checkpoint
[anneal.git] / src / edu / berkeley / qfat / Mesh.java
index da10ac9..cd696b0 100644 (file)
@@ -15,7 +15,7 @@ public class Mesh implements Iterable<Mesh.T> {
     public static final Random random = new Random();
 
     private PointSet<Vert> pointset = new PointSet<Vert>();
-
+    public int size() { return pointset.size(); }
     public Iterable<Vert> vertices() { return pointset; }
 
     public Iterable<E> edges() {
@@ -37,12 +37,18 @@ public class Mesh implements Iterable<Mesh.T> {
     }
 
     public Iterator<T> iterator() {
+        /*
         for(Vert v : pointset)
             if (v.e != null && v.e.t != null)
                 return new FaceIterator(v);
         return new FaceIterator();
+        */
+        return ts.iterator();
     }
 
+    public HashSet<T> ts = new HashSet<T>();
+    public RTree<T> tris = new RTree<T>();
+
     public Mesh score_against = null;
     public double score = 0;
     public float score() { return (float)score; }
@@ -122,6 +128,7 @@ public class Mesh implements Iterable<Mesh.T> {
     public Vert nearest(Point p) { return pointset.nearest(p); }
 
     public final class Vert extends HasPoint {
+        public String toString() { return p.toString(); }
         public Point p;
         E e;                // some edge *leaving* this point
 
@@ -133,7 +140,7 @@ public class Mesh implements Iterable<Mesh.T> {
         Matrix quadric = Matrix.ZERO;
 
         Vert bound_to = this;
-        Matrix binding = new Matrix();
+        Matrix binding = Matrix.ONE;
         float oldscore = 0;
         boolean quadricStale = false;
 
@@ -164,12 +171,14 @@ public class Mesh implements Iterable<Mesh.T> {
             unApplyQuadricToNeighbor();
             Matrix m = Matrix.ZERO;
             E e = this.e;
+            int count = 0;
             do {
                 T t = e.t;
                 m = m.plus(t.norm().fundamentalQuadric(t.centroid()));
+                count++;
                 e = e.pair.next;
             } while(e != this.e);
-            fundamentalQuadric = m;
+            fundamentalQuadric = m.times(1/(float)count);
             applyQuadricToNeighbor();
         }
 
@@ -208,6 +217,15 @@ public class Mesh implements Iterable<Mesh.T> {
             reComputeError();
         }
 
+        public void reComputeErrorAround() {
+            reComputeError();
+            if (nearest_in_other_mesh != null) nearest_in_other_mesh.reComputeError();
+            E e = this.e;
+            do {
+                e.p2.reComputeError();
+                e = e.pair.next;
+            } while (e != this.e);
+        }
         public void reComputeError() {
             unComputeError();
             computeError();
@@ -217,56 +235,147 @@ public class Mesh implements Iterable<Mesh.T> {
             oldscore = 0;
         }
         public void computeError() {
-            oldscore = quadric_count == 0 ? 0 : ((quadric.preAndPostMultiply(p) * 100) / quadric_count);
-            double ang = Math.abs(e.crossAngle());
-            if (ang < Math.PI * 0.2)
-                oldscore += ((Math.PI*0.2) - ang) * 10;
+            if (quadric_count == 0) {
+                if (!tilemesh) {
+                }
+                else if (nearest_in_other_mesh == null) {
+                    if (score_against != null) {
+                        Vert ne = score_against.nearest(p);
+                        oldscore = ne.fundamentalQuadric().preAndPostMultiply(p) * 100 * 10;
+                    } else {
+                        oldscore = 0;
+                    }
+                } else {
+                    oldscore = nearest_in_other_mesh.fundamentalQuadric().preAndPostMultiply(p) * 100 * 10;
+                }
+            } else {
+                oldscore = (quadric.preAndPostMultiply(p) * 100) / quadric_count;
+            }
+
+            oldscore = oldscore;
+
+            int numaspects = 0;
+            float aspects = 0;
+            E e = this.e;
+            do {
+                //double ang = Math.abs(e.crossAngle());
+                double ang = Math.abs(e.crossAngle());
+                if (ang > Math.PI) throw new Error();
+                /*
+                if (e.t != null) {
+                    numaspects++;
+                    aspects += e.t.aspect()*e.t.aspect();
+                }
+                */
+
+                float minangle = (float)(Math.PI * 0.8);
+                if (ang > minangle)
+                    oldscore += (ang - minangle);
+
+                e = e.pair.next;
+            } while (e != this.e);
+            if (numaspects > 0) oldscore += (aspects / numaspects);
+
             //System.out.println(oldscore);
+            //oldscore = oldscore*oldscore;
             score += oldscore;
         }
 
+        private void removeTrianglesFromRTree() {
+            E e = this.e;
+            do {
+                if (e.t != null) e.t.removeFromRTree();
+                e = e.pair.next;
+            } while(e != this.e);
+        }
+        private void addTrianglesToRTree() {
+            E e = this.e;
+            do {
+                if (e.t != null) e.t.addToRTree();
+                e = e.pair.next;
+            } while(e != this.e);
+        }
+
         /** does NOT update bound pairs! */
         public boolean transform(Matrix m) {
             unApplyQuadricToNeighbor();
+            Point oldp = this.p;
             try {
                 if (pointset.get(this.p)==null) throw new Error();
                 pointset.remove(this);
+                removeTrianglesFromRTree();
                 float newx = m.a*p.x + m.b*p.y + m.c*p.z + m.d;
                 float newy = m.e*p.x + m.f*p.y + m.g*p.z + m.h;
                 float newz = m.i*p.x + m.j*p.y + m.k*p.z + m.l;
                 this.p = new Point(newx, newy, newz);
+                addTrianglesToRTree();
                 pointset.add(this);
             } catch (Exception e) {
                 throw new RuntimeException(e);
             }
             applyQuadricToNeighbor();
 
+            // FIXME: intersection test needed?
+            good = true;
+
             // should recompute fundamental quadrics of all vertices sharing a face, but we defer...
             E e = this.e;
             do {
+                /*
+                if (Math.abs(e.crossAngle()) > (Math.PI * 0.9) ||
+                    Math.abs(e.next.crossAngle()) > (Math.PI * 0.9)) {
+                    good = false;
+                }
+                if (e.t.aspect() < 0.1) {
+                    good = false;
+                }
+                */
                 e.p2.quadricStale = true;
                 e = e.pair.next;
             } while(e != this.e);
 
-            // FIXME: intersection test needed?
-            boolean good = true;
-            /*
-            for(T t : Mesh.this) {
-                if (!good) break;
-                e = this.e;
-                do {
-                    if (!t.has(e.p1) && !t.has(e.p2) && e.intersects(t)) { good = false; break; }
-                    if (e.t != null) {
-                        if (!e.t.has(t.e1().p1) && !e.t.has(t.e1().p2) && t.e1().intersects(e.t)) { good = false; break; }
-                        if (!e.t.has(t.e2().p1) && !e.t.has(t.e2().p2) && t.e2().intersects(e.t)) { good = false; break; }
-                        if (!e.t.has(t.e3().p1) && !e.t.has(t.e3().p2) && t.e3().intersects(e.t)) { good = false; break; }
-                    }
-                    e = e.pair.next;
-                } while(e != this.e);
+
+            if (!ignorecollision && good) {
+
+                tris.range(new Segment(oldp, this.p),
+                            new Visitor<T>() {
+                                public void visit(T t) {
+                                    if (!good) return;
+                                    E e = Vert.this.e;
+                                    do {
+                                        if (!t.has(e.p1) && !t.has(e.p2) && e.intersects(t)) { good = false; }
+                                        if (e.t != null) {
+                                            if (!e.t.has(t.e1().p1) && !e.t.has(t.e1().p2) && t.e1().intersects(e.t)) { good = false; }
+                                            if (!e.t.has(t.e2().p1) && !e.t.has(t.e2().p2) && t.e2().intersects(e.t)) { good = false; }
+                                            if (!e.t.has(t.e3().p1) && !e.t.has(t.e3().p2) && t.e3().intersects(e.t)) { good = false; }
+                                        }
+                                        e = e.pair.next;
+                                    } while(e != Vert.this.e);
+                                }
+                            });
+
+                /*
+                for(T t : Mesh.this) {
+                    if (!good) break;
+                    e = this.e;
+                    do {
+                        if (!t.has(e.p1) && !t.has(e.p2) && e.intersects(t)) { good = false; break; }
+                        if (e.t != null) {
+                            if (!e.t.has(t.e1().p1) && !e.t.has(t.e1().p2) && t.e1().intersects(e.t)) { good = false; break; }
+                            if (!e.t.has(t.e2().p1) && !e.t.has(t.e2().p2) && t.e2().intersects(e.t)) { good = false; break; }
+                            if (!e.t.has(t.e3().p1) && !e.t.has(t.e3().p2) && t.e3().intersects(e.t)) { good = false; break; }
+                        }
+                        e = e.pair.next;
+                    } while(e != this.e);
+                }
+                */
             }
-*/
+
+
+            reComputeErrorAround();
             return good;
         }
+        private boolean good;
 
         public boolean move(Vec v) {
             Matrix m = new Matrix(v);
@@ -283,7 +392,14 @@ public class Mesh implements Iterable<Mesh.T> {
             E ret = getFreeIncident(e, e);
             if (ret != null) return ret;
             ret = getFreeIncident(e.pair.next, e.pair.next);
-            if (ret == null) throw new Error("unable to find free incident to " + this);
+            if (ret == null) {
+                E ex = e;
+                do {
+                    System.out.println(ex + " " + ex.t);
+                    ex = ex.pair.next;
+                } while (ex != e);
+                throw new Error("unable to find free incident to " + this);
+            }
             return ret;
         }
 
@@ -329,8 +445,8 @@ public class Mesh implements Iterable<Mesh.T> {
             } while(px != p);
             return false;
         }
-        public void unbind() { bound_to = this; binding = new Matrix(); }
-        public void bind(Vert p) { bind(p, new Matrix()); }
+        public void unbind() { bound_to = this; binding = Matrix.ONE; }
+        public void bind(Vert p) { bind(p, Matrix.ONE); }
         public void bind(Vert p, Matrix binding) {
             if (isBoundTo(p)) return;
             Vert temp_bound_to = p.bound_to;
@@ -394,7 +510,26 @@ public class Mesh implements Iterable<Mesh.T> {
         public BindingGroup bind_to     = bind_peers.other();
         boolean shattered = false;
 
-        public int compareTo(E e) { return e.length() > length() ? 1 : -1; }
+        public float comparator() {
+            Vert nearest = score_against.nearest(midpoint());
+            //if (t==null) return length();
+            /*
+            double ang = Math.abs(crossAngle());
+            float minangle = (float)(Math.PI * 0.9);
+            if (ang > minangle)
+                return 300;
+            */
+            /*
+            if ((length() * length()) / t.area() > 10)
+                return (float)(length()*Math.sqrt(t.area()));
+            return length()*t.area();
+            */
+            return (float)Math.max(length(), midpoint().distance(nearest.p));
+            //return length();
+        }
+        public int compareTo(E e) {
+            return e.comparator() > comparator() ? 1 : -1;
+        }
         public void bindEdge(E e) { bind_to.add(e); }
         public void dobind() { bind_to.dobind(this); }
 
@@ -428,12 +563,23 @@ public class Mesh implements Iterable<Mesh.T> {
             if (destroyed) return;
             destroyed = true;
             pair.destroyed = true;
+
+            if (t != null) t.destroy();
+            t = null;
+
+            if (pair.t != null) pair.t.destroy();
+            pair.t = null;
+
             if (next.t != null) next.t.destroy();
             if (prev.t != null) prev.t.destroy();
             next.t = null;
             prev.t = null;
+
+            if (pair.next.t != null) pair.next.t.destroy();
+            if (pair.prev.t != null) pair.next.t.destroy();
             pair.next.t = null;
             pair.prev.t = null;
+
             this.bind_to = null;
             pair.bind_to = null;
             this.bind_peers = null;
@@ -684,7 +830,12 @@ public class Mesh implements Iterable<Mesh.T> {
         public final int color;
         public final int colorclass;
 
+        public void removeFromRTree() { tris.remove(this); }
+        public void addToRTree() { tris.insert(this); }
+
         public void destroy() {
+            tris.remove(this);
+            ts.remove(this);
         }
 
         T(E e1, int colorclass) {
@@ -710,6 +861,8 @@ public class Mesh implements Iterable<Mesh.T> {
             }
             this.color = color;
             this.colorclass = colorclass;
+            ts.add(this);
+            tris.add(this);
         }
         public E e1() { return e1; }
         public E e2() { return e1.next; }
@@ -724,14 +877,17 @@ public class Mesh implements Iterable<Mesh.T> {
         public boolean has(Vert v) { return v1()==v || v2()==v || v3()==v; }
 
         public void glVertices(GL gl) {
+
             if (e1().bind_to.set.size() == 0) return;
             if (e2().bind_to.set.size() == 0) return;
             if (e3().bind_to.set.size() == 0) return;
+
             norm().glNormal(gl);
             p1().glVertex(gl);
             p2().glVertex(gl);
             p3().glVertex(gl);
         }
     }
-
+    public boolean tilemesh = false;
+    public boolean ignorecollision = false;
 }