof(struct mach_header));
4336     unsigned i,curSymbol = 0;
4337     struct segment_command *segLC = NULL;
4338     struct section *sections;
4339     struct symtab_command *symLC = NULL;
4340     struct nlist *nlist;
4341     unsigned long commonSize = 0;
4342     char    *commonStorage = NULL;
4343     unsigned long commonCounter;
4344
4345     for(i=0;i<header->ncmds;i++)
4346     {
4347         if(lc->cmd == LC_SEGMENT || lc->cmd == LC_SEGMENT_64)
4348             segLC = (struct segment_command*) lc;
4349         else if(lc->cmd == LC_SYMTAB)
4350             symLC = (struct symtab_command*) lc;
4351         lc = (struct load_command *) ( ((char*)lc) + lc->cmdsize );
4352     }
4353
4354     sections = (struct section*) (segLC+1);
4355     nlist = symLC ? (struct nlist*) (image + symLC->symoff)
4356                   : NULL;
4357     
4358     if(!segLC)
4359         barf("ocGetNames_MachO: no segment load command");
4360
4361     for(i=0;i<segLC->nsects;i++)
4362     {
4363         if(sections[i].size == 0)
4364             continue;
4365
4366         if((sections[i].flags & SECTION_TYPE) == S_ZEROFILL)
4367         {
4368             char * zeroFillArea = stgCallocBytes(1,sections[i].size,
4369                                       "ocGetNames_MachO(common symbols)");
4370             sections[i].offset = zeroFillArea - image;
4371         }
4372
4373         if(!strcmp(sections[i].sectname,"__text"))
4374             addSection(oc, SECTIONKIND_CODE_OR_RODATA,
4375                 (void*) (image + sections[i].offset),
4376                 (void*) (image + sections[i].offset + sections[i].size));
4377         else if(!strcmp(sections[i].sectname,"__const"))
4378             addSection(oc, SECTIONKIND_RWDATA,
4379                 (void*) (image + sections[i].offset),
4380                 (void*) (image + sections[i].offset + sections[i].size));
4381         else if(!strcmp(sections[i].sectname,"__data"))
4382             addSection(oc, SECTIONKIND_RWDATA,
4383                 (void*) (image + sections[i].offset),
4384                 (void*) (image + sections[i].offset + sections[i].size));
4385         else if(!strcmp(sections[i].sectname,"__bss")
4386                 || !strcmp(sections[i].sectname,"__common"))
4387             addSection(oc, SECTIONKIND_RWDATA,
4388                 (void*) (image + sections[i].offset),
4389                 (void*) (image + sections[i].offset + sections[i].size));
4390
4391         addProddableBlock(oc, (void*) (image + sections[i].offset),
4392                                         sections[i].size);
4393     }
4394
4395         // count external symbols defined here
4396     oc->n_symbols = 0;
4397     if(symLC)
4398     {
4399         for(i=0;i<symLC->nsyms;i++)
4400         {
4401             if(nlist[i].n_type & N_STAB)
4402                 ;
4403             else if(nlist[i].n_type & N_EXT)
4404             {
4405                 if((nlist[i].n_type & N_TYPE) == N_UNDF
4406                     && (nlist[i].n_value != 0))
4407                 {
4408                     commonSize += nlist[i].n_value;
4409                     oc->n_symbols++;
4410                 }
4411                 else if((nlist[i].n_type & N_TYPE) == N_SECT)
4412                     oc->n_symbols++;
4413             }
4414         }
4415     }
4416     oc->symbols = stgMallocBytes(oc->n_symbols * sizeof(char*),
4417                                    "ocGetNames_MachO(oc->symbols)");
4418
4419     if(symLC)
4420     {
4421         for(i=0;i<symLC->nsyms;i++)
4422         {
4423             if(nlist[i].n_type & N_STAB)
4424                 ;
4425             else if((nlist[i].n_type & N_TYPE) == N_SECT)
4426             {
4427                 if(nlist[i].n_type & N_EXT)
4428                 {
4429                     char *nm = image + symLC->stroff + nlist[i].n_un.n_strx;
4430                     if((nlist[i].n_desc & N_WEAK_DEF) && lookupSymbol(nm))
4431                         ; // weak definition, and we already have a definition
4432                     else
4433                     {
4434                             ghciInsertStrHashTable(oc->fileName, symhash, nm,
4435                                                     image
4436                                                     + sections[nlist[i].n_sect-1].offset
4437                                                     - sections[nlist[i].n_sect-1].addr
4438                                                     + nlist[i].n_value);
4439                             oc->symbols[curSymbol++] = nm;
4440                     }
4441                 }
4442             }
4443         }
4444     }
4445
4446     commonStorage = stgCallocBytes(1,commonSize,"ocGetNames_MachO(common symbols)");
4447     commonCounter = (unsigned long)commonStorage;
4448     if(symLC)
4449     {
4450         for(i=0;i<symLC->nsyms;i++)
4451         {
4452             if((nlist[i].n_type & N_TYPE) == N_UNDF
4453                     && (nlist[i].n_type & N_EXT) && (nlist[i].n_value != 0))
4454             {
4455                 char *nm = image + symLC->stroff + nlist[i].n_un.n_strx;
4456                 unsigned long sz = nlist[i].n_value;
4457
4458                 nlist[i].n_value = commonCounter;
4459
4460                 ghciInsertStrHashTable(oc->fileName, symhash, nm,
4461                                        (void*)commonCounter);
4462                 oc->symbols[curSymbol++] = nm;
4463
4464                 commonCounter += sz;
4465             }
4466         }
4467     }
4468     return 1;
4469 }
4470
4471 static int ocResolve_MachO(ObjectCode* oc)
4472 {
4473     char *image = (char*) oc->image;
4474     struct mach_header *header = (struct mach_header*) image;
4475     struct load_command *lc = (struct load_command*) (image + sizeof(struct mach_header));
4476     unsigned i;
4477     struct segment_command *segLC = NULL;
4478     struct section *sections;
4479     struct symtab_command *symLC = NULL;
4480     struct dysymtab_command *dsymLC = NULL;
4481     struct nlist *nlist;
4482
4483     for(i=0;i<header->ncmds;i++)
4484     {
4485         if(lc->cmd == LC_SEGMENT || lc->cmd == LC_SEGMENT_64)
4486             segLC = (struct segment_command*) lc;
4487         else if(lc->cmd == LC_SYMTAB)
4488             symLC = (struct symtab_command*) lc;
4489         else if(lc->cmd == LC_DYSYMTAB)
4490             dsymLC = (struct dysymtab_command*) lc;
4491         lc = (struct load_command *) ( ((char*)lc) + lc->cmdsize );
4492     }
4493
4494     sections = (struct section*) (segLC+1);
4495     nlist = symLC ? (struct nlist*) (image + symLC->symoff)
4496                   : NULL;
4497
4498     if(dsymLC)
4499     {
4500         unsigned long *indirectSyms
4501             = (unsigned long*) (image + dsymLC->indirectsymoff);
4502
4503         for(i=0;i<segLC->nsects;i++)
4504         {
4505             if(    !strcmp(sections[i].sectname,"__la_symbol_ptr")
4506                 || !strcmp(sections[i].sectname,"__la_sym_ptr2")
4507                 || !strcmp(sections[i].sectname,"__la_sym_ptr3"))
4508             {
4509                 if(!resolveImports(oc,image,symLC,&sections[i],indirectSyms,nlist))
4510                     return 0;
4511             }
4512             else if(!strcmp(sections[i].sectname,"__nl_symbol_ptr")
4513                 ||  !strcmp(sections[i].sectname,"__pointers"))
4514             {
4515                 if(!resolveImports(oc,image,symLC,&sections[i],indirectSyms,nlist))
4516                     return 0;
4517             }
4518             else if(!strcmp(sections[i].sectname,"__jump_table"))
4519             {
4520                 if(!resolveImports(oc,image,symLC,&sections[i],indirectSyms,nlist))
4521                     return 0;
4522             }
4523         }
4524     }
4525     
4526     for(i=0;i<segLC->nsects;i++)
4527     {
4528         if(!relocateSection(oc,image,symLC,nlist,segLC->nsects,sections,&sections[i]))
4529             return 0;
4530     }
4531
4532 #if defined (powerpc_HOST_ARCH)
4533     ocFlushInstructionCache( oc );
4534 #endif
4535
4536     return 1;
4537 }
4538
4539 #ifdef powerpc_HOST_ARCH
4540 /*
4541  * The Mach-O object format uses leading underscores. But not everywhere.
4542  * There is a small number of runtime support functions defined in
4543  * libcc_dynamic.a whose name does not have a leading underscore.
4544  * As a consequence, we can't get their address from C code.
4545  * We have to use inline assembler just to take the address of a function.
4546  * Yuck.
4547  */
4548
4549 static void machoInitSymbolsWithoutUnderscore()
4550 {
4551     extern void* symbolsWithoutUnderscore[];
4552     void **p = symbolsWithoutUnderscore;
4553     __asm__ volatile(".globl _symbolsWithoutUnderscore\n.data\n_symbolsWithoutUnderscore:");
4554
4555 #undef Sym
4556 #define Sym(x)  \
4557     __asm__ volatile(".long " # x);
4558
4559     RTS_MACHO_NOUNDERLINE_SYMBOLS
4560
4561     __asm__ volatile(".text");
4562     
4563 #undef Sym
4564 #define Sym(x)  \
4565     ghciInsertStrHashTable("(GHCi built-in symbols)", symhash, #x, *p++);
4566     
4567     RTS_MACHO_NOUNDERLINE_SYMBOLS
4568     
4569 #undef Sym
4570 }
4571 #endif
4572
4573 /*
4574  * Figure out by how much to shift the entire Mach-O file in memory
4575  * when loading so that its single segment ends up 16-byte-aligned
4576  */
4577 static int machoGetMisalignment( FILE * f )
4578 {
4579     struct mach_header header;
4580     int misalignment;
4581     
4582     fread(&header, sizeof(header), 1, f);
4583     rewind(f);
4584
4585 #if x86_64_TARGET_ARCH || powerpc64_TARGET_ARCH
4586     if(header.magic != MH_MAGIC_64)
4587         return 0;
4588 #else
4589     if(header.magic != MH_MAGIC)
4590         return 0;
4591 #endif
4592
4593     misalignment = (header.sizeofcmds + sizeof(header))
4594                     & 0xF;
4595
4596     return misalignment ? (16 - misalignment) : 0;
4597 }
4598
4599 #endif
4600