checkpoint
[anneal.git] / src / edu / berkeley / qfat / Mesh.java
index e4b5bf4..48fb47b 100644 (file)
@@ -106,7 +106,7 @@ public class Mesh implements Iterable<Mesh.T> {
     // Vertexices //////////////////////////////////////////////////////////////////////////////
 
     /** a vertex in the mesh */
-    public final class Vertex extends HasPoint {
+    public final class Vertex extends HasPoint implements Visitor<T> {
         public String toString() { return p.toString(); }
         public Point p;
         E e;                // some edge *leaving* this point
@@ -240,10 +240,10 @@ public class Mesh implements Iterable<Mesh.T> {
                 double ang = Math.abs(e.crossAngle());
                 if (ang > Math.PI) throw new Error();
                 /*
-                if (e.t != null) {
-                    numaspects++;
-                    aspects += e.t.aspect()*e.t.aspect();
-                }
+                  if (e.t != null) {
+                  numaspects++;
+                  aspects += e.t.aspect()*e.t.aspect();
+                  }
                 */
 
                 float minangle = (float)(Math.PI * 0.8);
@@ -277,83 +277,53 @@ public class Mesh implements Iterable<Mesh.T> {
         /** does NOT update bound pairs! */
         public boolean transform(Matrix m) {
             if (immutableVertices) throw new Error();
+
             unApplyQuadricToNeighbor();
             Point oldp = this.p;
-            try {
-                if (vertices.get(this.p)==null) throw new Error();
-                vertices.remove(this);
-                removeTrianglesFromRTree();
-                float newx = m.a*p.x + m.b*p.y + m.c*p.z + m.d;
-                float newy = m.e*p.x + m.f*p.y + m.g*p.z + m.h;
-                float newz = m.i*p.x + m.j*p.y + m.k*p.z + m.l;
-                this.p = new Point(newx, newy, newz);
-                addTrianglesToRTree();
-                vertices.add(this);
-            } catch (Exception e) {
-                throw new RuntimeException(e);
-            }
+
+            if (vertices.get(this.p)==null) throw new Error();
+            vertices.remove(this);
+            removeTrianglesFromRTree();
+            float newx = m.a*p.x + m.b*p.y + m.c*p.z + m.d;
+            float newy = m.e*p.x + m.f*p.y + m.g*p.z + m.h;
+            float newz = m.i*p.x + m.j*p.y + m.k*p.z + m.l;
+            this.p = new Point(newx, newy, newz);
+            addTrianglesToRTree();
+            vertices.add(this);
+
             applyQuadricToNeighbor();
 
-            // FIXME: intersection test needed?
             good = true;
 
-            // should recompute fundamental quadrics of all vertices sharing a face, but we defer...
+            
             E e = this.e;
             do {
-                /*
-                if (Math.abs(e.crossAngle()) > (Math.PI * 0.9) ||
-                    Math.abs(e.next.crossAngle()) > (Math.PI * 0.9)) {
-                    good = false;
-                }
-                if (e.t.aspect() < 0.1) {
-                    good = false;
-                }
-                */
+                if (Math.abs(e.crossAngle()) > (Math.PI * 0.9) || Math.abs(e.next.crossAngle()) > (Math.PI * 0.9)) good = false;
+                if (e.t.aspect() < 0.1) good = false;
+                // should recompute fundamental quadrics of all vertices sharing a face, but we defer...
                 e.p2.quadricStale = true;
                 e = e.pair.next;
             } while(e != this.e);
 
-
-            if (!ignorecollision && good) {
-
-                triangles.range(new Segment(oldp, this.p),
-                            new Visitor<T>() {
-                                public void visit(T t) {
-                                    if (!good) return;
-                                    E e = Vertex.this.e;
-                                    do {
-                                        if (!t.has(e.p1) && !t.has(e.p2) && e.intersects(t)) { good = false; }
-                                        if (e.t != null) {
-                                            if (!e.t.has(t.e1().p1) && !e.t.has(t.e1().p2) && t.e1().intersects(e.t)) { good = false; }
-                                            if (!e.t.has(t.e2().p1) && !e.t.has(t.e2().p2) && t.e2().intersects(e.t)) { good = false; }
-                                            if (!e.t.has(t.e3().p1) && !e.t.has(t.e3().p2) && t.e3().intersects(e.t)) { good = false; }
-                                        }
-                                        e = e.pair.next;
-                                    } while(e != Vertex.this.e);
-                                }
-                            });
-
-                /*
-                for(T t : Mesh.this) {
-                    if (!good) break;
-                    e = this.e;
-                    do {
-                        if (!t.has(e.p1) && !t.has(e.p2) && e.intersects(t)) { good = false; break; }
-                        if (e.t != null) {
-                            if (!e.t.has(t.e1().p1) && !e.t.has(t.e1().p2) && t.e1().intersects(e.t)) { good = false; break; }
-                            if (!e.t.has(t.e2().p1) && !e.t.has(t.e2().p2) && t.e2().intersects(e.t)) { good = false; break; }
-                            if (!e.t.has(t.e3().p1) && !e.t.has(t.e3().p2) && t.e3().intersects(e.t)) { good = false; break; }
-                        }
-                        e = e.pair.next;
-                    } while(e != this.e);
-                }
-                */
-            }
-
+            if (!ignorecollision && good) triangles.range(oldp, this.p, (Visitor<T>)this);
 
             reComputeErrorAround();
             return good;
         }
+
+        public void visit(T t) {
+            if (!good) return;
+            E e = Vertex.this.e;
+            do {
+                if (!t.has(e.p1) && !t.has(e.p2) && e.intersects(t)) { good = false; }
+                if (e.t != null) {
+                    if (!e.t.has(t.e1().p1) && !e.t.has(t.e1().p2) && t.e1().intersects(e.t)) { good = false; }
+                    if (!e.t.has(t.e2().p1) && !e.t.has(t.e2().p2) && t.e2().intersects(e.t)) { good = false; }
+                    if (!e.t.has(t.e3().p1) && !e.t.has(t.e3().p2) && t.e3().intersects(e.t)) { good = false; }
+                }
+                e = e.pair.next;
+            } while(e != Vertex.this.e);
+        }
         private boolean good;
 
         public boolean move(Vec v) {
@@ -494,15 +464,15 @@ public class Mesh implements Iterable<Mesh.T> {
             Vertex nearest = score_against.nearest(midpoint());
             //if (t==null) return length();
             /*
-            double ang = Math.abs(crossAngle());
-            float minangle = (float)(Math.PI * 0.9);
-            if (ang > minangle)
-                return 300;
+              double ang = Math.abs(crossAngle());
+              float minangle = (float)(Math.PI * 0.9);
+              if (ang > minangle)
+              return 300;
             */
             /*
-            if ((length() * length()) / t.area() > 10)
-                return (float)(length()*Math.sqrt(t.area()));
-            return length()*t.area();
+              if ((length() * length()) / t.area() > 10)
+              return (float)(length()*Math.sqrt(t.area()));
+              return length()*t.area();
             */
             return (float)Math.max(length(), midpoint().distance(nearest.p));
             //return length();